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GWR is a popular approach for investigating the spatial variation in relationships between
response and predictor variables, and critically for investigating and understanding process
spatial heterogeneity. The geographically weighted (GW) framework is increasingly used
to accommodate different types of models and analyses, reflecting a wider desire to explore
spatial variation in model parameters and outputs. However, the growth in the use of GWR
and different GW models has only been partially supported by package development in
both R and Python, the major coding environments for spatial analysis. The result is that
refinements have been inconsistently included within GWR and GW functions in any given
package. This paper outlines the structure of a new gwverse package, that may over
time replace GWmodel, that takes advantage of recent developments in the composition of
complex, integrated packages. It conceptualizes gwverse as having a modular structure,
that separates core GW functionality and applications such as GWR. It adopts a function
factory approach, in which bespoke functions are created and returned to the user based on
user-defined parameters. The paper introduces two demonstrator modules that can be used
to undertake GWR and identifies a number of key considerations and next steps.

Introduction

This paper describes the structure of a new over-arching R package called gwverse that includes
some – but not all–packages for different geographically weighted tools. The aim in doing this
is twofold. First, to reimagine the functionality of the GWmodel package (Lu et al., 2014;
Gollini et al., 2015) that can be used for geographically weighted analyses of different kinds in
R, including regression. Second, and just as importantly, to include within the new framework,
structures that facilitate the development and integration of user-defined geographically weighted
tools, able to draw from the core functionality provided by gwverse. The reasons for doing this
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are to propose a framework that better supports users in undertaking such analyses, and critically,
allows developers to easily create and benchmark their own geographically weighted tools.

Geographically Weighted Regression (GWR, Brunsdon, Fotheringham, and Charlton, 1996)
investigates the spatial variation in relationships between response and predictor variables. It
reflects a desire to shift away from global whole map regressions (Openshaw, 1996) such as
those estimated by ordinary least squares (OLS), and including those that account for error
spatial dependence, such as regressions estimated by restricted maximum likelihood. GWR arose
due to broader interests in investigating and understanding process spatial heterogeneity. As
described in Brunsdon, Fotheringham, and Charlton (1996), the origins of GWR can be found
in locally weighted regression (Cleveland, 1979) and local likelihood estimation (Tibshirani
and Hastie, 1987) and it emerged in parallel with other developments in local forms of spatial
analysis, such as Getis and Ord’s G family of statistics (summarized in Getis and Ord, 2010) and
the LISA framework (Anselin, 1995).

GWR is increasingly being used for spatial analyses. A search of the Scopus database
(https://www.scopus.com) in April 2022 for the phrases “GWR,” “Geographically Weighted,”
and “Geographically Weighted Regression” in titles, abstracts and keywords indicated 15,480
records, with sharp increases in recent years (see Fig. 1).

This proliferation has been driven by a four main factors (Comber et al., 2022). First, is
the increase in the generation, provision and availability of spatial data (i.e. data with some
form of location attached), and their ability to support inherently spatial analyses (i.e. analyses
that explicitly accommodate the spatial properties of data). Second, is a broader recognition by
researchers from different quantitative domains of the benefits of quantifying spatial patterns in
data, say through some kind of spatially informed cluster analysis or regression technique, and
in doing so handle spatial dependencies in the data or the model parameters themselves. This

Figure 1. Geographically Weighted Regression publication numbers, 1996 to 2021, as listed on
https://www.scopus.com.
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has in part been driven by the evolving adoption of the First Law of Geography as invoked by
Tobler ( 1970) as a guiding principle, which in essence describes process spatial autocorrelation
(typically dependency in the data), and process spatial heterogeneity (typically dependency in
model parameters)1. GWR is a method that was designed to support the latter, but indirectly
addresses the former (Harris, 2019). Third, is the relative simplicity and conceptual elegance of
GWR as a spatial model, which has helped to fuel its popularity. OLS regression is the basic
modeling approach (modeling 101), and the creation of local regression models calibrated from
data under a moving window, as GWR does, is conceptually intuitive to understand. Fourth, as
a result GWR has been implemented in a number of GISs (e.g. ESRI’s ArcGIS); in R packages
such as spgwr (Bivand et al., 2020), mgwrsar (Geniaux and Martinetti, 2018), GWLelast
(Yoneoka, Saito, and Nakaoka, 2016), gwrr (Wheeler, 2013), GWmodel (Lu et al., 2014; Gollini
et al., 2015), McSpatial (McMillen, 2013) and lctools (Kalogirou and Kalogirou, 2020);
in Python packages such as PySal (Rey and Anselin, 2010) and mgwr (Oshan et al., 2019); and
in standalone implementations such as GWR3 (Charlton, Fotheringham, and Brunsdon, 2003),
GWR4 (Nakaya et al., 2014), and MGWR (Li et al., 2019).

GWR itself has been refined to accommodate extensions found in standard regression, such
outlier-resistant Harris, Stewart Fotheringham, and Juggins (2010), heteroskedastic (Fother-
ingham, Brunsdon, and Charlton, 2002; Páez, Uchida, and Miyamoto, 2002a, b), ridge
(Wheeler, 2007; Gollini et al., 2015), LASSO (Wheeler, 2009) and elastic net forms (Li
and Lam, 2018; Alexis Comber and Harris, 2018). Further extensions include time in the form
of geographically and temporally weighted regression (GTWR) (Huang, Wu, and Barry, 2010;
Fotheringham, Crespo, and Yao, 2015), area to point regression (Murakami and Tsutsumi, 2015),
multiple scales of analysis (Yang, 2014; Fotheringham, Yang, and Kang, 2017), spatially vari-
able model specification (Comber et al., 2018) and the use of different distance metrics (Lu
et al., 2016).

