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Abstract 

Archetypes of land- and socio-ecological systems, generated using unsupervised classification 

methods, enable the assimilation of complex environmental and socio-economic information. Such 

simplification has considerable potential to feed into decision support systems for sustainability 

planning. But, the usefulness of archetypes depends on how well they relate to sustainability criteria, 

such as ecosystem service (ES) delivery, that are external to the input datasets employed for archetype 

generation. Sensitivities in such post-hoc association analyses, and the associated utility of the 

archetype framework in a decision support context, remain unexplored. Here we emulated post-hoc 

association analysis procedures using simulated socio-ecological datasets and ES response variables. 

Our simulations revealed a substantial influence on analysis performance from (1) the number of 

variables used as inputs in archetype generation, (2) the correlation structure of input datasets, (3) the 

type and distribution of input variables, and (4) the functional form (linear or non-linear) 

characterising the relationship between ES variables and their predictors. We observed near-identical 

performance when archetypes were generated using K-means clustering and Self-Organising Maps 

(SOMs) – two commonly used archetype classification methods. Further, better archetype classifier 

performance did not guarantee better discrimination of ES value distributions between archetypes. 

Our results suggest that designing a framework to generate archetypes for sustainability planning, 

and the selected methodological choices therein, should place greater emphasis on what the 

archetypes will be used for in downstream analyses, and not focus solely on archetype classifier 

performance. This would better ensure the identification of archetypes adaptable to a diverse array of 

sustainability indicators and sufficiently robust for monitoring decision outcomes over time. 

Keywords: sustainability planning, decision support, archetypes, ecosystem services, clustering, 

machine learning, curse of dimensionality, collinearity, multi-modal distributions 
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1. Introduction 

Land-system typologies are increasingly being proposed as a way to organise highly dimensional 

datasets, including varied data types in the context of supporting decision making towards 

sustainability goals (Václavík et al., 2013; Oberlack et al., 2019). These typologies, or land-system 

archetypes, capture coupled human-nature interactions, or socio-ecological systems, by identifying 

recurring patterns in variables describing landscapes and/or processes that operate within them 

(Ostrom, 2009; Eisenack, 2012; Oberlack et al., 2016). Dividing a landscape into archetypes usually 

involves unsupervised classification, where classes or archetypes represent parcels of land that share 

similarities in input variable values. The input variables can encode information on fixed (e.g., 

elevation) or easily-modifiable (e.g., land management) properties, and hence, can represent existing 

associations between these variables and indicators of sustainability goals, as well as provide 

information on potential pathways to enhance indicators of interest (van Asselen and Verburg, 2012; 

Cullum et al., 2017; Tieskens et al., 2017; Goodwin et al., 2022). This approach explicitly assumes 

that there may be multiple, context-dependent models of associations between landscape properties 

and indicators of sustainability (Young et al., 2006; Eisenack et al., 2019; Oberlack et al., 2019). 

Hence, it aims to operate at an intermediate level of abstraction, where the pitfalls of gross 

generalisations over a landscape and the highly individual nature of case studies can be overcome 

(Bureau et al., 2012; Frey and Cox, 2015; Cullum et al., 2017; Frey, 2017; Oberlack et al., 2019; 

Pratzer et al., 2024). The simplification of complex data associations and interactions to archetypes 

can serve as a valuable communication tool for stakeholders, while also providing a context-

dependent framework for decision making. However, a degree of information loss is inevitable when 

observations are categorised in this way (Cox, 1957; Steel et al., 2013; Busch, 2021). This may be an 

acceptable trade-off, given the potential of such analyses. Nevertheless, we need to assess how 

methodological choices affect information loss, and how this could be minimised. 

Analyses that develop and/or use land-system and socio-ecological archetypes can broadly be divided 

into three types - descriptive, internal associations, post-hoc associations - depending on how they 

incorporate potential predictor and response variables of a system. Descriptive analyses are where 

variables on land-system properties, or potential predictors, are clustered to form archetypes. Potential 

response variables are not included (or variables are not explicitly identified as responses) in the 

clustering process, though the resulting archetypes form a framework within which response variables 

could be sampled from and analysed at a later stage (Beckmann et al., 2022). For example, Václavík 

et al. (2013) utilised Self-Organising Maps (SOMs) – a popular unsupervised classification algorithm 

in archetype analyses (Lek and Guégan, 2000; Chon, 2011; Levers et al., 2018; Sietz et al., 2019) – 

to develop a schema of 12 global land-system archetypes. These archetypes describe recurring 

patterns across 32 variables capturing properties of land-use, environmental conditions and socio-

ecological factors. SOMs have also been used in more regional analyses, such as the development of 

agri-environmental archetypes for Europe (Beckmann et al., 2022), and non-nested tiered archetypes 

of agricultural systems in Great Britain (Goodwin et al., 2022). The latter provides a multi-layered 

contextual classification of landscape pixels into archetypes. Conceptually similar analyses have also 

been applied to global datasets identifying anthropogenic biomes (Ellis and Ramankutty, 2008; Ellis 

et al., 2010), as well as to track changes in the spatial configuration of archetypes, and land-use 

intensity within archetypes over time (Ellis et al., 2010; Levers et al., 2018; Mengxue et al., 2022). 

