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Ensemble evaluation of hydrological model hypotheses
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[1] It is demonstrated for the first time how model parameter, structural and data
uncertainties can be accounted for explicitly and simultaneously within the Generalized
Likelihood Uncertainty Estimation (GLUE) methodology. As an example application,
72 variants of a single soil moisture accounting store are tested as simplified hypotheses of
runoff generation at six experimental grassland field‐scale lysimeters through model
rejection and a novel diagnostic scheme. The fields, designed as replicates, exhibit
different hydrological behaviors which yield different model performances. For fields with
low initial discharge levels at the beginning of events, the conceptual stores considered
reach their limit of applicability. Conversely, one of the fields yielding more discharge than
the others, but having larger data gaps, allows for greater flexibility in the choice of model
structures. As a model learning exercise, the study points to a “leaking” of the fields not
evident from previous field experiments. It is discussed how understanding observational
uncertainties and incorporating these into model diagnostics can help appreciate the scale of
model structural error.

Citation: Krueger, T., J. Freer, J. N. Quinton, C. J. A. Macleod, G. S. Bilotta, R. E. Brazier, P. Butler, and P. M. Haygarth (2010),
Ensemble evaluation of hydrological model hypotheses, Water Resour. Res., 46, W07516, doi:10.1029/2009WR007845.

1. Introduction

[2] Hydrological models are prone to structural errors,
defined, for example, by Beven [2005] as a combination of
incorrect representations of processes, conceptual errors,
processes that are not represented and implementation errors.
As a consequence, several different model structures may
exist for a given application, each with several different
parameter sets, which may yield equally acceptable, yet
imperfect, simulations when compared to the data available
[Beven and Binley, 1992; Neuman, 2003; Beven, 2006].
Focussing on single model structures is, therefore, likely to
result in modeling bias and underestimation of model
uncertainty [Neuman, 2003].
[3] The realization of this fact has recently led to multiple

model structures being considered simultaneously (ensemble
simulation) in hydrological applications. Ensemble simula-
tion studies have been undertaken in groundwater modeling
[e.g., Neuman, 2003; Ye et al., 2004; Poeter and Anderson,
2005], where different model structures mean mostly differ-
ent models of spatially heterogeneous parameterizations.
In rainfall‐runoff modeling, Shamseldin et al. [1997] were
among the first to explore simple and weighted averaging as

well as neural networks as ways to combine the simulations of
multiple models into a single output in some optimal way [see
also See and Abrahart 2001]. Similar approaches to model
combination, following the paradigm of a single optimal
output, include: multiple‐input/single‐output linear transfer
functions [Shamseldin and O’Connor, 1999]; (fuzzyfied)
Bayesian inference [See and Openshaw, 2000]; (fuzzy) rules
[Xiong et al., 2001; Abrahart and See, 2002]; multimodel
super‐ensembles [Ajami et al., 2006].
[4] The single model output paradigm, however, misses

important information on prediction uncertainty. In contrast,
Georgakakos et al. [2004] began to analyze the distribution
of simulations within rainfall‐runoff model ensembles as
well as the ensemble mean. Butts et al. [2004] followed a
similar approach in their analysis of an ensemble of struc-
tures within a common modeling framework, which they
extended to the investigation of parameter and input/output
data uncertainties.Clark et al. [2008] took a modular approach
to combining the conceptual choices of four models into 79
unique structures, which they analyzed for differences and
similarities.
[5] A framework to integrate all sources of uncertainty in

modeling is available through Bayesian statistics. Formal
Bayesian Model Averaging (BMA) was used in hydrological
applications by Vrugt et al. [2006], Duan et al. [2007],
Ajami et al. [2007] and Vrugt and Robinson [2007]. To
overcome the usually static weighting of model structures in
BMA, Marshall et al. [2006] introduced Hierarchical Mix-
tures of Experts to allow the weights of two rainfall‐runoff
model structures to vary dynamically depending on predicted
states of a study catchment. Hsu et al. [2009] updated the
weights of three model structures sequentially based on their
performance at newly available observation time steps. An
alternative to model averaging within Bayesian statistics is to
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formulate a model structural error term [Kennedy and
O’Hagan, 2001; Vrugt et al., 2005; Kuczera et al., 2006;
Huard and Mailhot, 2006, 2008], although this may be
problematic to define [Beven, 2005; Huard and Mailhot,
2008].
[6] An informal Bayesian framework is the Generalized

Likelihood Uncertainty Estimation (GLUE) methodology,
which converges to formal Bayesian inference if the required
assumptions are made and likelihood measures used [Beven,
2006]. The possibility of multiple model structures has
always been inherent in the methodology [Beven and Binley,
1992], although this paper is the first to explore this in an
application. At the heart of GLUE is the concept of rejecting
non‐behavioral models and weighting the behavioral ones
for ensemble simulation. Input data uncertainty can be taken
into account as multiple data scenarios which are propagated
through a set of models to form an extended ensemble of
simulations [Pappenberger et al., 2005; Younger et al.,
2009]. The alternative to input scenarios in a Bayesian
framework is an input error term [Kavetski et al., 2003; Vrugt
et al., 2005; Kavetski et al., 2006a, 2006b; Huard and
Mailhot, 2006; Ajami et al., 2007; Huard and Mailhot,
2008; Vrugt et al., 2008], which, again, may be difficult to
estimate in practice [Beven, 2005; Kavetski et al., 2006a].
Uncertainty in the data that models are evaluated with (output
data) is usually assumed implicitly when defining model per-
formance measures. Recent efforts, however, have made the
specification of output error models more explicit [Kennedy
and O’Hagan, 2001; Kavetski et al., 2003; Vrugt et al.,
2003, 2005; Beven, 2006; Kavetski et al., 2006b; Huard and
Mailhot, 2006; Vrugt and Robinson, 2007; Harmel and
Smith, 2007], although error models have rarely been
justified with independent data (see Pappenberger et al.
[2006], Huard and Mailhot [2008], and Liu et al. [2009]
for exceptions).
[7] This paper demonstrates for the first time how model

parameter, structural and data uncertainties can be accounted
for explicitly and simultaneouslywithinGLUE.As an example
application, different model hypotheses of runoff generation
are tested on a set of experimental grassland field‐scale
lysimeters. Following the notion of models as hypotheses
of environmental systems behavior [Beck, 1987], this is the
starting point of a downward modeling approach [Klemeš,
1983], i.e., one that aims first at a parsimonious description
of the dynamics reflected in the observed data and then at
a disaggregation of these dynamics as a continuing learning
process [Sivapalan and Young, 2005] in which model impro-
vement and additional data collection are interdependent. As
the first iteration in this learning process, this paper is not
concernedwith prediction, but withmodel diagnostics aiming
at better process representation. Input scenarios are propa-
gated through an ensemble of conceptual models which,
accounting for parameter uncertainty, are evaluated against
uncertain output data. Model rejection and diagnostics are
used to learn about the hydrological behavior of the study
fields. Model improvement and additional data collection are
suggested for the next iteration of model development.

