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Abstract: Micronutrient deficiencies (MNDs), also known as hidden hunger, affect more than a
quarter of the global population. Agronomic biofortification helps to increase the concentration of a
target mineral in food crops and improve human mineral dietary intake. It is a means of providing
nutrient-dense foods to a larger population, especially among rural resource-poor settings, providing
that they have access to mineral fertilizers. However, the feasibility of agronomic biofortification
in combating hidden hunger depends on several factors in addition to fertilizer access, including
crop type, genotype, climate, soils, and soil mineral interactions. Consideration of its effectiveness in
increasing human mineral intake to the daily requirements and the improvement of human health
and the cost-effectiveness of the program is also important. In this paper, we review the available
literature regarding the potential effectiveness and challenges of agronomic biofortification to improve
crop micronutrient concentrations and reduce hidden hunger.

Keywords: agronomic biofortification; dietary intake; effectiveness; fertilizers; micronutrient deficiencies

1. Introduction

Micronutrient deficiencies (MNDs), also known as ‘hidden hunger’, occur when
dietary intakes of vitamins and mineral micronutrients are not adequate for optimal human
health. MNDs are a public health concern worldwide and have been the focus of intensive
research for many years. It is estimated that more than a quarter of the global population
is affected by the deficiency of one or more micronutrients [1]. MNDs are a risk factor
for many diseases, contributing to the existing high rates of morbidity and mortality. For
example, MNDs can lead to reduced resistance to infections, which can cause severe
illnesses and developmental challenges, including anemia, mental retardation, blindness,
and spinal and brain birth defects. The most prevalent forms of MNDs are iron (Fe), iodine
(I), zinc (Zn), and vitamin A [2,3]. In terms of the loss of healthy life years, the deficiency of
these micronutrients is responsible for 1.5–12% of the total disability-adjusted life years
(DALYs) lost in sub-Saharan Africa (SSA) [4]. It has been estimated that undernutrition and
MNDs, combined, cost the world up to USD 3.5 trillion every year [5]. The research also
shows that MNDs among women of reproductive age lead to undesirable birth outcomes
in newborns, together with a higher risk of physical and cognitive impairment, leading to
economic stagnation and intergenerational poverty [6].

Understanding the etiology of MNDs is vital in the process of designing and imple-
menting strategies for the prevention of diet-related diseases [7]. MNDs can be addressed
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through the implementation of programs. Dietary diversification, food fortification, sup-
plementation, and the genetic and agronomic biofortification of food crops are among
the strategies. In addition to improving micronutrient intake, dietary diversification has
the potential to improve the intake of many food constituents at the same time. It is
typically considered to be the most sustainable and preferred strategy compared to the
others. However, the availability and affordability of diversified foods are often barriers
in resource-poor societies. Changes in dietary patterns through nutrition education and
behavioral change communication also make the strategy tough to achieve [2].

Supplementation of high-dose vitamins and minerals is a strategy that can quickly
improve the micronutrient status of individuals or a targeted population [2]. However,
supplementation depends on the availability of supplements to the individual at the correct
level. In addition, it is not necessarily sustainable because it does not address the root
cause of the particular MND or multiple MNDs. Nutrients from supplements can also
show different physiological responses and absorption rates than nutrients in food [2].
The procurement of micronutrients in a relatively expensive pre-packaged form is also a
challenge in resource-poor communities [2].

Food fortification can have a wider impact and is potentially more sustainable than
supplementation. However, fortification is dependent on centrally processed food vehicles
and requires the engagement of food-processing industries. Furthermore, some communi-
ties can be difficult to reach through the implementation of food fortification, especially
those that consume locally produced food sources. The sustainability of the mineral supply
to food industries, the bioavailability of fortified minerals, and possible sensory changes
as a result of fortification could be additional challenges to this strategy [2]. Overall, food
fortification, supplementation, and diet diversification strategies may work well only in
urban settings [8,9].

Improvement in the quantity as well as the quality of essential nutrients in the edible
portions of crops during plant growth either genetically and/or agronomically is known as
biofortification [10]. Biofortification that is achieved through genetic engineering or classical
breeding is called genetic biofortification, while agronomic biofortification involves the
application of a micronutrient fertilizer either to the soil (basal application) or application
directly to the leaves of the crop (foliar application) [11,12]. The focus of this review is
agronomic biofortification.