A secondary tranche of developments has seen the use of the Geographically Weighted (GW)
framework as a generic structure to accommodate different types of models and analyses. Again
this reflects a desire to explore spatial variation in model parameters or its components and to
move away from global, “whole map” approaches. Examples include GW principal components
analysis (PCA) (Harris, Brunsdon, and Charlton 2011), GW descriptive statistics (Brunsdon,
Fotheringham, and Charlton, 2002), GW discriminant analysis (Brunsdon, Fotheringham, and
Charlton, 2007; Foley and Demšar, 2013), GW correspondence matrices (Comber et al. 2018),
GW structural equation models (Comber et al. 2017), GW evidence combination (Comber
et al., 2016), GW Variograms (Harris, Charlton, and Stewart Fotheringham, 2010), GW network
design (Harris et al., 2014), GW Kriging (Harris, Charlton, and Stewart Fotheringham, 2010;
Harris, Brunsdon, and Stewart Fotheringham, 2011), GW visualization techniques (Dykes and
Brunsdon, 2007), and more recently GW artificial neural networks (Du et al., 2020; Hagenauer
and Helbich, 2022) and GW machine learning (Chen et al., 2018; Li, 2019; Quiñones, Goyal,
and Ahmed, 2021; Xu et al., 2021). In each of these developments, the moving window or
kernel is still used to generate local data subsets that are weighted by their distance to the kernel
center, as is done in GWR, thereby providing local inputs to the model, analysis or evaluation
being applied. These various GW models demonstrate a generic, open, and continually evolving
technical framework that is being used to explore spatial heterogeneities from a wide range of
disciplines in the natural and social sciences.

The growth in the use of GWR and in GW models of different kinds, as well as the
refinements to GWR, has been supported to some degree by package development in both

3



Geographical Analysis

R and Python. However, much of the development has taken place on a piecemeal basis,
extending current functionality, without consideration of any overarching schema, nor of more
recent developments in thinking around the composition of complex, integrated packages that
incorporate a function factory approach. The aim of this paper is to critically examine the
developments in the package offering the greatest range of GWR- and GW-related functionality,
the GWmodel R package (Lu et al., 2014; Gollini et al., 2015), to propose an organizational
framework within which a new GWR / GW R package will be developed, and to illustrate the
first iteration of this in a new gwverse R package. In so doing, the paper seeks to describe a
comprehensive ecology for undertaking GWR and other GW models, that is also able to support
the generation of user-defined GW tools.

Background: The current GWmodel R package

The GWmodel R package provides the most comprehensive suite of GWR- and GW-related
tools. It contains various forms of GWR, some of which have both basic and outlier resistant
forms, some with local statistical tests and diagnostics, a generalized linear model form, some
with options for flexible choices of distance metrics (Lu et al., 2016) and a generalized linear
model form (Fotheringham, Brunsdon, and Charlton, 2002). It also contains a number of
different functions based on the GW scheme, including tools for GW descriptive statistics,
GW PCA and GW discriminant analysis. As of April 2022, the GWmodel package has been
downloaded more than 206,898 times since it was released on CRAN in 2013 (as recorded on
the CRAN download counts web page and the BioConductor site). Monthly CRAN downloads
are shown in Fig. 2, indicating the increasing attraction of the package to users from a wide
range of disciplines. Additionally, the package functionality has been constantly extended to
accommodate refinements and requests for tools from users and the package management team.
For example, modules have been incorporated over the last five years to support GWR with
large-scale datasets (Murakami et al., 2020), multiscale GWR (Lu et al., 2017, 2018) as well as
functions for GTWR and revised algorithms for GW discriminant analysis and GW PCA.

One of the development problems, that occurs with many projects managed by people in
their spare or part-funded time, is that this growth in package functionally mostly occurs on
a piecemeal basis, without the over-arching organization of the package being considered or
revised from its original structure. An example of this is that the GWmodel manual is some 85
pages in length (Gollini et al., 2015), with varying depth of detail and two vignettes, published
with the launch of the package (Lu et al., 2014; Gollini et al., 2015). The GWmodel help pages
are similarly inconsistent. Some functions have examples with in-depth explanations and some
do not. Many of the recent developments in package functionality do not have vignettes, have
ones that are inconsistent or have not been described in the help pages to sufficient depth (there
are also some help pages where the example does not work). The result is that there is little
to guide the user about which functions to use and how to use them, especially for the newer
functions. This inconsistency is shown in Table 1, which indicates the various refinements and
specification options that have been incorporated into different functions in GWmodel as part
of these developments. The full description of the package is contained in the Appendix. What
is clear from Table 1 is that while the complexity of the package has increased, allowing more
refined approaches to GWR for example, this refinement has not been uniform across the main
groups of GWR functionality, or for that matter any GW model.

A further critical consideration for GWmodel is that currently it only supports analyses
of spatial data in sp format (Pebesma and Bivand, 2005). In the sp data model, spatial
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Figure 2. Monthly downloads of the GWmodel package from CRAN, the Comprehensive R
Archive Network. [Colour figure can be viewed at wileyonlinelibrary.com].

Table 1. The Presence of GWmodel Package Functionality by the Main Groups of Related
Specification Options, where Applicable

Option GW
summary
statistics

GW
principal
components
analysis

GW
regression

GW
generalized
linear
models

GW
discriminant
analysis

Flexible distance metric Yes Yes Yes Yes Yes
Five kernel functions Yes Yes Yes Yes Yes
Fixed/adaptive bandwidth Yes Yes Yes Yes Yes
Bandwidth optimization Yes* Yes Yes Yes Yes
Robust choice for outliers Yes Yes Yes No No
Heteroskedastic errors – – Yes No –
Ridge term – – Yes No –
F- Tests (Leung) – – Yes – –
Monte Carlo Tests Yes Yes Yes No No
Bootstrap SE estimation No No Yes No No
Local coefficient t-tests – – Yes Yes No
Multiscale extension – – Yes No No
Space-time No No Yes No No
High performance No No Yes No No

Note: For mean/median only.
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objects can be thought of containing a data table of attributes and a list structure of geometric
information for the different kinds of spatial objects (e.g. SpatialPointsDataFrame,
SpatialPolygonsDataFrame etc), where each row in the data frame is associated with
an individual component or element of the geometric information. The sp class of objects is
broadly analogous to shapefile formats (lines, points, areas) and raster or grid formats.

