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ABSTRACT
Spatial information, inferred from samples, is needed for decision-
making, but is uncertain. One way to convey uncertain informa-
tion is with probabilities (e.g. that a value falls below a critical
threshold). We examined how different professional groups (agri-
cultural scientists or health and nutrition experts) interpret infor-
mation, presented this way, when making a decision about
interventions to address human selenium (Se) deficiency. The
information provided was a map, either of the probability that Se
concentration in local staple grain falls below a nutritionally-sig-
nificant threshold (negative framing) or of the probability that
grain Se concentration is above the threshold (positive framing).
There was evidence for an effect of professional group and of
framing on the decision process. Negative framing led to more
conservative decisions; intervention was recommended at a
smaller probability that the grain Se is inadequate than if the
question were framed positively, and the decisions were more
comparable between professional groups under negative framing.
Our results show the importance of framing in probabilistic pre-
sentations of uncertainty, and of the background of the inter-
preter. Our experimental approach could be used to elicit
threshold probabilities which represent the preferences of stake-
holder communities to support them in the interpretation of
uncertain information.
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1. Introduction

1.1. The problem

There is increasing awareness that, while much progress has been made to address
malnutrition with respect to energy and protein supply, micronutrients (such as zinc,
iron, iodine and selenium) may remain deficient among populations of many countries
(Ligowe et al. 2020). This micronutrient deficiency (MND) or ‘hidden hunger’ has impli-
cations for human health, growth and cognitive function. In the GeoNutrition project,
funded by the Bill and Melinda Gates Foundation, micronutrient studies in soil, crops
and the human population are being conducted in Malawi and Ethiopia (Gashu et al.
2020, 2021). There is interest in how MND problems may vary spatially due to vari-
ation in soil and other environmental conditions. If this occurs, then interventions
might be more effectively targeted where particular MND are prevalent.

Through the GeoNutrition project, a large dataset has been collected on soil and
crop micronutrient status in Malawi and Ethiopia. This allows the micronutrient con-
centration in soil and staple crops to be mapped. The spatial predictions are uncertain,
but the statistical models on which they are based allow us to compute the probabil-
ity that a particular micronutrient concentration falls below or above a nutritionally
relevant threshold at some unsampled location. It is often suggested that mapping
this probability will help interpret the information while allowing for its uncertainty in
the spatial data. However, it remains unclear how various stakeholders, for whom such
information is required to support decisions on interventions to address MND, would
use the probabilities in order to account for uncertainty.

In this paper we describe a study to examine how stakeholders interpret probability
that local grain micronutrient concentration falls below a threshold. Groups of stake-
holders were provided with different scenarios, in which this probability took different
values, and were asked to indicate in which they would recommend an intervention
(such as campaign to promote fertiliser to increase crop micronutrient concentration,
or the deployment of nutrient supplements or fortified food). We used these
responses to estimate and compare the mean probability value at which different
stakeholder groups chose to recommend an intervention. We also examined how the
framing of the question affected the responses. That is to say, whether the responses
of stakeholders presented with a positive framing (probability that the grain Se con-
tent is sufficient) would be different to those who were presented information with
negative framing (probability that the grain Se content is inadequate). On this basis
we aimed to assess the feasibility of using formal elicitation to estimate the threshold
probability at which groups of stakeholders would recommend an intervention, as a
basis both for examining critically how they interpret probabilistic information and
developing rules for interpretation which reflect stakeholder opinion and assumptions.

1.2. The general context

Spatial information has uncertainty, which arises from error (location error, measure-
ment error), environmental heterogeneity, and our uncertainty about the interpret-
ation of information (e.g. the vagueness of concepts such as a ‘deep soil’, which play
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a part in data interpretation) (Li et al. 2018). For this reason it is widely recognized in
geographical information science (GIScience) that the uncertainty about spatial infor-
mation must be communicated to its end-users if they are to apply it effectively (Li
et al. 2012, Greiner et al. 2018). Heuvelink and Burrough (2002) suggested that it is
necessary to address how stakeholders deal with problems of uncertainty in spatial
information as part of a decision making process. The study reported here fits into
that research agenda, and is concerned with how stakeholders make decisions based
on comparison of spatial variables to threshold values when the uncertainty about the
true value of the variable relative to the threshold is expressed in terms of probability.