2. Methods

2.1. Study Site

[8] Six un‐drained grassland field‐scale lysimeters of the
Rowden Experimental Research Platform in Devon, UK

(latitude 50.7802, longitude −3.9153) were investigated for
the period of 01/10/2005–31/05/2006 (fields 1, 8, 10, 11, 13
and 14; Figure 1). The fields vary in area, perimeter and
slope and differ in their hydrological behavior, although
the soil is classified uniformly as a clayey non‐calcareous
pelostagnogley of the Hallsworth Series [Avery, 1980], a
Typic Haplaquept (USDA classification) or Dystric Gleysol
(FAO classification). The fields are perceived as being pre-
dominantly rain‐water fed, with deep gravel‐filled inter-
ceptor drains assumed to provide hydrological isolation
from upslope, and 30 cm gravel‐filled interceptor drains
diverting overland flow and interflow through the topsoil
(0–30 cm) into measurement weirs. Based on field evi-
dence of low saturated hydraulic conductivity of the clay
sub‐soil (<10−10 m s−1), Armstrong and Garwood [1991]
suggested that seepage below 30 cm is negligible.

2.2. Data and Uncertainty Estimation

2.2.1. Rainfall
[9] Four rainfall records were available from tipping

buckets (Figure 1) at 1 min (gauges 1 and 2) or 1 h (gauges 3
and 4) resolution. All records were corrected for clock drift.
1.85% of the time steps where gauge 1was obviously blocked
or where data were otherwise missing were substituted with
the corresponding time steps of gauge 2 and vice versa. Six
rainfall scenarios were generated. The scenarios 1 and 2 are
the actual records of the gauges 1 and 2. The scenarios 3–6
were created using one of the rainfall patterns of the two
1 min gauges but adjusted in rainfall volume by one of the
two 1 h gauges. This adjustment resulted in a volume bias of
−45.2, −51.4, −66.6 and −71.6 mm over the study period for
the scenarios 3, 4, 5 and 6, respectively, because at times
where either the pattern or the volume record was zero, the
scenario was zero too. This volume bias was preferred over
the timing error that would have resulted from a homoge-
neous disaggregation, because a realistic temporal rainfall
pattern was expected to be important for modeling field‐
scale rainfall‐runoff responses at 1 min resolution. It was
left to the model evaluation exercise to judge if certain
scenarios were infeasible in terms of field water balances.
This, unfortunately, could not be assessed beforehand due to
missing discharge data. It has to be kept in mind, though, that
a less realistic scenario could still interact with a less feasible
model structure or set of parameters to simulate seemingly
acceptable discharges.
2.2.2. Evapotranspiration
[10] An automatic weather station at gauge 3 (Figure 1)

further supplied hourly wind, net radiation and temperature
measurements, from which potential evapotranspiration was
calculated using the Priestley and Taylor [1972] equation,
initially without the Priestley‐Taylor coefficient (though see
below), and neglecting the heat flux into the ground. The
hourly evapotranspiration data were disaggregated homo-
geneously to 1 min resolution assuming a constant potential
rate over the hour. An explicit treatment of the uncertainties
of this model and its input data was prevented by the absence
of data to characterize these. However, in the ensemble of
models proposed below, multiple equations were allowed to
translate potential evapotranspiration into actual rates (see
Table 3), some of which include the Priestley‐Taylor coeffi-
cient that was introduced to compensate for violations of the
conditions of applicability of the above model [Thornley and
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Johnson, 1990]. The degrees of freedom of this ensemble
of formulations will reflect at least part of the uncertainties
in potential evapotranspiration.
2.2.3. Discharge
[11] Stagewasmeasured in theweirs at 1min (fields 10 and

13) or 5 min (fields 1, 8, 11 and 14) resolution. All records
were corrected for clock drift. Gaps (Table 1) were due to
failures of the wireless data transmission system or unre-
liable measurements. The uncertainty in the stage‐discharge
relationship was estimated by field experiments. Potential
additional water losses across field boundaries and around

weir structures could not be assessed due to the absence of
relevant data. Proportionally, the importance of such losses
is likely to increase at low flows. The stage‐discharge
uncertainty experiments were carried out on two of the weirs
at a time of no runoff from the fields. In each experiment,
water was fed from a tanker into the weir box and the inflow
was controlled by a valve fitted to the end of the inlet hose.
The inflow was increased incrementally, and once the stage
reading was observed to be stable, ten repeatedmeasurements
were taken for each stage increment. The stage was recorded
for each repeat to track stage drift. Corresponding discharge

Figure 1. Location and outline of the Rowden Experimental Research Platform. The un‐drained field‐
scale lysimeters studied are marked with numbers, and so are the four rain gauges (tipping buckets or
automatic weather stations, AWS). The top right picture shows the view from rain gauge 1 toward the
south‐east corner of the site and the bottom left picture shows the view toward the north‐west corner from
the same spot. The NEXTMap Britain orthorectified radar image Intermap Technologies [2007] was
provided courtesy of NERC via the NERC Earth Observation Data Centre (NEODC). The large‐scale
map is based on data provided through EDINA UKBORDERS with the support of the ESRC and JISC
and uses boundary material which is copyright of the Crown and the Post Office.