Internal association analyses are where potential predictor variables, and one or more response 

variables of interest are classified into archetypes that represent recurring patterns in the distribution 
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of predictors and responses. The co-occurring patterns in the distributions are then used to infer 

associations between responses and archetypes, and implicitly to the predictor variables that 

characterise each archetype. This thematic classification allows for inferences on where and which 

management strategies co-occur positively with improving sustainability indicators, identify regions 

that are vulnerable, and hence, where transfer of strategies would result in desirable outcomes (e.g., 

Václavík et al., 2016; Sietz et al., 2017; Rocha et al., 2020; Obringer and White, 2023). 

The third analysis type we term post-hoc association analysis, where archetypes of land-systems are 

formulated as in descriptive analyses (type 1), and response variables of interest are then associated 

with the archetypes. There can be varied approaches to linking responses to archetypes, including 

simple spatial intersections (Adenle and Ifejika Speranza, 2021), multiple regression approaches 

(Nair et al., 2016) and by combining classification of multiple predictors and responses (Oh et al., 

2007; Tison et al., 2007). Post-hoc association analyses constitute an extension of descriptive analyses 

(type 1) and differ from internal association analyses (type 2) in that response variables remain 

external to data processing that defines the archetypes. This feature provides an important advantage 

in a decision support system, as responses of interest could change over time, either due to availability 

of improved datasets (Nguyen et al., 2022), new or improved ways of measuring responses of interest 

(Johnson et al., 2021; Lynggaard et al., 2024), or identification of new priorities and trade-offs as 

sustainability science and our understanding of ecosystems improve. Incorporating modified or new 

response variables within post-hoc association analyses would not require the redefinition of 

archetypes that is likely required with internal associations analyses. 

While descriptive and internal association analysis methods can benefit from guidelines to objectively 

assess validity (Piemontese et al., 2022), methodological sensitivities that could impact on the 

usefulness of post-hoc associations analyses remain unexplored. The characteristics of input datasets, 

such as the number and type of variables, along with the nature of inter-variable relationships, are 

well-established determinants of statistical model and classifier behaviour (Kiang, 2003; Li and Lin, 

2014; Petitpierre et al., 2017), and could influence the analytical performance of archetype analyses. 

Here, we use simulations to investigate the sensitivities of archetype analysis in detecting post-hoc 

associations between sustainability indicators and archetypes. Specifically, we generated datasets of 

predictors and responses (emulating ecosystem services; ESs) to explore how commonly used 

methods to derive archetypes (K-means clustering and SOMs), the structure of the input data (number 

of variables, correlation structure and variable types) and the nature of the relationship between ESs 

and their driver variables (linear and non-linear) influence the potential to detect differences in 

sustainability indicators between archetypes. 

 

2. Methods 

The broad logic of the simulations was as follows: we simulated input datasets of 10,000 observations 

(rows) comprising multiple variables or columns. These represented data structures that researchers 

might ordinarily assemble to study a landscape, i.e., by compiling environmental, land-use, land 

management and socio-economic variables. Though our simulations were not spatially explicit, one 

could consider each observation in the input dataset as a pixel in the landscape. We then assigned 

each observation an ES value by simulating a deterministic relationship (perfectly predicted, and 

without error) with a single variable within the input dataset. While a real-world ES likely involves 

multiple predictors, this simplification allowed us to embed a strong, noise-free signal within the data. 
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The extent to which subsequent analysis recovered this embedded signal could then be used as a 

metric to assess its analytical performance. As we find, there are numerous challenges when detecting 

this simple signal. Hence, introducing further complexity within simulations (e.g., multiple predictors 

for a single ES, multiple ESs, etc.) would not be useful for the purpose of this study. 

The input dataset (excluding the simulated ES) was then subjected to unsupervised classification to 

generate a pre-determined number of archetypes using SOMs or K-means clustering. This resulted in 

each observation being assigned an archetype identity. For each observation in the input dataset, the 

Euclidean distance to its assigned archetype centroid (cluster centroid) was computed. The median 

distance of observations to their respective archetype centroid provides a simple measure of how well 

the classifier performed in identifying distinct archetypes (Wehrens and Buydens, 2007; Václavík et 

al., 2013), where larger values indicate poorer performance. To determine the extent to which 

differences in simulated ES values could be detected between archetypes, ES values were sub-setted 

by archetype identity, and descriptors of ES distributions within archetypes were computed. 

Specifically, we estimated the first (Q1) and third (Q3) quartiles of within-archetype ES value 

distributions. Pairwise comparisons of ES inter-quartile ranges between archetypes were performed 

to estimate a ‘detectability’ score (as a proportion). For example, if observations in the input dataset 

were classified into eight archetypes, then ES values (one value for every observation) could be sub-

setted into eight distributions. There are 28 possible ways of comparing pairs of the eight 

distributions, and detectability represented the proportion of these 28 pairwise comparisons where ES 

inter-quartile ranges did not overlap. 