A simple and common decision model is where some action is taken at a location
if the value of a variable there exceeds (or falls below) a threshold. For example,
action must be taken to remediate soil where the concentration of a contaminant
exceeds a soil guideline value (Cole and Jeffries 2009) or legislative thresholds
(Marchant et al. 2017). Fertilisers might be recommended where the measured concen-
tration of a nutrient in soil is smaller than an index value and liming might be recom-
mended where soil pH is less than a threshold. For example, in Malawi, it is
recommended that liming should be done when soil pH is below 5.0 (Chilimba et al.
2013); whereas, in the UK if soil pH falls below 6.0 in pasture land, then liming is rec-
ommended to maintain yield and forage quality (DEFRA 2010). Interventions to
address micronutrient deficiencies in human populations can be recommended where
measurements of a biomarker (such as concentration of the nutrient in blood serum
or urine) falls below a threshold (e.g. Likoswe et al. 2020, Phiri et al. 2020) or where
inferred intake is less than a quantity such as the recommended daily allowance (RDA)
or estimated average requirements (EAR) (e.g. Joy et al. 2014, 2015).

Such management decisions are usually made in the face of uncertainty because
the variable concerned is estimated or predicted from partial data or a model
(Goovaerts 1997). Spatial uncertainty can be quantified in a number of ways. In geo-
statistical mapping, the spatial uncertainty of the predictions is quantified directly by
the prediction error variance or the kriging variance. The kriging variance varies spa-
tially, and its values are small in the neighbourhood of sample points and larger fur-
ther away. The kriging variance is the variance of the prediction distribution at an
unsampled site of interest, or the conditional distribution given the data and the geo-
statistical model. The width of this prediction distribution (indicated by its variance)
represents the uncertainty of the predicted value there (Heuvelink 2018). The kriging
variance might be mapped directly as an indicator of uncertainty (e.g. Hatvani et al.
2021). Alternatively, it might be more accessible to compute prediction intervals from
the prediction distribution, that is to say an interval of values which contains the true
value at the location with some specified probability (e.g. Karl 2010). These methods
are useful to experts familiar with the underlying concepts, but may be inaccessible
for decision makers who do not necessarily understand kriging variance. Prediction
intervals and kriging variance were the methods of communicating and quantifying
uncertainty least-preferred by end-users (Chagumaira et al. 2021).

When there are decisions to be made relative to thresholds, spatial uncertainty can
be quantified by using probabilities. This uncertainty can be quantified by the prob-
ability that the threshold is exceeded or not. Ideally this probability can be obtained
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from the prediction distribution of the variable from data and an appropriate statistical
model (conditional probability). Marchant et al. (2017) took this approach to compute
probabilities that arsenic and mercury concentration exceeds soil guidance values and
to map this across France. Lark et al. (2014) similarly computed the probability that
local soil conditions indicate a risk of cobalt deficiency in grazing sheep across part of
the north of Ireland. Approaches such as disjunctive kriging (DK) and indicator kriging
(IK) are commonly used to compute conditional probabilities (Webster and Oliver
2007). Ordinary kriging may be used, along with an assumption of normal errors.
However, indicator kriging is more robust to any failures of this assumption, and is
also more resistant to local outliers. Lark et al. (2016) used DK to map the probability
that soil pH under pasture in the north of Ireland is below 6.0, to indicate where lim-
ing would be advised. Goovaerts et al. (1997) used IK to map the probability that cad-
mium concentration exceeds a regulatory threshold at sites across the Swiss Jura, to
indicate where remediation might be necessary. Other approaches have been used to
compute local probabilites that variables exceed thresholds of environmental signifi-
cance. These include copulas, conditional simulation and Bayesian methods to com-
pute or sample from a local posterior distribution (Goovaerts 2001, Marchant et al.
2011, Greiner et al. 2018).