2. Agronomic Biofortification

Agronomic biofortification is the strategy of increasing the micronutrient contents
in the edible parts of food crops through the basal and/or foliar application of mineral
fertilizers [11,12]. Agronomic biofortification can enrich crops with multiple elements, but
the most common ones are Fe, Se, Zn, and I. It may be a suitable approach to reach resource-
poor rural populations, provided they have access to chemical fertilizers. Soil-to-plant
transfer and the accumulation of minerals in the edible portion of food crops determine
the success of biofortification. In addition, the bioavailability of minerals from biofortified
crops in the body influences the effectiveness of biofortification programs.

3. Evidence from Agronomic Biofortification

Agronomic biofortification has mainly been carried out on staple cereal crops like
rice, wheat, and maize because they dominate diets worldwide, especially among groups
vulnerable to MND. Dimpka and Bindraban [13] recommend that micronutrient fertilization
should improve the yields as well as the nutrient contents of crops. This is because
fertilization programs in developing countries typically focus on nitrogen, phosphorus,
and potassium (NPK) and/or sulfur (S) fertilizers, yet crop yields can still be limited by
multiple soil micronutrient deficiencies [14]. Basal application of multiple elements in small
amounts to the soil has, therefore, been recommended as a sustainable strategy to increase
both the yields and the nutrient quality of crops [14–16].
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Most research on agronomic biofortification has focused on Se and Zn, and these
micronutrients are the focus of this review. Selenium is an essential trace element with
many roles in human health; however, it has no known biological roles in plants. Blending
or granulating Se with macronutrient fertilizers can be highly effective [12]. For example,
crops in Finland showed a 15-fold increase in their Se concentration due to the application
of Se with NPK fertilizers [17]. Similarly, in a recent study from Malawi, an 88–97%
increase in the Se concentration of maize grain was observed due to the application of
20 g ha−1 Se fertilizer [18]. Grain Se increased by about 10-fold as a result of 25 g ha−1 Se
fertilizer application in Brazil [19]. De Lima Lessa et al. [20] and Chilimba et al. [18] showed
approximately linear increments of grain Se concentration with increased Se fertilizer
application in their studies conducted in Brazil and Malawi, respectively. Other studies
from Kenya and Australia also reported linear increases in grain Se concentrations with
increases in the Se fertilizer application dose [21]. On the other hand, studies that compared
the effects of Se chemical forms (nanoparticle, sodium selenite, and sodium selenite) on
faba bean seed [22] and tomato fruit [23] Se concentrations reported that nanoparticles
exerted the smallest effects compared to the other chemical forms. In general, multiple
previous studies have reported the positive impact of Se agronomic biofortification on grain
Se concentration (Table 1). However, there was no evidence that Se fertilizer application
had an effect on crop yield in these studies.

Table 1. Previous reports on impact of Se agronomic biofortification on grain Se concentration.

No. Crop Application Method Application Rate Grain Se Increase (%) Reference

1 Wheat Basal 55.4–21.6 mg ha−1 elemental Se 283–1650 [24]
2 Rice Foliar 30 g ha−1 Na2SeO3 259 [25]

3 Wheat
Basal 5 g ha−1 elemental Se 137

[26]Foliar 5 g ha−1 elemental Se 51–155
Basal and foliar A total of 10 g ha−1 elemental Se 61–364

4 Soybean Basal 80 g ha−1 Na2SeO4 290–331 [27]

5 Maize
Basal 5–20 g ha−1 Na2SeO4 25–227

[28]
Foliar 5–20 g ha−1 Na2SeO4 423–819

6 Faba
bean Foliar

1 L m−2 Se nanoparticles (90 nm) (concentration = 100 mg L−1) 1360
[22]1 L m−2 sodium selenite (concentration = 220 mg L−1) 3799

