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H I G H L I G H T S  

� Using sample means may be overestimating GHG fluxes. 
� GEV solves excessive skewness and kurtosis of greenhouse gas flux data. 
� Strategy of options for analysing GHG data rather than black-box approach. 
� CO2 estimates from GEV less affected by data in the long tail than sample mean. 
� CO2 estimates from Box-Cox are more affected by long-tail data than from GEV.  

A R T I C L E  I N F O   

Keywords: 
Nitrous oxide 
Carbon dioxide 
Generalised extreme value 
Finney correction 
Heavy-tailed data 
Skewness correction 

A B S T R A C T   

In this study, we draw up a strategy for analysis of greenhouse gas (GHG) field data. The distribution of GHG flux 
data generally exhibits excessive skewness and kurtosis. This results in a heavy tailed distribution that is much 
longer than the tail of a log-normal distribution or outlier induced skewness. The generalised extreme value 
(GEV) distribution is well-suited to model such data. We evaluated GEV as a model for the analysis and a means 
of extraction of a robust average of carbon dioxide (CO2) and nitrous oxide (N2O) flux data measured in an 
agricultural field. The option of transforming CO2 flux data to the Box-Cox scale in order to make the distribution 
normal was also investigated. The results showed that average CO2 estimates from GEV are less affected by data 
in the long tail compared to the sample mean. The data for N2O flux were much more complex than CO2 flux data 
due to the presence of negative fluxes. The estimate of the average value from GEV was much more consistent 
with maximum data frequency position. The analysis of GEV, which considers the effects of hot-spot-like ob-
servations, suggests that sample means and log-means may overestimate GHG fluxes from agricultural fields. In 
this study, the arithmetic CO2 sample mean of 65.6 (mean log-scale 65.9) kg CO2–C ha� 1 d� 1 was reduced to GEV 
mean of 60.1 kg CO2–C ha� 1 d� 1. The arithmetic N2O sample mean of 1.038 (mean log-scale 1.038) kg N2O–N 
ha� 1 d� 1 was substantially reduced to GEV mean of 0.0157 kg N2O–N ha� 1 d� 1. Our analysis suggests that GHG 
data should be analysed assuming a GEV distribution of the data, including a Box-Cox transformation when 
negative data are observed, rather than only calculating basic log and log-normal summaries. Results of GHG 
studies may end up in national inventories. Thus, it is necessary and important to follow all procedures that 
contribute to minimise any bias in the data.   
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1. Introduction 

Greenhouse gas (GHG) flux data from agricultural fields are difficult 
to measure precisely because of their inherent spatial and temporal 
variability. This variability comes from influencing factors such as soil 
moisture and underlying drainage, field aspect and slope, pH and field 
distribution of dung or fertilizer. Hot-spots, or rather hot-moments 
(recorded peaks are time peak rather than spatial peaks), in GHG data 
are a common occurrence and may cause much nuisance for data 
analysis (Dixon et al., 2010; Loick et al., 2017). As a result, data recorded 
on any time scale tend to include high and low peaks resulting in a 
skewed distribution. 

Although GHG emissions information can be extended by computer 
simulation using soil biogeochemical cycling models, crucially the 
modelled data require field data for calibration and validation. Hence 
robust methods for analysis of field data are key to obtaining both ac-
curate field data and simulated data. 

A common method of analysis is to transform skewed data to a log- 
scale. However, as explained and illustrated in Dhanoa et al. (2016), 
skewness does not always mean a log-normal distribution. Skewness 
caused by a few extreme values or outliers may be handled by trans-
forming data (Atkinson, 1982), e.g. using the Box and Cox (1964) system 
or the Finney (1941) correction. If there are many outliers and the data 
transformation option fails (Atkinson, 1982), the generalised extreme 
value (GEV) distribution offers an option. This is a very flexible distri-
bution with only three parameters to estimate, sometimes referred to as 
the Fisher–Tippett distribution after its progenitors (Fisher and Tippet, 
1928; Eastoe, 2017), though the common form used in several versions 
of the GEV follows McFadden (1978). 