We modified properties of the input dataset, the nature of ES-input variable relationships and 

archetype generation parameters to explore the sensitivities in identifying post-hoc associations 

between archetypes and ESs. As the number of possible modifications and their combinations were 

exceedingly large, we partially stratified simulations into four sets (Table 1). All simulations and 

analyses were run using R version 4.2 (R Core Team, 2023) and a detailed description of the 

simulation design for each set is as follows: 

 

2.1. Set 1 – effects of number of input variables, number of archetypes and 

classification method 

Set 1 simulations investigate the influence of increasing the number of variables in an input dataset, 

the number of archetypes the dataset is classified into and classification methodology on the 

detectability of post-hoc associations between archetypes and ESs. We simulated input datasets with 

differing numbers of variables (eight levels of dataset size: 4, 8, 12, 16, 24, 32, 48 and 64 variables). 

The datasets were generated using the R package faux (version 1.2.1; DeBruine, 2023), such that each 

variable was normally distributed (mean = 0; standard deviation = 1), and none of the variables were 

correlated to each other (correlation coefficients were empirically forced to zero). One variable in 

each dataset was used to define a simulated ES using a linear, exponential or beta function (see below 

– ES functions). We classified the observations of the input dataset into different numbers of 

archetypes (nine levels for number of archetypes: 8, 9, 10, 12, 14, 15, 16, 18 and 20 archetypes) using 

SOMs (R package kohonen (version 3.0.12; Wehrens and Kruisselbrink, 2018)) and K-means 

clustering. Constructing SOMs for a given number of archetypes requires users to specify a grid 
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topology. We used all possible rectangular representations of grid topologies for our candidate number 

of archetypes (e.g., for eight archetypes we used all four possible grid topologies 1x8, 2x4, 4x2, 8x1; 

for 12 archetypes we used all six possible grid topologies 1x12, 2x6, 3x4, 4x3, 6x2, 12x1). For the 

nine treatment levels of number of archetypes, this corresponded to 42 ‘number of archetype x grid 

topology’ configurations for SOMs, and nine K-means clustering scenarios. Fifty replicate datasets 

were generated for each dataset size (i.e., 400 datasets across eight levels of dataset size). Each dataset 

was used to simulate ES values using the three functional forms. Datasets were then processed to 

generate differing number of archetypes (nine levels) using the 51 clustering scenarios (42 SOM 

scenarios + nine K-means scenarios). 

 

2.2. Set 2 – effects of correlated input variables 

Here, simulations investigated the influence of correlation structure within input datasets on the 

detectability of post-hoc associations between archetypes and ESs. Datasets of four different sizes 

were generated (dataset size levels: 8, 16, 32 and 64 variables). In contrast to datasets generated in 

set 1 simulations, a subset of variables within datasets here were correlated at two different levels 

(correlation levels: Pearson’s correlation coefficients of 0.3 and 0.8). Simulated datasets with eight 

variables included 2, 4 or 6 correlated variables; datasets with 16 variables included 2, 4, 6, 8 or 12 

correlated variables; datasets with 32 variables included 2, 4, 6, 8, 12, 16 or 24 correlated variables 

and datasets with 64 variables included 2, 4, 6, 8, 12, 16, 24, 32 or 48 correlated variables. In each 

dataset, correlated variables shared the same correlation coefficient, e.g., in a simulated dataset of 16 

variables with four correlated variables, all four shared the same correlation coefficient with each 

other (0.3 or 0.8), and correlation coefficients of uncorrelated variables in the dataset were empirically 

forced to zero. This design provides treatment combinations to disentangle the influence of the 

number and proportion of correlated variables on detectability. Further, corresponding dataset size 

levels from set 1 simulations, where all variables within input datasets were uncorrelated, serve as a 

control to assess the overall effect of introducing correlation structure into input datasets. 

As with set 1 simulations, ES values were generated (using linear, exponential or beta functions) as a 

function of one input variable within the dataset. However, we introduced two treatments here, where 

the ES predictor variable was either a member or a non-member of the correlated subset of variables 

within the input dataset (i.e., two membership levels: inclusive and exclusive). To economise on 

computation time, we reduced the number of archetypes that input datasets were classified into to 

three levels (8, 12 and 20 archetypes). Again, archetypes were generated using SOMs (using all 

possible rectangular grid configurations given the number of required archetypes) and K-means 

clustering. We generated 50 datasets of each combination of [(dataset size-number of correlated 

variables) x correlation level x membership level] {i.e., 50 x [(24) x 2 x 2] = 4800 datasets}. Datasets 

were then processed to generate differing number of archetypes (three levels) using the 19 clustering 

scenarios (16 SOM scenarios + three K-means scenarios). 
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2.3. Set 3 – effects of bounded input variables 

Bounded variables are frequently encountered in ecological datasets, e.g., when classes of land-use 

and land-cover datasets at finer resolutions than the target analysis resolution are coarsened to percent 

or proportion cover within pixels, or when composition of soil is expressed as percentages. To assess 

the influence of such variables on the detectability of archetype-ES associations, we generated 

datasets – using the same methodology as used in set 1 simulations – of four different sizes (dataset 

size levels: 8, 16, 32 and 64 variables), where all variables were uncorrelated. We then truncated the 

distributions of a subset of variables in each dataset to generate bounded distributions with 

symmetrical peaks at the ends of the distribution. We varied the number of variables within datasets 

with such distributions, such that datasets with eight variables included 2, 4 or 6 bounded variables; 

datasets with 16 variables included 2, 4, 6, 8 or 12 bounded variables; datasets with 32 variables 

included 2, 4, 6, 8, 12, 16 or 24 bounded variables and datasets with 64 variables included 2, 4, 6, 8, 