Table 1. Field Statisticsa

Field 1 Field 8 Field 10 Field 11 Field 13 Field 14

Missing Q time steps (%) 55 0 3 83 49 72
Quick/slow Q threshold (mm 5 min−1) 0.0020 0.0006 0.0010 0.0001 0.0020 0.0001
Driven time steps (%) 4 8 7 6 7 6
Non‐driven quick time steps (%) 25 45 37 10 33 22
Non‐driven slow time steps (%) 16 47 53 1 11 0

aShown are percentage of missing discharge (Q) time steps; Q threshold (center of estimated uncertainty interval) to separate “slow” from “quick” time
steps; percentage of time steps driven by rain; percentage of non‐driven quick time steps; and percentage of non‐driven slow time steps. Remaining
percentages were missing time steps.
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measurements at low flows were taken using the bucket
method, i.e., volumes of water were collected in a bucket
(or measuring cylinder at the lowest flows) along with the
time it took to fill the vessel. For high flows, discharge was
measured using an electromagnetic flowmeter fitted to the
end of the inlet hose. The errors in the measured variables
were estimated as min/max intervals (Table 2). Combined
intervals for discharge were calculated from the component
variables by interval arithmetic assuming independence of
component errors. The data were used to estimate the stage‐
discharge uncertainty using the fuzzy rating curve approach
of Pappenberger et al. [2006], but modified here with
different assumptions and a new algorithm described in
Appendix A. The resultant rating curve envelope (Figure 2)
has to be interpreted as min/max discharge intervals for
given stages or rectangular fuzzy numbers. Since intervals
could be interpreted as bounded uniform distributions, it
shall be stated explicitly here that, because of the intended
use of the uncertainty estimates, it was not the aim of the
method to characterize the probability distribution of dis-
charge. At this initial stage of model development, it was
expected that model error would be greater than measure-
ment error and model simulations would not fall into the
observational error bounds at all time steps. Hence more
detailed information about the error structure within the
bounds would not add great value to overall model diag-
nostics for this paper.

2.3. Ensemble of Conceptual Models

[12] The confined nature of the fields lends itself intuitively
to water‐balance accounting via conceptual stores as the
simplest initial hypothesis of runoff generation. The poten-
tially even simpler data‐based mechanistic (DBM) approach
of letting the data decide upon the model structure [e.g.,
Young and Beven, 1994], within certain bounds, was not
taken up here to avoid its restrictive assumptions about data
and model errors. As for a more complex model, the Richards
equation [Richards, 1931] for unsaturated flow through porous
media may be theoretically applicable at the field‐scale.
However, due to lack of measurements of soil hydraulic
properties across the fields, a homogeneous behavior would
have to be assumed, at which point the approach loses its
advantage of spatially more realistic runoff generation over
the lumped behavior of conceptual stores. Field‐scale appli-
cations of the Richards equation seem rarely, if ever, sup-
ported by data (see review by Vereecken et al. [2008]). In
contrast, the concept of conceptual stores (see Kirkby [1975]
and Jothityangkoon et al. [2001] for a comprehensive review)
could be translated into different simplified hypotheses of
runoff generation in this study which were testable against
available data.
[13] 72 variants of a single store were considered based

on the combinations of four conceptual choices, similar to
the modular approach of Clark et al. [2008]. With the first
choice it was decided whether the store was bounded or

Figure 2. Rating curve envelopes derived for two weirs. Shown are the original data points, the joined
data boxes for each stage increment, and the uncertainty envelope as a shaded area.

Table 2. Estimated Error Intervals of Individual Variables Measured in the Stage‐Discharge Experiments

Method Variable Error Interval Comments

Stage h (mm) h ± 2 If stage was observed to be stable
h ± 5 If stage was observed to be unstable

Bucket Time t (s) t ± 1
Volume V (ml) V ± 20 n n is the number of transfers from bucket to measuring cylinder; 20 ml is the

accuracy of the cylinder
Max. spill (ml) [V; V + 30 n] For first measurements at 10–14 mm stage done with measuring cylinder;

accounts for spill to sides of cylinder due to low flows
[V; V + 10 n] For measurements done with bucket; accounts for spill during transfer of water

to measuring cylinder
Flowmeter Discharge Q (l s−1) Q ± 0.005 Q Flowmeter accuracy for velocity v > 1.5 ft s−1

Q ± 0.0075 v−1 Q Flowmeter accuracy for v ≤ 1.5 ft s−1; max. 0.0075 v−1 was 0.04 in these
experiments

Max. spill (l s−1) [Q;Q + 0.01 Q] Splashing out of weir if Q > 5 l s−1
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un‐bounded (Figure 3). In the case of a bounded store,
lumped saturation excess overland flow was explicitly mod-
eled as overspill. In the case of an un‐bounded store, overland
flow was lumped together with interflow. With the second
choice it was decided whether or not an inactive store S0 was
included which could only be accessed by evapotranspiration
(Figure 3). The third choice determined the behavior of the
store according to a power law, exponential or linear function.
The fourth choice decided upon one of six equations to
translate potential evapotranspiration into actual rates.
[14] For each of these model structures, the continuity

equation (here written in discrete form)

DS

Dt
¼ P � ET � QOF � QIF ð1Þ

with storage per unit area S (mm), time step Dt (1 min or
5 min), rainfall input per unit area P (mm Dt−1), evapo-
transpiration per unit area ET (mm Dt−1), overland flow
per unit area QOF (mm Dt−1), and interflow per unit area
QIF (mm Dt−1), was solved for each time step by an explicit,
forward Euler scheme. In the case of negative storage, the
loss terms were adjusted to yield zero store such that the
original weighting of the individual terms was preserved.
Numerical errors [e.g., Kavetski et al., 2006c] were mini-
mized by using small time steps. The store was initialized to
S0 if an inactive store was included and to zero otherwise.
This was realistic given that the fields did not yield any dis-
charge in the summer months prior to the simulation period.
Nevertheless, the first 41 days of the rainfall record were
used to initialize the models. An independent experiment
where the initial storagewas sampled as an uncertain parameter
confirmed the insensitivity of the model results to the initial
storage after the initialization period.
[15] Overland flow was calculated as

QOF ¼
0 if un-bounded
S � S1 8 S > S1 if bounded and no S0
S � ðS1 þ S0Þ 8 S > ðS1 þ S0Þ if bounded and S0

8<
:

ð2Þ

with inactive storage S0 (mm) and active storage S1 (mm) as
identified in Figure 3.