There have been a number of key developments in the R ecosystem for spatial analysis as
discussed in Bivand (2021). The sp package is in the process of being deprecated and is being
replaced by a new class of spatial object called simple features as implemented in the sf
package (Pebesma, 2018). This encodes spatial data in a way that conforms to formal standards
defined in the ISO 19125-1:2004 standard and defines a model that represents geometry in
Well-Known Text (WKT) format. Spatial objects in sf appear as a data table but with an
extra geometry column that contains the WKT geometrical information. The geometry (called
an sfc or simple feature column) can be used in geometric operations. Additionally, the sf
structure follows a “tidy” framework (Wickham, 2014) and can be used with both the new
native piping syntax and the magrittr pipe to undertake dplyr data wrangling operations,
for example. The deprecation of sp and its replacement by sf has required packages be updated
to incorporate the new standard in geographical representation in R, which GWmodel has not
done.

Hence, due to its complexity, over-flowing structures, inconsistent application of refinements,
and the fact that it has not been revised to work with sf format spatial objects, the GWmodel
package is ripe for an overhaul. The need for this is enhanced because of the ever-growing
popularity of GWR and the GW framework and the increasing use of GWmodel to undertake
these analyses. The next section sketches out the form that this overhaul could take for a new
gwverse package and considers function factories as an approach for doing this.

Proposal: gwverse – a template for a new GW package

The basic idea
The basic idea for the gwverse package is to implement a modular package structure. Such
structures are seen in packages such as tidyverse, which when called loads a number of
tidyverse-related packages. However, it does not load all tidyverse-related packages, because
this may take time, and occupy resources. It loads more than the absolute basic dplyr package
(e.g., it loads ggplot) but not feather. In a similar way, we propose to have an over-arching
package called gwverse that loads many – but not all – GW-related packages. The structure
has, at its core, a package called gw that provides general helper functions for a GW analysis,
but essentially provides a toolkit to be used in the construction of other GW modules. It includes
tools for building GW functions, but not the functions themselves.

It is unlikely that people other than those developing GW tools will load the gw package
directly, rather it is implicitly loaded (imported) when GW packages are loaded. Our proposed
structure and module dependencies are shown in Fig. 3. In this, the boxes represent packages,
and the directional arrows imply “makes use of” or “draws functionality from.” So for example,
gwregr (for GWR), gwpca (for GW PCA) and gwdesc (for GW descriptive statistics) will
all use functions contained in gw. The mid-layer packages are individual GW applications, and
all of these make use of gw. When called, the gwverse package will load up several commonly
used packages, although not all. The role of gwrglm (for GW generalized linear models) is
slightly different as it will extensively borrow from the standard (Gaussian response) GWR code
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Figure 3. The proposed gwverse structure. [Colour figure can be viewed at
wileyonlinelibrary.com].

in gwregr, and hence also to load and run gwglm will require gwregr to be loaded as a
dependency as well. The packages gwobscure and gwspecial indicate yet to be developed
GW packages (e.g. GW structural equation models [Comber et al. 2018] or multiscale GW
discriminant analysis [Comber et al., 2021]), and future developments and refinements, (e.g. the
use of local bandwidths and tests for heterogeneity [Páez, Uchida, and Miyamoto, 2002a], or
exploration of the geographical weights [Farber and Páez, 2007]), and so are not loaded via
gwverse.

In this structure, the use of gw as the core package is essential to provide a consistent
interface to all of the other functions, whereas gwverse provides a convenient wrapper for the
modules.

GW models
The GW framework, for regression, or any other analysis, has at its core a set of funda-
mental operations: the identification of nearby observations to the location being considered
(i.e. observations under the kernel) and calculation of weights for those observations based on
their distance to the location (i.e the kernel center). The precise form of the functions that are
used to undertake these operations will depend on user-specified choices about:

• kernel bandwidth type: a fixed bandwidth of a uniform size (distance), or an adaptive one in
in which size (distance) varies but the number of observations is fixed or uniform;

• kernel function shape: the form of the distance weighting, with choices of Gaussian,
exponential, bisquare, tricube, or boxcar and many more.

After the kernel bandwidth type and shape have been defined, they can be applied to extract
and weight local data in some kind of GW analysis. For example, in GWR they are used to create
a series of local regressions (returning local coefficients and other regression related outputs), in
a GW discriminant analysis they are used to determine the local posterior class probabilities, in
a GW PCA they are used to determine the local components, local loadings and local scores.

The general operation of a given GW model such as GWR has two stages:

1. Determination of the kernel bandwidth size (whether fixed or adaptive) typically through
some form of optimal evaluation;

2. Application of the optimal bandwidth in the final model.

7
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The nature of these stages are specific to the particular GW model and can depend on whether
or not some objective function exists (typically whether or not the model can predict). In this
respect a regression might use a leave-one-out cross validation (CV) or an Akaike Information
Criterion (AIC) metric to evaluate different bandwidth sizes. A discriminant analysis might
use metrics commonly generated from a correspondence analysis (matrix) such as overall
classification accuracy or the Kappa statistic.

This can be illustrated by considering the case for GWR. A GWR analysis requires the
optimal bandwidth to be determined and then used to generate the local regressions. A linear
bandwidth search would have the following sequence, after user decisions about bandwidth type
and shape:

1. for each potential bandwidth
2. | for each regression point / location
3. | | identify the nearest n observations under the kernel
4. | | calculate the observations weights (bisquare, Gaussian etc)
5. | end
6. | evaluate the fit of the local regression

(via an overall CV or AIC diagnostic)
7. end
8. find the best performing bandwidth

Each GWR proceeds by undertaking steps 2 to 5 for the given bandwidth2. For a different
GW model such as GW discriminant analysis, the outline is the broadly the same but with
different localized models and fit measures in step 6.

