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Abstract 

Seed dormancy is a widespread and key adaptive trait that is essential for the establishment of 

soil seed banks and prevention of preharvest sprouting. Herein we demonstrate that the 

endosperm-expressed transcription factors ZHOUPI (ZOU) and INDUCER OF CBF 

EXPRESSION1 (ICE1) play a role in determining primary dormancy depth in Arabidopsis. 

We show that ice1 or zou increases seed dormancy and the double mutant has an additive 

phenotype. The increased dormancy is associated with increased ABA levels, and can be 

separated genetically from their role in endosperm maturation, because loss of ABA 

biosynthesis or DELAY OF GERMINATION 1 reverses the dormancy phenotype without 

affecting the aberrant seed morphology. Consistent with these results, ice1 endosperms had 

an increased capacity for preventing embryo greening, a phenotype previously associated 

with an increase in endospermic ABA levels. Although ice1 changes the expression of many 

genes including some in ABA biosynthesis, catabolism and/or signalling, only ABA 

INSENSITIVE 3 is significantly misregulated in ice1 mutants. We also demonstrate that ICE1 

binds to and inhibits expression of the ABA INSENSITIVE 3. Our data demonstrate that 

Arabidopsis ICE1 and ZOU determine the depth of primary dormancy during maturation 

independently of their effect on endosperm development.  
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Abbreviations 

9-cis-epoxycarotenoid dioxygenase (NCED) 

Abscisic Acid (ABA)  

Abscisic Acid 8'-hydroxylase (CYP707A)  

ABSCISIC ACID DEFICIENT 2 (ABA2) 

ABSCISIC ACID INSENSITIVE3 (ABI3)  

ABSCISIC ACID INSENSITIVE4 (ABI4)  

ABSCISIC ACID INSENSITIVE5 (ABI5)  

Chromatin immunoprecipitation (ChIP)  

Columbia (Col)  

C-REPEAT BINDING FACTORS (CBFs) 

DELAY OF GERMINATION 1 (DOG1).  

Gibberellin (GA) 

INDUCER OF CBF EXPRESSION1 (ICE1) 

AFL transcription factors (ABSCISIC ACID INSENSITIVE 3, FUSCA3 and LEAFY 

COTYLEDONS 2),  

ZHOUPI (ZOU) 

 

Introduction 

After fertilisation seeds enter a rigid developmental program which proceeds through 

embryogenesis to seed maturation, where the basic body plan of the plant is established, 

desiccation tolerance is gained, and primary dormancy is imposed (Baud et al., 2002; 

Fourquin et al., 2016).The plant hormone abscisic acid (ABA) and a small network of B3-

family transcription factors including ABA INSENSITIVE 3 (ABI3), FUSCA3 and LEAFY 

COTYLEDON 2, otherwise known as the AFL subfamily of B3 transcription factors, induce 

the seed maturation programme in the embryo and endosperm, as well as seed dormancy 

(Karssen et al., 1983; Koornneef et al., 1984; Giraudat et al., 1992; Parcy et al., 1994; 

Nambara et al., 1995; Lopez-Molina et al., 2002)   

ABA and ABI3 continue to be important upon seed imbibition where they are required to 

block the germination of dormant seeds (reviewed in (Koornneef et al., 2002; Carbonero et 

al., 2017; Leprince et al., 2017). After shedding primary dormancy can be broken by 

environmental signals such as seasonal changes in temperature or soil nitrate levels, or 
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signals of canopy disturbance such as compounds in smoke from forest fires (Cadman et al 

2006). In the laboratory, these environmental responses are exploited to create simple 

dormancy-breaking treatments such as cold stratification or dry after-ripening which are often 

used as methods for comparing seed dormancy depth between genotypes.   

Depending on the plant species, primary dormancy can be conferred either by the embryo or 

imposed by the surrounding tissues (Finch-Savage and Leubner-Metzger, 2006). The latter is 

known as coat-imposed dormancy, and is prevalent in the Brassicaceae including 

Arabidopsis. Coat-imposed dormancy requires properties of both the seed coat and 

endosperm in Arabidopsis (Debeaujon et al., 2000; Bethke et al., 2007; Doherty and Kay, 

2010; Lee et al., 2010; Lee et al., 2012b; Piskurewicz and Lopez-Molina, 2016; Fedi et al., 

2017).  

The endosperm is also an important site for ABA signalling in seeds and ABA transport from 

the endosperm to the embryo is associated with the prevention of germination in dormant 

seeds (Lee et al., 2010; Kang et al., 2015; Chahtane et al., 2016). Furthermore, the endosperm 

may also be the site of perception of environmental signals regulating seed dormancy and 

germination. For instance, phytochrome activity in the endosperm is sufficient to regulate 

germination (Lee et al., 2012a), and the temperature-regulated and dormancy-inducing 

MOTHER OF FT AND TFL1 (MFT) gene is only expressed in the endosperm during seed 

development (Vaistij et al., 2013). Furthermore, DELAY OF GERMINATION 1 (DOG1) 

activity in the endosperm is sufficient for dormancy control (Graeber et al., 2014). Taken 

together, an emerging paradigm is that, at least in the case of Arabidopsis, the endosperm 

plays a key role in primary dormancy control. Before the switch to seed maturation much of 

the endosperm is consumed, making space for the embryo to expand and accumulate storage 

reserves (Fourquin et al., 2016). Endosperm consumption is triggered by the pressure exerted 

by the surrounding seed coat, but also requires the activity of a heterodimeric complex of two 

closely-related basic helix-loop-helix transcription factors ZHOUPI (ZOU) and INDUCER 

