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A F U R T H E R N O T E  O N T H E  ARRANGEMENT OF 
VARIETY TRNIALS: QUASI-LATIN SQUARES 

BY F. YATES, M.A. 
Rothamsted Experimental Station 

I. INTRODUCTION 
A N E W  method of arranging agricultural field trials involving a large number of varieties 
has recently been described by the author (3) under the name of " pseudo-factorial arrange- 
ments ", but better, perhaps, termed quasi-factoriaZ arrangements. Such arrangements are 
likely to be of utility in any experimental work in which a large number of treatments have 
to be compared and in which the experimental material falls into small groups of closely 
similar units. 

In  a quasi-factorial varietal trial the varieties are divided into sets in two or more ways, 
the varieties of each set being arranged in one or more randomized blocks. The block size 
can thus be kept small even when the number of varieties is very large, and all use of controls 
is avoided. In  a two-dimensional quasi-factorial arrangement of 81 varieties, for example, 
the varieties, after being numbered at random from 1 to 81, are divided into a group of 9 sets 
consisting of varieties 1-9, 10-18, 19-27, ..., 73-81, and a similar group of 9 sets consisting 
ofvarieties (1, 10, 19, ..., 73), (2, 11,20, ..., 74), ..., (9, 18,27,  ..., 81), eachofthese sets being 
arranged at random in one or more blocks of 9 plots. It will be seen that these sets form the 
rows and columns of a diagrammatic square of the varietal numbers. 

In  a square two-dimensional quasi-factorial arrangement further divisions of the 
varieties into groups of sets are also possible, each group being such that every set of the 
group includes one and only one variety from each set of every other group. If in the case 
of p2 varieties p + 1 such groups are formed, a completely orthogonal system results. Since 
every two treatments then occur together once and once only in a block, we arrive at  a 
special case of the type of arrangement described in (4) and there called an arrangement in 
symmetrical incomplete randomized blocks. 

In  the present paper a further extension of the quasi-factorial principle is described, 
whereby differences associated with two different groupings of the experimental material 
can be simultaneously eliminated. This type of arrangement may be called an arrangement 
in quasi-Latin squares*, from the analogy with ordinary Latin square arrangements. In  
varietal trials in quasi-Latin squares each complete replication of the varieties is arranged 
in the field in a square pattern, all differences between both rows and columns being elimin- 
ated from the varietal comparisons, just as they are in an ordinary Latin square. 

Quasi-Latin squares are less flexible than ordinary quasi-factorial arrangements, since 
* Or alternatively an arrangement in lattice squares (see note on nomenclature at the end of the paper). 
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the number of varieties or treatments must be a perfect square (or a perfect cube) and certain 
perfect squares, in particular 36, are inadmissible. The designs are likely to be of considerable 
practical utility, however, because if the two sources of variation associated with two 
different groupings of the experimental material are of equal magnitude, the simultaneous 
elimination of both sources is more than twice as effective in reducing experimental error as 
is the elimination of one source only. The effectiveness of Latin square arrangements in 
agriculture, for example, has long been recognized. 

11. STRUCTURE OF QUASI-LATIN SQUARES 

If the number of varieties is a perfect square (equal to p2 say), then for certain values of p 
it is possible to divide the varieties into p + 1 orthogonal groups ofp sets (each set containing 
p varieties), i.e. in such a manner that each set of any one group of sets contains one and only 
one variety from each set of any other group of sets. The three groups of sets corresponding 
to the rows, columns and letters of a Latin square fulfil the conditions of orthogonality. The 
p + 1 groups can therefore be formed from a completely orthogonal set of p - 1 squares. 
Such completely orthogonal sets are known to exist for values ofp which are prime numbers, 
and also for p = 4, 8 and 9 (1). No such set exists for p = 6 (2). 