And of course, many of these steps require a number of inputs: step 3 requires the
distances between the location being considered and each observation suggesting the need
for a distance matrix of some kind; step 3 also requires a specific function to identify
nearby observations depending on the bandwidth type (fixed or adaptive); step 4 requires
a weighting function that is also specific to the bandwidth type. The point being that a
number of generic functions and data structures are required by any GW model, although
they are used in different ways to support different types of bandwidth evaluation and final
analyses.

A function factory approach
An alternative to the for loop approach above is to take a function factory approach in
combination with functionals. A functional is a function that has a function as its input and
returns a vector as its output. They are commonly used alternatives to for loops because they
are faster3 and more flexible. A function factory is a function that returns a function.
They have the advantages of allowing values to be precomputed within them (such as the
distance matrix mentioned above), saving computation time, of supporting a multilevel design
approach that more closely reflect the structure of the problem being addressed (e.g. wrapping
user defined kernel and bandwidth choices within steps 3 and 4 above) and this way allow
the complexity of the problem to be partitioned in into more easily understood (and testable)
chunks (Wickham, 2019). Examples of current R packages that take this approach include MCMC
(Geyer, 2020).

Their key advantage is that functions generated by function factories have an enclos-
ing environment that is an execution environment of the function factory. This allows, for
example, the names of functions in the enclosing environment to be associated with different

8



Comber et al. gwverse: A Template for a New Generic Geographically Weighted R Package

function bodies, have different values in different functions generated by function factories
(e.g., a CV or an AIC evolution function in the GWR example above.) Thus the “enclos-
ing environment of the manufactured function is unique and constant” (Wickham, 2019,
section 10.2.4).

The for loop GWR schema presented above can be replaced with a function factory
approach, in combination with functionals, to define a function with the gwregr module in
Fig. 3.

The first stage is to determine the GWR bandwidth. A function factory is used to create a
function that returns a function to evaluate a single bandwidth, that encloses a distance matrix
and the data needed, along with user defined bandwidth choices:

single_bw_gwr = function(spatial_data, adaptive, kernel_shape, evaluation) {
### input data related
1. create distance matrix from spatial_data
### core related (i.e. functions from gw)
2. create the ‘get nearby observations’ function (adaptive parameter)
3. create the ‘weight nearby observations’ (kernel_shape and adaptive parameters)
### application related (i.e. function from gwregr)
4. define the evaluation function (evaluation parameter)
### output
5. define the function to be returned
function(bandwidth, spatial_data, formula) {

create matrix of nearby locations for each observation
(using the nearby function, distance matrix and bandwidth);
create matrix of weights for each observation
(using weight function, nearby locations matrix and bandwidth);
return the results of the evaluation function given the formula
(over the weighted data at each location);

}
}

This is broadly equivalent in functionality to steps 2 to 6 in the for loop schema above.
Once defined, this function can be used to evaluate a single bandwidth, for a given regression
model / equation as specified in the formula parameter, and it returns the evaluation measure
for that bandwidth:

my_gwr_bandwidth_function = single_bw_gwr(spatial_data, adaptive = TRUE,
kernel_shape = "bisquare", evaluation = "AIC")

my_gwr_bandwidth_function(bw = 100, spatial_data, formula)

More usually the bandwidth evaluation function is used to to determine the best bandwidth
using an optimize function or through a linear search:

# optimise
optimise(my_gwr_bandwidth_function, c(10, nrow(spatial_data)),

spatial_data, formula, maximum = FALSE)
# linear search
bws_adaptive = 10:nrow(spatial_data)
bws_res = sapply(bws_adaptive,

function(x) my_gwr_bandwidth_function(x, spatial_data, formula))
bws_adaptive[which.min(bws_res)]

9
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Having determined the optimal bandwidth, the second stage is to undertake the GWR
analysis. This has a similar structure to the schema for the single_bw_gwr outline above,
with the final operation in part 5 being replaced with:

return the coefficients of the local regression given the formula
(for the weighted data at each location);

gwverse 0.0.1
This approach has been used to create two new packages that provide a simple proof of concept
of the new gwverse: the core package gw and a GWR package gwregr. These can be installed
and used to undertake a GWR analysis in R, with fixed or adaptive bandwidth types, different
kernel weights, and evaluated by either CV or corrected AIC.

The gw module contains three functions:

• gw_get_nearby which returns a function that identifies the observations nearby to the
regression point under consideration for a given bandwidth. A different function is returned
for adaptive and fixed bandwidths. The returned function takes an observation index, distance
matrix and bandwidth as inputs and returns a vector of nearby observation indices.

• gw_get_weightwhich returns a function for different kernel weights: Gaussian, bisquare,
tricube, exponential and boxcar. Again, a different function is returned for adaptive and fixed
bandwidths. The returned function takes a bandwidth and a vector of distances to nearby
observations as inputs. It returns a vector of weights for nearby observations.

• gw_do_weight which applies the selected weight function within an apply call within
the function generated by the function factory. It takes as inputs, an index of observations, a
bandwidth, a matrix of nearby observations for a given bandwidth, a distance matrix and the
weight function. It returns a vector of weights for all observations.

The gwregr module contains four functions:

• gw_get_lm_eval which returns an evaluation function to evaluate the GWR results for
a given bandwidth. This can be specified as “AIC” or “CV.” The returned function takes as
inputs the data frame of the input spatial data, a formula, the matrix of nearby locations and
the matrix of their weights. It returns an AIC or CV value.