1 L m−2 sodium selenate (concentration = 240 mg L−1) 7426

In contrast to Se, Zn is an essential plant nutrient and a yield-limiting factor in many
production systems. Cakmak [12] showed that Zn fertilization enhances yield as well as
crop Zn concentrations. Previous studies reported the positive impact of Zn agronomic
biofortification on both yield and grain Zn concentration (Table 2). Joy et al. [29] systemati-
cally reviewed studies and reported an incremental effect of Zn fertilizer application on Zn
concentrations in maize (20%), rice (7%), and wheat (19%) in 10 African countries. The same
review indicated that foliar Zn application resulted in even higher grain Zn concentrations
in maize (30%), rice (25%), and wheat (63%). Moreover, the chemical form of Zn has been
reported to have a significant impact on both crop yield and grain Zn concentration. For
instance, Umar et al. [30] reported that the application of Zn nanoparticles on maize was
more effective in improving both the grain yield and Zn concentration. Similar studies on
rice [31] and wheat [32] have reported that Zn nanoparticles were effective at increasing
grain Zn concentration, but the yield remained unaffected (Table 2).
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Table 2. Previous reports on impact of Zn agronomic biofortification on crop yield as well as grain
Zn concentration.

No. Crop Application Method Application Rate Yield
Increase (%)

Grain Zn
Increase (%) Reference

1 Maize Basal 30 kg ha−1 elemental Zn 11 15 [33]

2 Chickpea
Basal 25 kg ha−1 ZnSO47H2O 10.2 24.9

[34]Foliar 0.5% (w/v) ZnSO47H2O 9.2 35.4
Basal and foliar 25 kg ha−1 and 0.5% (w/v) ZnSO47H2O 14.3 39.1

3 Rice Foliar 0.5% (w/v) ZnSO4·7H2O 10 66 [35]
4 Rice Basal 20 mg elemental Zn per 1 kg soil 23.5 80.4 [36]

5 Wheat
Basal 25 kg ha−1 ZnSO47H2O 5 18 [37]Foliar 0.5% (w/v) ZnSO47H2O 3 47

6 Rice
Basal 5 kg ha−1 elemental Zn 26.5

[38]Foliar 0.5% (w/v) ZnSO4·7H2O 79.5
Basal and foliar 5 kg ha−1 elemental Zn0.5% (w/v) & ZnSO4·7H2O 89.8

7 Maize
Basal

ZnO nanoparticle (105 nm) (8 kg Zn ha−1) 44 59

[30]
ZnO (8 kg Zn ha−1) 11 28

Foliar
ZnO nanoparticle (105 nm) (2% solution) 33 82
ZnO (2% solution) 11 38

8 Rice Basal
25–100 mg Zn nanoparticle (30 ± 10 nm) kg−1 soil 88.3 24.2 [31]
25–100 mg Zn from ZnSO4·7H2O kg−1 soil 86.5 12.6

9 Wheat Basal
10–1000 mg ZnO nanoparticle (<100 nm) kg−1 soil 5.6–56 23.5–230

[32]
10–1000 mg Zn from ZnSO4·7H2O kg−1 soil 8.8–55 12.6–142

Overwhelming evidence from many countries has shown that the application of Zn
fertilizer on Zn-deficient soils improves the yield and/or grain Zn concentration [11,39–52].
However, one study in Pakistan reported little or no significant effect of Zn fertilizer
application on rice yield or grain Zn concentration [35]. This was due to the presence of high
DTPA-extractable Zn (2.2 to 6.5 mg kg−1) in the soil, while the level of DTPA-extractable
Zn in soil considered to be critical for Zn deficiency in rice is 0.5–0.8 mg Zn kg−1 [53].
Zia et al. [54] also reported no significant effect on wheat grain Zn concentration as a result
of soil Zn application, which, again, may be linked to soil properties.