Much work has focused on computing the conditional probability that a variable
exceeds a threshold, and there is an implicit assumption that if the stakeholder has
been given the probability they will be able to use it to make decisions with the
uncertain information (Lark et al. 2016). Little attention has been given to how stake-
holders might use such information and how they might be helped to do so more
consistently and effectively. The use of probability to communicate uncertainty is not
straightforward (Milne et al. 2015) and probabilities are not always easily interpreted
by stakeholders who have to make the decision (Spiegelhalter et al. 2011). Because of
this, verbal interpretations of probability based on ‘calibrated phrases’ (e.g. ‘unlikely’)
have been proposed — e.g. the Intergovernmental Panel for Climate Change (IPCC)
scale due to Mastrandrea et al. (2010). Although calibrated phrases have been widely
used, Budescu et al. (2009) showed that they may be interpreted regressively (i.e. any
phrase indicating uncertainty about an outcome is thought to indicate that its prob-
ability is around 0.5). Furthermore, calibrated phrases may be subject to severity bias,
depending on how the outcome of interest is expressed (e.g. if it is stated that ‘severe
flooding is very unlikely’ the adjective ‘severe’ influences the assessment of risk more
than does the phrase indicating the uncertainty). However, Jenkins et al. (2019)
showed that stakeholders regard probabilities expressed in numerical form as more
credible than calibrated phrases. Chagumaira et al. (2021) found that, despite these
challenges in interpretation of probabilities, varied stakeholders preferred statements
of uncertainty expressed as probabilities to more general measures such as prediction
intervals or a prediction error variance.

Spatial uncertainty is an important subject in GIScience (Heuvelink and Burrough
2002, Li et al. 2012, 2018) and presenting spatial datasets together with their uncer-
tainties is necessary because it adds to the quality of spatial information used in deci-
sion making. As we have noted, a common approach to presenting uncertain
information about the value of a variable relative to a threshold is to compute the
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probability that the variable exceeds (or falls below) that threshold. However, we con-
tend that insufficient attention has been given to how stakeholders incorporate such
uncertain information into decision-making processes.

A stakeholder, using uncertain information to support a decision, must in effect
decide on the probability threshold at or above which they would choose to act as
if the threshold was exceeded/not exceeded. Taking the concentration of Se in sta-
ple grain as an example, would a stakeholder approve an intervention at a certain
location where there were a 50% probability that the concentration of Se falls below
the threshold? Would they make the same decision if the probability were 25%,
or 75%?

A stakeholder deals with an unknown state, the true value of the environmental
variable either indicates that the action should be taken or it does not. They also have
a choice of two actions to intervene or not. We might expect that the threshold prob-
ability at which a stakeholder would choose to intervene will reflect their assessment
of the loss attached to each possible outcomes—the intervention was necessary or
not, as determined by the unknown state, under each decision (intervene or not).
These losses may reflect factors such as the social, economic, individual and political
consequences of failing to address a problem, and the opportunity costs of resources
expended on unnecessary intervention. In some cases these losses may be quantified,
and used in a formal analysis e.g. Ramsey et al. (2002) who considered the losses asso-
ciated with different decisions and outcomes in the management of contaminated
land. However, for many applications the different losses under decisions and out-
comes may be complex and hard to quantify. The question that we address in this
paper is how and whether one might identify a threshold probability that consistently
reflects the perception of the losses by a stakeholder group, and how they weight
these, tacitly if not explicitly. Before refining this question, we consider a theoret-
ical framework.

1.3. Theory

Let L1 be the loss incurred if we intervene unnecessarily, where with perfect know-
ledge we would intervene only if the variable (nutrient concentration) z<zt , where z is
the unknown true value and zt is the threshold of interest. In this treatment we regard
the loss as zero if we intervene appropriately. Let L2 be the loss incurred if we choose
not to intervene, but should have done so. Again, we regard loss as zero if we cor-
rectly choose not to intervene. If P is the probability that the concentration is below
the threshold, z<zt , then expected loss if we choose to intervene is

ð1�PÞL1: (1)

If we choose not to intervene then the expected loss is

PL2: (2)

If we wish to make the decision with the smaller expected loss, a rational assump-
tion, then it follows that we should intervene if P takes a value such that

ð1�PÞL1 � PL2, (3)

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 5



and not intervene otherwise. By simple algebraic rearrangement of Equation (3) we
can show that we should intervene if

P � L1
L1 þ L2ð Þ , (4)

and not otherwise, that is to say if P exceeds or equals a threshold value, Pt where,

Pt ¼ L1
L1 þ L2

: (5)

The larger the loss from an unnecessary intervention relative to a failure to inter-
vene where necessary, the larger Pt must be.

In a situation where L1 and L2 can be quantified directly, Pt could be computed
from Equation (5). However, complex real-world problems components of the loss
associated with outcomes maybe difficult to quantify (e.g. the political cost of a failure
to address a public health problem) and controversial (e.g. do disability adjustment
life years, DALYs, lost really capture all the social loss from a failure to act where a
nutritional deficiency pertains?) and may not be commensurable. The value of Pt at
which an agent chooses to act therefore reflects a complex judgement.