12, 16, 24, 32 or 48 bounded variables. As with set 2 simulations, this design allowed us to isolate the 

influence of the number and proportion of bounded variables on detectability, and corresponding 

dataset size levels from set 1 simulations acted as controls to assess the overall effect of incorporating 

bounded variables into input datasets. When generating ES values for each dataset, we restricted the 

deterministic predictor variables to only those which did not have bounded distributions. Similar to 

set 2 simulations, input datasets were only classified at three levels (8, 12 and 20 archetypes) using 

SOMs (and all possible rectangular grid configurations for a given number of required archetypes) 

and K-means clustering. We generated 50 replicate datasets for each ‘dataset size-number of bounded 

variables’ combination (i.e., 50 x 24 = 1200 datasets). Datasets were then processed to generate 

differing number of archetypes (three levels) using the 19 clustering scenarios (16 SOM scenarios + 

three K-means scenarios). 

 

2.4. Set 4 – effects of multi-modal input variables 

Variables with multi-modal distributions within a study landscape could arise through various 

mechanisms, such as when study landscapes contain geographic discontinuities or barriers. To assess 

the sensitivity of archetype-ES associations to such variables, we generated datasets of four different 

sizes (dataset size levels: 8, 16, 32 and 64 variables) using the same methodology as in set 1 

simulations. We then replaced subsets of variables with trimodal distributions containing symmetrical 

peaks. Each of these variables were simulated by appending random values drawn from normal 

distributions with means of -2, 0 and 2, and standard deviations of 0.5 resulting in data ranges similar 

to the remaining unaltered variables within the simulated dataset. The values of each trimodal variable 

were randomised to break any correlation structure that may have been inadvertently generated. 

Datasets with eight variables included 2, 4 or 6 trimodal variables; datasets with 16 variables included 

2, 4, 6, 8 or 12 trimodal variables; datasets with 32 variables included 2, 4, 6, 8, 12, 16 or 24 trimodal 

variables and datasets with 64 variables included 2, 4, 6, 8, 12, 16, 24, 32 or 48 trimodal variables. 

We restricted our simulations to only include trimodal variables for simplicity as there are countless 

variations that could have been simulated. As with set 2 simulations, we generated ES values (using 

linear, exponential and beta functions) along two ‘membership’ treatments, where the ES predictor 

was either a unimodal (exclusive treatment) or trimodal variable (inclusive treatment) within the input 

dataset. Input datasets were then classified into to three levels of number of archetypes (8, 12 and 20 
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archetypes) using SOMs (and all possible rectangular grid configurations for a given number of 

required archetypes) and K-means clustering. We generated 50 replicate datasets for each 

combination of [(dataset size-number of trimodal variables) x membership level] {i.e., 50 x [(24) x 

2] = 2400 datasets}. Datasets were then processed to generate differing number of archetypes (three 

levels) using the 19 clustering scenarios (16 SOM scenarios + three K-means scenarios). 

 

ES functions and parameter values used 

𝐸𝑆𝑙𝑖𝑛𝑒𝑎𝑟 = 𝑎 + 𝛽𝑥 

Where: 

a = 10 

β = 10  

x = predictor variable value 

 

 

 

𝐸𝑆𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 = 𝑒𝛽𝑥 

Where: 

β = 0.5  

x = predictor variable value 

 

 

𝐸𝑆𝑏𝑒𝑡𝑎 = [(
𝑥𝑚𝑎𝑥 − 𝑥

𝑥𝑚𝑎𝑥 − 𝑥𝑜𝑝𝑡
)(

𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑜𝑝𝑡 − 𝑥𝑚𝑖𝑛
)]

(
𝑥𝑜𝑝𝑡−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑜𝑝𝑡
)

 

Where: 

xmax = 7 

xmin = -5 

xopt = 2  

x = predictor variable value 
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Table 1. Summary of simulation sets identifying objectives of each set and ‘treatment’ applied. Detailed description of the methodology for generating each simulation 

set, including the choice of parameter values, is provided in the Methods sections 2.1 to 2.4. 

Simulation 
set 

Objective 
No. input 
variables 

No. correlated 
input 

variables† 

Correlation 
coefficient 

between inputs 
variables‡ 

No. bounded 
input 

variables† 

No. multi-
modal input 
variables† 

No. archetypes 
generated 

Archetype 
classification 

method 

Functional 
form of ES-

predictor 
relationship 

1 
Influence of number 

of input variables 
4, 8, 12, 16, 

24, 32, 48, 64 
0 ≈ 0 0 0 

8, 9, 10, 12, 
14, 15, 16, 18, 

20 

SOMs§, 
K-means 

Linear, 
Exponential, 

Beta 

2 
Influence of 

correlation structure 
in input variables* 

8, 16, 32, 64 
2, 4, 6, 8, 12, 
16, 24, 32, 48 

0.3, 0.8 0 0 8, 12, 20 

3 
Influence of 

bounded input 
variable distribution 

8, 16, 32, 64 0 ≈ 0 
2, 4, 6, 8, 12, 
16, 24, 32, 48 

0 8, 12, 20 

4 

Influence of multi-
modal input 

variable 
distribution** 

8, 16, 32, 64 0 ≈ 0 0 
2, 4, 6, 8, 12, 
16, 24, 32, 48 

8, 12, 20 

* Simulations were run twice representing cases where the predictor variable of the simulated ES was correlated with other input variables (inclusive treatment) or 

uncorrelated with other input variables (exclusive treatment). 