[16] Interflow was calculated according to a power law
equation

QIF ¼ kp Smp 8 S > 0 if no S0
kp ðS � S0Þmp 8 S > S0 if S0

�
ð3aÞ

with parameters kp (Dt−1) and mp (−); an exponential store

QIF ¼
ke exp

S

me

� �
8 S > 0 if no S0

ke exp
S � S0
me

� �
8 S > S0 if S0

8>><
>>:

ð3bÞ

with parameters ke (mm Dt−1) and me (mm); or a linear store

QIF ¼ kl S 8 S > 0 if no S0
kl ðS � S0Þ 8 S > S0 if S0

�
ð3cÞ

with parameter kl (Dt−1). Note, the power law equation
includes the linear store as a special case. The distinction,
however, was made to isolate the performance of the linear
store which was not possible by relying only on the power
law equation due to potential parameter correlations. The
same applies for the exponential store which can behave
similarly to the power law store.
[17] Actual evapotranspiration was calculated by six for-

mulations (Table 3): as the potential rate (equations (4a) and
(4b)), scaled linearly with storage (equations (4c) and (4d)),
or scaled as a power law function of storage (equations (4e)
and (4f)). The alternative variants include an adjustment
factor a to account for the potential under‐estimation of the
Priestley‐Taylor formula in much the same way as the
Priestley‐Taylor coefficient. Note, the linear case was again
distinguished from the power law case.

2.4. Model Diagnostics

[18] Model diagnostics shall be defined here as the anal-
ysis of model error with the aim of model improvement.
This implies the need for observed data to quantify model
errors and a level of spatial and temporal detail in analyzing
these errors that can suggest model improvement. Previous
studies have compared model performance for different peri-
ods of the hydrograph [e.g., Freer et al., 1996;Wagener et al.,

Figure 3. (a) Unified schematic of the ensemble of conceptual models. P is rainfall; ET is evapotrans-
piration; QOF is overland flow; QIF is interflow; S0 is inactive storage height; and S1 is active storage
height. (b) Schematic of the 72 model structural combinations.
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2001; Freer et al., 2003] or with respect to different types of
data [e.g., Freer et al., 2004; Vache and McDonnell, 2006].
Differences in parameter estimates across the hydrograph
[Wagener et al., 2003] or proper parameter evolution during
sequential data assimilation through Kalman [e.g., Beck, 1987;
Vrugt et al., 2005] or particle [e.g., Smith et al., 2008] filters
have also been used to detect model inadequacies. Wagener
and Kollat [2007] collated a suit of tools for visual model
diagnostics based on Monte Carlo analysis to evaluate model
identifiability, sensitivity and performance. Clark et al. [2008]
demonstrated the link between model performance and simu-
lated state variables (saturated area in their case) for an
ensemble of model structures in order to guide model choice
and improvement. The present study drew on some of the
above approaches to diagnose the proposed ensemble of
models within the GLUE methodology by analyzing model
parameter, structural and input/output data uncertainty.
2.4.1. Model Experimental Setup
[19] For each of the 72 model structures, 100,000 param-

eter sets were sampled randomly from a uniform prior dis-
tribution with bounds (Table 4). Each set was run six times
with one of the rainfall scenarios as model input, resulting in a
total number of 43,200,000 model realizations. Every model
structure and rainfall scenario was assigned the same weight,
thus all realizations consisting of amodel structure, a parameter
set and a rainfall scenario were treated as a priori equally
feasible hypotheses of runoff generation. The same 43,200,000
realizations were run for the six fields on a 1 min (fields 10
and 13) or 5 min (fields 1, 8, 11 and 14) time step, and were
compared to the “observed” discharge uncertainty intervals.
2.4.2. Time Step‐Based Performance Measure
[20] Following Beven [2006], the primary aim of GLUE is

the rejection of non‐behavioral model realizations, although
it is argued that the “limits of acceptability” are difficult to
define objectively. However, Beven makes a case for time
step–based performance measuring that includes “effective
observation errors” for the purpose of rejection, and even-
tually weighting and diagnosing of the remaining model
realizations. For the present study, intuitive upper and lower
limits of acceptability per time step would be given by the
observed discharge uncertainty interval. Yet, in terms of
discharge measurement error, this interval would not include
potential water losses or other errors not accounted for. Nor,
in terms of effective observation error, would this interval
include input errors. Even though multiple rainfall scenarios
were considered, none of these was error free. Hence, it was
not expected that any model realization would yield simu-
lations inside the observed discharge intervals for all time
steps, and these realizations should not be rejected outright.

[21] It was thus important to define a time step–based
measure of deviation Di of simulated discharge Qsim,i from
observed interval Qobs,i at time step i, which could be used for
model diagnostics. This was calculated relative to the interval
width, i.e., a model independent error benchmark, as

Di ¼ Qsim;i � Qobs;i

supðQobs;iÞ � inf ðQobs;iÞ ð4Þ

where sup(Qobs,i) and inf(Qobs,i) are upper and lower interval
bounds, respectively, and

Qsim;i � Qobs;i

¼
Qsim;i � supðQobs;iÞ if Qsim;i > supðQobs;iÞ
0 if infðQobs;iÞ � Qsim;i � supðQobs;iÞ
Qsim;i � inf ðQobs;iÞ if Qsim;i < inf ðQobs;iÞ

8><
>:

ð5Þ

so thatDi = 1, 2,… denote simulations that are 1, 2,… interval
widths above the observed interval while Di = −1, −2,…
denote simulations that are those interval widths below.
Note the “small denominator effect” in equation (4) by
which, perhaps unduly, high weights were assigned to
absolute deviations at low flows where interval widths were
smallest (Figure 2). Especially in the case of water losses
not accounted for in the estimated discharge intervals, it
could be argued that the intervals at low flows should be
larger. There was, therefore, a case for looking at low flow
time steps separately in the next section.
2.4.3. Aggregated Performance Measures
[22] Where rigorous limits of acceptability cannot be

defined and where it is computationally impossible to keep
Di for all time steps for all model realizations for the purpose
of model diagnostics, a compromise has to be found aiming
at a sufficiently relaxed rejection criterion that avoids the

Table 4. Model Parameter Sampling Rangesa

Parameter Description Range

S1 (mm) active store 0–100
S0 (mm) inactive store 0–60
kp (d

−1) power law store parameter 0–1
mp (−) power law store parameter 0.1–10
ke (mm d−1) exponential store parameter 0–1
me (mm) exponential store parameter 0.1–10
kl (d

−1) linear store parameter 0–1
a (−) evapotranspiration adjustment factor 0–2
b (−) evapotranspiration shape parameter 1–10

aThe model structures use 1–6 of these parameters depending on the
conceptual choices (Figure 3 and Table 3).