If p + 1 such groups of sets exist, then the pz - 1 degrees of freedom representing differences 
between varieties partition into p + 1 groups of p - 1 degrees of freedom, each group corre- 
sponding to the p - 1 contrasts between the p sets of the corresponding group of sets. Each 
replication may therefore be arranged in the field in the form of a square of which the rows 
correspond to one group of sets and the columns to a second, so that in every replication the 
degrees of freedom corresponding to two groups of sets will be confounded with row or 
column differences. If p is odd and there are 4 ( p  + 1) replications, each group of sets may be 
confounded once and once only in this manner, and in this case equal information will be 
obtained on every degree of freedom, and therefore every varietal comparison will be made 
with equal accuracy. 

When p equals 5, for instance, the four squares given in Table I form a completely ortho- 
gonal set. 

Table I. Orthogonal set of 5 x 5 squares 
Square 1 Square 2 Square 3 Square 4 

a b c d e  a b c d e  a b c d e  a b c d e  
e a b c d  d e a b c  c d e a b  b c d e a  
d e a b c  b c d e a  e a b c d  c d e a b  
c d e a b  e a b c d  b c d e a  d e a b c  
b c d e a  c d e a b  d e a b c  e a b c d  

(The law of formation, which is the same for all prime numbers, should be obvious from 
inspection of this table. For p = 4, 8 and 9, orthogonal sets are given in ( I ) . )  

If there are 25 varieties and these are numbered 1-25 at random, the first row of each square 
may be taken to represent the varieties 1-5, and so on. So long as every group of sets is 
confounded equally it is immaterial which are confounded in each replication. If we confound 
the groups corresponding to rows and columns in the first, those corresponding to squares 
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1 and 3 in the second and those corresponding to squares 2 and 4 in the third replication, then 
the first replication must be arranged on the ground in a square pattern so that the varieties 
1-5 come in one row (not necessarily the first), the varieties 6-10 in another and so on. At 
the same time varieties 1, 6, 11, 16, 21 must come in one column, varieties 2, 7, 12, 17, 22 in 
another and so on. We must in fact randomize the rows and columns of the square : 

1 2 3 4 5  
6 7 8 9 1 0  

11 12 13 14 15 
16 17 18 19 20 
21 22 23 24 25 

This randomization process is that adopted in ordinary Latin squares in order to ensure an 
unbiased estimate of error. 

In  the second replication the varieties corresponding to the a’s of the first square, namely 
varieties 1, 7, 13, 19, 25, must come in one row, and so on. At the same time the varieties 
corresponding to the a’s of the third square, namely, 1, 9, 12, 20, 23, must come in one 
column, and so on. We must therefore randomize the rows and columns of the square: 

Square 3 
a b c d e  

a 1 13 25 7 19 
b 20 2 14 21 8 
c 9 16 3 15 22 

3 d 23 10 17 4 11 
m e 12 24 6 18 5 

the structure of this square being given by the marginal letters. 

of the square: 
Similarly the third replication is obtained by the randomization of the rows and columns 

Square 4 
a b c d e  

a 1 15 24 8 17 
b 18 2 11 25 9 
c 10 19 3 12 21 
d 22 6 20 4 13 

v1 e 14 23 7 16 5 
The statistical analysis of balanced arrangements such as this is very simple. It is first 

necessary to calculate for each variety a quantity pQ, equal to p times the sum of the yields 
of all the plots of that variety, less the totals, p + 1 in number, of every row and every column 
in which that variety occurs. The varietal differences, in terms of the yield of a single plot, 
are then given by the differences of the quantities 

2 2 
- Q  or ___ PQ. 
P - 1  P(P-1 )  

A quantity equal to - 2p times the mean yield should be added to each in order that their 

mean should equal the general mean. 
P-1 

The standard error of each diflerence is 

x the standard error of a single plot. 2 
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The sum of squares due to varieties in the analysis of variance is 
2 

L d e v 2 Q  or dev2pQ, 
P-1 PYP - 1)  

where dev2 Q indicates the sum of the squares of the deviations of Q from their own mean. 
The first and last of these formulae are given in two forms, the first form being most easily 
remembered, the second being that required for computation. 