OF CBF EXPRESSION1 (ICE1) (Denay et al., 2014; Fourquin et al., 2016). Consistent with 

the available in silico data (Le et al., 2010) expression analysis shows ZOU is endosperm-

specific (Yang et al., 2008) and ICE1 is expressed in endosperm, and to lower levels in 

embryo and testa, with strong expression in the embryo-surrounding endosperm (Denay et 

al., 2014).  As expected, both ice1 and zou mutants retain an excess of endosperm material at 

maturity and development of the embryo is restricted, although major embryo tissues 

differentiate and seeds remain viable (Yang et al., 2008; Denay et al., 2014). The behaviour 
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of ice1 seedlings is not completely normal; Liang and Yang (2015) demonstrated that ice1 

mutant seeds exhibit a sugar-dependent seedling growth phenotype and hypersensitivity to 

ABA and high glucose.  

ICE1 has multiple functions in plants, including regulation of cold acclimation and stomatal 

lineage development (Chinnusamy et al., 2003; Agarwal et al., 2006; Miura et al., 2007; Zhu 

et al., 2011; Kim et al., 2015). The ICE1-target genes in cold signalling, the C-REPEAT 

BINDING FACTORS (CBFs) also are necessary for normal seed dormancy, but are not 

temperature-regulated in seeds (Kendall et al., 2011). In contrast ZOU, also known as 

RETARDED GROWTH OF EMBRYO1 (RGE1), is only expressed in the endosperm-where 

it regulates the expression of genes necessary for endosperm breakdown and embryonic 

surface formation (Kondou et al., 2008; Yang et al., 2008; Xing et al., 2013; Moussu et al., 

2017).  

Here we show that the ice1 and zou mutants show increased dormancy, accompanied by 

increased ABA levels in the mature seeds. During late-embryogenesis and in mature seeds, 

ICE1, which is present in the endosperm, inhibits expression of the transcription factor ABA 

INSENSITIVE 3, which itself is a central player in the formation of dormant seeds (Giraudat 

et al., 1992) and germination prevention (Giraudat et al., 1992; Nambara et al., 1992). Our 

data therefore show that in Arabidopsis, ICE1 and ZOU act during maturation to determine 

the depth of primary dormancy independently of their effect on endosperm development 

 

Results 

Loss of ice1 or of zou clearly lead to reduced germination of newly produced seeds (Figure 

1). These phenotypes were robust and the differences between the mutants and wild type 

were seen across multiple experiments as demonstrated in Supplemental Figure 1; this 

statement is supported by the statistical analysis in Supplemental Table 2. To demonstrate 

that this phenotype was indeed increased dormancy levels, we determined what effect 

dormancy breaking treatments would have on wild type, ice1 and zou mutants. Stratification 

promoted the germination of two alleles of ice1 and two alleles of zou (Figure 1A, B). As 

ZOU and ICE1 are known to form hetero- and homo-dimers (Denay et al., 2014), we 

investigated dormancy in the ice1-2 zou-4 double mutant. The latter was more dormant than 

either ice1-2 or zou-4 single mutants (Figure 1A). Although seven days of cold stratification 
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was sufficient to significantly promote germination of all four mutants, the application of 

exogenous potassium nitrate only promoted the germination of the two alleles of zou but not 

the ice1 alleles (Figure 1B). Furthermore, the application of exogenous gibberellic acid 

(GA3), which is a hormone that is able to promote germination of most dormant Arabidopsis 

seeds, was sufficient to promote germination of freshly harvested ice1 or zou seeds, as was 

after-ripening (Supplemental Figure 2). These data suggest that in addition to the 

morphological phenotype, ICE1 and ZOU have a role in seed dormancy control.  

The increased dormancy effect of ice1 was complemented when we crossed ICE-GFP under 

its own promoter (pICE1:ICE1-GFP; Figure 1C; (Denay et al., 2014) into the ice1-2 

background (ice1-2 pICE1:ICE1-GFP Figure 1C). As predicated from in silico data (Le et 

al., 2010) and previous expression- (Denay et al., 2014) and localisation-studies (Kanaoka et 

al., 2008), we observed the GFP signal in the stomata of leaves and the endosperm of 

developing seeds in ice1-2 expressing pICE1:ICE1-GFP (Supplemental Figure 3). The ice1 

dormancy phenotype is not inherited maternally, as the heterozygotes demonstrate a wild-

type phenotype regardless of whether the ice1 is of maternal or paternal origin (Figure 1D). 

Therefore, we concluded that ICE1 activity in the Arabidopsis endosperm was necessary for 

normal seed dormancy control, and that both paternal and maternal copies contributed to this 

process. 

Lowering the temperature during seed maturation is sufficient to increase seed dormancy 

levels (MacGregor et al., 2015). ICE1 has been implicated in the response to and propagation 

of the cold signalling response (Chinnusamy et al., 2003; Miura et al., 2007; Kim et al., 

2015). We therefore determined whether ICE1 or ZOU were required for the response to low 

temperatures during seed maturation. Both ice1-2 and zou-3 responded to this decrease in 

maturation temperature and like wild type, exhibited increased dormancy (Figure 1E). 