The GEV is a class of probability distribution, incorporating a heavy- 
tailed distribution (Evans et al., 2000), that can be fitted to GHG data in 
order to extract metrics such as the mean and standard deviation. 

Plant traits are generally positively skewed, and usually log- 
transformed. Edwards et al. (2015) used GEV to determine the shape 
of seed mass distributions. 

Küchenhoff and Thamerus (1996) used GEV in the extreme value 
analysis of Munich air pollution data. Ercelebi and Toros (2009) also 
used GEV to model Istanbul air pollution (in particular ozone [O3], 
benzene [C6H6], nitric oxide [NO]). The interactions among these affect 
N cycling, e.g. [NO þ O3 → NO2 þ O2]. 

Recently, for modelling air pollution data, Korkmaz (2015) described 
the two-sided generalised Gumbel distribution, which is a special case of 
the GEV (Type I distribution). Martins et al. (2017) did extreme value 
modelling of air pollution data and compared results amongst two large 
urban regions of South America. Battista et al. (2016) used GEV to model 
urban concentrations of pollutants in the city of Rome (Italy). 

GEV is often applied in climatology to changes in temperature and 
precipitation extremes occurring as the effect of an increase in GHGs, to 
characterise event magnitudes and frequencies (Kharin and Zwiers, 
2004; Katz, 2010). Beniston (2004) analysed the 2003 heat wave data in 
Europe and showed an association with increased atmospheric GHG 
concentrations. Studies have so far tended to apply GEV to the climate 
effects of GHG, rather than the sampled measurements of GHGs 
themselves. 

The purpose of this study is to assess the suitability of the GEV when 
analysing GHG data from agricultural fields, which often contain larger 
than expected extreme values forming a thick-tailed data distribution. 
Its purpose is also to show that the GEV method could minimise bias 
inherent in simple means of skewed GHG data, and to draw up a strategy 
for analysis of GHG field data. 

2. Materials and methods 

2.1. Experimental design and data collection 

The data set originated from a study conducted at Rothamsted 
Research, North Wyke, Devon, UK (50� 46’ 10’’ N, 3� 54’ 05’’ W). The 
site is on a permanent grassland in a maritime climate (mean annual 
temperature 9.6 �C; mean annual precipitation 1056 mm). 

Four treatments were tested: a) control with no nitrogen (N) fertilizer 
applications (CN); b) digestate from anaerobic treatment of food waste 
(DG); c) ammonium nitrate (AN); d) cattle slurry (SL) (Louro et al., 
2013; Pezzola et al., 2012). 

The soil is a silty clay loam, classed under the British soil classifi-
cation as clayey typical non-calcareous pelosol of the Halstow series and 
a stagni-vertic cambisol. 

The digestate (from Andigestion biogas plant in Holsworthy, UK) 
comprised food residues, liquid waste from abattoirs and municipal 
waste from an anaerobic fermentation cycle lasting 50 days. Cattle 
slurry was collected from a dairy farm nearby the study site and the 
applied ammonium nitrate comprised 34.5% N. Chemical composition 
of the slurry and digestate can be seen in Table 1. 

Further information on soil characteristics and chemical composition 
of the materials applied can be found in Louro et al. (2013) and Pezzolla 
et al. (2012). 

The four treatments were applied in a randomized block design with 

Table 1 
Chemical composition of applied slurry and digestate.  

Property Units Slurry 
application 

Digestate 
application 

Dry matter % 6.5 4.8 
Density kg l� 1 1.006 1.00 
Ammonium, NHþ4 �

N  
g kg� 1 dry 
matter 

18.5 97.3 

Nitrate, NO�3 � N  g kg� 1 dry 
matter 

0.0 0.0 

Total N % of dry matter 2.67 16.9 
pH – 7.30 8.16 
Total carbon % of dry matter 38.4 38.6 
C:N ratio – 14.4 2.3  

Table 2 
Glossary of input parameters calculated from GHG flux data.  

