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SUPPLEMENTARY INFORMATION

S1: SUPPLEMENTARY FIGURES

Figure S1.1: The lifecycle of EAB.

Figure S1.2: Predictions of entry point probability where the confidence in the knowledge of 
EAB arrival pathway is 70%. Blue dots indicate areas where the probability is greater than 
0.01 under this scenario.



S2: POPULATION DYNAMICS OF EAB MODEL

We consider that EAB has either a one- or two-year lifecycle as shown in Figure 2 of the main 
text. To track a single population over time we assume that there is a fraction  of the larvae 1 - θ
that mature in a one-year cycle, and the rest  matures the following year.  This couples the θ
years and the populations.

Following (Duan et al., 2013) we assume that the EAB larvae population survival is density 
dependent. The main effect contributing to this density dependence is cannibalism, in addition to 
a non-density-dependent death rate. This non-density-dependent death rate can be attributed, 
for example, to larvae starvation, tree defence mechanisms, etc. 

Once EAB infests the ash tree population we can categorise trees into infested and un-infested. 
Then we estimate the total number of adults in a  cell by adding up all the EAB adults 1 km2

emerging from all the infested trees in that cell. Infested trees are then separated into two 
groups, those infected for the first time in the ongoing year, and those infested for more than one 
year. This is because for trees in the first year of infestation, only adults from larvae in their first-
year life cycle emerge while in the rest of the trees, larvae are going through one- and two-year 
life cycles.

S2.1 Larvae survival through the year
 represents the total number of larvae in life cycle  at time , with  going from  Lt(τ) t τ τ τ = 0

(oviposition) to  (adult emergence). As the density-dependent larval density decreases with τ = T
cannibalism, , and with an additional density-independent death rate, , we can writeα ω

d Lt (τ)
dt =  - αL2 -  ωL #(S2.1.1)

Assuming that , is the initial number of larvae produced by the adults in year  we can Lt(0) = L0 t
solve  to obtain(S2.1.1)

Lt(T) =  
e -ωT Lt(0)

 1 +
α
ω(1 - e -ωT)Lt(0)

#(S2.1.2)

Rewriting  and , we obtain  β = e -ωT γ = α
ω(1 - e -ωT) Lt(T) =  β Lt(0)

 1 +  γLt(0)#(S2.1.3)

So, the probability that a larva survives until the end of its lifecycle, , isf

f(L) =
βL

 1 +  γL#(S2.1.4) 

where  is the total larvae population, the sum of the first- and second-year larvae, i.e., L L = Ut
. The reason for this rewrite becomes clear in the next section.+ Lt

S2.2 Adults and reproduction
The number of adults per meter square of phloem at the start of year  is  where  is n An/(ϕ ⋅ In) An
the total of adults among trees,  the number of infested trees and  the phloem area of an In ϕ
average tree. The probability for an adult individual to die before it reproduces is , so it has a σ
probability  to reproduce. Each adult produces  eggs from which survive to the larvae (1 - σ) ϑ k 
stage. Thus,  where refers to larvae per tree in their first cycle and Ut(0) = (1 - σ)k At

ϕ ⋅ It Ut κ =
. We denote larvae in their second year by .(1 - σ)k Lt 



S2.3 Larvae and adult populations
As and assuming that all larvae cannibalise at the same rate,  and are under the L =  Ut + Lt α,
same additional death rate, , then the number of adults  emerging from a single infested ω at + 1
tree that has been infested for more than one year is given by

at + 1
(2) = ((1 - θ)Ut + Lt) 

f(L)
L =

((1 - θ)Ut + Lt)β(Ut + Lt)
(Ut + Lt)(1 + γ(Ut + Lt))

#(S2.3.1)

where

Lt + 1 =  θ
Ut

L  f(L) = θ
Utβ(Ut + Lt)

(Ut + Lt)(1 + γ(Ut + Lt))
#(S2.3.2) 