• gw_single_bw_gwr which returns a function to evaluate a single GWR bandwidth. It
takes as input point or polygon spatial dataset in sf format, containing the attributes to be
modeled, a logical value to indicate whether an adaptive or fixed bandwidth distance is being
used, the type of distance weighting to be used, and evaluation method for the local model,
either “AIC” or “CV.” The returned function generates an evaluation measure.

• gw_do_local_lm which undertakes the local weighted regression using an apply
function. It takes a vector weights (pertaining to an observation point), the formula and a
flat data frame of the spatial data as inputs and returns a vector of coefficient estimates
for the observation point being considered. This is only used after the bandwidth has been
determined, and not in bandwidth selection.

• gw_regr which returns a function to undertake GWR once the optimal bandwidth has been
defined. It takes as input parameters, the bandwidth value, the spatial dataset in sf format
with the attributes to modeled, a formula, a logical value to indicate whether an adaptive or
fixed bandwidth types is being used and the kernel shape. The returned function generates
an n × m matrix of coefficients at each location (n) as specified in the formula (m).

10
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A gwverse walkthrough
The gw and gwverse packages need to be installed. They can be installed from GitHub using
the devtools package and loaded into the current R session, with gwregr loading gw:

library(devtools)
install_github("gwverse/gw")
install_github("gwverse/gwregr")
library(gwregr)

The gwregr package has dependences on the gw and sf packages for the geographically
weighted generic framework and for spatial data respectively. The gw package contains with the
liudaogou soils dataset (Wang, Zhang, and Huang, 2009). This has been used in a number of
GWR-related studies (Comber et al., 2018, 2022) and can be loaded as follows:

data(liudaogou)

The dataset records a number of soil measurements at 689 observations in small subcatchment
in China, including soil total nitrogen percentage (TNPC), here taken as the response variable,
and five predictor variables: soil organic carbon (SOCgkg), percentage clay (ClayPC) and
silt (SiltPC), nitrate nitrogen (NO3Ngkg) and ammonium (NH4Ngkg). In both Comber
et al. (2018, 2022) the data were transformed TNPC, SOCgkg, NO3Ngkg and NH4Ngkg are
transformed using natural logs and ClayPC is square root transformed. These transformations
have been undertaken in this version of the dataset.

The first thing in any GWR is bandwidth selection. A function for doing this returned by the
gw_single_bw_gwr function and the code below does this for an adaptive bandwidth and a
bisquare kernel, applied over the liudaogou data, using AIC as the evaluation criteria:

gwr_bw_func = gw_single_bw_gwr(liudaogou, adaptive=TRUE, kernel="bisquare",
eval="AIC")

After defining a formula, the function can be run for a given bandwidth and returns the
evaluation value (in this case the AIC score):

formula = as.formula(TNPC ~ SOCgkg + ClayPC + SiltPC + NO3Ngkg + NH4Ngkg)
gwr_bw_func(bw =100, formula)

## [1] 1081.702

Notice how no data needs to be passed to the function, as this is held in the function
environment. The function environment bindings can be explored:

library(rlang)
# environments
env_print(gwr_bw_func)

## <environment: 0x7fe6658926d8>
## Parent: <environment: namespace:gwregr>
## Bindings:
## * eval_func: <fn>

11
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## * weight_func: <fn>
## * nearby_func: <fn>
## * df: <df[,10]>
## * dist_mat: <dbl[,689]>
## * adaptive: <lgl>
## * kernel: <chr>
## * eval: <chr>

This indicates the objects and items that are bound to the function and we can examine
individual environment bindings such as the data frame ($df) or the weighting function
($weight_func), in this case specified as bi-square:

fn_env(gwr_bw_func)$weight_func

## function (bw, dists)
## {
## bw = max(dists)
## (1 - (dists/bw)‸2)‸2
## }
## <bytecode: 0x7fe665375bd8>
## <environment: 0x7fe665370ac8>

A GWR analysis can proceed with this function. The optimal bandwidth can be determined
using the optimization strategy or via a linear search. The optimise function returns the
bandwidth (minimum) and fit value (objective):

opt = optimise(gwr_bw_func, c(10,nrow(liudaogou)),formula=formula, maximum=FALSE)
opt

## $minimum
## [1] 188.034
##
## $objective
## [1] 1071.415

A linear search of all bandwidths is slower but should always be undertaken. This is
because any optimization may determined local rather than global minima, which is the case
here.

# create a vector of adaptive bandwidths
bws_adaptive = 10:nrow(liudaogou)
# apply the function to vector of bandwidths
bws_res = sapply(bws_adaptive, function(x) gwr_bw_func(x, formula))
bws_adaptive[which.min(bws_res)]

## [1] 133

The AIC scores of the individual bandwidths with the “optimised” bandwidth and the one
determined through a linear search can be be plotted as in Fig. 4.

12
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Figure 4. The AIC scores of the bandwidths with the bandwidth found through an optimized
search (dashed line) and a linear search (solid line), with the y-axis limited to highlight the
difference. [Colour figure can be viewed at wileyonlinelibrary.com].

Finally a GWR analysis can be undertaken using the best bandwidth and the coefficient
estimates investigated as shown in the code below:

# extract the bandwidth
bw = bws_adaptive[which.min(bws_res)]
# define the GWR function
gwr_ func = gw_regr(bw, formula, liudaogou, adaptive = T, "bisquare")
# apply to the data
coef_mat = gwr_func(formula)
# rename and examine
colnames(coef_mat) = c("Intercept", all.vars(formula)[-1])
round(apply(coef_mat, 2, summary), 3)

## Intercept SOCgkg ClayPC SiltPC NO3Ngkg NH4Ngkg
## Min. -4.348 0.276 -0.272 -0.011 -0.349 -1.024
## 1st Qu. -2.286 0.588 -0.053 0.006 -0.001 -0.360
## Median -1.838 0.674 -0.009 0.009 0.090 -0.165
## Mean -1.849 0.674 0.013 0.011 0.134 -0.209
## 3rd Qu. -1.401 0.784 0.064 0.017 0.224 -0.021
## Max. -0.492 1.027 0.377 0.031 0.761 0.587

And the results can be mapped as in the example in Fig. 5.