GHG data 
parameter 

Description References 

AM Arithmetic sample mean  
γ Skewness  
bμ  Sample mean on the log-scale Finney (1941) 

bσ2  Sample variance on the log-scale Finney (1941) 

y Original data value Box and Cox (1964) 
c Positive constant which when added to all 

dataset values makes all data above zero 
(only if negative values exist) 

Box and Cox (1964) 

λ Transformation parameter to fit normal 
distribution curve 

Box and Cox (1964) 

ξ Peak location parameter in the GEV 
function 

Smith (1989) 

η Shape parameter in the GEV function Smith (1989) 
α Scale parameter in the GEV function Smith (1989) 
Γ Gamma function Abramowitz and 

Stegun (2014) 
u Return period of peak level Sexto et al. (2013)  
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three replicate plots per treatment on 8 September 2011, and applied to 
supply the equivalent rate of 80 kg N ha� 1. Nitrous oxide (kg N2O–N 
ha� 1 d� 1) and carbon dioxide (kg CO2–C ha� 1 d� 1) were measured in the 
12 plots throughout 47 days between 12 September and 28 October 
2011 using one dark non-transparent long-term chamber (LiCor 
8100� 104) per replicate plot connected to a photoacoustic infrared gas 
monitor (Lumasense Technologies, INNOVA model 1412i) and an 
infrared gas analyser (LI-COR Lincoln, Nebraska USA, model LI-8100A). 
The flux was collected daily from the 12 chamber readings at 11:00 am. 
There were 12 sets of data each with 47 observations. 

2.2. Analysis of GHG data with generalised extreme value (GEV) 
distribution 

A glossary of input parameters required for this study is listed in 
Table 2. 

A kernel density plot (Sheather and Jones, 1991) for CO2 and N2O 
fluxes, showing the position of observation frequency and the nature of 
skewness, is given in Fig. 1. This illustrates that the processes which 
cause GHGs to produce apparent outliers combine to give data in a 
heavy-tailed distribution (also known as thick-tailed, long-tailed, 
fat-tailed, etc.). When such data are summarised, non-robust statistics 
such as the sample mean can be highly inflated. The classic approach to 
deal with a skewed distribution is to check if it follows the log-normal 
distribution. This is usually done by transforming the data to the 
log-scale and then testing whether the transformed data follow the 
normal distribution. One complication comes if the original data con-
tains zeroes or negative values. In this case a positive constant equal to 
the sample minimum must be added to make all data positive, and one 
must be added where zero values are present. Once the constant has 
been applied, the data can be transformed to the log-scale (see Dhanoa 
et al., 2016 for further information on log transformation). It is worth 
noting here that the back transformed value of the mean estimated from 
the log-scaled data is not the same as the calculated arithmetic mean on 
the original scale, rather the geometric mean. To calculate the mean on 
the original scale the Finney correction must be applied. Finney (1941) 

showed that 

AM ¼ ebμ þ bσ
2

2 ¼ ebμ ebσ
2

2 (1)  

where AM is the arithmetic sample mean on the original scale and bμ and 
bσ2 are the estimates of the sample mean and the variance on the log- 
scale, respectively. Any constant applied prior to logarithmic 

Fig. 1. Kernel density plot of (a.) CO2 and (b.) N2O flux data showing main area of data frequency and the composition of the heavy-tail.  

Fig. 2. Empirical relationship (y ¼ A þ B Ry*) between CO2 flux data on the 
original scale and the corresponding values scaled according to the Box and Cox 
(1964) transformation with λ ¼ 0.1. 
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transformation should be subtracted. 
An alternative option is to use a data transformation system such as 

the Box-Cox transformation (Box and Cox, 1964): 

y* ¼
ðyþ cÞλ � 1

λ
(2)  

where y* is the transformed value, y is the actual value, c is the positive 
constant added to make all data above zero and λ the transformation 
parameter, enabling the best approximation of a normal distribution 
curve. To perform this transformation, the value of λ must be estimated 
first. The algorithm to estimate λ [by numerical search] usually fails in 
the presence of negative values, so it is prudent to add a suitable con-
stant as detailed above if negative or zero values are present. Having 
estimated the value of λ and checked if the transformed data follow a 
normal distribution, one now has the task of transforming the mean 
estimate back to the original scale. There are not many validated 
methods, with the exception of the method detailed by Taylor (1985), to 
perform back-transformation from the Box-Cox scale. However, for 
convenience, the empirical exponential regression relationship (y ¼ Aþ
B R y�) may be used to convert Box-Cox scale quantity y* to the original 
scale quantity y and subtracting any constant applied if necessary. This 
tends to be a good nonlinear relationship for CO2 flux (see Fig. 2) and for 
N2O flux. 