There are fewer studies on the effect of Fe agronomic biofortification compared to
Se and Zn. For example, a study from India reported a 13% yield and 2-fold wheat grain
Fe concentration increase due to Fe fertilization [37]. Similarly, another study on finger
millet reported a positive impact of Fe fertilization on both grain yield and Fe concentration
(Table 3). In contrast, Zhang et al. [55] and Pahlavan-Rad and Pessarakli [56] from China
and Iran observed 36% and 21% wheat grain Fe concentration increases, respectively, but
the yield remained unaffected. However, studies from Turkey and Canada on the Fe biofor-
tification of barley and wheat, respectively, showed neither yield nor grain Fe concentration
improvement [39,57]. This was due to two reasons. First, graminaceous species release
phytosiderophores (Fe-mobilizing compounds) to solubilize and absorb Fe from soils with
low Fe concentrations, and thus, they can maintain adequate plant growth by satisfying Fe
demand without the requirement of Fe fertilization [54,56,58]. The second reason is that
when applied to calcareous soils, Fe is rapidly converted into unavailable forms, and the
poor mobility of Fe in phloem makes Fe fertilization unsuccessful [11,59]. Furthermore,
the crop response to Fe fertilization is more dependent on the synergetic effect of nitrogen
fertilizer [39,60]; the details are presented in Section 5.2. The chemical form of Fe is also
reported to have a significant impact on both the crop yield and grain Fe concentration. For
instance, foliar application of Fe nanoparticles showed a significantly higher impact on
wheat grain Fe concentration, but not yield, compared to Fe-EDTA and FeSO4 [61]. On the
other hand, Dhaliwal et al. [62] and Taskin and Gunes [63] reported significantly higher
yields, but not grain Fe concentration, in chickpea and wheat, respectively, as a result of
foliar application of Fe nanoparticles compared to FeSO4 application (Table 3).
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Table 3. Previous reports on impact of Fe agronomic biofortification on crop yield as well as grain
Fe concentration.

No. Crop Application Method Application Rate Yield
Increase (%)

Grain Fe
Increase (%) Reference

1 Wheat Foliar 50 mg Fe L−1 from 1 to 3 sprays 1.3–22 [64]

2 Wheat Foliar
6 g L−1 (0.84 kg ha−1) FeO3 nanoparticle 11.4 17

[61]12 g L−1 (1.1 kg ha−1) elemental Fe from FeSO47H2O 13 11.3
12 g L−1 (1.1 kg ha−1) elemental Fe from Fe-EDTA 3.8 5.1

3 Finger
millet Basal 4 kg ha−1 elemental Fe from FeSO47H2O 18.3 17.8 [65,66]

4 Chickpea Foliar
0.5% FeSO47H2O 7.1 −2.8

[62]0.5% FeO3 nanoparticle 43 0.16

5 Wheat Foliar
0.2% Fe from FeSO47H2O 6.6 13.2

[63]0.2% nano zero-valent Fe (29 to 50 nm) −1.9 12.6

4. Effect on Human Nutrition and Health

It is suggested that agronomic biofortification potentially improves the daily intake
of minerals and helps to alleviate MNDs [18,67]. However, the effectiveness of agronomic
biofortification on the improvement of human micronutrient status and health is currently
less well studied. The only large-scale effectiveness study that linked agronomic biofor-
tification to the improvement of human Se status and health was reported from Finland.
The average dietary intake of Se was 0.04 mg Se/day/10 MJ when Finland started the
agronomic biofortification of Se in 1985. After six years of extensive application, the average
dietary intake of Se was enhanced to 0.12 mg Se/day. After four years, the mean human
plasma Se concentration increased from 0.89 µmol/L to 1.50 µmol/L. The authors con-
cluded that the nationwide agronomic biofortification of Se was found to be effective and
safe for increasing the Se intake of the whole population [17]. A randomized control feeding
trial study in Malawi to test the effectiveness of the consumption of Se-biofortified maize
showed significant increases in serum Se concentrations over a two-month intervention
period from 57.6 (17.0) µg L–1 (n = 88) to 107.9 (16.4) µg L–1 (n = 88) among WRA and from
46.4 (14.8) µg L–1 (n = 86) to 97.1 (16.0) µg L–1 (n = 88) among SAC without a significant
increase among their counterparts who received non-biofortified maize [68].

Lowe et al. [69] also reported an additional daily Zn intake between 3 and 6 mg for
refined and whole grain flour, respectively, as a result of an average flour consumption
of 224 g d−1 of Zn biofortified wheat flour. After 4 weeks of consumption, a significant
increase in the plasma Zn concentration of 41.5 µg L−1 was observed. A study investigated
the impact of zinc-biofortified wheat flour consumption on the zinc status of Pakistani ado-
lescent girls (n = 517) and indicated a moderate increase in the intakes of zinc (1.5 mg/day)
and iron (1.2 mg/day) but did not have a significant effect on plasma Zn concentrations [70].
A study on the efficacy of Fe-biofortified pearl millet in improving attention and memory
in Indian adolescents (n = 140) indicated a 30% hemoglobin increase due to four months of
consumption of Fe-biofortified pearl millet (Fe = 86 ppm) compared to a non-biofortified
version (Fe = 21–52 ppm) [71].