The remainder of the analysis of variance proceeds in the ordinary manner, items for 
rows, columns and squares being included to  allow for the fertility differences eliminated 
by the design. 

It should be noted that each of the above expressions can be derived from the parallel 
formula applicable to an experiment with the same number i (p  + 1) of replications arranged 

in ordinary randomized blocks of p2 plots, by writing __ for - and replacing the sum 

of the yields of each variety by the corresponding Q. 

2 2 
p-1 p+1 

It follows from this that the efficiency factor of the arrangement is 
P A  
p+1* 

This factor represents the loss of efficiency that would result if there were no gain in accuracy 
by the elimination of fertility differences between the rows or between the columns. 

In  this section we have only considered arrangements in which every set of degrees of 
freedom is confounded equally. Such arrangements may be called bubnced quasi-Latin 
squares. This balance is analogous to the balance of designs in symmetrical incomplete 
randomized blocks (4). Sets of squares which lack this balance are also feasible, and are of 
interest in such cases as 8 x 8, which requires nine replications for complete balance, but in 
which nearly complete balance can be attained with four replications. 

Such arrangements lose very little in efficiency through the slight lack of balance, the 
efficiency factors in the case of 8 x 8 squares being 8 and or 0.778 and 0.771 respectively. 
The computations are somewhat more complicated, owing to the fact that the set of row and 
column totals entering into a single Q is no longer completely balanced for varieties, and an 
additional term must therefore be introduced to restore this balance. 

111. NUMERICAL EXAMPLE 

We will take as an example the uniformity trial on oranges reported by Parker and 
Batchelor, the results of which have already been used to illustrate quasi-factorial arrange- 
ments in randomized blocks. The mean yields of the first six years for the whole trial are 
given in Table V of (3). The yields (less 100) of the first fifteen plots of each of the first five 
blocks are reproduced in Table 11. The table also shows a superimposed arrangement of 
twenty-five varieties, indicated by the small numbers, which is the result of randomizing 
the rows and columns of the three squares given in the preceding section. The orientation of 
each square has also been allotted a t  random. 
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Table 11. Yields (less 100) and arrangement of varieties 

1 -5 I 6-10 
11-15 
16-20 
21-25 

Plot 

173 187 314 246 304 
282 231 232 250 259 
312 247 228 318 309 
161 264 117 136 261 
151 195 233 244 226 

2 
4 
6 
8 

10 

Total 

12 
14 
16 
18 
20 

Total 

22 
24 
26 
28 
30 

Total 

-30 44 39 31 124 

225 g6 2214 2817 133 
- 77 2618 3721 284 815 

019 165 2g8 1911 1322 
- 713 1524 122 19l0 2016 
- 2l 1612 27'' 3523 25' 

-14 82 127 129 79 

- 21° 3819 323 3721 3812 
322 2120 1913 15i4 

19l 1915 2924 3217 2g8 
- 318 212 411 109 1725 

814 3lZ3 48' 306 5216 

25 127 134 128 151 

Total 

2 
44 
69 
34 
59 

208 

74 
92 
77 
59 

101 

403 

143 
76 
49 

128 
169 

565 

323 

The yield of the plot 24 of the block L was missing from the original records. The omission 
of this row entirely would be unduly unfavourable to the Latin square design, since the whole 
row is low-yielding, and the row has therefore been retained, with the value 118 for the 
missing yield, calculated from the row and column values of the third square. 

The quantities 5& are shown in Table I11 (negative signs being omitted). Thus, for 
example, 

5&,= 5 x 12-44- 34+ 5 x ( -  2) + 14- 101 + 5  x 19- 25- 128= - 173. 