The median value of a sample can be a robust statistic but it will be 
influenced by the presence of a heavy- or long-tail. However, there are 
some heavy-tailed distributions (Evans et al., 2000) such as extreme 
value Type I (Gumbel), Type II (Fr�echet) or Type III (reverse Weibull) 
distributions, all of them special cases of the GEV distribution (Coles, 
2001). Rather than focussing on these three special cases, GEV is used 
generally in the data analysis presented here. The shape parameter η 
allows fitting of this distribution to a variety of data histogram shapes. In 
heavy-tailed distributions the sample mean is pulled away from the 
majority of the data values and can be greatly overestimated. Fitting the 
GEV ensures that the mean estimate represents the majority of the data 
and thus mitigates overestimation bias. From the estimate of the GEV 
shape parameter η, one can see which thick-tail type distribution de-
scribes the data best. A more important outcome is the estimate of data 
average (μ) that is relatively free of the effect of data in the long tail. The 
estimate of μ is calculated as a function of the GEV parameters ξ, η and α 
(eq. (3) and eq. (4)). 

GEV is a simple three parameter probability function with cumula-
tive distribution function (Evans et al., 2000), F(x), and probability 
density function, f(x), defined as follows. 

The cumulative distribution function for the GEV (Smith, 1989; 
Martins et al., 2017) is given by 

FðxÞ ¼ exp
�

�

�

1 � η ðx � ξÞ
α

�1
η
�

for η 6¼ 0 and α > 0; (3)  

with ξ being the data peak location parameter, η the shape parameter 
and α the scale parameter. In this functional form, η < 0 indicates a 
Fr�echet distribution and η > 0 a reverse Weibull (Eastoe, 2017). The 
limiting value at η ¼ 0 is the Gumbel distribution. Parameter ξ is related 
to the position of the majority of data peak similar to the geometric 
mean or mode position in skew distributions. 

Table 3 
Sample statistics for CO2 flux data (kg CO2–C ha� 1 d� 1) over 47 days from three 
replicate plots of each of four treatments comprising digestate (DG), cattle slurry 
(SL), control (CN) and ammonium nitrate (AN).  

Treatment-Plot Sample Mean Sample SD Skewness Kurtosis 

DG-1 82.71 58.860 2.071 4.383 
DG-2 85.67 44.654 0.400 � 0.875 
DG-3 65.52 30.580 0.711 � 0.506 
SL-1 50.56 15.525 0.465 � 0.597 
SL-2 70.34 36.105 0.882 � 0.394 
SL-3 73.01 28.340 0.773 � 0.171 
CN-1 56.85 33.904 1.532 2.377 
CN–2 58.19 22.458 1.094 1.007 
CN-3 35.07 18.287 1.431 2.540 
AN-1 70.24 31.530 0.375 � 0.645 
AN-2 67.24 18.762 � 0.139 � 0.379 
AN-3 72.07 33.038 0.687 0.406 
Overall Mean ¼ 65.62 35.399 1.688 5.555  

Median ¼ 58.39     

Table 4 
Mean plot values for CO2 flux data (kg CO2–C ha� 1 d� 1) over 47 days from three 
replicate plots of each of four treatments comprising digestate (DG), cattle slurry 
(SL), control (CN) and ammonium nitrate (AN) estimated on the log-scale, Box- 
Cox scale (Box and Cox, 1964) and by generalised extreme value analysis (GEV).  