Ex ante analysis of the potential of Zn fertilizers to alleviate human dietary Zn defi-
ciency, focusing on ten African countries where dietary Zn supply is low, showed consider-
able reductions in the DALYs lost due to Zn deficiency, with 0.5–18.6% in Burkina Faso,
8.8–53.8% in Ethiopia, 1.2–22.8% in Ghana, 2.9–28.9% in Kenya, 9.5–29.4% in Malawi, up
to 22.2% in Mali, 2.2–24.4% in Nigeria, 2.1–32.7% in Senegal, 1.8–25.8% in Tanzania, and
6.6–27.7% in Zambia. The cost per DALY saved ranged from USD 624 to 5,893 and from
USD 46 to 347 due to granular and foliar fertilizer applications, respectively. The scenario
of foliar Zn application is predicted to be cost-effective in all nations according to the WHO
standard [29]. Joy et al. [72] also reported that the application of Zn fertilizers to wheat in
the Punjab and Sindh areas of Pakistan could increase the dietary Zn supply from ~12.6 to
14.6 mg capita−1 d−1, with a cost per DALY saved of USD 461–619. Another ex ante analy-



Agronomy 2023, 13, 2173 6 of 14

sis aiming to quantify the potential cost-effectiveness of the agronomic biofortification of
staple crops with Zn for alleviating Zn deficiency in Ethiopia indicated that biofortification
with granular Zn could reduce the burden of Zn deficiency by 29 and 38% with a cost of
USD 502 and USD 505 to avert each DALY lost under pessimistic and optimistic scenarios,
respectively. Foliar Zn application was predicted to cost USD 226 and USD 496 to avert
each DALY lost under pessimistic and optimistic scenarios, respectively [73].

Another study that explored the potential of the agronomic biofortification of rice with
Zn and Fe to alleviate human dietary Zn and Fe deficiency was conducted in four regions
of China (Northeast (NE), Central China (CC), Southeast/(SE), and (Southwest)/SW). The
results showed considerable (0.92–28%) reductions in the DALYs lost due to Fe deficiency.
Similarly, reductions in the DALYs lost due to Zn deficiency were in the range of 3–55%.
The cost per DALY saved ranged from USD 376 to 4989, from USD 194 to 2730, and from
USD 37.6 to 530 for single, dual, and triple foliar Fe and Zn applications, respectively.
The combined foliar spray of Fe and Zn in CC, SE, and SW was found to be cost-effective
according to The World Bank standard [74].

5. Potential Challenges to Agronomic Biofortification
5.1. Mineral Fertilizer Manufacturing

One of the major challenges of agronomic biofortification as a strategy is the manu-
facturing of fertilizers containing a suitable quantity of mineral micronutrients, especially
in many developing countries, where most fertilizer is imported. Strategies aiming to
reduce MNDs are likely to be more effective where the intervention is case-sensitive in local
situations [21,75]. To produce a fertilizer blend for a specific location is likely to require the
close involvement of public and private fertilizer production and distribution sectors.

5.2. Mineral Fertilizer Application Method

There are two approaches for the application of mineral fertilizers—foliar and basal
application. The two approaches have their costs and benefits in terms of logistics, economic
feasibility, and final grain mineral concentration.