Table 3. Six Formulations for Calculating Actual From Potential Evapotranspirationa

If Un‐bounded and No S0 If Bounded and No S0 If S0 Equation

ET = min(ETpot, S) ET = min(ETpot, S, S1) ET = min(ETpot, S, S0) (4a)
ET = min(a ETpot, S) ET = min(a ETpot, S, S1) ET = min(a ETpot, S, S0) (4b)
ET = min(ETpot, S) ET = min(min( SS1, 1) ETpot, S, S1) ET = min(min( SS0, 1) ETpot, S, S0) (4c)
ET = min(a S ETpot, S) ET = min(a min( SS1, 1) ETpot, S, S1) ET = min(a min( SS0, 1) ETpot, S, S0) (4d)
ET = min(Sb ETpot, S) ET = min(min( SS1, 1)

b ETpot, S, S1) ET = min(min( SS0, 1)
b ETpot, S, S0) (4e)

ET = min(a Sb ETpot, S) ET = min(a min( SS1, 1)
b ETpot, S, S1) ET = min(a min( SS0, 1)

b ETpot, S, S0) (4f)

aET is actual and ETpot is potential evaporation. S is the instantaneous storage height, S0 is the inactive store, S1 is the active store, a is an adjustment
factor and b is a shape parameter. Note that equation (4c) is the same as equation (4a) for an un‐bounded store with no S0. In equations (4d–4f), a and b
have a different meaning for an un‐bounded store with no S0 than for the other two cases (due to the use of S instead of a storage fraction).
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possible error of outright model rejection. To achieve this,
the present study resorted to an aggregated model perfor-
mance measure while keeping the time step‐based informa-
tion to some extent as well. For each model realization, Di

was aggregated over a number of time steps into a mean
absolute Di (Dk). Additionally, some information about the
distribution of Di over the particular set of time steps was
retained in the form of mean negative Di (under‐predicted
time steps), mean positive Di (over‐predicted time steps) and
seven percentiles (min, 5th, 25th, median, 75th, 95th and
max).
[23] Since aggregated performance measures can only give

a balanced account of performance over a number of time
steps resulting in loss of information [Wagener et al., 2003],
reducing this number of time steps seems crucial, even
more so if the periods of aggregation can be hydrologically
meaningful. This also gives rise to the possibility of deciding
which are the most important periods for any given applica-
tion, and model realizations can be weighted accordingly. In
this study, time steps were aggregated over the three periods
of the hydrograph suggested by Boyle et al. [2000]: periods
driven by rain (performance measure Dkdriven), non‐driven
high‐flow (“quick”) periods (performance measure Dkquick)
and non‐driven low‐flow (“slow”) periods (performance
measure Dkslow). These periods are marked by dominantly
different runoff generation processes, and assessing the pro-
posed model structures on these periods means assessing
their ability to describe those different processes.
[24] The hydrograph was partitioned semi‐automatically

following simple rules (Figure 4): The “driven” time steps
were separated from the “non‐driven” ones by beginning
and end of rainfall, shifted by the lag between onset of rain
and rise of hydrograph. If the end of rainfall fell before the
hydrograph peak, the end of the driven period was moved to
the peak. End points after the hydrograph peak were pos-
sible if rainfall continued beyond the peak. The “slow” time

steps were separated from the “quick” ones by a discharge
threshold (center of estimated uncertainty interval) defined
by eye, differently for each field to take their different
response characteristics into account (Table 1).
[25] To report model performance also in more familiar

terms, a modified efficiency E (originally Nash and Sutcliffe
[1970]) was calculated over all time steps as

E ¼ 1�
PN

i¼1ðQsim;i � Qobs;iÞ2PN
i¼1ðQobs � Qobs;iÞ2

ð6Þ

where Qsim,i − Qobs,i was calculated according to equation (5).
So was Qobs − Qobs,i, but with

Qobs ¼
1

N

XN
i¼1

infðQobs;iÞ þ supðQobs;iÞ
2

ð7Þ

instead of Qsim,i in equation (5). This modification is
similar to the work of Harmel and Smith [2007] in that
observed discharge intervals are accommodated instead of
“crisp” values, with the extension that Qobs − Qobs,i was
modified here as well.
2.4.4. Model Diagnostic Scheme
[26] Sampling of the feasible parameter space for each

model structure was ensured through initially wide sampling
ranges (Table 4). 100,000 parameter sets were considered
sufficient for the parsimonious models (1–6 parameters)
used here. A model diagnostic scheme was then proposed as
follows:
[27] 1. Model performance: Correlations and trade‐offs

between the performance measures of different periods were
examined visually by drawing on elements of the “multi-
criteria plot” [Vache and McDonnell, 2006] and the “pixel
plot” [Wagener and Kollat, 2007], the latter to reduce the
computational strain of displaying 3D correlation structures.
Note, in this study, different fields may yield different cor-
relation structures solely due to different amounts and loca-
tions of missing data.
[28] 2. Model rejection: Statistics of the Di distribution (as

well as global efficiency for comparison) were plotted against
model structures and the possibility of specifying limits of
acceptability to reject model structures as a whole was
evaluated. The same statistics were plotted against rainfall
scenarios and it was checked if certain scenarios failed in
combination with any model structure based on the limits of
acceptability.
[29] 3. Model weighting: Model realizations were weighted

by the mean of the performance measures of the three hydro-
graph periods:

Dkmean ¼ ðDkdriven þ Dkquick þ DkslowÞ=3 ð8Þ

For model realizations falling within the limits of accept-
ability, the weights were subsequently turned into posterior
GLUE likelihoods of model realization given the vector of
observations Qobs as