Treatment- 
Plot 

Mean log- 
scalea 

Mean Box-Cox 
scaleb 

GEV 

ξ η α 

DG-1 81.58 70.49 54.20 0.371 26.332 
DG-2 87.21 74.93 65.55 � 0.050 37.020 
DG-3 65.68 59.71 48.60 0.260 19.977 
SL-1 50.64 48.51 43.78 � 0.075 13.061 
SL-2 70.38 63.12 50.66 0.291 21.909 
SL-3 73.13 68.51 59.54 0.054 21.171 
CN-1 56.70 49.93 39.89 0.265 18.901 
CN-2 58.27 54.76 48.15 0.016 16.890 
CN-3 35.86 31.19 27.19 0.011 13.504 
AN-1 71.03 63.75 57.04 � 0.123 27.561 
AN-2 67.67 64.60 61.17 � 0.338 19.038 
AN-3 72.82 65.44 57.46 � 0.048 27.178 
Overall 65.89 58.53 48.94 0.116 23.670  

a Finney (1941) correction applied. 
b Transformed back from Box-Cox scale using an empirical regression rela-

tionship, viz. y ¼ A þ B Ry* where y ¼ CO2 flux and y* ¼ flux on Box-Cox scale 
with λ ¼ 0.1. 

Table 5 
Sample statistics for N2O flux data (kg N2O–N ha� 1 d� 1) over 47 days from three 
replicate plots of each of four treatments comprising digestate (DG), cattle slurry 
(SL), control (CN) and ammonium nitrate (AN).  

Treatment-Plot Sample Mean Sample SD Skewness Kurtosis 

DG-1 1.045 0.0277 2.391 6.013 
DG-2 1.046 0.0185 1.206 1.464 
DG-3 1.036 0.0120 1.020 3.140 
SL-1 1.031 0.0047 � 0.152 � 0.524 
SL-2 1.051 0.0391 1.982 3.023 
SL-3 1.038 0.0123 � 0.312 1.255 
CN-1 1.032 0.0108 2.007 4.709 
CN-2 1.033 0.0082 1.062 1.984 
CN-3 1.026 0.0050 � 1.435 3.065 
AN-1 1.042 0.0165 1.137 0.326 
AN-2 1.033 0.0081 0.181 � 0.473 
AN-3 1.039 0.0126 1.562 2.538 
Overall Mean ¼ 1.038 0.0187 3.457 1.766  

Median ¼ 1.033     
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The corresponding formula for the probability density function 
(Singh, 1998) is 

f ðxÞ ¼
1
α

h
1 �

η
α ðx � ξÞ

i1� η
η exp

�

�
h
1 �

η
α ðx � ξÞ

i1
η
�

(4) 

From these references the mean (μ), standard deviation (σ) and 
skewness (γ) of the GEV distribution can be calculated: 

bμ ¼ bξþ
bα
bη ½1 � Γð1þ bηÞ �

bσ ¼ α̂ η̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γð1þ 2bηÞ � ½Γð1þ bηÞ �2
q

bγ ¼ sgnðbη � Γð1þ 3bηÞ þ 3Γð1þ bηÞΓð1þ 2bηÞ � 2½Γð1þ bηÞ �3
h
Γð1þ 2bηÞ � ½Γð1þ bηÞ �2

i3=2 (5)  

Symbol Γ denotes the gamma function (Abramowitz and Stegun, 2014). 
The quantile function [the inverse of F(x)] of the GEV distribution is: 

F� 1ðuÞ ¼ ξþ
α
η ½1 � ½ � lnðuÞ �η � with  0  < u < 1 (6) 

When the interest is to estimate re-occurrence of (say) the maximum 
of a particular pollutant, then the value F� 1ð1 � uÞ is the return level 
associated with the return period 1/u (Sexto et al., 2013). 

3. Results and discussion 

The nature of GHG data is such that any spot value may be not 
representative of the flux size in a particular agricultural field. This is 
why the data in this study were collected every day over a period of 47 
days. However, this extra time dimension creates a need to summarise 
data so the treatments may be compared by simple analysis of variance 
(ANOVA) based on the statistical design. Alternatively, a repeated 
measurement ANOVA of the design may be carried out without sum-
marizing the data and a simple randomised block ANOVA using mean-
ingful summary statistics is also desirable. For this purpose, the time 
course profile may be modelled if a suitable model is identifiable, 
otherwise calculating the area under the curve can be a good surrogate 
summary. 