In the short term, foliar Zn applications are more effective than soil applications at
increasing grain Zn concentrations in wheat [35,54]. For example, foliar Zn application
to rice and wheat represents an effective agronomic practice to enhance the grain Zn
concentration up to 66%, while soil application has no effect [35,41]. Soil applications
of Zn are less effective than foliar applications to increase grain Zn concentration. The
study by Joy et al. [29] indicated that soil Zn application led to increases in the median
Zn concentrations in maize, rice, and wheat grains of 23%, 7%, and 19%, respectively,
while foliar application led to increases of 30%, 25%, and 63%, respectively. The authors
suggested that Zn fixation in the soil makes foliar applications more cost-effective than soil
applications; however, the deployment might be more complicated. Botoman et al. [33]
reported that many studies on soil Zn applications are underpowered to detect small
increases in crop Zn concentration; they reported a 15% increase in maize Zn concentration
as a result of 30 kg ha−1 elemental Zn application. A study from Zimbabwe aimed at
quantifying the potential health benefits of alleviating dietary Zn deficiency with soil-
applied Zn fertilizer and improved soil fertility management (ISFM) to increase maize grain
Zn concentration reported that soil Zn fertilizers were estimated to increase the dietary Zn
supply from 9.3 to 11.9 mg Zn capita−1 day−1, reduce the dietary Zn deficiency prevalence
from 68% to 31%, and save 6576 DALYs lost per year. On the other hand, soil Zn fertilizer,
together with ISFM, is estimated to increase the dietary Zn supply from 9.3 to 12.5 mg
Zn capita−1 day−1, reduce the dietary Zn deficiency prevalence from 68 to 25%, and save
7606 DALYs lost per year [76]. Therefore, the report indicates strong effects of other ISFM
approaches on the effectiveness of soil-applied Zn.

One benefit of soil application of Zn fertilizer is its potential residual effects in sub-
sequent cropping seasons. For example, Narwal et al. [37] reported that soil application
of Zn to wheat has a significant effect for multiple years and could be more effective and
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economical for wheat in the long run as compared to foliar application. Another study
reported that soil application of 28 kg ha−1 ZnSO4 fertilizer was an effective strategy to
correct soil Zn deficiencies for about 7 years [77]. Similarly, Frye et al. [78] reported the
residual effect ranging from 4 to 5 years as a result of soil application of 34 kg ha−1 ZnSO4
fertilizer. Similar researchers reported that soil application of ZnSO4 ranging from 18 to
28 kg h−1 is adequate to correct Zn deficiency in plants for four to seven years [79–81].
Therefore, the argument is, if the application of Zn fertilization is planned for more than
one season, basal application could be a more cost-effective method due to its residual
effect, whereas foliar application may provide the highest grain Zn concentration for a
single production season.

Some studies have indicated that the combined application of soil and foliar Zn
and Fe are more effective than a single soil or foliar application. The results indicate an
increase from 25 to 100% grain mineral content due to combined soil and foliar fertilization
application [35,38,41,45,53,82]. However, it is very crucial to consider the soil type effect
since the combined foliar and basal application method of Zn on wheat is reported to highly
depend on the soil type [54].

Ngigi et al. [28] suggested that foliar application of Se was more effective than soil
application for maize and beans. However, it is important to consider that Se can act both
as an antioxidant and a pro-oxidant, and in its concentrated form, Se is toxic [83], therefore,
blended or granular Se applied to soils is the only safe approach for farmers. Ros et al. [84]
argued that soil application of Se could result in similar responses to foliar-applied Se
fertilizer, and the effects of soil-applied Se lasted longer than foliar-applied Se since residual
effects were observed for up to 4 years. Chilimba et al. [18] also reported no significant
difference between basal and foliar application of Se. They reported for each gram of
Se ha−1 applied, the Se concentration in maize grain increased by 11–29 µg Se kg−1 and by
11–33 µg Se kg−1 for foliar and basal applications, respectively. The only comprehensive
nationwide experience that has deployed Se fertilization with basal application, in Finland,
reported a 15-fold increase in crop Se content [17].

Soil application of Fe usually has no or only limited residual effects, as Fe2+ is rapidly
converted into Fe3+ in soils; therefore, foliar application has been considered the most effec-
tive method, especially for plants that develop grain months after germination [35,37,56,59].
However, other studies found that neither soil nor foliar application of Fe fertilization was
an effective method to enhance wheat, barley, or oat Fe concentrations [39,57]. In con-
trast, regular foliar Fe application could result in a potential environmental hazard [85].
Manzeke-Kangara et al. [60] and Aciksoz et al. [39] argued that the efficiency of soil Fe
application is more dependent on other factors, especially the integration of N fertilization
and ISFM, compared to the Fe fertilizer application method (foliar or basal).