L Rj M qð Þ; Ið ÞjQobs

� � ¼ D
�1
kmean L Rj M qð Þ; Ið Þ� �

PJ
j¼1 D

�1
kmean L Rj M qð Þ; Ið Þ� � ð9Þ

Figure 4. Idealized schematic of the hydrograph partition-
ing following Boyle et al. [2000], but modified for 1–5 min
resolution. See text for the partitioning rules.
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with Rj being one of j = 1,…, J accepted model realizations,
each depending on a particular model M (with parameter
vector q) and input scenario vector I. The prior likelihood of
model realization L(Rj(M(q), I)) was a constant in this study
due to the uniform prior weighting of model structures,
parameter sets and rainfall scenarios.
[30] 4. Model diagnostics: For the accepted ensemble of

model realizations, statistics of the GLUE likelihood dis-
tribution of Di were plotted systematically against the fol-
lowing hydrological variables: discharge, discharge for rising
limb time steps, discharge for recession time steps, measures
of antecedent wetness (discharge at onset of event and dis-
charge sum over previous 1 min to 7 d), and season (month).

3. Results and Discussion

[31] This section follows the four items of the model
diagnostic scheme proposed in the previous section.

3.1. Model Performance

[32] Figure 5 shows 3D correlation structures between Dk
calculated for the driven, non‐driven quick and non‐driven
slow periods. The fields yielded different performances and
correlation structures which could have been caused by dif-
ferent amounts of available time steps within the three periods
and whether these were “easy” or “difficult” to model, but
also real differences in the hydrological behavior of the fields.

In this respect, field 8 was un‐biased by missing time steps
and field 10 was only slightly biased (Table 1). Only
field 8 yielded an obvious correlation, a positive one between
the driven and the non‐driven quick period.
[33] Fields 1, 8, 10 and 13 yielded model realizations

ranked highly for all three periods (Figure 5, cubes outlined
bold). For fields 11 and 14 instead, none of the model reali-
zations achieved such high performance with respect to the
driven period. These fields had larger data gaps, although
the availability of driven time steps was comparable to the
other fields except field 1 (Table 1). The location of available
time steps could not, therefore, explain the low performances
of fields 11 and 14. Instead, these fields were marked by
low initial discharge levels at the beginning of events which
were indeed different to those of the other fields (compare
also quick/slow discharge thresholds in Table 1). For such
behavior, all models considered turned out to be rejected on
the basis of a Dk threshold of 0.5 for the driven time steps.

3.2. Model Rejection

[34] The model diagnostic scheme was pursued further for
fields 1, 8, 10 and 13. For the model realizations where Dk <
0.5 for all three hydrograph periods (Figure 5, cubes out-
lined bold), selected statistics of the Di distribution were
plotted against model structures (Figure 6, only the driven
period is shown) and rainfall scenarios (not shown), together
with global efficiency for comparison (Figure 6). Based on

Figure 5. 3D correlation structures between mean absolute Di (Dk) calculated for the driven, non‐driven
quick and non‐driven slow periods. In each graph, the original cloud of points is discretized by equally sized
cubes of 0.5 units edge length, slightly shrunk for ease of readability, with the cube of highest ranking for all
three periods given a bold outline. The shading indicates the number of points within a cube, normalized by
the maximum in each graph (black = maximum number of points; white = zero points). The white cubes are
left out to improve readability further. Note, for field 14 non‐driven slow data were missing.
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the Dk threshold of 0.5 applied to all hydrograph periods,
the linear type of store was rejected for all fields (and is thus
omitted from Figure 6), and so were model structures without
the inactive store S0 (except for field 1, see below). The
power law and the exponential function yielded effectively
similar storage‐discharge relationships with the parameter sets
accepted so far, although the power law generally resulted in
more under‐prediction across the fields (compare mean
negative Di statistics in Figure 6), and was thus rejected by a
small margin for field 10.
[35] Overall, the ranking of model structures was similar

for fields 8, 10 and 13. Field 1 was different in that model
structures without the inactive store S0 were not rejected as
for the other fields. This might be explained by the fact that
more discharge was observed at field 1 compared to the
other fields (compare also quick/slow discharge thresholds
in Table 1). This characteristic calls for a maximization of
discharge in the models instead of inactive storage. It is
probably also important that data from an extended dry
period toward the end of the simulation were missing for
field 1. The time steps of this period might have required an
inactive store for modeling the threshold behavior of runoff
generation during subsequent wetting up. Because of the
data gaps, the analysis of field 1 is not taken further in this
paper. For fields 8, 10 and 13, model performance was high,
especially with respect to the modified global efficiency
measure which could exceed 0.9 (Figure 6). The following
analysis, therefore, delves into the more subtle issues of
model performance.
[36] The choice of evapotranspiration function seemed to

be more important than whether stores were bounded or
un‐bounded, with equations (4a) and (4b) favored (Figure 6).
In fact, the storage parameter S1 was so high in the model
realizations shown here that the bounded realizations were
hardly ever saturated and simulated overland flow was
minimal. The bounded stores then reacted effectively as
un‐bounded ones. An independent investigation confirmed
that modeling overland flow as overspill routed to the field
outlet in one time step caused unrealistic over‐predictions
using 1–5 min time steps. Explicit overland flow routing
would be required to account for the necessary lag and
attenuation, although the concept of homogeneous generation
of overland flow across the fields is itself not realistic.
[37] Themaximum over‐prediction was still unrealistically

high for other parameter sets and model structures (see min
& max statistics in Figure 6), which also resulted in low
efficiency values. These extremes were obviously not picked
out by the Dk criterion, hence an upper limit of acceptability
of Di ≤ 5 was applied to reject those model realizations. A
symmetrical lower limit of Di ≥ −5 was chosen. Note, all
model realizations could have been rejected using a stricter
limit, were it not for the need to retain some realizations for
model diagnostics. In the realm beyond the more “objective”
observational error bounds, it will only be possible to scru-
tinize limits of acceptability further relative to future
improved models. Finally, it was impossible to reject any

rainfall scenario for all fields within the setup of this study,
likely because of compensational effects between rainfall
scenarios and model parameters which is investigated in the
next section.