Therefore, increased dormancy in response to decreased temperature is independent of ICE1 

and ZOU.  

ice1 and zou exhibit abnormal seed development, including arrest of the endosperm 

developmental programme at the fully cellularised stage, and resultant mechanical restriction 

of embryo development (Denay et al., 2014). We therefore considered whether the alterations 

to dormancy we observed were an indirect consequence of these changes. For instance, 

retarded embryo development and a larger endosperm to penetrate could cause the 

germination program to run slowly or not at all. To determine whether the seeds were truly 
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dormant or simply slow to germinate, we assessed ice1 or zou germination for 30 days in 

seeds with or without cold stratification treatments. In these extended germination 

experiments, we observed little or no extra ice1 or zou mutant seed germination after seven 

days without stratification (Figure 2A). This shows that the mutant embryos are not defective 

in the germination process itself but rather germinate to low levels due to an increase in seed 

dormancy levels. Because of the morphological retardation of embryo development in ice1 

and zou we tested whether ice1 seeds had acquired an additional morphological dormancy 

that was released by stratification. We found that stratification caused no change to ice1 

mutant embryo morphology or development, but was sufficient to release dormancy, 

demonstrating that the increased dormancy in ice1 is physiological (Figure 2B, C).  

To further test whether seed dormancy in ice1 and zou is physiological we crossed ice1-2 to 

the abscisic acid deficient 2 (aba2-1) mutant, and to dog1-2, noting that DOG1 activity in the 

endosperm is sufficient to confer seed dormancy (Graeber et al., 2014).  Both the ice1-2 

aba2-1 and ice1-2 dog1-2 double mutants showed high germination frequencies, reversing 

the stronger dormancy of the ice1-2 mutant (Figure 3 A, B). Although non-dormant, the 

double mutant seeds between aba2 or dog1 and ice1 still exhibited the darker shrivelled seed 

phenotype and altered embryo morphology characteristic of ice1 (Figure 3 C, D). These data 

further support the conclusion that the germination failure of ice1 mutant seeds is not directly 

related to the defect in embryo development, because seeds exhibiting the ice1/zou 

morphological phenotype are capable of normal germination rates. Taken together, our data 

show that ICE1 is necessary for normal seed dormancy and acts in the endosperm in a 

manner dependent on both ABA and DOG1 to affect the germination of primary dormant 

seeds. This effect is genetically-separable from the role in endosperm developmental 

transitions. 

ABA production by the endosperm is known to be a critical step to repress the germination of 

dormant seeds upon their imbibition (Lee et al., 2010; Kang et al., 2015), and ice1-2 mutants 

showed an ABA-dependent increased seed dormancy phenotype (Figure 3). To determine if 

there were altered levels of ABA in the ice1 and zou mutants, we measured the ABA content 

of mature seeds (Figure 4A). Consistent with the increase in seed dormancy, both mutants 

have a higher ABA content in the mature seed compared to wild type (Figure 4A). To test 

whether the increase in seed ABA was being produced by the endosperm, we used a 

previously-described seed coat bedding assay (SCBA) (Lee et al., 2010); Figure 4C). Wild-

type and ice1-2 embryos were slower to green on a bed of ice1-2 endosperms than on an 
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equivalent bed of wild-type endosperms (Figure 4C). Furthermore, the greening rates of wild 

type and ice1-2 embryos were similar, suggesting that embryo ABA content and signalling 

was not substantially dissimilar between the two genotypes. Taken together, our results 

suggest that ICE1 activity affects seed dormancy through endospermic ABA production.  

ICE1 is a basic helix loop helix transcription factor and has been shown to bind to promoter 

elements and alter gene expression (Chinnusamy et al., 2003; Agarwal et al., 2006; Zhu et al., 

2011). To investigate the mechanism(s) through which ICE1 is regulating ABA responses, 

we examined the expression levels of relevant genes in developing seeds of ice1 compared to 

wild-type. Understanding how transcripts are regulated by ICE1 in whole seeds is 

complicated by the fact that ice1 not only potentially directly affects gene expression 

regulation, but because of the aberrant endosperm consumption that occurs after the heart 

stage (Denay et al., 2014), the embryo to endosperm ratio is altered in these mutants. 

Therefore, it is reasonable to expect a general over-representation of endosperm-expressed 

transcripts in ice1 mutant seeds. Thus, we first examined the expression of endosperm- and 

embryo-specific markers in wild type and ice1-2 mutant seeds (Figure 5). The transcripts of 

endosperm-expressed ZOU (Kondou et al., 2008; Yang et al., 2008) and MYB118 (Barthole et 

al., 2014) were more highly expressed in ice1-2 during the early stages of development 

(Figure 5 A&B). The development of wild type and ice1 seeds is visually comparable until 

the heart stage of development (Denay et al., 2014), so these data suggest ICE1 affects the 

transcript levels of both genes. Conversely, the embryo-expressed genes At2g23230 (Le et al., 

2010) and ABSCISIC ACID INSENSITIVE4 (ABI4) (Penfield, 2006) were expressed at a 

similar level in wild type and ice1-2 mutant seeds until cotyledon stage, at which point 

expression was lower in ice1-2 (Figure 5 C&D).  These expression patterns are consistent 

with the reduced embryo-endosperm ratio in ice1 in the later developmental stage, and 

suggest that indirect effects of ICE1 on transcription caused by alterations in seed 

development are only likely to be observed after the torpedo stage of seed development in our 

analysis.  

The ABI3 and ABI5 genes encode transcription factors with key roles in ABA signalling in 

seeds (Koornneef et al., 1984; Giraudat et al., 1992; Finkelstein and Lynch, 2000; Lopez-

Molina and Chua, 2000). In wild type, both genes are expressed in the embryo and 

endosperm (Penfield, 2006). Loss of ICE1 does not have a significant effect on the 

expression of ABI5 (Figure 5E), but ice1-2 exhibits increased ABI3 expression compared to 

wild type at all stages after the heart stage (Figure 5F). Because ABI3 is an important 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

dormancy-inducing protein, unlike ABI5, the increase in expression observed in ice1 may be 

important for the observed dormancy changes, especially as they are accompanied by 

changes in ABA levels (Figure 4). 