While the number of adults emerging from a single tree infested for only one year is

at + 1
(1) = (1 - θ)

Ut

Ut
f(Ut) = (1 - θ)f(Ut) = (1 - θ)

βUt(0)
1 + γ Ut(0)#(S2.3.3)

Substituting , we getUt(0)

at + 1
(2) =  

(1 - θ)κβ
At  
ϕ ⋅ It

+   βLt

1 +     γκ
At

ϕ ⋅ It
  +  γLt

#(S2.3.4)

Lt + 1 =  θ 
κβ

At

ϕ ⋅ It

1 +     γκ
At

ϕ ⋅ It
  +  γLt

#(S2.3.5)

at + 1
(1) = (1 - θ)

βκ
At

ϕ ⋅ It

1 +  γκ
At

ϕ ⋅ It

#(S2.3.6)

S2.4 Population of infested trees
The number of un-infested trees per km2 in year t and cell  is denoted by , the number (i,j) St(i,j)
of infested trees by  and the total number of adult beetles by .It(i,j) At(i,j)
The average number of adults landing on an un-infested tree is a function of the total number of 
adults, .  Each adult has a probability  to lay an egg in the tree for the first time and make it f(At) μ
an infested tree. The probability to become an infested tree, using the Poisson distribution is then 

. (1 - e -μf(At))

The function f can have a range of forms and for simplicity we use .f(At) = At

The number of susceptible trees remaining in cell in year  is given by(i,j) t + 1

St + 1(i,j) =  St(i,j) e -ψAt(i,j)#(S2.4.1)



  where  is the probability of infesting a new tree, and  is the proportion of adults ψ = μρ μ ρ
landing on an uninfested tree. It follows, therefore, that the number of infested trees in year  t + 1
is given by

It + 1(i,j) =  It(i,j) + St(i,j)(1 - e -ψAt(i,j))#(S2.4.2)

The total number of adults emerging from cell  is given by(i,j)

Et + 1(i,j) =  ϕ[(It + 1(i,j) - It(i,j)) a(1)
t + 1(i,j) +  In a(2)

t + 1(i,j)]#(S2.4.3)



S3: DETECTION PROBABILITIES FOR DIFFERENT DEVICES

In this section we focus on detecting EAB individuals rather than estimating insect density; 
therefore, we calculate the probability of the insects’ presence (or absence). The reason to do 
this is that we are trying to maximise the probability of detecting at least one beetle at an early 
stage of the invasion.

The monitoring methods considered are
1. Traps
2. Tree girdling
3. Under-bark assessment of trees

1. Traps 
Around a trap there is an  (effective attraction radius), so the area around the trap is . EAR πEAR2

When an adult flies into that radius it has a probability  to end up in the trap.ε
The area under consideration (in our case a  grid cell) is . In this area there are 1 km x 1 km O

 traps, so the fraction of the area covered by the attraction areas of the traps is .NT NT ⋅ πEAR2

O
The beetles fly at a speed  (km per day). The number of times an insect enters the of a v EAR 
trap is proportional to the flight speed. We assume that each insect flies independently of the 
others. Therefore, the number of insects entering the  of a trap per unit of time for the entire EAR
adult population  in year  is proportional to . Thus, the mean number of traps At t (NT ⋅ πEAR2

O ) ⋅ vAt

catches per time unit is
NT ⋅ π ⋅ EAR2

O ⋅ vAtε#(S3.1)

Then, for the entire trapping period , the mean number of traps catches isτ
NT ⋅ π ⋅ EAR2

O ⋅ vAtετ#(S3.2)

Using the Poisson distribution, the probability that the presence of the insect is found  is given P
by