** Simulations were run twice representing cases where the predictor variable of the simulated ES had a multi-modal distribution (inclusive treatment) or a unimodal 

distribution (exclusive treatment). 

† The selected levels generated a gradient of proportion of input variables that were correlated (set 2), bounded (set 3) or multi-modal (set 4). This was to disentangle the 

influence of the number and proportion of input variables that were correlated, bounded or multi-modal on detectability of ES-archetype associations. 

‡ For simulation set 1, correlation between input variables was empirically held at 0. For sets 3 and 4, processes to simulate bounded and multi-modal variables could 

introduce non-zero correlation coefficients between variables (always < 0.03).  

§ A grid topology needs to be specified when clustering data into archetypes using SOMs. All possible two-dimensional grid topologies were generated for a required number 

of archetypes in the simulations. For example, if the treatment required the generation of 12 archetypes, these were generated using 1x12, 2x6, 3x4, 4x3, 6x2 and 12x1 

grid topologies. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.08.01.606212doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.01.606212
http://creativecommons.org/licenses/by/4.0/


9 of 22 
 

3. Results 

Our design generated 10,800 unique treatment combinations. Due to its size, we identify key 

findings below, and present a complete set of summary metrics for each treatment combination 

in supplementary file SF1. 

 

3.1. Set 1 – Influence of number of input variables 

Simulations from set 1 (where all input variables were uncorrelated; see Table 1) showed that 

detectability of differences in a simulated ES between archetypes declined with an increase in 

the number of variables within the input dataset used to derive the archetypes (Fig 1a, b). 

Detectability was similar regardless of archetypes being derived using SOMs (and all grid 

topologies for a given number of archetypes) or K-means clustering. Clustering performance 

also showed no difference between the two methods, as the increase in median distance to 

archetype centroids with number of input variables was similar for both methods 

(Supplementary Fig S1). Loss of detectability was partially mitigated if a greater number of 

archetypes were generated. For example, detectability was greater when we generated 20 (Fig 

1b) compared to eight archetypes (Fig 1a). Also, detectability tended towards zero with a 

greater number of input variables (> 32 variables) for 20 archetypes compared to > 16 variables 

for 8 archetypes. Unsurprisingly, the functional form of the relationship between the simulated 

ES and input variable modified detectability. The linear relationship showed greater 

detectability, and while the exponential relationship (representing a weak non-linearity) 

showed no difference in detectability (not shown), the beta relationship (Fig 1c and 1d) showed 

reduced detectability compared to the linear relationship (Fig 1a and 1b). 

 

3.2. Set 2 – Influence of correlation structure in input variables 

Correlated variables within datasets (simulation set 2) had a substantial, yet nuanced, influence 

on detectability depending on the strength of the correlations, the number and proportion of 

correlated variables, and if the ES driver variable was amongst the subset of correlated 

variables. As with set 1 simulations, detectability improved when a greater number of 

archetypes were generated, declined with a non-linear relationship between ES and input 

variables, and was not influenced by methodology used (SOM or K-means) to develop 

archetypes. For clarity, we used the case of 20 archetypes generated using K-means clustering 

to illustrate key findings in Fig 2. When there were weak correlations between input variables 

(Fig 2a) detectability improved in datasets where over half the variables were correlated with 

each other, but then diminished as dataset size (number of variables) increased. When the 

dataset contained weak correlations, and when the ES driver variable was amongst the 

correlated variables (inclusive correlations), detectability also reduced with an increase in 

dataset size, but consistently remained higher compared to datasets with no correlations. Where 

correlations between input variables were strong (Fig 2b), detectability in exclusive datasets 

(i.e., where the ES driver variable was not correlated with other input variables) was further 
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improved when half or more of the variables were correlated, and again, reduced with an 

increase in dataset size. With inclusive correlations, detectability was substantially higher 

compared to uncorrelated datasets and datasets with weak correlations. The effect of input 

dataset correlation structure on detectability was strongly influenced by the interaction between 

the number of correlated variables and the proportion of variables they comprised within the 

input dataset. When considering inclusive correlations, detectability increased as fewer 

variables accounted for a greater proportion of correlated variables within datasets 

(Supplementary Fig S2). 

 

 

 

Fig 1. Change in detectability of differences in ecosystem service (ES) values between archetypes 

generated using an increasing number of input variables. These results are for simulation set 1 (see 

Table 1) where input variables were not correlated with each other. (a, c) Eight archetypes were 

generated using all four possible grid topology configurations of Self-Organising Maps (SOMs) or K-

means clustering. (b, d) Twenty archetypes were generated using all six possible grid topology 

configurations of SOMs or K-means clustering. A linear relationship with one variable in the input 

dataset was used to simulate ES values in (a) and (b), and a beta function was used in (c) and (d). 