The two 9-cis-epoxycarotenoid dioxygenases NCED6 and NCED9 are required for the 

catalysis of the first step of ABA biosynthesis from carotenoids (Iuchi et al., 2001; Lefebvre 

et al., 2006). In wild type seeds, NCED6 is expressed in the endosperm during seed 

development (Lefebvre et al., 2006) although more recent transcriptome analysis shows 

NCED6 mRNA to be present mainly in the seed coat (Le et al., 2010). Although NCED9 is 

present in the peripheral layers of both the endosperm and the embryo, its expression during 

early stages of development is in the testa outer integument layer 1 and is confined to 

epidermal cells of the embryo after mid-development (Le et al., 2010; Frey et al., 2012). The 

loss of ICE1 does not affect NCED6 expression (Figure 5G) while NCED9 is increased in 

ice1 during the later stages of development (Figure 5H). This increase in the ABA-

biosynthetic NCED9 is consistent with the increased ABA content observed in ice1 seeds 

(Figure 4).  

We also investigated two Abscisic Acid 8'-hydroxylases CYP707A1 and CYP707A2. Of the 

major transcripts encoding enzymes with roles in ABA metabolism, CYP707A1 is the only 

one predominantly expressed in wild type endosperm tissue during mid-maturation (Okamoto 

et al., 2006). In wild type, CYP707A2 is expressed in the embryo and the endosperm during 

late maturation through germination and is responsible for the regulation of ABA levels 

during late-maturation to germination (Okamoto et al., 2006). Expression of both CYP707A1 

and CYP707A2 was higher in ice1-2 than wild type at all time points (Figure 5 I&J). This is 

not consistent with this affect being associated with dormancy change in ice1-2, because high 

CYP707A expression is associated with low dormancy in wild type seeds (see for example 

(Kendall et al., 2011). This is instead consistent with the fact that the expression of these 

genes is ABA-induced (Kushiro et al., 2004), and ice1-2 seeds have elevated ABA levels 

(Figure 4). We therefore concluded that this effect must be secondary to the elevated ABA 

content rather than due to a direct effect of ice1. 

ICE1 is a transcriptional activator with demonstrated DNA binding capabilities and has been 

shown to bind to MYC recognition sites (5'-CANNTG-3') found in the CBF3/DREB1A and 

BON1-ASSOCIATED PROTEIN1 promoters (Chinnusamy et al., 2003; Lee et al., 2005; 

Agarwal et al., 2006; Zhu et al., 2011). Therefore, we wanted to determine if there was any 
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evidence for direct binding of ICE1 to the ABA genes investigated above. We searched the 

promoters of these genes for putative ICE1 binding sites and found several candidate 

locations in the ABI3 promoter (Yilmaz et al., 2010); Supplemental File 1). Chromatin 

immunoprecipitation (ChIP) on endosperm-enriched fractions of mature ice1-2 pICE1:ICE1-

GFP or wild type (Col) seeds was used to test for evidence of ICE1 association with the ABI3 

promoter. As a control, we analysed the ABI5 promoter because ABI5 expression in seeds 

was not affected by ice1-2 (Figure 5). No evidence was found for GFP enrichment at the 

promoter of ABI5 or with the other negative controls (Figure 6). We also found no evidence 

for enrichment at putative ICE1 binding sites in the promoters of CYP707A2, CYP707A1, 

NCED6, or NCED9 (Supplemental Figure 4). However, the ice1-2 pICE1:ICE1-GFP line 

demonstrated enrichment over wild type at the CBF3 promoter, as expected from 

Chinnusamy et al. (2003), as well as at three locations in the promoter of ABI3 (Figure 6). 

This area is approximately 2kb upstream of the ABI3 translation start site, and coincides with 

a cluster of putative cis-elements that strongly resemble those previously identified as ICE1 

binding sites (Chinnusamy et al., 2003; Kim et al., 2015). ICE1 is enriched at the ABI3 

promoter in a region containing the sequence of previously-described cis-elements that are 

bound by the ICE1 protein in vitro. Loss of ICE1 leads to high ABI3 transcript levels, so we 

therefore conclude that ICE1 represses ABI3 transcription. Because the AFL transcription 

factors directly up-regulate ABA synthesis in Arabidopsis seeds (Gazzarrini et al., 2004), our 

data suggests that ICE1 promotes dormancy through modulation of AFL transcription factor 

levels in the endosperm.   

 

Discussion  

The acquisition of seed dormancy has allowed plants to establish seed banks and correctly 

time their germination with seasonal cues. We demonstrate herein that loss of function of 

ICE1 and/or ZOU result in seeds with increased primary dormancy and elevated 

accumulation of ABA (Figures 1, 2 & 4). The characterisation of the dormancy effects of 

ICE1 and ZOU is complicated by the co-occurrence of the effects on seed development 

caused by the failure of endosperm consumption. However, we show that the two are 

separable processes. The aberrant endosperm consumption alone is insufficient to explain the 

dormancy phenotype, because in the aba2 and dog1 mutant backgrounds normal germination 

is restored without an effect on seed morphology (Figure 3). Our data show that the increase 
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in dormancy is associated with an increase in seed ABA levels, and that this ABA is likely 

present in the endosperm (Figure 4). The SCBA data demonstrates that mature ice1 

endosperm is working more efficiently to arrest embryonic growth (Figure 4), which is 

consistent with the idea that this is a mature endosperm that has higher ABA levels. This 

view is further supported by the fact that both ICE1 and ZOU are expressed in the 

endosperms of seeds and bolsters the increasing body of evidence demonstrating the 

endosperm is the primary site of dormancy and germination control in Arabidopsis. Our data 

show that the AFL transcription factor gene ABI3 is a direct target of ICE1 in seeds (Figure 