Studies have suggested the potential of a multi-mineral agronomic biofortification
strategy to address multiple mineral deficiencies, based on a site-specific biofortification
strategy. Mao et al. [75] reported that combined Se, Zn, and I fertilizers were as effective
as singly-applied fertilizers when applied to maize, soybean, potato, and cabbage. This
suggests that multi-mineral agronomic biofortification has the potential to address multiple
MNDs simultaneously. However, knowledge about the elemental antagonistic and syner-
getic interaction effect is very critical. Pahlavan-Rad and Pessarakli, [56] reported 8% and
13% increases in wheat grain Fe and Zn concentrations, respectively, as a result of Fe and
Zn interaction in their study on the combined application of Fe and Zn fertilization. Even
though the mechanism of Zn and Fe interaction is not well understood [86], it has been
reported that Zn treatment resulted in Fe accumulation in soybean roots and increased
root-to-fruit Fe translocation in tomato plants [87].

5.3. Mineral Interaction Effect

Interactions between phosphorus (P) and Zn and between P and Fe in soils and plants
have long been recognized and well documented. Studies have reported that high soil
P levels can negatively affect Zn and Fe uptake by crops by inhibiting the mycorrhizal
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colonization of roots and resulting in impaired nutrient uptake [88,89]. Multiple studies
have reported that P deficiency in soil results in a higher accumulation of Zn, whereas
Zn deficiency in soil leads to a higher accumulation of P in plants [90–92]. Similarly, Fe
deficiency stimulates the absorption of P in both roots and shoots [93–96]. Erdal [97] re-
ported that soil Zn application enhances wheat grain Zn, and at the same time, significantly
reduces grain P concentration. Another study also reported the association between Zn
fertilization and a reduction in the phytic acid in rice grain, ranging from 14.8 to 30.4% [38].
These findings suggest that agronomic biofortification with Fe and Zn might also be a
useful strategy to reduce antinutritional factors, such as phytate, in addition to increasing
the grain mineral concentration.

A study that employed a factorial design involving the application of N up to 60 kg ha−1

and Zn up to 10 kg ha−1 on pearl millet indicated that the highest grain Zn concentration
was observed at the application of 20 kg N ha−1 and 5 kg Zn ha−1 [98]. Similarly, the
Zn uptake rate was enhanced by 4-fold due to the increased N application [99]. Simi-
larly, multiple studies have indicated that N significantly enhances grain Zn [34,100] and
Fe [36,39,60,101] concentrations. Nitrogen can increase the activity of transporter proteins
and nitrogenous compounds, like nicotianamine, which helps to maintain Zn root uptake
and shoot translocation [101,102], and by increasing the activity and abundance of Fe
transporter proteins, such as yellow stripe 1 (YS1), in root cell membranes [103,104], which
positively affects the root uptake and shoot transport of Fe. Similarly, the Se concentration
of rice grains increased by 54.6% as a result of a combined Se and N application compared
to only Se application as a fertilizer [19]. These findings suggest the application of Zn, Fe,
and Se as a fertilizer is more effective when they are applied along with N fertilization
and ISFM.

5.4. Environmental Impact

Uncontrolled and excessive mineral fertilizer use could cause contamination risk in
the environment from the minerals of interest. It has been reported that about 28 tons
of extra Cu per year is released into the soil in parts of the United Kingdom as a result
of Cu fertilizer [105]. Furthermore, the long-term application of mineral fertilizer was
reported to adversely affect important rhizospheric microorganisms that play major roles in
plant nutrition and health [106–108]. In such cases, it is recommended to use nanoparticle
fertilization, which potentially reduces the release of excessive mineral fertilizers into the
environment. For instance, the application of Fe oxide nanoparticles on wheat [109], Zn
oxide on maize [30], and Se nanoparticles on soybean [110] effectively improved grain Fe,
Zn, and Se concentrations, respectively, without extra mineral release into the environment.