 Pt = 1 - exp ( - NT ⋅ π ⋅ EAR2

O ⋅ vAtετ) = 1 -  exp ( - cTNTAt)#(S3.3)
 

where .cT =  π EAR2

O vετ

2.  Tree girdling
There is an area around a girdled tree where adult beetles are attracted. The probability of Δ 
finding the girdled tree when the beetle flies into that area is . Again, we consider that the study ε
area is a  grid cell denoted by . The number of girdled trees in that area is , so the 1x1 km O NG

fraction of the area covered by the attraction areas of the girdled trees is .
NGΔ
O

The beetles fly with a speed  (km per day) and the number of times a beetle enters the v
attraction area of a girdled tree is proportional to the flight speed. Assuming that each Δ, 
individual insect flies independently of the others, the number of insects entering the  of a Δ
girdled tree per unit of time for the entire adult population  in year  is proportional to At t (NG ⋅ Δ

O) ⋅
. Thus, the mean number of insects landing on a girdled tree per time unit isvAt

N ⋅ Δ
O ⋅ vAtε#(S3.4)

Then, for the entire trapping period , the mean number of beetles landing on girdled trees isτ



N ⋅ Δ
O ⋅ vAtετ#(S3.5)

The probability that a beetle lies eggs on the girdled tree and that they are subsequently detected 

by a surveyor is , so the mean number of larvae detections on girdled trees is . ζ (ζNGΔ
O ) ⋅ vAtετ

Using the Poisson distribution, the probability that the presence of the insect is found is given P 
by

Pt = 1 - exp ( - (ζNGΔ
O ) ⋅ vAtετ) = 1 -  exp ( - cGNGAt)#(S3.6)

 

where .cG = (ζΔ
O ) ⋅ vετ

3.  Under-bark assessment
The probability that a randomly selected tree is infested is given by . The probability that an p
observer recognises that the tree is infested (determined by taking a piece of bark and looking for 
larvae) is . If trees are surveyed, then the mean number of infested trees detected is .ϖ NB pϖNB
If the tree density is  (number of trees/km2), where , the mean number of adults per Z Z = I + S
infested tree is A/I. The probability that adults infesting a tree lay eggs resulting in larvae to be 
observed under the bark is , then the probability that a randomly selected tree is infested in ϱ
year is given byt 

p = 1 -  e
-ϱ

At

It #(S3.7)

Using the Poisson distribution, the probability that the presence of the insect is established, , P
when  trees are sampled is given byNU

Pt = 1 -  exp ( -ϖNU(1 -  exp ( -ϱ
At

It )))#(S3.8)

As we are looking for early detection, we can safely assume that the adult’s density is small so 

that , obtaining1 -  exp ( -ϱAt

It ) ≈  -ϱAt

It

Pt = 1 -  exp ( -ϖNUϱ
At

It ) =  1 -  e - cBNBAt#(S3.9)

where .cB = ϖϱ/It

For all methods, the mean number of insects detected is linearly related to the insect density,  At
(for adult) or  (for larvae) in year , multiplied by the observation unit density,  where, Lt t Ni

 the number of traps, girdled trees, or under-bark assessment of trees per unit area. i = T,G,B
Thus, the probability that during one sampling round the insect is detected is Pi,t = 1 -

 or  Where  is dependent on the monitoring method.exp ( - ciNiAt) Pi,t = 1 - exp ( - ciNiLt). ci

Obtaining  valuesci

Using the data obtained by (Siegert et al., 2010a) we calculate the  parameter for traps and c
girdled trees. For under-bark assessment we use the data from (Mercader et al., 2012), 
(McCullough & Siegert, 2007) and (Siegert et al., 2010a).
We fit , to Figure 2 in (Mercader et al., 2013) f  where  is the probability to Pi = 1 -  e - ci NL Pi
detect EAB with method  where  denotes traps and  girdled trees and  is the i = T, G T G N
number of the units deployed (so either girdled trees or traps), and is the number of larvae per L 
tree, when using the number of larvae per tree as population measure (if we use the number of 
adults then we change  for .  In (Mercader et al., 2013), the density of traps and trees is given L A)



as the number of traps per 2.6 km2, so if N is in number per one km2 we obtain    cG = 0.5096
and .cT = 0.052