Table I11 

1 varieties I Values of - 5& 

The adjusted yields of the varieties are shown in Table IV. Thus, for example, the adjusted 

2 1 
yield of variety 1 equals 

10 (mean yield) + __ 5&, = 139.2 - - (1 73) = 12 1-9. 
4 5 .4  10 
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6-10 111.0 116.1 116.0 114.2 
11-15 108.0 114.5 116.4 107.4 
16-20 123.1 112.8 127.5 125.6 
21-25 119.7 115.9 114.8 

ARRANGEMENT O F  V A R I E T Y  T R I A L S  

Table IV 

113.3 
108.3 
113.1 
116.6 

Squares 
Rows 
Columns 
Varieties 
Error 

D.F. 

2 
12 
12 
24 
24 

Sums of squares 

49 
7 

4 

0.75 

0.8 
0.842 
0.875 

2556.24 
2696.08 
7108.08 
1566.64 
1381-28 

64 
8 

9 

0.778 

0.818 
0.857 
0.889 

Mean square 

1278.12 
224457 
592.34 
65.28 
57.55 

I Total I 74 I 15308-32 I 
The mean square for varieties is 65.28, and that for error is 57.55. Nothing has been 

deducted for the missing plot, since the yield of this was determined independently of the 
varietal arrangement. The mean squares for varieties and error are approximately equal, as 
they should be. 

The standard error assignable to each of the adjusted values of Table IP is given by 
d(2 x 57.55) = 5.36. 

IV. RELATIVE EFFICIENCY OF VARIOUS ARRANGEMENTS 

The higher efficiency of Latin squares compared with randomized blocks is likely in 
general to more than compensate for the lower efficiency factors of quasi-Latin squares. 
It will be recalled that the efficiency factors for two-dimensional quasi-factorial arrange- 

P ments (p2 varieties) are ~ + - + and -- according as two, three or p + 1 groupings are 

used. The numerical values of these factors, and of the factor P- - for quasi-Latin squares, 
are shown in Table VI. 

Table VI. Eflciency factors 

p + 3 , p + 2 &  p + i  

P+l 

No. of varieties 
P 
Minimum no. of replications 

for quasi-Latin squares 

Quasi-Latin squares 
Quasi-factorials in blocks: 

Two groupings 
Three groupings 
p + 1 groupings 

16 
4 

5 

0.6 

0.714 
0.769 
0.8 

25 
5 

3 

0.667 

0.75 
0.8 
0.833 

81 
9 

5 

0.8 

0.833 
0.870 
0.9 

121 
11 

6 

0.833 

0.857 
0.889 
0.917 

169 
13 

7 

0.857 

0.875 
0.903 
0.929 
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~~ 

Blocks of 25 
Blocks of 5 (columns) 
Blocks of 5 (rows) 
5 x 5 Latin squares 

All values of p from p = 4 to p = 13 have been included for which a completely orthogonal 
set of squares is known to exist. The even values p = 4 and p = 8 will require p + 1, i.e. five 
and nine replications in order to obtain a balanced arrangement. In many cases, of course, 
some multiple of the minimum number of replications will be required to attain the desired 
accuracy. 

It will be noted that for quasi-factorial arrangements in blocks the balanced arrangement 
with p + 1 groupings requires p + 1 replications. It is an additional advantage of quasi- 
Latin squares that when p is odd balance is attained with half the number of replications 
required for quasi-factorial arrangements in randomized blocks. The attainment of balance 
has three advantages. The efficiency is maximized, the standard errors of all varietal com- 
parisons are the same, and the computations are simplified. 

The efficiency of the various arrangements in the example of the preceding section may 
now be considered. TableVII gives the residual mean squares after eliminating squares only, 
squares and columns or rows, and squares, columns and rows. These are the mean error mean 
squares that will be obtained in arrangements in randomized blocks of 25, in arrangements 
in randomized blocks of 5,  and in 5 x 5 Latin squares respectively. 

D.F. Mean square 

71 179.61 
59 95.66 
59 170.44 
47 62-72 

Table VII. Residual mean squares 

Information 

1 
1.88 
1.05 
2-86 

In  each case one degree of freedom has been deducted to allow for the missing plot. This 
procedure is approximate except in the case of the Latin squares. 