To understand the averaging problem, the sample average (implicitly 
assuming a normal distribution), log-normal based mean, Box-Cox 

transformation based mean and mean from the fit of GEV distribution 
were considered. This exercise was completed with CO2 flux data (Ta-
bles 3 and 4). The N2O flux data (Tables 5 and 6) had very small scale 
size observations and both positive and negative values. Thus, the al-
gorithm to estimate λ did not converge to a satisfactory solution. Even to 
calculate the mean via the log-scale, it was necessary to use ln(x þ c) 
with c ¼ absolute value of the minimum (N2O flux) þ 1.0. Because of this 
difficulty the results for N2O flux amended as above are included. From 
the parameters of the GEV distribution, the GEV mean for CO2 flux was 
estimated to be 60.1 kg CO2–C ha� 1 d� 1 shown in Table 7 (note that (μ – 
ξ) is the contribution from data in the heavy tail). Similarly, the esti-
mated GEV mean for N2O flux (net of the added constant of 1.0203) was 
0.0157 kg N2O–N ha� 1 day� 1 ({1.036–1.0203}; Table 8). 

3.1. Carbon dioxide flux data 

The example data employed here demonstrate a heavy tailed dis-
tribution as shown by skewness of 1.688 � 0.104 and kurtosis of 5.555 
� 0.208 due to the presence of excessive hot-moments or extreme values 
(see Fig. 3). This feature of data distributions means non-robust statistics 
such as the arithmetic mean will be biased positively. When examined 
on the log-scale the data were still non-normal. Similarly, data on the 
Box-Cox Scale with λ ¼ 0.1 did not become normal. However, when 

Table 6 
Mean plot values for N2O flux data (kg N2O–N ha� 1 d� 1) over 47 days from three 
replicate plots of each of four treatments comprising digestate (DG), cattle slurry 
(SL), control (CN) and ammonium nitrate (AN) estimated on the log-scale, Box- 
Cox scale (Box and Cox, 1964) and by generalised extreme value analysis.  

Treatment- 
Plot 

Mean log- 
scalea 

Mean Box-Cox 
scaleb 

GEV 

ξ η α 

DG-1 1.0450 1.059 1.033 0.278 0.0124 
DG-2 1.0458 1.061 NA NA NA 
DG-3 1.0358 1.053 1.031 � 0.112 0.0107 
SL-1 1.0307 1.049 NA NA NA 
SL-2 1.0513 1.064 NA NA NA 
SL-3 1.0377 1.055 1.034 � 0.331 0.0128 
CN-1 1.0320 1.050 1.027 0.089 0.0068 
CN-2 1.0326 1.050 1.029 � 0.062 0.0038 
CN-3 1.0259 1.044 NA NA NA 
AN-1 1.0421 1.058 NA NA NA 
AN-2 1.0333 1.051 1.030 � 0.242 0.0078 
AN-3 1.0394 1.056 1.034 0.058 0.0086 
Overall 1.0376 1.037 1.030 0.072 0.0108 

NA ¼ Not available, distribution did not fit. 
a Finney (1941) correction applied. 
b Transformed back from Box-Cox scale using an empirical regression rela-

tionship, viz. y ¼ A þ B Ry* where y ¼ N2O flux (with added constant) and y* ¼
flux on Box-Cox scale with λ ¼ � 4.0. 

Table 7 
CO2 flux sample mean and mean and standard deviation as calculated from the 
parameters of the GEV distribution.  

Treatment-Plot Sample Mean GEV 

bμ  bσ  

DG-1 82.71 62.06 25.245 
DG-2 85.67 88.84 50.949 
DG-3 65.52 55.94 20.197 
SL-1 50.56 52.35 18.672 
SL-2 70.34 58.26 21.773 
SL-3 73.01 70.68 25.432 
CN-1 56.85 46.78 19.057 
CN-2 58.19 57.63 21.213 
CN-3 35.07 34.84 17.081 
AN-1 70.24 76.73 42.851 
AN-2 67.24 81.60 53.569 
AN-3 72.07 74.49 37.260 
Overall 65.62 60.14 26.679  

Table 8 
N2O flux sample mean and mean and standard deviation calculated from the 
parameters of the fitted GEV distribution (flux data used include the added 
constant 1.02029 to overcome negative and zero values in the original data).  