For underbark we use the measure of larvae per square meter of phloem from (McCullough & 
Siegert, 2007; Mercader et al., 2012; Siegert et al., 2010a) to calculate the number of larvae per 
tree by multiplying

larvae
tree =  ( larvae

m2phloem)(m2 phloem
tree )(proportion of infested trees)#(S3.10)

In this calculation we assume that the density of larvae in the phloem is equal all over the tree. 
We then use the equation found in Fig (2) of,

Y = 0.024 x2 - 0.307 x + 2.63

where  is the  of a tree and  is the DBH, diameter at breast height, in cm.Y m2 phloem x

to calculate . We find that for the data shown (2 sites) the amount of phloem per (m2 phloem
tree )

square meter per tree is

Site Mean DBH m2 per tree
1 17.8 4.7696
2 21.5 7.0935

In (Siegert et al., 2010) the authors fitted 

PB = 1 -  e - cBL

Where   is the probability detect an infested tree using underbark inspections, L is the larvae PB
per m2 and  is the constant. The values of  given for these two sites are 0.16, 0.13 for site 1 cB cB
and 2, respectively. Transforming the L measure to larvae per tree we scale the value of  by cB
dividing by (m2 phloem per tree) (fraction of the trees infested) to obtain

Site 1, cB = 0.045

Site 2, cB = 0.031

So, taking the average for site 1 and 2 we get .cB = 0.038



S4: OPTIMISATION ALGORITHM
The optimisation algorithm randomly selects the required number of sites and calculates the 
mean probability of detection, , for the given sampling arrangement  (under the given p(Ω,n,Δt) Ωj
surveillance parameters, ), as described in the main text. We then use this detection n,Δt
probability as the ‘objective function’ in the optimisation algorithm, which needs to be maximised 
for detecting at least one adult beetle. For a prespecified number of iterations , the algorithm (J)
proceeds by sequentially replacing a single site with another randomly selected before 
calculating the objective function again. The arrangement with the new site is then either 
accepted or rejected before another site is randomly replaced and the process is repeated. Each 
time, the following Metropolis criterion is used to estimate the probability of accepting the new 
site:

P(Ωj →Ωj + 1) = 1 if p(Ωj + 1,n,Δt) > p(Ωj,n,Δt)

P(Ωj →Ωj + 1) = exp(p(Ωj + 1,n,Δt) - p(Ωj,n,Δt)
tempj ) if p(Ωj + 1,n,Δt) < p(Ωj,n,Δt)

If the objective function was equal between iterations, then the new arrangement was accepted 
with a probability of 0.5. The ‘temperature’ of the algorithm  is multiplied by the cooling (temp)
rate  at the end of each iteration (i.e., an exponential cooling schedule). The result of this (alpha)
is that in the early stages of the algorithm,  is high and so is the probability of accepting temp
‘worse’ arrangements of sampling sites - thereby encouraging a full exploration of the full 
parameter space, avoiding any local maxima. As the algorithm progresses,  decreases and temp
it becomes increasingly likely that worse arrangements are rejected (although there initially 
remains some freedom to explore the parameter space). In the late stages of the algorithm, all 
arrangements which give a lower probability of detection are rejected, allowing a good 
approximation of the true optimal arrangement to be found.



S5: QUANTIFICATION OF SAMPLE LOCATION SPREAD

To quantify the relative spread of surveillance locations we used the metric proposed by Greig-
Smith (Greig-Smith, 1952; Martín et al., 2018). Greig-Smith observed that if individual locations 
of an object of interest (in this instance surveillance locations) were distributed at random, their 
counts in grid cells (or quadrats) would have a Poisson distribution with the mean equal to the 
variance. A “patchy” distribution has a variance larger than its mean. We used the method to 
quantify the relative spread of surveillance locations shown in Figures 3 and 4. We counted the 
number of surveillance locations in grid cells of size 10 km x 10 km and calculated the 
variance:mean ratio. The results show that there is much greater patchiness in the REPS 
locations compared with those that are optimised, and that generally, optimised surveillance for 
girdled trees is more spread than optimised surveillance for trap locations. We also note that as 
the time frame for detection increases, the optimised locations of the traps become more spread 
(i.e. less patchy). 