A gwverse pipeline
A pipelined analysis can also be undertaken and a second example dataset is used to illustrate
this. The Dublin voter data is described in Kavanagh (2004) and was used by Harris, Brunsdon,
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Figure 5. The GWR coefficient estimates for SOCgkg. [Colour figure can be viewed at
wileyonlinelibrary.com].

and Charlton (2011), as well as being one included in the GWmodel package (Lu et al., 2014).
This can be loaded from the gw package as in the code below. It has a number of variables over
322 electoral divisions in Dublin, Ireland, including percentages of voter turnout (GenEl2004)
as the dependent variable, high social class (SC1), unemployed (Unempl), without any formal
educational (LowEduc) and different age groups (Age18_24, Age25_44 and Age45_64).

The code below loads the data and then, as an initial step, declares a regression formula and
bandwidth evaluation function:

load("dubvotes.rda")
formula = as.formula(GenEl2004 ~ SC1 + Unempl + Age18_24 + Age25_44 + Age45_64)
gwr_bw_func = gw_single_bw_gwr (dubvotes, adaptive=TRUE, kernel="bisquare",
eval="AIC")

These can then be put into a pipeline to find the optimal bandwidth from a set of potential
bandwidths, using a linear search, and before finally returning the GWR function.

# potential bandwidths
tibble(bw = 10:nrow(dubvotes)) %>%
# evaluate them with the bandwidth evaluation function
rowwise() %>%
mutate(fit = gwr_bw_func(bw, formula)) %>%
as_tibble() %>%
# find the best fit and output
slice(which.min(fit)) %>%
select(bw) %>% unlist() %>% as.vector() %>%
# create the GWR function
gw_regr(formula, dubvotes, adaptive = T, "bisquare") -> gwr_func

The GWR function generated by the pipeline is lazy. That is, it is only when the function is
called that the full sequence of pipeline operations are evaluated and their results bound to the
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Figure 6. The GWR coefficient estimates for the percentage unemployed covariate. [Colour
figure can be viewed at wileyonlinelibrary.com].

function. The code below demonstrates this and the one of the coefficient estimates is mapped in
Fig. 6.

# lazy elements are included in the GWR function
env_print(gwr_func)

## <environment: 0x7fe66593eb38>
## Parent: <environment: namespace:gwregr>
## Bindings:
## * weight_func: <fn>
## * nearby_func: <fn>
## * df: <df[,12]>
## * dist_mat: <dbl[,322]>
## * bw: <lazy>
## * formula: <lazy>
## * adaptive: <lgl>
## * kernel: <chr>

fn_env(gwr_bw_func)$bw

## NULL

# the function is run
coef_mat = gwr_func(formula)
colnames(coef_mat) = c("Intercept", all.vars(formula)[-1])
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# now the lazy elements are populated
fn_env(gwr_func)$bw

## [1] 81

Some observations about gwverse
There are a number of observations associated with this approach as illustrated though this very
simple package development:

1. The gwverse provides a consistent framework for undertaking different GW analyses
including GWR.

2. Functions in the core gw module are never called directly by the user. Instead they are called
from the modules for specific GW applications like GWR in the gwregr package.

3. The returned functions bind what they need within their environment. This makes them
quicker than conventional approaches despite being larger in working memory.

4. The modularization promotes cleaner and consistent coding, allowing for “all options” of
GWR as in Table 1 in the future.

5. The idea in gwverse is that all of the user-end GW functions (e.g. for regression, PCA, etc)
are defined with this function factory approach, to ensure consistency of argument names
(etc.) between functions.

Additionally, there is a need for consistent naming conventions. Function factories produce
anonymous functions – that is, the body of a function but unassigned to a name. The name is
created when the assignment happens. This means that although the function factory approach
guarantees consistency in interface, naming is down to self-discipline. We suggest three naming
rules:

• Everything is lower case. This is easier to use, as you do not have to remember whether a
function is called GWModel or GWmodel for example;

• Spaces in names are represented as "_";
• All key functions begin with gw_ - this helps on autocomplete in RStudio.

There are many potential areas of further development some which are discussed below,
such as tidy considerations, whether functions should be made pipe-able. For example, in the
gwregr pipeline, the data is not necessarily the first argument, as is normally the case. The pipe
to the gw_regr function above required the bandwidth as the critical parameter to be passed to
it, and this is the first argument in gw_regr.

Discussion and conclusion

Here we propose a broad framework for the development of geographically weighted methods for
spatial data analysis. Below, some implications of this proposal are considered. As proposers we
expect to lead some of the initial contributions – we see development of the core gw worktools,
followed by further development of the package for basic GWR (gwregr) as the likely first
contributions, moving on to geographically weighted generalized linear model tools, such as
Poisson and binomial regression. Other priorities include geographically weighted descriptive
statistics and PCA. We would encourage others working in specified fields to contribute – for
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example the remote sensing community may develop GW correspondence analysis or discrim-
inant analysis approaches for classification, ecologists may develop geographically weighted
redundancy analysis, GW variance partitioning, or GW canonical correspondence analysis.

The function factory approach provides a versatile framework but also there are technical
considerations. When function factory techniques are used, specific “building block” functions
are “bound in,” for ease of use. Using this approach to create the functions makes the specification
of building blocks open and explicit, as well as consistent. An alternative may be to specify the
building block functions as arguments to the main function. However, as well as ending up with
a very complex argument list, there are issues relating to passing values to the building block
functions, as well as handling the R dot-dot-dot (...) parameter syntax and partial parameter
name matches (Geyer, 2020). There are, however some potential problems which must be
considered. For example, when binding very large environments to a function (such as a large
spatial database), this involves making a copy of that database – which could lead to storage or
memory issues. There is a need for a set of guidelines on good practice for the use of function
factories.