This table provides an excellent illustration of the power of the Latin square design in 
eliminating fertility differences. Although in this case the elimination of row effects alone 
would scarcely have reduced the residual variance, their elimination subsequent to that of 
columns has effected a substantial reduction. In  general it is easy to see that, if the variance 
due to rows is equal to that due to columns, the elimination of both rows and columns will 
bring about a relative reduction of the residual variance of more than twice that due to the 
elimination of either alone. 

Multiplying the relative amounts of information per plot of Table VII by the efficiency 
factors of Table VI, we obtain the relative efficiencies shown in Table VIII. Thus in this 
particular example the use of quasi-Latin squares instead of randomized blocks con- 
taining all the varieties almost doubles the information obtained. 

In  order to illustrate the increase in precision resulting from the use of quasi-Latin 
squares, an arrangement of twenty-five varieties in randomized blocks of twenty-five plots 
(corresponding to the squares already used) was also superimposed on the variety trial. 
The varietal means so obtained are shown in Table IX. Their variability is easily seen to be 
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considerably greater than that of the adjusted varietal means of Table IV, the ranges in the 
two cases being from 99.7 to 131.3, and from 107.4 to 127.5. The two distributions of values 

Table VIII. Relative eficiencies of various arrangements 

Efficiency in 
chosen example 

Efficiency when I 
there are no 

fertility differences 
to eliminate 

Randomized blocks of 25 plots 
Quasi-factorial arrangements 
in blocks of 5 plots: 
Two groupings 
Three groupings 
Six groupings 

Quasi-Latin squares 

100 

140.8 
150.2 
156.5 
190.9 

100 

75 
80 
83.3 
66.7 

- 

- 

I I 1 

95 100 105 110 115 120 125 130 135 
( a )  Arrangement in quasi-Latin squares (Table IV). 

8 

6 

4 

2 

0 
95 100 105 ! in 115 120 125 130 135 

( b )  Arrangement in randomized blocks of twenty-five plots (Table IX). 

Fig. 1. Distributions of the twenty-five varietal means from Table IV and Table IX. 

are also compared graphically in Fig. 1. (Both sets of values happen to give a fair repre- 
sentation of the amount of variation that would be obtained on the average in this trial 

'from the two types of arrangement.) 
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Table IX. Varietal means from arrangements in randomized blocks of twenty-$ve plots 
104.3 118.7 120.0 112.0 111.7 
114.0 122.7 109.3 124.3 108.7 
107.7 122.3 119.7 99.7 115.3 
100.0 121.3 121.0 122.0 112-3 
131-3 117.3 120.7 ' 121.0 114.7 

In  this example quasi-Latin squares have also proved markedly more efficient than 
quasi-factorial arrangements in randomized blocks, though the example cannot be 
regarded as particularly favourable to the Lakin square arrangement, since blocks account 
for the greater part of the fertility irregularities. In  general it may be doubted whether 
quasi-factorial arrangements in randomized blocks are likely to result in any great gain in 
efficiency when the number of varieties is as small as twenty-five. It would appear, however, 
that even with this small number of varieties quasi-Latin squares are likely to be very 
effective. It has been found, for example, that in the Rothamsted experiments and experi- 
ments at  associated centres from 1927 to 1934 the error variance of 5 x 5 Latin squares was 
reduced on the average in the ratio of 2.49 : 1 from what it would have been if the experiments 
had been completely randomized. This, multiplied by the efficiency factor 8, gives an average 
increase of 66 per cent in the information when 5 x 5  quasi-Latin squares instead of 
randomized blocks of twenty-five plots are used for varietal trials involving twenty -five 
varieties. 

Latin squares are, of course, only suited t o  certain types of variety trial. With crops that 
are sown by drill the practical requirements of drilling may necessitate long narrow plots, 
and preclude the use of a Latin square design. In  such crops as fruit, however, this con- 
sideration does not hold, and even with long narrow plots the additional restrictions of a 
Latin square are often strikingly effective in reducing the error variance. 