6. Mineral Fertilizer Application Timing

The timing of mineral application is always critical for its effectiveness in improving
grain mineral concentration and/or yield. Foliar Zn applications resulted in a marginal
effect on rice grain Zn when applied at the stem elongation plus the booting stage, but much
greater increases in grain Zn concentration were achieved when foliar Zn application was
performed when the crop had reached the milk stage [35]. Fang et al. [111] suggested foliar
Zn application at the heading stage as the best practice to improve the Zn concentration
of white rice. Sharma et al. [112] and Zeidan et al. [113] argued that the application of
Zn fertilization on wheat at the grain-filling stage is an ideal method to increase grain Zn
concentrations. The application of Zn fertilizer at the flowering and pod formation stages
of chickpea were reported to result in the maximum grain Zn concentration [34].

The application of Se fertilizer during the vegetative stage of crops has been observed
to enable and stimulate the quick uptake of Se by the crop [83], although the optimal
timing will likely be context-specific. Wheat grain Se concentration increased more when
Se fertilizer was applied at the booting stage compared to the earlier jointing stage [114].
Deng et al. [115] also reported that Se fertilizer treatment on rice resulted in a 2-fold higher
grain Se concentration at full-heading application compared to late-tillering application.
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The application of Se fertilizer at flowering increased grain Se concentrations more than
when Se was applied at earlier stages in winter wheat [116]. Galinha et al. [117] reported
that Se fertilizer application at the booting stage was more effective in enhancing wheat
grain Se concentration compared to the grain-filling stage.

The maximum Fe concentration was achieved from foliar application during the
maximum tillering stage [118]. The combination of soil Zn application at sowing and
foliar application of Zn along with urea at the flowering and pod formation stages can be
the best strategy to enhance Zn and Fe contents in chickpea grain [34]. A study showed
that the grain-filling stage of wheat might be the best crop development stage to apply Fe
fertilization to attain the maximum grain Zn concentrations [113]. This finding suggests that
it is very critical to understand crops as well as the genotype timing of mineral mobilization,
remobilization, and translocation within the plant to achieve the best results with respect
to grain mineral concentration.

7. Cost of Mineral Fertilizer

Farmers might be willing to pay for the extra cost incurred due to biofortification for
minerals that can increase yields, like Zn. However, covering the cost of minerals that do
not increase yield, such as Se, is a challenge for fertilizer policy discussions. Given that Se
deficiency leads to health complications, it may be appropriate for public health policies to
consider whether agronomic biofortification is cost-effective. Further, Joy et al. [68] argued
that the application of 7.3 kilo tons of ZnSO4H2O on wheat per year increased the yield by
~7.5% and dietary Zn by 15.9% capita−1 day−1 and reduced the prevalence of Zn deficiency
by ~50%. Therefore, consideration of the cost-effectiveness of minerals like Zn and Fe
should not be seen only from the perspective of their impact on the crop yield, but should
also include the cost per DALY saved. Manzeke-Kangara et al. [76] argued that the cost
of Zn fertilization in Zimbabwe for maize was not likely to be as useful as investing in
nitrogen, due to the yield gaps.

8. Conclusions

A large number of studies have investigated the impact of agronomic biofortification
with Se, Fe, and Zn on grain mineral concentration, primarily on staple cereal crops. Most
studies have suggested that agronomic biofortification is likely to be a feasible strategy
to enhance grain mineral concentrations, especially among rural resource-poor settings,
providing that they have access to mineral fertilization. It is also clear that agronomic
biofortification is dependent on many factors, like the timing and method of mineral
application, mineral–mineral and mineral–soil interactions, and the adoption of ISFM and
other practices. It is, therefore, important to have the right information on these factors
prior to the intervention in order to make agronomic biofortification successful. Very
few studies have tried to investigate the effectiveness of agronomic biofortification on the
improvement of human dietary intake and health, and further studies are required. Reports
on the effectiveness of agronomic biofortification on indigenous crops, like finger millet,
teff, and amaranth, in tropical smallholding farming systems are lacking. However, these
crops are highly adaptive to the local climate and efficiently withstand biotic and abiotic
stresses, which is crucial in the effectiveness of agronomic biofortification. In general terms,
it is possible to conclude that agronomic biofortification can be a supplementary strategy
to combat MND among resource-poor rural settings where people are dependent on their
own produce as a food source, and in which other interventions, like supplementation and
food fortification, may not be suitable.
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