6), and ABI3 transcript levels are higher in ice1 seeds than in wild type (Figure 5). A similar 

effect of ICE1 on ABI3 levels has been observed in seedlings on high sugar media (Liang and 

Yang, 2015). Transcript levels of some endosperm-expressed AFL target genes such as 

MYB118 (Barthole et al., 2014) are also increased in ice1 (Figure 5). Our data are therefore 

consistent with a model in which ICE1 and ZOU are inhibitors of the seed maturation 

programme in the endosperm via control of AFL activity, as well as promoters of endosperm 

consumption and embryonic cuticle biogenesis via ABNORMAL LEAF-SHAPE 1 (ALE1; 

Denay et al 2014). This role is very similar to that described previously for MYB118. This 

transcription factor, which is closely related to MYB115 (Wang et al., 2009), functions in the 

endosperm and are essential for omega-7 monounsaturated fatty acid biosynthesis via 

transcription of two ∆9 acyl-ACP desaturases AAD2 and AAD3 (Troncoso-Ponce et al., 2016) 

and inhibit AFL gene activity and thus delay the seed maturation programme (Barthole et al 

2014; Figure 7).  

Mature angiosperm seeds display considerable morphological diversity, and this is 

accompanied by a range of dormancy-inducing mechanisms. For instance, in morphological 

dormancy, seed dormancy is initiated by an arrest of embryo development before maturation, 

such that further development is necessary after shedding before the seed can germinate. 

There are also examples of seeds displaying two distinct types of dormancy, especially 

combining morphological dormancy with physiological dormancy, each of which may be 

responsive to distinct environmental signals (Baskin and Baskin, 2004). These variations in 

dormancy programmes appear to be able to evolve independently multiple times, but it is 

unclear whether or how seed development and physiological dormancy evolve separately or 

by a common process. 
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According to the classification of Baskin and Baskin (2014), seeds whose embryos are 

differentiated but underdeveloped, and which exhibit physiological dormancy, are classed as 

having morphophysiological dormancy. The ice1 and zou mutant embryos clearly meet the 

morphological definition (Denay et al., 2014) and the phenotypes of these mutant embryos 

strongly resemble those from many gymnosperm seeds. During germination embryo growth 

takes place before emergence of the shoot and before and during emergence of the root. 

However, lack of germination is not simply due to delayed embryo growth because prolonged 

incubations of ice1-2 or zou-4 seeds do not result in increased levels of germination (Figure 

2). Therefore, although ice1 and zou seeds have increased dormancy and altered morphology, 

they do not exhibit morphological dormancy. To qualify as seeds with morphophysiological 

dormancy, embryo growth must be a pre-requisite for either root or shoot emergence, and this 

growth can be promoted by a separate signal from that which breaks the physiological 

dormancy. We showed that cold does not promote the growth of ice1-2 embryos during 

stratification (Figure 2). In this case, cold is required to break the increased physiological 

dormancy of ice1 and embryo growth resumes only after seeds are placed in the warm, lit 

conditions. This behaviour resembles a morphophysiological dormancy state described as 

‘nondeep simple’ (Baskin and Baskin, 2014). Thalictrum mirabile (Ranunculaceae) exhibit 

nondeep simple dormancy and the seeds require cold stratification followed by warm 

temperatures which allow embryo growth to resume as the seeds germinate (Walck et al., 

2011). Regardless of whether ice1 and/or zou seeds exhibit a complete morphophysiological 

dormancy, this raises the prospect that single mutations in key genes can couple physiological 

dormancy with morphological changes to the embryo in the mature seed, suggesting 

mechanisms through which the evolution of seed dormancy can occur. 

 

Materials and methods 

Plant Material and Growth Conditions 

Arabidopsis thaliana (L.) Heynh ecotype Columbia (Col-0) was used in this study. ice1-2 

(SALK-003155; (Kanaoka et al., 2008) was a kind gift from Keiko Torii. zou-4, ice1-2 zou-4 

double mutant, and the pICE1:ICE1-GFP in Columbia (Denay et al., 2014) were kind gifts 

from Gwyneth Ingram. dog1-2 (Nakabayashi et al., 2012) was a kind gift from Wim Soppe. 

aba2-1 (MacGregor et al., 2008) was a kind gift from Jocelyn Malamy. Segregating 
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populations of ice1-3 (SALK_003426, N503426, not previously characterized) and zou-3 

(WiscDsLox465F5, N857109, (Zhang et al., 2016) were obtained from the Nottingham 

Arabidopsis Stock Centre, and homozygous plants were isolated using standard PCR methods 

and the primers in Supplemental Table 1. zou-3 is in the Col background, despite what is 

stated elsewhere (Yang et al., 2008).  

Plants were sown, grown, and harvested per the methods described in MacGregor et al. 

(2015). Great care was taken ensure that for each figure the controls and mutants were grown 

together under conditions that were as uniform as possible (e.g. at the same time, in the same 

tray, on the same shelf, within the same cabinet) so that comparisons between the lines could 

be made. Dry sterile seeds were sown out on and stratified at 4°C for 2–4 d on MS agar plates 

(4.4 g l−1 Murashige and Skoog (MS) basal salt mixture, Melford Laboratories cat. no. 