Points represent median detectability from 50 replicates, and vertical lines represent detectability 

inter-quartile ranges (IQR). 

 

 

(a) (b)

(c) (d)
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Fig 2. Influence of correlations between input variables (simulation set 2) on detectability of 

differences in ecosystem service (ES) values between archetypes. This example illustrates results 

from simulations where 20 archetypes were generated using K-means clustering, where input dataset 

variables shared (a) weak, and (b) strong correlations with each other. The ES values were simulated 

using a linear relationship with the predictor variable. Open circles represent detectability when none 

of the input variables were correlated. Filled circles represent simulations where the ES predictor 

variable was not correlated with other variables in the input dataset (exclusive correlations treatment). 

Filled squares represent simulations where the ES driver variable was correlated with other variables 

in the input dataset (inclusive correlations treatment). Each point is the computed median detectability 

from 50 replicate simulations, and vertical lines represent detectability inter-quartile ranges (IQR). 

 

 

3.3. Set 3 – Influence of input variables with bounded distributions 

Detectability increased as input datasets comprised increasing proportions of bounded 

variables (simulation set 3; Fig 3). However, the magnitude of this improvement declined as 

dataset size increased, such that improved detectability in datasets with a large number of 

variables was only apparent when over a quarter of the dataset comprised bounded variables. 

Our simulations also suggest that detectability was influenced by the interaction between the 

number and proportion of variables within a dataset that show bounded distributions 

(Supplementary Fig S3). Similar to results for simulations in sets 1 and 2, detectability 

improved when a greater number of archetypes were generated, declined for non-linear 

relationships between ES and input variables, and was not influenced by methodology used to 

develop archetypes. 

 

 

(a) (b)
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Fig 3. Effect of including input variables with bounded distributions (simulation set 3) on detectability 

of differences in ecosystem service (ES) values between archetypes. This example illustrates results 

from simulations where 20 archetypes were generated using K-means clustering. The ES values were 

simulated using a linear relationship with the predictor variable. Each point is the computed median 

detectability from 50 replicate simulations, and vertical lines represent detectability inter-quartile 

ranges (IQR). 

 

 

3.4. Set 4 – Influence of input variables with multi-modal distributions 

Inclusion of variables with multi-modal distributions (simulation set 4) had a strong influence 

on detectability, which displayed very high sensitivity to whether the ES predictor variable was 

multi-modal (inclusive treatment) or not (exclusive treatment). Small and large datasets 

containing even a few exclusive multi-modal variables showed large declines in, or no 

detectability (Fig 4). Datasets containing inclusive multi-modal variables showed substantial 

increases in detectability. However, detectability in these cases declined as the datasets 

included an increasing number of multi-modal variables. This decline in detectability was 

largely driven by the increasing number of multi-modal variables in datasets, though the 

interaction between the number and proportion of such variables does influence detectability 

when considering small datasets with very few multi-modal variables (Supplementary Fig. S4). 

Consistent with results from other simulation sets, detectability declined with increasing 

dataset sizes, improved where greater number of archetypes were generated, declined for non-

linear relationships between ES and input variables, and was not influenced by methodology 

used to develop archetypes. 
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Fig 4. Effect of including input variables with multi-modal distributions (simulation set 4) on 

detectability of differences in ecosystem service (ES) values between archetypes. The results are 

illustrative of simulations where 20 archetypes were generated using K-means clustering. The ES 

values were simulated using a linear relationship with the predictor variable. Simulations where there 

were no multi-modal variables in the input dataset are represented by open circles. Filled circles 

represent simulations where multi-modal variables were included, but the ES predictor variable had a 

unimodal distribution. Filled squares indicate simulations where the ES predictor variable also 

showed a multi-modal distribution. Each point is the computed median detectability from 50 replicate 

simulations, and vertical lines represent detectability inter-quartile ranges (IQR). 

 

 

3.5. Relating archetype classifier performance and ES-archetype detectability 

score 

Compiling results across all simulations, we observed large variation around a general negative 

relationship between distance of observations to their assigned archetype centroid (a simple 

measure of how well the classifier performed in identifying archetypes) and detectability. For 

example, if we considered all simulations where archetypes were generated using K-means 

clustering and the simulated ES was a linear function (Fig 5) we observed very high, as well 

as very low detectability across a range of median distances to archetype centroids. Exceptions 

to this were when distances were either very low (showing relatively high detectability) or very 

large (no detectability), which might drive the overall negative relationship. However, the 

composition of input dataset variables (correlation structure and variable types) could 

substantially influence detectability (Supplementary Fig S5). Hence, we conclude that better 

archetype classifier performance may be a poor predictor of detectability. 
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Fig 5. Change in detectability with increasing distance of observations to archetype centroids. Points 

represent median distances (50 replicates) from all simulations where ES values were simulated as a 

linear function of a predictor variable, and archetypes were generated using K-means clustering. See 

Supplementary Fig S5 for a detailed interpretation and decomposition by treatments. 