Table S5: Quantification of the relative spread of surveillance locations

Simulation description Variance of counts 
/ mean of counts 

Figure 
reference

Girdled tree locations optimised for detection within 
8 years for the scenario where EAB entry pathway 
certainty is 70%

1.44 Fig 3A

Trap locations optimised for detection within 8 
years for the scenario where EAB entry pathway 
certainty is 70%

1.67 Fig 3B

REP locations for the scenario where EAB entry 
pathway certainty is 70%

5.61 Fig 3C

Girdled tree locations optimised for detection within 
8 years for the scenario where EAB entry pathway 
certainty is 50%. 

1.63 Fig 4A

Girdled tree locations optimised for detection within 
4 years for the scenario where EAB entry pathway 
certainty is 50%.

2.30 Fig 4A

Girdled tree locations optimised for detection within 
2 years for the scenario where EAB entry pathway 
certainty is 50%.

2.32 Fig 4A

Trap locations optimised for detection within 8 
years for the scenario where EAB entry pathway 
certainty is 50%.

1.73 Fig 4B

Trap locations optimised for detection within 4 
years for the scenario where EAB entry pathway 
certainty is 50%.

2.81 Fig 4B

Trap locations optimised for detection within 2 
years for the scenario where EAB entry pathway 
certainty is 50%.

2.61 Fig 4B

REP locations for the scenario where EAB entry 
pathway certainty is 50%

5.61 Fig 4B



S6: MODEL VALIDATION OF THE INVASION AND SPREAD OF THE EMERALD ASH 
BORER IN GREAT BRITAIN (EAB; Agrilus Planipennis)

We built a spatially explicit model of the invasion and spread of the Emerald Ash Borer (EAB) in 
Great Britain. Like in many predictive models, only partial validation is possible, as to date there 
is no evidence of the EAB presence in the UK to compare the dynamics to.  Therefore, to 
validate the population dynamics and spread, we compare our simulation results where we used 
data from (Duan et al., 2013; Mercader et al., 2009; Orlova-Bienkowskaja & Volkovitsh, 2018; 
Showalter et al., 2020; Ward et al., 2020; Webb et al., 2021) with data from EAB infestations in 
the USA (Duan et al., 2015; Knight et al., 2013; McCullough et al., 2019; Siegert et al., 2010b, 
2021; Steiner et al., 2019). We looked at four components of the population dynamics: EAB net 
population growth rates, ash tree mortality, number of larvae per tree, and EAB spatial dispersal.

S6.1 EAB calculation of net population growth rates (R0)

(Duan et al., 2015) calculated the EAB net population growth rates (  across several sites from R0)
2008-2014.  For trees with no parasitism, the average across years was approximately 2.93  We .
simulated the EAB population dynamics over time using our model for 10,000 realisations of the 
model. The mean simulated population growth rates decrease and start to plateau as time from 
incursion increases. The rates are similar to those observed by Duan et al., (2015).
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Fig S6.1 Estimated values of net population growth rate. The error bars show the the ±  
standard deviation from the mean. The blue squares on the y-axis are the estimates taken 
from Duan et al., (2015).

S6.2 Ash tree mortality
In (Siegert, Engelken, & McCullough, (2021), a larval density of 49.2% is recorded in infected ash 
trees. After four years nearly all trees had died. Fig S4.2 shows the average outcome from 
10,000 realisations of the simulation  standard deviation with the data from (Siegert et al., ±



2021) adjusted so first observations of ill health accord.  Although we cannot be certain of when 
the first incursions occurred in the US data, this shows that the modelled rates of tree decline are 
plausible.  