M0221 with 0.9% agar Sigma Aldrich cat. no. A1296). Seedlings were grown in growth 

cabinets at 22°C for 10–14 d with 12 : 12 h light : dark cycles before being transplanted to 40 

cell trays containing John Innes Seed Compost. Plants were grown under well-watered 

conditions at 22°C under standard long days using fluorescent white light at 80–100 μmol 

m−2 s−1 until bolting or anthesis of the first flowers. Once flowering, plants were transferred 

to growth cabinets running the same conditions, but with the indicated seed maturation 

temperatures, and left to set seed until dehiscence began.  

 

Dormancy assays 

Mature dry seeds set under the conditions above were harvested and poorly filled seeds 

excluded using a 250 μm sieve (Fisher Scientific cat. No. 11542153). These sieved seeds 

were sown directly onto water-agar (0.9% Sigma Aldrich, cat. no. A1296) and cold-stratified 

at 4°C in the dark using a Panasonic MIR-154 incubator (Panasonic) for the desired length 

and/or put directly into a 12 : 12 h white light (80–100 μmol m−2 s−1) : dark light regime at 

22°C in a Panasonic MLR growth cabinet (Panasonic) for germination. Exogenous 

gibberellic acid (Gibberellin A3 Sigma Aldrich G7645), 10 mM potassium nitrate, 

norflurazon (norflurazon PESTANAL®, Sigma Aldrich 34364) or the appropriate solvent 

controls were supplemented to the molten water agar in the concentrations indicated in the 

figures. Germination was scored as the emergence of the radicle using a Leica MZ6 

stereomicroscope after seven days of exposure to warm light incubation unless otherwise 

indicated. For each data point, germination frequency (%) was calculated as the percentage of 

seeds germinating from a minimum of 20 seeds from five biological replicates, which were 
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defined as seeds from different mother plants. Data are shown as averages of the biological 

replicates ± standard error. If statistics are shown, Student’s T-Tests were performed on 

arcsine-transformed data and the single asterisk indicates significance of P<0.05 and double 

P<0.01. The germination phenotypes of ice1 and zou are robust. Each experiment was 

repeated multiple times with comparable results being produced from different repeats; for 

clarity data from one experimental replication are shown.  

 

Double mutant creation and confirmation  

Double mutants between ice1-2 and dog1-2, aba2-1, or pICE1:ICE1-GFP were obtained by 

using pollen from homozygous donors to fertilize emasculated homozygous ice1 plants, 

allowing the F1 generation to self, and screening the F2 seeds for the ice1 shrivelled seed 

phenotype. Putative ice1 homozygotes were then sown on plate supplemented with 1% 

sucrose and transferred to soil once established for further growth. Homozygosity of both 

mutations were confirmed by PCR (primer details in Supplemental Table 1) in the case of 

ice1-2, dog1-2 and aba2-1, or by the ubiquitous presence of GFP fluorescence in the stomata 

of two generations of seedlings for pICE1:ICE1-GFP. GFP fluorescence of 500 to 530nm 

was visualized using a standardized GFP protocol on a stereo-dissecting microscope.  

 

Confocal microscopy 

Developing seeds of pICE1:ICE1-GFP in ice1-2 were excised from the siliques, mounted in 

water between a microscope slide and coverslip and were visualised on a Leica SP8X 

confocal microscope using Argon ion laser at 488nm to excite both GFP and auto 

fluorescence; emission of GFP was collected at 500 to 530nm and the auto fluorescence 600 

to 630nm. A 63x/1.2 water immersion objective lens was used. The Z series in Figures C-F 

were collected at 0.5 micron intervals. Images were processed using Image J 

(https://imagej.nih.gov/ij/) in which max projections were made and scale bars added. The 

composite image was made by the Leica LAS X software. The stage of development was 

verified by chloral hydrate clearing of seeds after microscopy.  

 

Seed coat bedding assays  

Seed coat bedding assays were performed using freshly harvested seed that had been stored at 

-80°C until analysis according to the protocols in Lee and Lopez-Molina (2013).  
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Phytohormone Assays 

Abscisic acid was quantified from 5 biological replicate batches of 100 mg freshly harvested 

dry seeds that were flash frozen in liquid nitrogen and stored at -80°C until analysis. 

Quantification of hormones was performed by ultraperformance liquid chromatography-mass 

spectrometry analysis of acidified isopropanol (1% acetic acid) extracts as described 

previously (Dave and Graham, 2012). 

 

Analysis of Gene Expression 

Three biological replicates of developing seeds at the stages indicated were dissected out of 

siliques of wild type or ice1-2 plants grown at 22°C in conditions above directly into 

RNAlater (Sigma Aldrich cat. no. R0901), which was subsequently removed before the seeds 

were flash frozen in liquid nitrogen and stored at -80°C until required for analysis. RNA was 

extracted from these seeds as described previously (Penfield et al., 2005) and purified via the 

clean-up protocol of the RNeasy Plant RNA isolation kit (Qiagen cat. no. 74904) according to 

the manufacturer's protocol. First-strand cDNA was synthesized with 1 μg of total RNA in 20 

μl reactions using Superscript III Reverse Transcriptase (Invitrogen cat. no. 18080-044) and 

Oligo(dT)12-18 (Sigma Aldrich cat. no. 18418-012) according to the manufacturer's 

instructions. 180 μl water was added before the qPCR step. Gene expression analysis was 

determined in a BioRad CFX CFX96 instrument using the primers indicated in Supplemental 

Table 1 and Brilliant III Ultra-Fast SYBR® Green QPCR Master Mix (Agilent Technologies 

cat. no. 600883) according to both manufacturer’s protocols.  