This study is based on two principles. First, while the provision of conditional prob-
abilities is a natural way to communicate the uncertainty associated with the informa-
tion of a variable which users of that information will interpret relative to threshold
values, the problem of decision-making is not solved by those probabilities. As we
have seen, a judgement must still be made. Second, we suggest that one approach to
this problem is to elicit a threshold probability from members of relevant stakeholder
communities. We assume that an individual stakeholder has a least a tacit sense of
the values of L1 and L2 that they would assume in making a judgement from condi-
tional probabilities. In principle, then, a suitable process might be used to elicit a value
of Pt from individuals or groups of stakeholders that represent an individual opinion
or a group consensus. Such an elicitation would be analogous to the process by which
probabilities of unknown states or distribution for uncertainty quantification are for-
mally elicited from expert panels (O’Hagan et al. 2006).

The aim of the study reported here was to address the following:

� Can a consistent (i.e. reasonably precise) estimate of Pt be elicited from a stake-
holder group?

� Does the estimated Pt depend on the specific interests of the group (e.g. does it differ
between nutritionists and agronomists)?

� Is the estimated Pt prone to framing effects (i.e. does the estimate depend on how the
question is posed)?

These are practical and useful questions to address. If decisions are to be based on
uncertain information then a value of Pt is required for a decision making and should
be obtained by some transparent process in which the underlying questions are exam-
ined. The findings of this study should provide a basis for designing a formal proced-
ure to elicit a value of Pt for this and similar problems. In this study we address these
questions, considering a core study concerned with decision on interventions to
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improve micronutrient supply based on estimates of the amount provided locally by
staple crops. We asked two stakeholder groups individually to identify a threshold
probability at which an intervention would be recommended, and used these to esti-
mate an underlying mean value for each group. Furthermore, we investigated whether
the framing of the question influenced the responses.

2. Method

2.1. Basic approach

The approach was to offer respondents a set of scenarios for which the probability
that concentration of Se in staple crop is less than the threshold Se concentration
(Segrain<tSe) took a series of values over the range 0–1. For each one they were invited
to respond as to whether the intervention would be recommended or not.

The respondents were asked to self-identify as either (i) A public health and nutri-
tion specialist, or (ii) an agronomists and soil scientist. Each respondent was also allo-
cated at random to one of two groups. The first group was presented with a positive
framing of the question (i.e. to select a probability that Segrain>tSe below which an
intervention would be recommended). The second group was presented with a nega-
tive framing of the question (i.e. to select a probability that Segrain<tSe above which
an intervention would be recommended).

More detail on the practical organization of the experiment is given in section 2.2.
The threshold Se concentration, tSe, in grain to which we referred is 38 mg kg–1, such
that a serving of 330 g of grain flour provides a third of the daily EAR of Se for an
adult woman. We used EAR because it is one of the commonly-used measure of intake
when assessing nutritional status and planning intervention.

The respondents were presented with probabilities that Se concentration in grain
falls below or above a threshold from specific locations on maps of Amhara, Ethiopia
or Malawi dependent on the location of the particular session. These maps were
derived by indicator kriging (see Webster and Oliver 2007) from data collected in the
GeoNutrition project (Gashu et al. 2021). Indicator kriging was used because it requires
no specific assumption that the kriging errors are normally distributed (Rivoirard
1994). More detail on this is provided by Chagumaira et al. (2021). Note that the grain
samples in this project, in both Ethiopia and Malawi, were collected on a consistent
sample support: a 0.1-ha circular plot in the centre of the sampled field. The probabil-
ities therefore relate to mean values of grain concentration across such a support
within a field at a specified location.

2.2. Organization of the experiment

The experiment was done in two sessions at Lilongwe, Malawi (November 2019) and
Addis Ababa, Ethiopia (January 2020). Ethical approval to conduct this study was
granted by the University of Nottingham School of Sociology and Social Policy
Research Ethics Committees (BIO-1920-004 for Malawi, and BIO-1920-007 for Ethiopia),
as approved by Lilongwe University of Agriculture and Natural Resources (LUANAR),
and Addis Ababa University (AAU).
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We invited participants from among professionals working in agriculture, nutri-
tion and health, at NGOs, universities and government departments from Ethiopia,
Malawi and in the wider GeoNutrition project. Recruitment was undertaken by the
local GeoNutrition Project team. In total we had 51 participants, 34 were agrono-
mists and soil scientists and 17 were public health and nutrition specialists, see
Table 1.