V. THE USE OF QUASI-LATIN SQUARES IN THREE-DIMENSIONAL 

If a number p3 of varieties is appropriately divided into three groups of p 2  sets ofp varieties 
each, and each of these sets is arranged in one or more randomized blocks, a three-dimensional 
quasi-factorial arrangement results. The division into the three groups of sets may be 
effected by setting out the varieties at  random in a cube and taking the sets lying on lines 
parallel to the edges of the cube. The analysis of such arrangements was discussed in(3), 

QUASI-FACTORIAL DESIGNS 

2(P2 + P + 1)  where it was shown that the efficiency factor was 
2p2+5p+ 11 

In  certain cases quasi-Latin squares can be used as the basis of an arrangement of this 
type, for if the varieties be divided into p sets of p 2  varieties in two ways, orthogonal to one 
another, the members of each set can be compared by means of a set of quasi-Latin squares. 
The appropriate division can be effected by taking the sets lying on planes parallel to two 
of the faces of a random cube of the varieties. If sufficient replications are available, the 
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group of sets corresponding to planes parallel to the third face may also be taken, but there 
is little further gain in efficiency. The efficiency factors for the arrangements using two and 

L 

three groupings are - 1 p 2  + p  + 1 and p - 1  p2+p+l  -. -._. 
p + l  p2+p+3 p + 1  p2+p+2& 

respectively. 
Arrangements of this type compare favourably with ordinary three-dimensional quasi- 

factorial arrangements in randomized blocks, for the advantages of Latin square design are 
obtained without any great reduction in the efficiency factor below that of the randomized 
block arrangements. Table X gives the numerical values of the efficiency factors for the 
various types of arrangement for p = 4, 5 and 7. 

Table X. Efficiency factors for  three-dimensional arrangements 

No. of varieties 64 

P Minimum no. of replications, ~4 
two groupings 

Quasi-Latin squares: 
Two groupings 
Three groupings 

Randomized blocks 

0.548 
0.560 
0.667 

125 
5 

6 

0.626 
0.636 
0.721 

343 
7 

8 

0.725 
0.731 
0.792 

Whether these arrangements are likely to be more efficient than the equivalent two-dimen- 
sional arrangements in quasi-Latin squares depends on the additional reduction in variance 
that results from the reduction in size of the Latin squares. 

The estimation of the varietal differences is best carried out in two stages. The quantities 
Q are first calculated for the various sets of quasi-Latin squares, and from them estimates 
of the varietal means are obtained for each grouping. These estimates can then be set out in 
three-way tables (one for each grouping) and an adjusted table prepared in a similar manner 
to that adopted in quasi-factorial designs in randomized blocks. With a similar factorial 
notation to that previously used in (3) the adjusted varietal means tuv, are given by 

turn = k(%w + Yuvw - G.. + 2.v. + Yu.. - Y.V.), 

when the two groups of sets are formed by holding u. and v constant respectively. This formula 
is almost the same as that for two-dimensional quasi-factorial arrangements in randomized 
blocks on p. 433 of (3). I n  the case of three groupings the formula for turn is identical with that 
given on p. 438 for two-dimensional quasi-factorial arrangements in three groups of sets. 

The comparisons between the tuv, are not all of exactly the same precision, the variances 
in the case of two groupings of the differences of two t’s of varieties occurring together in 
two, one or no sets of quasi-Latin squares being 

p+l p+l .p2+1  p+l .p2+2  ~ _ _  
p-1’  p - 1  p2 p - 1  p2 

_ _ _ _  

respectively times the corresponding variance when there are no restrictions and the error 
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mean square is unchanged. Thus even with two groupings the variation in preoision is so 
small that the mean error variance given by the efficiency factor will suffice for all practical 
purposes (except possibly for varieties having both sets of quasi-Latin squares in common). 
In  the case of three groupings the variation in precision will be even smaller. 

The analysis of variance involves no new principle, the procedure to be followed being a 
combination of the ordinary procedure for quasi-Latin squares, and the procedure for 
quasi-factorial arrangements in randomized blocks. 