3.3. Model Weighting

[38] The model realizations falling within the limits of
acceptability of −5 ≤ Di ≤ 5 and meeting the Dk threshold of
0.5 for all three hydrograph periods were weighted according
to equation (8) with corresponding GLUE likelihoods of
model realization after equation (9). Figure 7 shows the
accepted ensembles of model structures and rainfall scenarios
for fields 8, 10 and 13. The ensembles were generally com-
posed of the same model structures across the fields, albeit
different relative contributions and performances. The highest
weights were associated with the exponential type of store
and the evapotranspiration equation (4b). Rainfall scenarios,
too, showed different relative contributions to the accepted
ensembles and different performances across the fields.
[39] Figure 8 zooms further into the accepted model struc-

tures, exemplified for field 13. The un‐bounded variants of
the accepted model structures are not shown as they exhibited
virtually the same correlation plot matrices as the bounded
variants for the parameters other than S1. Obvious correlations
existed between kp and mp of the power law type of store (not
shown) and between ke and me of the exponential type of
store (Figure 8). Correlations also existed between rainfall
scenarios and the evapotranspiration adjustment factor a of
equation (4b) (Figure 8). The adjustment of the ETpot esti-
mates to higher values (increasing a) for scenario/gauge 1
reflects the overall higher rainfall of this gauge. All three
fields favored values of a close to or larger than 1 (see
Figure 8 for field 13) leading to values of ET close to or larger
than ETpot whenever the store was filled sufficiently. This
resulted in a total simulated evapotranspiration flux over the
Water Year which was almost as high as the total simulated
discharge flux (Figure 9a, shown as GLUE likelihood dis-
tribution) and only slightly less than the total estimated
potential evapotranspiration flux of 499 mm a−1.
[40] Figure 9b shows the GLUE likelihood distribution of

the maximum simulated store Smax for each field which shall
be called “effective pore space” here, the conceptual equiv-
alent of soil pore spaceminus residual soil moisture. Note that
elements of storage representing overland flow and the inter-
ceptor drains are lumped into Smax as well. For comparison,
field data suggests a porosity of 48% for this soil type of
which 23% is residual soil moisture and 41% is soil field
capacity. Together with the assumed topsoil depth of 30 cm
this works out at an equivalent Smax of 111mm, larger than the
effective pore space suggested by the model results. Even if
the topsoil depth was only 20 cm, the equivalent Smax would
be with 74 mm at the upper end of the distribution of model
results (Figure 9b). The inactive store S0 is the conceptual
equivalent of soil field capacity, shown as percentage of
effective pore space S0/Smax and GLUE likelihood distribu-

Figure 6. Selected statistics of the Di distribution over the driven period and global efficiency plotted against model
structures for fields 1, 8, 10 and 13. Each grey bar represents the extent of model realizations for one model structure
(a multidimensional parameter and rainfall scenario space itself). Where two statistics are combined into one graph, two
bars share one slot of a model structure. The nested black bars represent the extent of model realizations that fell within
the limits of acceptability of −5 ≤ Di ≤ 5.
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tion in Figure 9c. For comparison, the field data estimates
suggest a lower S0/Smax equivalent of 53%.

3.4. Model Diagnostics

[41] The accepted ensembles of model realizations for
fields 8, 10 and 13 were analyzed for systematic deviations
between simulations and observations, i.e., deviations asso-
ciated with certain flow regimes (high/low, rising/falling),
certain states of antecedent wetness (formalized as discharge
at onset of event and discharge sum over previous 1 min to
7 d) or season (month). The dominant systematic factors
were discharge magnitude and rise/fall of the hydrograph
(Figure 10). Incidentally, Figure 10 also provides a com-
parison of the time step–based performance measure Di

(a deviation relative to the observed discharge interval width)
with absolute deviations (Qobs against Qsim). Since the esti-
mated discharge interval width was a convex function of
discharge (center of interval; Figure 2), the absolute devia-
tions at low flows were inflated through Di relative to the
same absolute deviations at high flows, resulting in the
dominant convex decrease of Di (from both positive and
negative values toward zero) with increasing discharge that
can be seen in Figure 10. When this is understood, Figure 10

conveys a greater GLUE likelihood of over‐predicting the
low flows and under‐predicting the high flows, and this was
more pronounced during recession periods (Figure 11 gives
an example). This behavior was similar across the fields,
although the simulations for field 8 were generally closer to
the observed intervals and the under‐prediction of the rising
time steps at high flows was less pronounced.

4. Conclusions

[42] This paper demonstrated how model parameter,
structural and data uncertainties can be accounted for
explicitly and simultaneously within the Generalized Like-
lihood Uncertainty Estimation (GLUE) methodology. With
the inclusion of multiple model structures, the logical exten-
sion of the GLUE paradigm of testing multiple model
hypotheses was realized for the first time. It was shown that
discharge error estimates and, by implication, those of other
evaluation data can serve as model independent benchmarks
for testing model hypotheses. However, the understanding
of data uncertainties will often remain incomplete, in this
study particularly with respect to rainfall input. This, and the
need for retaining imperfect models for diagnostic or opera-

Figure 7. Accepted ensembles of model structures and rainfall scenarios for fields 8, 10 and 13 (the
48 model structures rejected for all three fields are omitted). The pie chart fractions are proportional to
the relative contributions of structures/scenarios to each ensemble, the numbers are labels (see legend)
and the shading is proportional to the average weighting of model realizations within each structure/
scenario (the “highest” weight (Dkmean = 0) in black and the “lowest” weight (Dkmean = 0.5) in white).