In each workshop, we started by randomly allocating participants to one of two
groups one for positive framing and the other for negative. This was done by asking
each participant to draw a shuffled card from a pot of cards bearing group labels.
Cards were not replaced. We did not explain why we were grouping them until after
the exercise had been completed.

We presented the first group with a map of probability that Segrain>tSe: The loca-
tions were identified on the map, and at each probability that Segrain>tSe was also
illustrated by a pictograph (see Figure 1(a)). The questions were targeted to their areas
of expertise. Specifically, agronomists and soil scientists were asked to decide whether
or not they would recommend an intervention to provide and promote Se-fortified
fertiliser. The public health and nutrition specialists to decide whether or not they
would recommend a programme to provide Se-fortified food at that site. In both cases
we asked the participants to assume that checks would be undertaken before the
intervention took effect to ensure that no one was exposed to toxic levels of Se. The
map showed nine locations, labelled a, b, c, d, e, f, g, h and i, at which probability
that Segrain>tSe was 7%, 25%, 33%, 41%, 58%, 76%, 82%, 92%, 99%, respectively.

For each location in turn and by referring to the probability (as shown on map
with pictograph, and explicitly stated in words), each participant recorded in a ques-
tionnaire whether or not they would recommend an intervention at the site given the
probability. Using location a as an example, we phrased our question as follows: ‘At
site a there is 7% probability that the concentration of grain Se concentration exceeds
the threshold, would you approve this intervention?’ We chose a range of probabilities
giving coverage of the interval [0,1] so as not to limit the responses participants
could give.

When the first group had completed filling in the questionnaires we invited partici-
pants from the second group into the room. To this group we presented a map of
probability that Segrain<tSe: At each location, probability that Segrain<tSe was also illus-
trated by a pictograph (see Figure 1(b)). The map showed the same nine locations but
with 93%, 75%, 67%, 59%, 42%, 24%, 18%, 8%, 1% probability that Segrain<tSe: The
participants answered the same questions as the first group, for the same location,
but with a negative framing. For example, we asked them, ‘At site a there is 93%

Table 1. Composition of different professional groups during the experiment in Ethiopia
and Malawi.

Professional group

Location

TotalEthiopia Malawi

Agronomist 4 5 9
Soil scientist 12 13 25
Public health and nutrition specialist 12 5 17
Total 28 23 51
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Figure 1. (a) Probability that concentration of Se in teff grain is greater than 38mg kg–1

(Segrain>tSe) in Amhara region, Ethiopia. This was presented to the first group, with a positive fram-
ing of the question. The locations labelled a, b, c, d, e, f, g, h, and i at which probability that
Segrain>tSe is also illustrated with a pictograph. (b) Probability that the concentration of Se in teff
grain is less than 38mg kg–1 (Segrain<tSe) in Amhara region, Ethiopia. This was presented to the
second group of participants, with a negative framing of the question. The locations labelled
a, b, c, d, e, f, g, h, and i at which probability that Segrain<tSe is also illustrated with
a pictograph.
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probability that the concentration of grain Se concentration does not exceed the thresh-
old, would you approve this intervention?’

Participants did this exercise independently, and were asked not discuss the ques-
tions with each other until they had completed the exercise. In the introduction to
this exercise, it was pointed out to the participants that errors could go on both direc-
tions, resulting in an intervention where it was not needed (error of commission), or
failing to intervene where the nutritional supply from staple foods was inadequate
(error of omission). We encouraged participants to consider the sources of losses
under errors of commission or omission. For example, the agronomists and soil scien-
tists group should consider the costs of buying Se-enriched fertilisers especially given
that Se does not improve crop yield. For public health and nutrition specialists, there
would be costs associated with failing to intervene when there is need because of
increased risk of health complications and mortality especially with people with com-
promised immunity due Se deficiency (e.g. thyroid disfunction and suppressed
immune response), but that unnecessary interventions are likely to represent a loss as
resources are used which could address other public health initiatives. However, we
did not ask the participants to attempt to calculate any of these costs. Rather, the aim
was that having considered the possible outcomes, they should make a judgement in
the light of their experience. This would be expected to reduce any framing effect
(Almashat et al. 2008). When both groups had completed the exercise, we brought
them together and we then explained the objectives of the exercise and background
of the loss functions.