VI. THE USE OF THE QUASI-LATIN SQUARES PRINCIPLE IN FACTORIAL DESIGN 
‘ 

In  varietal trials we are equally interested in comparisons between every pair of varieties, 
and consequently the aim of the design is to confound all comparisons equally frequently. 
In experiments involving several factors, however, we are usually less concerned with the 
high order interactions than with the effects of single factors and interactions between two 
factors only. We may consequently be prepared to sacrifice some or all of the information on 
one or more of the high order interactions, provided that the efficiency of the remaining 
comparisons is thereby increased. 

If the quasi-Latin square type of design is used for an experiment involving several 
factors, therefore, the condition that every set of degrees of freedom is confounded equally 
may be dispensed with. Instead we may confine the confounding to sets of degrees of freedom 
representing high order interactions, keeping the main effects free from confounding. 

If, for example, instead of sixty-four varieties we have an experiment including all com- 
binations of eight varieties and two levels of each of the three standard fertilizers, i.e. an 
8 x 2 x 2 x 2 factorial design, the treatment degrees of freedom will partition into 

Varieties 7 
Fertilizers 7 
Fertilizers x varieties 49 

If we take the rows and columns of a completely orthogonal set of 8 x 8 squares to represent 
varieties and fertilizers respectively, seven groups of sets of the varietal and treatment 
combinations will be determined by these seven squares. Contrasts between sets of the same 
group will correspond to seven of the 49 degrees of freedom for interaction, the whole seven 
sets accounting for the whole 49 degrees of freedom. Each set of seven degrees of freedom 
will be found to be of the form 

V,. N V,.N.P 
v,. P V , . N . K  V,. N .  P .  K 
Va.K V, .P .K 

where V,, V,, . . . , V, are seven orthogonal degrees of freedom for varieties of the form 
V, = v,+ v2 + v,+ 214 - w g  - v6 - v, - vs, 

etc., V, being given by the “interaction” of V, and V,, etc. 
In  each replication two such sets may be confounded, one with the rows and one with 
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the columns, so that if there are three replications $ of the relative information will be ob- 
tained on 42 of the 49 interaction degrees of freedom, and full information on the remainder. 

A variant of this design is that in which there are only four varieties, so that we have a 
4 x 2 x 2 x 2 factorial design. A single square will then give two complete replications, and 
one set of three degrees of freedom can be confounded with rows and another with columns. 
Sets of the type 

Rows 
V l . N . P  
V , . N . K  
V a . P . K  

Columns 
V , . N . K  
V , . P . K  
V , . N . P  

are possible. I n  this case a single replication will sacrifice all the information on these 
degrees of freedom, the analysis being of the form: 

Rows 
Columns 
Varieties 
Fertilizers 
Unconfounded interactions 15 
Error 24 

Total 63 
- 

This design is derivable from the 8 x 2 x 2 x 2 design by using duplicate varieties. 
A simpler example of the same type of design is provided by the arrangement of a 2 x 2 x 2 

design in two or more 4 x 4 quasi-Latin squares, confounding two interaction degrees of 
freedom, one with rows and one with columns, in each square. The following two squares will 
confound the interactions shown: 

(1) nP nk Pk (1) k nP npk 

Pk nk nP (1) nPk nP k (1) 

npk k p n nk pk  n p 
n p k npk p n pk  nk 

Rows: N . P . K  Rows: N . P  
Columns: P. K Columns : N . K 

Thus with two replications we might sacrifice half the information on each of the inter- 
action degrees of freedom. Alternatively all information on N .  P .  K and P .  K might be 
sacrificed, so as to obtain full precision on N .  P and N .  K .  

Similar designs are possible with factors at three levels. I n  a 3 x 3 x 3 experiment with 
three replications, for instance, we may confound one pair of degrees of freedom for the 
interaction between the three factors with the rows, and a second pair with the columns. 