 

Chromatin Immunoprecipitation  

Freshly harvested seed from wild type and ice1-2 pICE1:ICE1-GFP or wild type Columbia 

plants were grown under standard long-day greenhouse conditions were surface-sterilized for 

3 minutes in bleach and washed at least four times with sterile water. Sterile seeds were 

plated out onto filter paper in petri dishes containing 20 µM paclobutrazol (Sigma Aldrich 

cat. no. 46046). The petri dishes were sealed with micropore tape and incubated in 12 : 12 h 

white light (80–100 μmol m−2 s−1) : dark light regime at 22°C in a Sanyo MLR growth 

cabinet (Panasonic) for 24hrs. Glass microscope slides were used to squeeze seeds until the 

embryos were forced from the endosperm and seed coat, all of which were collected into a 

50ml tube. An endosperm and seed coat enriched fraction was obtained by spinning these 

mechanically disrupted seeds at 4000 rpm for 10 minutes in 40% sucrose (w/v), which 
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separates embryos from endosperm and/or seed coat and intact seeds. Embryos were 

discarded and the endosperm enriched fractions were rinsed with sterile distilled water to 

remove the sucrose and fixed in 1% formaldehyde for 10 minutes under vacuum. Fixed 

tissues were quenched with a final concentration of 125mM glycine under vacuum for five 

minutes and rinsed at least three times with sterile distilled water before being flash frozen in 

liquid nitrogen. Isolation and shearing of chromatin, and immunoprecipitation of GFP 

enriched fractions were all performed as described elsewhere (Keily et al., 2013) using 

primers described in Supplemental Table 1.  

 

Accession numbers and primer sequences 

Sequence data from this article can be found in the Arabidopsis Genome Initiative or 

GenBank/EMBL databases using the accession numbers ABA2 (AT1G52340), ABI3 

(AT3G24650), ABI4 (AT2G40220), ABI5 (AT2G36270), AT2G23230, CACS (At5g46630), 

CYP707A1 (AT4G19230), CYP707A2 (AT2G29090), DOG1 (AT5G45830), ICE1 

(AT3G26744), MYB118 (AT3G27785), NCED6 (AT3G24220), NCED9 (AT1G78390), ZOU 

(AT1G49770). Primer sequences used are detailed in Supplemental Table 1.  Primers that 

have not been previously published elsewhere were designed by hand or using dCaps Finder 

(http://helix.wustl.edu/dcaps/dcaps.html), QuantPrime (Arvidsson et al., 2008) or Primer3 

(Koressaar and Remm, 2007; Untergasser et al., 2012).  
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Short Supplemental Files Legends  

Supplemental Figure 1: The dormancy phenotypes of ice1 and zou are repeatable and robust. 

Supplemental Figure 2: The increased dormancy of ice1 or zou can be rescued by exogenous 

gibberellin (GA3) in a concentration dependent manner or by after-ripening.  

Supplemental Figure 3: ICE1-GFP is located in the nuclei of both stomata in true leaves and 

endosperm of developing seeds.  

Supplemental Figure 4: Chromatin immunoprecipitation (ChIP) using endosperm-enriched 

fractions of ice1-2 pICE1:ICE1-GFP shows no evidence for enrichment at putative ICE1 

binding sites in the promoters of CYP707A2, CYP707A1, NCED6, or NCED9.  

Supplemental File 1: putative ICE1 binding sites in the targets in Figure 5.  

Supplemental Table 1: Primers used in MacGregor et al.  

Supplemental Table 2: Testing the significance of the ice1-2 and zou-4 dormancy phenotypes 

over multiple experiments.  
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Figures Legends  

 

Figure 1: Loss of ice1 or zou from the endosperm results in increased dormancy, where 

homodimers as well as heterodimers may both play a role. A. The germination frequency for 

seeds of wild type (Col-0, blue diamonds), ice1-2 (red squares), ice1-3 (green triangles), zou-

3 (purple X’s), zou-4 (cyan asterixis), and the ice1-2/zou-4 double mutant (orange circle) 

matured at 22°C without or with stratification at 4°C for the given times. B. The germination 

frequency of freshly harvested seeds of ice1-2, ice1-3, zou-3, and zou-4 matured at 22°C 

(green bars) compared to with stratification at 4°C for seven days (yellow bars), or without 

stratification but with 10 mM Potassium Nitrate included in the water agar (blue bars). C. 

The germination frequency for seeds of wild type (Col-0, blue diamonds), ice1-2 (red 

squares), wild type expressing ICE1-GFP under its own promoter (Col pICE1:ICE1-GFP, 

green diamonds), or ice1-2 expressing ICE1-GFP under its own promoter (ice1-2 

pICE1:ICE1-GFP, purple Xs). D. The germination frequency for seeds of wild type (Col blue 
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bars), ice1-2 (red bars), and reciprocal crosses with wild-type maternal crossed by ice1-2 

pollen (green bars) or ice1-2 maternal crossed by wild-type paternal (purple), without or with 

stratification for three days at 4°C. E. The germination frequency of freshly harvested seeds 

matured at 16°C of wild type (Col-0, blue diamonds), ice1-2 (red squares), and zou-3 (green 

triangles) without or with stratification at 4°C for the given times. For A, B, C, and E, data 

are averages of five biological replicate seed batches with at least 45 seeds per batch ± SE. 