2.3. Model and analysis

The following sections describe the statistical methodology used in this paper to ana-
lyse the data from the experiment. We summarize the methods briefly here for the
benefit of readers for whom the mathematical content is of limited interest. We pro-
pose a statistical model for a set of responses to the questionnaires. Under the model
any individual respondent is assumed to advocate intervention once the probability
that grain Se concentration is less than 38 mg kg–1 exceeds some value p0: We assume
that the values of p0 for a set of respondents can be treated as a random variable
with a Beta distribution, a distribution particularly suited to modelling values which
are constrained on an interval, and able to accommodate a wide range of behaviours.
The two parameters of the Beta distribution can be estimated for a set of observations
by a maximum likelihood method. Of interest is an estimate of the mean of the distri-
bution, which we refer to as Pt, the expected value of, p0 for an individual from the
population of which the set of respondents is a sample. The maximum likelihood esti-
mation allows us to evaluate evidence that, for example, it is necessary to model the
responses from positive or negative framing with different parameter sets. This is
done by means of the log-likelihood ratio test to compare a null model (in which
responses with the two framings are pooled) with an alternative (in which distinct
parameters are estimated for each framing). We used this approach to test the effect
of framing, location (Ethiopia or Malawi), and professional group (agronomists and soil
scientists or public health and nutrition specialists).
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Having explored the data by modelling we decided that we wished to estimate the
mean value Pt for all professional groups and locations pooled, for the responses to
the negatively framed question. We did this by Bayesian estimation, using very unin-
formative prior distributions for the Beta parameters (that is, priors that have very little
influence on the posterior distribution, which is dominated by the data.

2.3.1. Form of the data and their interpretation
Our data are a set of responses to questions, asking whether an intervention would
be recommended in a situation given the probability that Se concentration in grain
exceeds a nutritionally-significant threshold (positive framing) or is below the thresh-
old (negative framing). The probabilities were expressed as percentages. Let the
ordered set of percent probabilities (negatively framed) be P1, P2, . . . , Pmf g: The posi-
tively-framed question set was directly equivalent, referring to the same scenarios, and
so the percent probabilities presented with the positively framed questions
were 100� Pm, . . . , 100� P2, 100� P1f g:

For purposes of analysis the probabilities were scaled to ½0, 1�, and the positively-
framed probabilities were converted to the equivalent probability that Segrain<tSe: We
denote these probabilities by p1, p2, . . . , pmf g:

A response to the question is deemed to be consistent only if the respondent indi-
cated that, for some i 2 f1, 2, . . . ,mg, an intervention should be considered for all scen-
arios where the probability that Segrain<tSe was greater than or equal to pi, and that the
intervention should not be considered otherwise. If a response was not consistent in
this sense, then it was discarded. Our data therefore comprise a set of n index values,
ϱ, where ϱ½j� ¼ i if the jth respondent stated that interventions would be recommended
in all cases where PðSegrain<tSeÞ � pi: Of the 51 responses five were inconsistent (for
example, the respondent recommended an intervention in a case where the probability
of deficiency took some value, but did not recommend it in cases with both larger and
smaller probabilities of deficiency). Three of the responses were anomalous, the
respondent advocated an intervention for cases with a small probability of deficiency,
and did not recommend intervention in cases with a large probability of deficiency.
These 8 returns were discarded, leaving 43 for analysis, but they do illustrate the difficul-
ties that stakeholders can have with the interpretation of probabilities.

We assume that each respondent has a latent ‘personal’ probability, p0 such that,
given all available information, they would advocate an intervention at a site where
PðSegrain < tSeÞ � p0: Furthermore, we assume that, if the respondent indicates that an
intervention should be recommended for all scenarios in the set for which the prob-
ability equals or exceeds pi, then the lower and upper bounds on p0 are given by

li ¼ pi þ pi�1

2
i 6¼ 1,

¼ 0 i ¼ 1,
(6)

and

ui ¼ pi þ piþ1

2
i 6¼ m,

¼ 1 i ¼ m:
(7)
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2.3.2. The statistical model and its estimation
We assume that the distribution of p0 within any group of respondents has a Beta dis-
tribution, such that the probability density function for some value x 2 ½0, 1� is given
by