Fig S6.2 Proportion of killed trees by EAB infestation by year. The red symbols are modelled, 
and the blue squares are based on data reported in Siegert et al. (2021). 

S6.3 Number of larvae per tree over time
McCullough et al., (2019) estimated the densities of EAB larvae in ash trees. We compared their 
results with the results of the population dynamics model for two values of  (the proportion of θ
univoltine larvae). The results show that our model reproduces reasonable values of the number 
of larvae per square meter over time.
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Fig S6.3 The mean total EAB observed (larval galleries) and predicted EAB larvae. The 
measured data from trees not treated with insecticide was reproduced from  McCullough et al., 
(2019). The simulated relate to two values of theta (the proportion of semivoltine larvae).



S6.4 EAB spatial dispersal

The USDA reports that natural spread is typically between 0.8 km – 10 km per year 
(https://www.aphis.usda.gov/sites/default/files/eab-manual.pdf). Data from (Siegert et al., 2014) 
suggests an average rate of spread, allowing for satellite jumps, of approximately 20 km per year 
during the initial 5-year period. (Webb et al., 2021) combined data from North American studies 
and estimated an average rate of spread of 47 km per year after EAB establishment. We ran 
10,000 random realisations of our simulation and calculated the average increase in distance 
from the epicentre from the 5th to 8th year of the invasion. The average spread rate at this point in 
the epidemic was 46.2 km per year (reflecting the parameterisation and the data), however, there 
were a range of outcomes (Fig S6.4) dependent on the local host and the stochastic nature of 
the spread. 
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Fig S6.4 A histogram of the simulated average increase in distance from the epicentre after 5 
years from the first incursion.

https://www.aphis.usda.gov/sites/default/files/eab-manual.pdf


S7: SIMULATIONS WITH HIGHER DISPERSAL RATES AND BIGGER PROPORTIONS OF 
SEMIVOLTINE LARVAE

We ran further simulations to determine the sensitivity of our results to increasing the natural 
dispersal parameter and changes to the proportion of semivoltine larvae in the beetle population.

The scenario simulated is the scenario where knowledge of entry pathways is 50% for detection 
within 8 years and for 500 devices. We analysed simulations for increased dispersal rates (25%, 
50% and 100% increase) and increased proportions of semivoltine larvae (25%, 50% and 95%).

In line with the results from the main text, increasing the natural dispersal (Fig S7.1) or the 
percentage of univoltine larvae (Fig S7.2) results in the population establishing faster. This 
increases the probability of detection both through REPS and optimised sampling. The 
improvement associated with the optimised design increases marginally with dispersal (Table 
S7). 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 100 200 300 400 500 600

Default parameter value
25% increase in dispersal parameter value
50% increase in dispersal parameter value
100% increase in dispersal parameter value
Optimised default
Optimised 25% increase
Optimised 50% increase
Optimised 100% increase

Varying levels of dispersal  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 100 200 300 400 500 600

Default parameter value
50% of larvae semivoltine
100% of larvae semivoltine
Optimised default
Optimised 50% of larvae semivoltine
Optimised 100% of larvae semivoltine

Varying levels of univoltine larvae  



Table S7: The percentage increase in the probability of detecting when using an optimised 
strategy compared with REPS for the 50:50 scenario. 

Number of sample locations
 50 100 200 400 500
Default parameters 0.87 4.69 9.29 14.66 16.51
25% increase in dispersal parameter 0.61 4.69 9.60 14.68 16.75
50% increase in dispersal parameter 2.07 7.16 12.30 16.73 18.94
100% increase in dispersal parameter 2.40 8.16 12.71 17.99 20.04
50% larvae are semivoltine 0.78 3.83 8.40 13.91 16.10
95% larvae are semivoltine 0.32 2.33 6.85 11.51 13.56
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