For D, data are averages of 5 or more biological replicates of Col or ice1-2 respectively with 

at least 20 seeds per batch, or 6 Col♀ ice1-2♂ or 8 ice1-2♀ Col♂ individual siliques with an 

average of 15 seeds per silique ± SE. For all, significant differences by Student's t‐ test on 

arcsine‐ transformed germination data where *, P < 0.05; **, P < 0.01. 

 

Figure 2: The altered germination frequency of ice1 and zou are not an indirect consequence 

of retarded embryo morphology that can be rectified by long germination periods or cold 

stratification. A. The germination frequency for freshly harvested wild type (Col), ice1-2  and 

zou-3 matured at 22°C without (red circles) or with stratification for 1 (green squares), 3 

(blue triangles) or 7 (purple diamonds) days. Data are averages of five or more biological 

replicate seed batches with at least 20 seeds per batch ± SE. B. Morphology of wild type 

(Col) or ice1-2 embryos dissected from seeds with 0, 1 or 3 days of stratification. C. The 

germination frequency for freshly harvested wild type (Col, blue diamonds) or ice1-2 (red 

squares) from seeds shown in B. Data are averages of five or more biological replicate seed 

batches with at least 15 seeds per batch ± SE. 

 

Figure 3: ABA biosynthesis and DOG1 are required for the seed dormancy phenotype, but 

not the seed morphology phenotype, of ice1. A. The germination frequency for seeds of wild 

type (Col-0, blue diamonds), ice1-2 (red squares), aba2-1 (green triangles), and the aba2-

1/ice1-2 double mutant (purple Xs) matured at 22°C without or with stratification at 4°C for 

the given times. B. The germination frequency for seeds of wild type (Col-0, blue diamonds), 

ice1-2 (red squares), dog1-2 (green triangles), and the dog1-1/ice1-2 double mutant (purple 

Xs) matured at 22°C without or with stratification at 4°C for the given times. For A and B, 

data are averages of five or more biological replicate seed batches with at least 50 seeds per 

batch ± SE. C and D. 50mm squares showing representative seeds from A and B.  

 

Figure 4: Mature ice1 and zou seeds contain more ABA and the ice1 endosperm is necessary 

and sufficient to slow the greening of excised embryos. A. Measurements of Abscisic Acid 
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(ABA) from freshly harvested seed from four or more biological replicates of wild type 

(Col), ice1-2, or zou-4 seeds matured at 22°C or wild type (Col) matured at 16°C. Significant 

differences by Student's t‐ test are shown where *, P < 0.05; **, P < 0.01. B. Seed coat 

bedding assay (SCBA) using wild type (Col) or ice1-2 embryos on water agar, Col 

endosperm, or ice1-2 endosperm photographed every 24 hours for 72 hours. Intact seeds of 

each genotype sown on water agar are shown for reference.   

 

Figure 5: ice1 changes the expression of many genes including some in ABA biosynthesis, 

catabolism and/or signalling, however only ABA INSENSITIVE 3 is significantly 

misregulated in developing ice1 seeds. Wild type or ice1 cDNA from developing seeds at 

globular, heart, torpedo or green cotyledon (Green Cot) stage were examined using qPCR for 

the expression of ZHOUPI (ZOU), MYB118, the embryo specific At2g23230, ABSCISIC 

ACID INSENSITIVE4 (ABI4), ABSCISIC ACID INSENSITIVE5 (ABI5), ABSCISIC ACID 

INSENSITIVE3 (ABI3), the 9-cis-epoxycarotenoid dioxygenases NCED6 and NCED9, and 

the Abscisic Acid 8'-hydroxylases CYP707A1 and CYP707A2 that were normalised against a 

clathrin adaptor complex subunit (CACS, At5g46630, (Nelson et al., 2009)). Similar data 

were found for normalisation against the control gene At4g12590 (Saez-Aguayo et al., 2017). 

Wild type (Col) is represented as black diamonds and ice1-2 as grey squares with a hatched 

line. Data are averages of three biological replicate seed batches ± SE.  

 

Figure 6: Chromatin immunoprecipitation (ChIP) using endosperm-enriched fractions of 

ice1-2 pICE1:ICE1-GFP (grey bars) shows enrichment at regions of the ABI3 promoter that 

contain putative ICE1-binding sites. This enrichment is not seen in wild type (Col, black 

bars). Data represents the average ± SE of three biological replicates per locus. Primers in the 

3’UTR of ACTIN2 (from Adams 2015) were used as a negative control and in the promoter 

of CBF3 as a positive control. The lower pannel represents the ABI3 and ABI5 promoters 

with the qPCR targets and putative ICE1 binding sites indicated.   

 

Figure 7: Model summarising how ICE1 and ZOU repression of the AFL transcription factor 

ABI3 will regulate ABA metabolism in the endosperm. In endosperm, ICE1 is enriched at the 

ABI3 promoter and represses its expression. The AFL transcription factors, which are 

maximally expressed in the developing endosperm (Le et al., 2010), up-regulate ABA 

synthesis in Arabidopsis seeds. ABA is necessary and sufficient to repress germination. The 

AFL transcription factors act by regulating each other’s expression and are necessary for 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

dormancy establishment. ZOU and ICE1 are also involved in regulating ALE1 and therefore 

embryonic cuticle formation (Denay et al., 2014). This parallels the activity of 

MYB115/MYB118, which in addition to regulating fatty acid biosynthesis through ∆9 acyl-

ACP desaturases AAD2 and AAD3 (Troncoso-Ponce et al., 2016,) also inhibit endosperm 

maturation via the ALF transcription factor LEC2 (Barthole et al., 2014). LEC2 also is a 

transcriptional activator of MYB118 (Barthole et al., 2014).  

 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

 

 

 