 

4. Discussion 

One of the clearest and most consistent observations in our simulations was that detectability 

of differences in ES values between archetypes declined with an increase in the number of 

variables in the input dataset. This result could represent an extension of what has been termed 

as the ‘curse of dimensionality’ (Bellman, 1957, 1961; Chandrasekaran and Jain, 1974; Trunk, 

1979; Topchy and Punch, 2003; Gorban and Tyukin, 2018; Zollanvari, James and Sameni, 

2020) – a commonly encountered challenge in machine learning and classification tasks. It 

describes the phenomenon where classification performance tends to decline as the number of 

variables within the dataset being classified becomes large and is a consequence of a fixed 

number of observations being distributed within an increasingly multi-dimensional volume 

determined by the number of input variables. In our simulations this manifests as an increase 

in the distance of observations to archetype centroids as the number of variables in datasets 

increase. In practical terms, larger distances between observations and archetype centres imply 

that, as the number of input variables increase, the archetype centroid becomes increasingly 

unrepresentative of the observations assigned to an archetype. Additionally, the contribution of 

the ES predictor variable to demarcating archetypes gets diluted by the large number of 

unrelated variables, resulting in lower detectability. One potential approach for mitigating the 

curse of dimensionality would require a disproportionate increase in the number of 

observations in a dataset to accommodate the increases in number of dataset variables. In socio-

ecological archetype analyses this translates to the collation of datasets at finer spatial 

resolutions or increasing the extent of the study area to include more observations. Neither of 

these are feasible solutions given the general constraints of data availability for such analyses, 
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and the fixed spatial extents over which analyses are required. Hence, while archetype analysis 

excels at distilling the complexity of data with many variables, post-hoc association analyses 

would see improved performance with a relatively restricted set of carefully chosen variables. 

The correlation structure of the dataset, i.e., the relationships between input variables, can play 

an important role in mitigating the loss of detectability we observe with increasing dataset sizes. 

In general, our simulations show that an improvement in detectability can be expected when 

the ES predictor variable is correlated with other variables in the input dataset (inclusive 

correlation treatment). Detectability further improves as the proportion of correlated variables 

and strength of correlations increase. Even in simulations where the ES predictor variable was 

not amongst the correlated subset of variables (exclusive correlations), detectability could 

improve, but only if the input dataset comprised fewer variables. The case for fewer variables 

is also reinforced if we consider datasets where input variables were weakly correlated. Here, 

benefits of correlations between variables were influential when fewer correlated variables 

made up larger proportions of the input dataset. Filtering out correlated variables in datasets 

(e.g., by retaining only one from a pair of correlated variables) is a common pre-processing 

step in archetype analyses (Václavík et al., 2016; Rocha et al., 2020; Beckmann et al., 2022; 

Goodwin et al., 2022; Obringer and White, 2023), justified by the need to reduce collinearity 

in the data. Variables are screened using correlation coefficient thresholds, which differ 

between studies (Feng et al., 2019). However, archetype analyses strive to identify patterns of 

association in the data, rather than to ascribe causality or parametrise causal relationships where 

collinearity in the data can be an obstacle to interpretation (Dormann et al., 2013; Feng et al., 

2019). Hence, post-hoc association analyses of archetypes may not be as sensitive to issues of 

collinearity, and our simulation results suggest liberal criteria (i.e., high correlation coefficient 

thresholds) could be employed to improve performance. The decision process to 

include/exclude correlated variables, and the thresholds to use can seem subjective, requiring 

a pragmatic approach. For example, in the identification of European agri-environmental 

archetypes, Beckmann et al. (2022) justified retaining highly correlated soil compositional 

variables, as well as elevation and terrain indices due to their established influence on 

ecosystem processes. Such an approach represents the continued use of expert domain 

knowledge throughout the process of developing archetypes, and is accepted as an important 

strategy to improve classifier performance and downstream application (Wardropper et al., 

2016; Oberlack et al., 2019; Wicki et al., 2023; Pratzer et al., 2024). 

Evaluating the influence of variables with non-unimodal distributions on classification of 

socio-ecological data and further downstream analyses is relatively unexplored. This is 

unexpected given the ubiquity of such variables (also binary, nominal and ordinal variables) in 

ecological datasets. Variables exhibiting bounded distributions—a special case of bimodal 

distributions truncated within a range—include any that can be expressed as a percentage or 

proportion. Hence, they encompass a diverse set of socio-ecological variables, such as, 

percentage composition of soil, the proportion of distinct land-cover types aggregated at 

specific (coarser) spatial resolutions, demographic composition, the contribution of specific 

economic activities to income generation, etc. Variables displaying multi-modal distributions, 

represented in our simulations as variables with three distinct modes, could emerge in 

ecological datasets as consequences of sharp geographic discontinuities or boundaries. An 
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illustrative example is the occurrence of abrupt changes in bedrock material over short 

distances, with knock-on effects on other ecologically relevant variables (Hahm et al., 2014; 

Augusto et al., 2017; Callahan et al., 2022). Our simulations demonstrated that the inclusion 

of bounded variables can provide a net increase in detectability as the proportion of bounded 

variables within a dataset increase, especially if the total number of input variables is restricted. 