There are issues in code development to be addressed. For example in theGWmodel package,
extensive use of linking R to C++ was made, to enable code to run faster. This would also be
useful in this proposal – but a consistent approach to incorporating compiled C++ routines would
be needed, and in addition to a GW core package (gw) providing R tools, a similar set of core
procedures in C++ may be needed. In addition, many users and developers of geographically
weighted methods use Python rather than R. Some consideration of interoperability could allow
some degree of collaboration – working together to some extent could become possible via the
use of the reticulate library, which allows Python code to run within R. A longer-term goal
may be to provide a suite of Python modules mirroring the gwverse approach, encouraging the
same development framework to run in parallel for the R and Python user communities.

Also, interoperability between the gwverse approach and other R packages and package
families can be considered. For example, many users are now trained to work primarily with
pipeline operators in R (either the %>% operator from magrittr, or the native |> operator) and
designing gwverse functions to combine simply and intuitively with tools from other packages
is an important consideration. This involves thought about which argument ingwverse functions
should be first, and what form the returned value of the functions take. Ideally, one would wish
gwverse functions to combine easily with functions from sf and data manipulation tools from
tidyverse. The use of the functionality in the purrr and tidymodels packages will also
be explored as the gwverse framework and the constituent packages are developed (and some
of the refinements in Table 1 are incorporated). This will be interesting as GW approaches,
because of their very nature, do not nest well into classic machine learning approaches and many
purrr functions are higher level versions of the base R counterparts currently used in gwverse
and may be less efficient. However, any nested apply functions may be more transparently
coded using map functions from purrr.

Some organizational issues also require consideration. In particular we are proposing a family
of R packages, maintained on GitHub, with periodic updates to CRAN. Although the approach
here involves – and indeed encourages – collaboration, the project will require curation (much
as CRAN does, but on a much smaller scale), and some structure for this needs to be agreed.
This needs to address standards for gwverse package contribution – for example, checking
that the package properly meets the function naming requirements set out above, and assessing
whether any attached vignettes are well written and with sufficient content, and checking whether
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CRAN’s requirements are met when versions are submitted there. There may also be issues
of managing contributions – for example if two contributors simultaneously propose packages
for the same (or at least overlapping) GW techniques. Another related issue may be to create
guidelines for developers, possibly combined with a ‘how-to’ manual outlining the use of GitHub,
and the agreed curation framework. In this way users who have a question with no current means
of investigation could be encouraged to become developers.

In conclusion, in this paper we have presented a modular framework for developing
a consistent and interoperable family of R packages for geographically weighted analytical
methods. We advocate the use of functionals and function factories as key principles in this
framework. This offers a number of advantages: it facilitates the creation of packages having
a consistent interface – so that for example an argument to a function specifying bandwidth
always has the same name and the data supplied always has the same format. In addition, the
use of a GW core package ensures that procedures appearing in several geographically weighted
methods do not have to be recreated repeatedly (and possibly inconsistently) in several packages.
With current trends suggesting an increasing interest in a number of new approaches, such as
space-time weighting and multiscale models, perhaps now is an advantageous time to provide
a consistent set of tools for software development. Potentially this brings together disparate
GW working groups (of both users and developers) together under the same framework with
mutual benefit to all, allowing rapid development of new GW models with a more streamlined
community review process.
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Notes

1 In practice it is not always possible to distinguish between autocorrelation and heterogeneity, and so
we have to accept that (paraphrasing Cressie, 1991, p. 114) “[o]ne person’s correlated error structure
may be another person’s varying parameters.”

2 In reality a GWR evaluation by CV or AIC does not require the local model to be created only the
observation weights at each location to be determined.

3 Actually they promote tighter coding and the avoidance of temporary data structures.

Appendix: the current structure of the GWmodel package

Overview
GWmodel includes functions to calibrate and estimate a wide range of techniques based
on geographical weighting. These include: summary statistics, principal components analysis,
discriminant analysis and various forms of regression; some of which are provided in basic and
outlier resistant forms.

However the manual is, at the time of writing is long, some 85 pages in length. It is also
organized alphabetically, and while the write-ups conform to the CRAN guidelines, they can be
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hard to follow. For some of the more complex techniques there is little to guide the user as to
which functions to use. This appendix provides a structured overview of the GWmodel library. It
has been divided into sections, each section containing a group of related functions. Each section
is headed with a summary table, giving the name of each function and a one-line description of its
action. Below each table a bulleted list containing slightly more extended, but brief, descriptions
of the function.

Datasets
There are several built-in datasets. Most of these are used in the example code which is provided
at the end of each function description. However, you can also use them to practice on, or as
test data in their own right. With the exception of Georgia these are all in Spatial Polygon or
Spatial Point Data Frame sp formats.

• Dubvoter: Voter turnout and social characters data in Greater Dublin for the 2002 General
election and the 2002 census. Note that this dataset was originally thought to relate to 2004,
so for continuity we have retained the associated variable names.

• EWHP: A house price dataset for England and Wales from 2001 with nine hedonic (explana-
tory) variables.

• EWOutline: Outline (SpatialPolygonsDataFrame) of the England and Wales house price
data EWHP

• Georgia: Census data from the county of Georgia, United States
• GeorgiaCounties: The Georgia census data with boundaries for mapping
• LondonBorough: Outline (SpatialPolygonsDataFrame) of London boroughs for the Lon-

donHP data.
• LondonHP: A house price data set with 18 hedonic variables for London in 2001.
• USelect: Results of the 2004 U.S. presidential election at the county level, together

with five socio-economic (census) variables. This data can be used with GW Discriminant
Analysis.

Service functions

• gw.dist: Calculate a distance vector(matrix) between any GW model calibration point(s)
and the data points.