Figure 8. Representation of the accepted rainfall scenario/parameter space of field 13 in the form of a correlation plot matrix
for two variants of the exponential, bounded store with inactive store S0: that using evapotranspiration equation (4a) on the
lower left triangle and that using equation (4b) on the upper right triangle. S1 is the active store, ke and me are the parameters
of the exponential store, and a is the evapotranspiration adjustment factor of equation (4b).
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tional purposes even if the data uncertainties are known
well, means that some mismatch between simulations and
observations has usually to be accepted on top of what is
estimated as discharge measurement error. The limits of
acceptability may not always be obvious and will depend
on the intended use of the models, for diagnostics or dif-
ferent types of operational prediction, in which case the
limits need to be defined post‐hoc. This paper introduced a
flexible methodology for doing so, based on time step–based
performance measuring and performance aggregation over
meaningful periods of the hydrograph. The limits of model
acceptability were defined relative to the estimated dis-
charge uncertainty intervals so that they served as indicators
of model structural error (and model input error). More
models should be evaluated in this way so that a series of
benchmarks can build up which will help to appreciate the
scale of model structural error for any given limits of accept-
ability that are expressed as multiples of measurement error.
[43] Rainfall input error was approached using rainfall

scenarios in this study. The scenarios were found to be
correlated with the resulting model parameter estimates,
which indicates compensational effects between inputs and
inferred model processes. This emphasizes the need for

including input uncertainty in model evaluation to avoid
rejecting behavioral models through biased inputs. The same
can be implied for evapotranspiration uncertainty, which was
not accounted for explicitly in this study. A quantification of
evapotranspiration uncertainty would appear difficult to
achieve beyond rough estimates in most cases due to the
difficult task of measuring evapotranspiration in the first
place. There is, consequently, a need for better scientific
understanding of all observational uncertainties in hydrology
through repeated experiments, novel measurement techniques
and clustered instrumentation. Observational uncertainties
should then be routinely incorporated into model diagnostic
schemes to focus on the model structural error component
and arrive, eventually, at a more realistic set of model
parameters and structures as working hypotheses for the
description of hydrological systems.
[44] It has to be recognized, however, that the study

reported in this paper was computationally demanding and
the data generated became increasingly awkward to handle.
For those situations, existing model diagnostic tools were
developed further in this paper to display and diagnose model
results comprehensively. In order to decrease run time and
storage space, it is suggested that the model rejection step be

Figure 9. Cumulated GLUE likelihood distributions of simulation statistics for fields 8, 10 and 13:
(a) simulated water balance expressed as total fluxes of rainfall (R), discharge (Q) and evapotranspiration
(ET); (b) maximum simulated store (Smax); and (c) inactive store (S0) expressed as percentage of Smax.
All totals are summed over the 2006 Water Year (01/10/2005–30/09/2006).
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simplified using pre‐optimization [e.g., Clark et al., 2008] in
future applications, because only the optimum model per-
formance is relevant for model rejection. This may also
provide guidance on defining limits of model acceptability.
[45] As an example application, this paper marked the

initial step in analyzing the hydrological behavior of a set of
experimental field‐scale lysimeters through model hypothesis
testing. There were clear differences in model performance
between fields which corresponded to real differences in
hydrological behavior. For fields with events starting from
low discharge levels, the single exponential or power law
type of store reached its limit of applicability as an aggre-
gated description of runoff generation at this small scale.
The linear type of store and model structures without an
inactive store were rejected. The bounded variants of stores
caused unrealistic over‐predictions through modeling over-
land flow as overspill routed to the field outlet in one 1–5 min
time step. The alternative lumped simulation of overland
flow and interflow seemed more realistic given that surface
runoffmay occur locally andmay re‐infiltrate before reaching
the field boundary.
[46] All accepted model realizations were geared toward

dissipating a large fraction of rainfall input by other means
than discharge, resulting in simulations of actual evapo-
transpiration and inactive storage that were unrealistically
large compared to field data estimates. It is hypothesized that
the models compensated for a “leaking” of the fields, either
through deep seepage despite the clay aquiclude, e.g., via
macropores, or through the sides of the fields along the deep
interceptor drains. In the spirit of model learning, additional
field measurements should now test these hypotheses, while
an improved model should include an additional loss term,
e.g., a second outlet of the conceptual store. In addition,

explicit flow routing formulations should be tested to address
the identified timing issues.

Appendix A

[47] Stage‐discharge uncertainty was estimated using the
following algorithm, adapted from the idea of a fuzzy rating
curve [Pappenberger et al., 2006]:
[48] 1. The experiments carried out at the two weirs, of the

same design, were evaluated separately to allow for differ-
ences in the ratings of the structures that may exist.
[49] 2. The estimated error intervals of each measurement

were visualized as data boxes in the stage‐discharge space
(Figure 2). The boxes of repeated measurements were joined
resulting in one data box per stage increment. This allowed
for the possibility of measurement errors being estimated too
small, in which case they were adjusted based on the vari-
ability of repeats.
[50] 3. The flexible and widely used power law Q =

a (h + b)c with discharge Q, stage h and parameters a, b and
c was chosen as the rating equation. This choice reflects the
defined nature of the weirs where this equation has some
physical justification [Chow, 1959], yet no prior assump-
tions about the parameters were made. The parameter b
accounts for errors in stage at zero discharge (accuracy of
stage measurement).
[51] 4. The uncertainty envelope for the stage‐discharge

relationship based on the chosen rating equation was cal-
culated semi‐analytically as follows:
[52] (i) Iterate through all possible combinations of two

data boxes. For each combination, iterate through two nested
loops of the four corners of each of the two boxes. Iterate
through a final nested loop of the two limits of the stage

Figure 11. Observed rainfall event (gauges 1 and 2) and corresponding simulated (GLUE likelihood
distribution) versus observed discharge for fields 8, 10 and 13.
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interval at zero discharge ([−2; 2]; Table 2) and take these in
turn as parameter b.
[53] (ii) With b defined, each iteration yields two values

of Q and h and thus a system of two rating equations with
two unknowns a and c. Calculate those analytically. Reject
complex solutions for small h.
[54] (iii) Keep this realization of parameters if the resulting

rating curve intersects all remaining data boxes.
[55] (iv) The minima and maxima of these rating curve

realizations are an accurate representation of the envelope,
i.e., the intervals of model parameters and the intervals of
Q for given h. Despite a theoretical derivation, the accuracy
of the algorithm was confirmed through random Monte
Carlo sampling of the rating curve parameters.
[56] 5. For the two weirs which experiments were con-

ducted for, the corresponding uncertainty envelopes were
used. For all other weirs, both envelopes were combined
into one to reflect larger uncertainties when no experiment
was conducted yet acknowledging the expected similar
behavior of similar structures.
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