However, incorporating variables with multi-modal distributions in post-hoc association 

analyses can lead to erratic outcomes. Detectability of differences in ES-archetype associations 

improves only when the ES predictor variable also exhibits a multi-modal distribution (i.e., 

inclusive treatment), and when the total number of multi-modal variables in the dataset is low. 

Detectability substantially declines if the ES predictor is not itself a multi-modal variable (i.e., 

exclusive treatment). It is important to note that post-hoc association analyses assume that 

archetypes are generated with little-to-no prior knowledge of the ESs that will be used 

downstream. Consequently, the inclusion of multi-modal variables in the input dataset poses a 

risk to the usefulness of the archetypes that will be subsequently generated. 

As anticipated, we observed reduced detectability when ES-predictor relationships showed 

strong non-linearity compared to linear and weakly non-linear relationships. Detectability 

between linear and weakly non-linear relationships did not differ. Conversely, we noted that 

detectability increased as we increased the number of archetypes generated from input datasets. 

This is an expected outcome as generating more archetypes partitions the data space into a 

greater number of classes, thereby, reducing within-class variability. While finding an objective 

answer to if, and how many clusters exist within a dataset remains a challenge (Kaufman and 

Rousseeuw, 2009; Eisenack et al., 2019; Sietz et al., 2019; Rocha et al., 2020; Wicki et al., 

2023), it is crucial to stress that increasing the number of generated archetypes to enhance 

performance of post-hoc associations analyses would be counterproductive. Meaningful 

improvements in detectability would require the generation of a very large number of additional 

archetypes, compromising a key strength of archetype analyses – the reduction of dataset 

complexity, which is important for decision support and effectively communicating decision 

making frameworks to stakeholders. In our simulations we generated a maximum of 20 

archetypes, which falls within the reported range of studies reviewed by Oberlack et al. (2019). 

We explored two methods for classifying input datasets into archetypes: K-means clustering 

and SOMs. Notably, these methods exhibited virtually identical performance, and detectability 

did not differ between the various grid configurations within SOMs for a given number of 

required archetypes. Furthermore, while a general negative relationship between detectability 

and the distance of observations from archetype centroids exists, there is also substantial 

variability around this relationship. This underscores that for a given real-world dataset, the 

methodological efforts to identify effective archetypes do not guarantee superior performance 

in post-hoc association analyses. In other words, good archetypes can exhibit poor associations 

with ESs, while seemingly less effective archetypes can exhibit strong associations. 

Consequently, our findings suggest that efforts to fine-tune and choose between these two 

common archetype classification methods may not be the most productive approach. Instead, 

a greater focus should be on establishing criteria for identifying a limited (suitable) set of input 

variables with specific desirable characteristics (e.g., correlation structure, types of 

distributions), from which archetypes can be derived to provide greater utility in subsequent 
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analyses. This approach would involve three steps. First, a thorough consultation with 

stakeholders and potential end-users to identify ESs of interest, and crucially, to define 

acceptable minimum levels of detectability. Second, the collation of data for a comprehensive 

set of potential ES predictor variables that incorporates expertise of domain specialists. Lastly, 

selecting a subset of these variables as inputs to generate archetypes. In this final step simulated 

ES variables could be used in conjunction with observed ES variables, if available. Variable 

selection could follow the procedures presented in this study or broadly adhere to principles of 

feature extraction (Hilario and Kalousis, 2008; Reddy et al., 2020; Tsai, Baldwin and Gopaluni, 

2021), that can improve the performance of machine learning models. 

 

5. Conclusion 

The formulation of socio-ecological archetypes intended to have a general utility for decision 

making against multiple sustainability indicators now, and in the future, would be a powerful 

tool. However, this approach assumes that sustainability metrics can be partitioned by 

archetype identity into distinct value distributions. Our simulations identify constraints to this 

assumption, highlight key challenges in linking archetypes to sustainability metrics in post-hoc 

analyses, and suggest options for mitigation. We argue that rather than focussing on classifier 

performance, methodological choices should equally prioritise how the generated archetypes 

may relate to sustainability indicators in subsequent analyses, even when the indicators are 

unknown at the outset. The usability of the archetype framework for decision support could be 

enhanced by (1) limiting the number of input variables when classifying archetypes (reducing 

the curse of dimensionality); (2) using liberal correlation coefficient thresholds when selecting 

input variables (due to low sensitivity to collinearity); (3) avoiding the generation of a large 

number of archetypes (only provides marginal improvement in analytical performance); and 

(4) identifying the presence and influence of bounded and multi-modal input variables on 

down-stream analyses (can lead to erratic outcomes). The resulting archetypes would also be 

more adaptable to shifts in response variables of interest. This, in turn, ensures the consistency 

of the generated archetypes, which is important for stakeholder confidence in a decision 

support tool, as well as for monitoring decision outcomes that unfold over extended time 

horizons. Future research should explore methods, such as fuzzy archetype classification (Rao 

and Srinivas, 2006; Cullum et al., 2017; Eisenack et al., 2019), to mitigate the limitations of 

discrete archetypes and leverage, rather than lose, information on within-archetype variation. 

Such an approach could offer a more flexible decision support framework, capable of tackling 

sustainability challenges at both coarse and fine scales. 

 

Code availability 

Code to run simulations and analyses are available on request from the corresponding author 

(VV). 
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