fbðxÞ ¼ xa�1ð1�xÞb�1

Bða, bÞ 0<x<1,

¼ 0 otherwise,
(8)

where

Bða,bÞ ¼ CðaÞCðbÞ
Cðaþ bÞ

and Cð�Þ denotes the gamma function. The Beta distribution is particularly appropriate
for modelling probabilities as random variables, because a Beta random variable is
continuous but constrained to a fixed interval (here [0,1]), and it is very flexible,
accommodating a wide range of behaviours: bell-shaped, symmetrical with large or
small kurtosis, uniform, strongly positively or negatively skew, straight-line or U-shaped
(Tjims 2018).

The parameters of the gamma distribution are a and b but a convenient reparame-
terization (because of the correlation of these parameters) is to the mean U and a pre-
cision parameter V which is smaller the more dispersed the distribution of x;

U ¼ a
aþ b

, (9)

and

V ¼ aþ b: (10)

We denote the probability density function for some set of parameters h ¼ fU, Vg
by fbðxjhÞ (McDonald and Xu 1995).

If the value of p0 for the jth respondent can be regarded as a Beta random variable
with probability density function (PDF) fbðxjhkÞ then the probability of observing ϱ½j� ¼
i can be obtained as the integral of the Beta PDF over the limits li and ui:

Prob ϱ j½ � ¼ i
� � ¼

ðui
li

fb xjhkð Þdx: (11)

If we treat all our respondents as members of a single population of interest, then
the log-likelihood for a proposed set of parameters h for that population can be
obtained by computing, for each entry in ϱ the probability for the observed value of i
by evaluating Equation (11). The sum of the logarithms of these probabilities gives the
log likelihood. A maximum likelihood estimate of h can be found numerically, as
described below.

For our purposes we want to estimate models for our observations which assumes
that there are different sub-populations from which the they are drawn, and that dif-
ferent values of the Beta parameters may be estimated for such a sub-population. For
example, we might choose to fit a model in which we assume that all responses from
individuals who were presented with information with positive framing are drawn
from a sub-population with a set of Beta parameters, and that those responses where
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the framing was negative constitute a second sub-population. The likelihood, as
described above, must be extended to this more complex model.

Consider a set of responses from a group of n subjects. The subjects can each be
assigned to one of Q sub-populations, and our hypothesis is that a particular set of
values of the parameters hk ¼ Uk , Vkf g can be proposed for the kth sub-population.
We denote the full set of Q parameters by H ¼ hT1, h

T
2, . . . , h

T
Q

h i
:

Given the assumptions set out in Equations (6) and (7) above, the log-likelihood for
proposed values of the parameters H, given a set of n responses can be obtained as

l ϱ;Hð Þ ¼
XQ
k¼1

Xn
j¼1

Xm
i¼1

Ik, j, i log
ðui
li

fb xjhkð Þdx, (12)

where Ik, j, i is an indicator variable which takes the value 1 if ϱ½j� ¼ i and the jth

respondent belongs to the kth sub-population of respondents. In all other cases Ik, j, i ¼
0: This indicator variable allows us to simplify the notation. The three nested summa-
tions implies that we compute the log of the probability for every sub-population par-
ameter set over every set of bounds for each observation, but the indicator takes the
value zero for any combination where the jth respondent is not in the kth sub-popula-
tion, and ϱ½j� 6¼ i: Equation (12) therefore allows us to compute the log likelihood for a
proposed set of Beta parameters, H for a corresponding model of a set of responses.

In this study we found maximum likelihood estimates of the parameters ĥk , k 2
f1, 2, . . . , Pg which minimized �‘ðϱ;HÞ given the data in ϱ: This was done using the
optim function in base R (R Core Team 2020), using the default optimizer which is the
simplex algorithm of Nelder and Mead (1965).

A series of nested models were fitted to the data. In the first, model M0, all
respondents were considered as a single population. In the second, model M1,
respondents who were presented with a negative framing were treated as a distinct
sub-population from respondents presented with a positive framing. These two mod-
els were compared by computing the log-likelihood ratio statistic:

L ¼ 2 ‘M1 � ‘M0ð Þ, (13)

where ‘M1 and ‘M0 denote the maximized log-likelihood for models M1 and M0 respect-
ively. Under a null-hypothesis where the parameters for the two sub-populations can
be regarded as equal (as in M0, termed the ‘null model’) L is asymptotically distributed
as v2ð2Þ, the degrees of freedom being equal to the number of additional parameters
in M1 relative to M0.