Treatment-Plot Sample Mean GEV 

bμ  bσ  

DG-1 1.045 1.037 0.0124 
DG-2 1.046 NA NA 
DG-3 1.036 1.038 0.0163 
SL-1 1.031 NA NA 
SL-2 1.051 NA NA 
SL-3 1.038 1.047 0.0350 
CN-1 1.032 1.031 0.0079 
CN-2 1.033 1.034 0.0095 
CN-3 1.026 NA NA 
AN-1 1.042 NA NA 
AN-2 1.033 1.037 0.0158 
AN-3 1.039 1.038 0.0103 
Overall 1.038 1.036 

Net 0.0157 
0.0127 

NA ¼ Not available, distribution did not fit. 
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using the generalised extreme value distribution, considering the prob-
ability plot (Atkinson, 1985), the data were found to be consistent with 
that distribution (Fig. 4). 

When analysing CO2 flux data, the generalised extreme value dis-
tribution successfully fitted individual treatments and overall (GEV 
parameters given in Table 4) and it provided a better description of the 
data compared to the normal, log-normal and Box-Cox transformed 
data. It therefore seems GEV is a viable option to analyse long-tailed or 

heavy-tailed GHG data. The analysis of CO2 data shows that fitting the 
GEV distribution can reduce bias from the sample mean estimate 
(Table 7) and the standard deviation is also smaller. From the fitted 
parameters of the GEV distribution (Table 4), the mean μ and standard 
deviation σ were calculated (Table 7). 

3.2. Nitrous oxide flux data 

Nitrous oxide flux data appear very different across the 12 plots in 
this study. Values range from high positive values to negative values 
(Fig. 5). Thus, the data for N2O flux were much more complex than CO2 
flux data due to the presence of negative fluxes. These data form mix-
tures of distributions. The graphical test (Atkinson, 1985) showed that 
even GEV was not able to fit to the individual plot data sets entirely 
satisfactorily (Fig. 6) despite the addition of a constant of 1.0203 (i.e. 1 
þ minimum absolute data value) to the data. From the GEV parameter 
estimates in Table 6, the estimates of mean μ and standard deviation σ 
were calculated (Table 8). 

4. Conclusions 

This study shows that when analysing GHG data from agricultural 
fields, detailed analysis is required before proceeding to the application 
of a suitable methodology. Black-box or default statistics such as simple 
sample mean can give biased estimates. It is prudent to test implicit 
distributional assumptions in order to identify an appropriate 
methodology. 

From the above, we can draw up a general strategy for GHG field 
data analysis:  

1. Check the distribution of the data and see if it is normally distributed.  
2. Check for presence of hot-moments or outliers and deal with them if 

present (see Dhanoa et al., 2016 for various tests). 

Fig. 4. Probability plot when modelling CO2 flux data using the GEV distribution.  

Fig. 3. CO2 flux data showing observations contributing to skewness and 
heavy tail. 
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3. If the data distribution appears to be skewed, consider if the data are 
expected to follow a log-normal distribution. Check the distribution 
after logarithmic transformation. If data observations include nega-
tive and/or zero values, then ln(x þ c) should be used with value of 
constant c such that all data observations are positive. As explained 
above, when converting back any log-scale statistics on to the 

original scale the Finney (1941) correction must be applied (Dhanoa, 
2017) and any constant that was added must be subtracted.  

4. If the majority of the data appear to be normal apart from a few 
outliers, then the Box-Cox transformation may be considered. When 
λ ¼ 0.0, logarithmic transformation is indicated otherwise use the 
Box-Cox scale as described above. Again, add a constant c to make all 
data positive. 

5. However, if the distribution tail is long with many divergent obser-
vations in that tail, then the option of the generalised extreme value 
distribution may be relevant. 

In the case of GHG data studies, many of the results may end up in 
national inventories. Thus, it is necessary and important to follow all 
procedures that contribute to minimise any bias in the data summaries, 
to enable meta-analysis and other statistical comparisons of treatments 
and studies provide suitable measure(s) of uncertainty. 
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