Partial confounding within the limits of a single square is also possible, provided of 
course that the square comprises more than a single replication. Thus in a 25 design in a 
single 8 x 8 square eight of the ten three-factor interactions, and four of the five four- 
factor interactions, may be partially confounded, one half the relative information being 
obtained on each. 
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In  all such designs it can easily be shown that the randomization of rows and of columns 
provides an unbiased estimate of error. Since, however, the original squares are of a rather 
special type, the designs even after randomization possess certain systematic elements which 
are at  first sight disconcerting. Thus in the 3 x 3 x 3 design the three levels of any one factor 
(or numbers representing the contrasts corresponding to the unconfounded interactions) 
can be brought into the pattern given by Fig. 2 (a),  and a typical pattern after randomization 
is that of Fig. 2 (b ) :  

(4 ( b )  
0 0 0 1 1 1 2 2 2  2 1 0 0 0 1 2 1 2  
0 0 0 1 1 1 2 2 2  1 0 2 2 2 0 1 0 1  
0 0 0 1 1 1 2 2 2  0 2 1 1 1 2 0 2 0  
1 1 1 2 2 2 0 0 0  0 2 1 1 1 2 0 2 0  
1 1 1 2 2 2 0 0 0  1 0 2 2 2 0 1 0 1  
1 1 1 2 2 2 0 0 0  0 2 1 1 1 2 0 2 0  
2 2 2 0 0 0 1 1 1  2 1 0 0 0 1 2 1 2  
2 2 2 0 0 0 1 . 1  1 2 1 0 0 0 1 2 1 2  
2 2 2 0 0 0 1 1 1  1 0 2 2 2 0 1 0 1  

Fig. 2 

It is not, perhaps, very likely that the z distribution will be appreciably disturbed, but it 
would be satisfactory to have confirmation of this point by developing the distribution by 
randomization over zt series of uniformity trials. 

VII. SUMMARY 

The principles of quasi-factorial design are extended so as to enable trials involving a 
number of varieties or treatments which is a perfect square (not g2 or some other numbers, 
however) to be so arranged that differences associated with two groupings of the experi- 
mental material, such as the rows and columns of an agricultural field trial, are simultaneously 
eliminated from the varietal comparisons. 

As a numerical example a quasi-Latin square design for 25 varieties is superimposed on 
the uniformity trial on oranges which was used in a previous paper to illustrate quasi- 
factorial designs in randomized blocks. A gain in efficiency over an arrangement in ordinary 
randomized blocks of 91 per cent resulted, the corresponding gain in a quasi-factorial 
design in randomized blocks (two groupings) being 41 per cent. 

Various other possible applications of the quasi-Latin square principle are briefly 
discussed. 

NOTE ON NOMENCLATURE 

Since the above paper was written, I have provided an alternative and shorter nomen- 
clature for quasi- (or pseudo-) factorial designs, using the term lattice, which enables the 
various types of design to be described very concisely. The following table of equivalents 
will make clear the sense in which the word is used. 

EUGENICS VII, IV 23 
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Two-dimensional quasi-factorial designs in randomized 
blocks : 

In  two equal groups of sets 
I n  two unequal groups of sets 
In  three (equal) groups of sets forming a Latin square 
In  p + 1 (equal) groups of sets 

Three-dimensional quasi-factorial designs in randomized 
blocks: 

In  three equal groups of sets 
In  three unequal groups of sets 

Balanced set of quasi-Latin squares 
Three-dimensional quasi-factorial design in quasi-Latin 

squares 

Lattice or square lattice 
p x q lattice 
Triple lattice 
Balanced lattice 

Cubic lattice or three-dimensional lattice 
p x q x r lattice 
Lattice squares 
Cubic lattice in lattice squares 

The terms quasi-factorial and quasi-Latin square may be usefully retained as general 
descriptive terms. In particular the term quasi-Latin square appears specially appropriate 
for the factorial designs outlined in section VI. Various designs of this latter type have 
been developed in detail in (5). 
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