• gw.weight: Calculate a weight vector(matrix) from a distance vector(matrix).
• gwr.write: This function writes the calibration result of function gwr.basic to a text

file
• gwr.write.shp: This function writes the calibration result of function gwr.basic to a

shapefile

GW descriptive statistics

• bw.gwss.average: A function for automatic bandwidth selections to calculate GW
summary averages, including means and medians, via a CV approach.

• gwss: This function calculates basic and robust GWSS. This includes geographically
weighted means, standard deviations and skew. Robust alternatives include geographically
weighted medians, interquartile ranges and quantile imbalances. This function also calculates
basic geographically weighted covariances together with basic and robust geographically
weighted correlations.
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• gwss.montecarlo: This function implements Monte Carlo (randomization) tests for the
GW summary statistics found in gwss.

• gw.pcplot: This function provides a geographically weighted parallel coordinate plot for
locally investigating a multivariate data set. It has an option that weights the lines of the
plot with increasing levels of transparency, according to their observation’s distance from a
specified focal/observation point.

• gwpca.glyph.plot: This function provides a multivariate glyph plot of GWPCA
loadings at each output location.

GW (gaussian) regression

• bw.gwr: A function for automatic bandwidth selection to calibrate a basic GWR model.
• gwr.basic: This function implements basic GWR.
• gwr.robust: This function implements two robust GWR models.
• gwr.hetero: This function implements a heteroskedastic GWR model
• gwr.bootstrap: This function implements bootstrap methods to test for coefficients.
• gwr.montecarlo: This function implements a Monte Carlo (randomization) test to test

for significant (spatial) variability of a GWR model’s parameters or coefficients.
• gwr.t.adjust: Given a set of p-values from the pseudo t-tests of basic GWR outputs,

this function returns adjusted p-values using: (a) Bonferroni, (b) Benjamini-Hochberg, (c)
Benjamini-Yekutieli and (d) Fotheringham-Byrne procedures.

• gwr.model.selection: This function selects one GWR model from many alternatives
based on the AICc values.

• gwr.model.sort: Sort the results from the GWR model selection function
gwr.model.selection.

• gwr.model.view: This function visualizes the GWR models fromgwr.model.selection.
• gwr.mink.approach: This function implements the Minkowski approach to select an

optimum distance metric for calibrating a GWR model.
• gwr.mink.matrixview: This function visualizes the AICc/CV results from the

gwr.mink approach.
• gwr.mink.pval: These functions implement heuristics to select the values of p from two

intervals: (0, 2] in a backward direction and (2,∞) in a forward direction.

Generalized GWR
• bw.ggwr: A function for automatic bandwidth selection to calibrate a generalized GWR

model.
• ggwr.basic: This function implements generalized GWR.
• ggwr.cv: This function finds the CV score for a specified bandwidth for generalized

GWR. It can be used to construct the bandwidth function across all possible bandwidths and
compared to that found automatically.

• ggwr.cv.contrib: This function finds the individual CV score at each observation
location, for a generalized GWR model, for a specified bandwidth. These data can be
mapped to detect unusually high or low CVs scores.

Locally compensated ridge GWR
• bw.gwr.lcr: A function for automatic bandwidth selection for gwr.lcr via a

cross-validation approach only.
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• gwr.lcr: To address possible local collinearity problems in basic GWR, GWR-LCR finds
local ridge parameters at affected locations (set by a user-specified threshold for the design
matrix condition number).

• gwr.lcr.cv: This function finds the CV score for a specified bandwidth for GWR-LCR. It
can be used to construct the bandwidth function across all possible bandwidths and compared
to that found automatically.

• gwr.lcr.cv.contrib: This function finds the individual cross-validation score at each
observation location, for a GWRLCR model, for a specified bandwidth. These data can be
mapped to detect unusually high or low cross-validations scores.

• gwr.collin.diagno: This function provides a series of local collinearity diagnostics
for the independent variables of a basic GWR model.

Multiscale GWR

• gwr.mixed: This function implements mixed (semi-parametric) GWR.
• gwr.multiscale: This function implements multiscale GWR to detect variations in

regression relationships across different spatial scales. This function can not only find a
different bandwidth for each relationship but also (and simultaneously) find a different
distance metric for each relationship (if required to do so).

Geographically and temporally weighted regression

• bw.gtwr: A function for automatic bandwidth selection to calibrate a Geographically and
Temporally Weighted Regression (GTWR) model.

• gtwr: A function for calibrating a GTWR model.

Geographically weighted principal components analysis

• bw.gwpca: A function for automatic bandwidth selection to calibrate a basic or robust
GWPCA via a CV approach only

• gwpca: This function implements basic or robust GWPCA.
• gwpca.check.components: The function interacts with the multivariate glyph plot of

GWPCA loadings.
• gwpca.cv: This function finds the CV score for a specified bandwidth for basic or robust

GWPCA. It can be used to construct the bandwidth function across all possible bandwidths
and compared to that found automatically.

• gwpca.cv.contrib: This function finds the individual CV score at each observation
location, for a GWPCA model, for a specified bandwidth. These data can be mapped to
detect unusually high or low CV scores

• gwpca.montecarlo.1: This function implements a Monte Carlo (randomization) test for
a basic or robust GW PCA with the bandwidth prespecified and constant. The test evaluates
whether the GW eigenvalues vary significantly across space for the first component only.

• gwpca.montecarlo.2: This function implements a Monte Carlo (randomization) test
for a basic or robust GW PCA with the bandwidth automatically reselected via the CV
approach. The test evaluates whether the GW eigenvalues vary significantly across space for
the first component only.
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Figure A1. An ontology of GW approaches currently in GWmodel. [Colour figure can be viewed
at wileyonlinelibrary.com].

Geographically weighted discriminant analysis

• bw.gwda: A function for automatic bandwidth selection for GW Discriminant Analysis
using a CV approach only

• gwda: A function to implement GW discriminant analysis.
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