Further models were considered in which sub-populations were defined by (i) the
location of the experiment and (ii) the broad professional group, both tested with the
groups with positive and negative framing. The first of these was considered in case
there were some differences in the way the meetings in two locations were con-
ducted. Differences could also be due to composition of the participants group (see
Table 1), we had fewer public health and nutrition specialists in the Malawi meeting.
For familiarity and engagement, we used a probability map from Ethiopia’s Amhara
region in the experiment in Ethiopia and a map of Malawi in the experiment in
Malawi. The comparison between the groups (agronomists and soil scientists or public
health and nutrition specialists), was considered to test the hypothesis that cultural
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differences between the two professional groups contribute to differences in sensitiv-
ity to the framing effect, and in the relative weighting of the cost of errors of commis-
sion and omission.

2.3.3 Bayesian estimation
After examining the alternative models described in the previous section, it was
decided to make a final estimate of the mean value of U for all respondents (both
locations and professional groups) within the sub-sets presented with negative fram-
ing. A Bayesian approach was taken for this final step so as to quantify uncertainty in
the parameter estimates without the assumptions of linearity required in methods
based on the information matrix or the assumption that estimation errors are normal
(Spiegelhalter and Rice 2009).

The Bayesian approach requires prior distributions for the parameters U and V. A
uniform prior distribution over (0, 1) was assumed for U. This is entirely uninformative
about the parameter. The prior for V was a gamma distribution with parameters
(1, 20). This is a weakly informative prior, so the posterior distribution is dominated by
the data.

The prior predictive density for the data was obtained by integrating out the
parameters, this was done with the adaptIntegrate function from the cubature library
for the R platform (Narasimhan et al. 2020). The posterior joint density of U and V is
then straightforward to evaluate. The posterior density of U was then evaluated at a
fine set of locations by integrating out V with the integrate function of base R. The
highest posterior density credible interval for U (95%) was then evaluated by applying
the hdi function from the HDInterval library for R (Meredith and Kruschke 2018) to the
set of density values. Finally the mean of U was obtained by integration over its pos-
terior density.

3. Results

We had similar numbers of attendees whose professional background was agronomy
and soil science in both workshops (see Table 1). However, we had more professionals
who where public health and nutrition specialists in the Ethiopian experiment.

Table 2. Fitted models for respondent data and maximized log-likelihood.

Model
Number of
parameters ‘

M0 All respondents pooled 2 –81.58
M1 Respondents separated by framing 4 –73.22
M2 Respondents separated by framing within location 8 –69.15
M3 Respondents separated by framing within professional group 8 –67.35

Table 3. Log-likelihood ratio tests to compare models.

Null model Model L
Degrees of
freedom p

M 0 M1 16.71 2 0.0002
M1 M2 8.13 4 0.087
M1 M3 11.74 4 0.019
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3.1. Nested model analysis

Table 2 shows the fitted models for the combined respondent data and their maxi-
mised log-likelihood.

Table 3 shows log-likelihood tests to compare the models. There is strong evidence
to reject the model with all respondents pooled (M0) and to accept an overall differ-
ence between the groups with different framing (M1) (p¼ 0.0002). However, there is
no strong evidence to reject M1 by comparison to the more complex model with loca-
tions (M2) (p¼ 0.087).

When comparing a more complex model with professional group (M3) with model
with respondents separated only by framing, there is some evidence (p¼ 0.019) to
reject M1. Therefore, further analysis of the respondent data was based on M1 and M3.

Figure 2. Fitted beta distributions for model M1 (negative or positive framing, professional groups
and locations pooled) superimposed on histograms for the results. The solid line and dark grey
histogram corresponds to the respondents with negative framing. The broken line and hachured
histogram are for respondents with positive framing.

Table 4. Maximum likelihood estimates of parameters U and V for models M1 and M3.

Model Sub-group

Parameters

U V

M 1 All respondents with negative framing 0.307 10.55
M1 All respondents with positive framing 0.547 4.26
M 3 All public health and nutrition specialists with negative framing 0.310 30.19
M3 All public health and nutrition specialists with positive framing 0.712 3.80
M3 All agronomists and soil scientists with negative framing 0.303 7.69
M3 All agronomists and soil scientists with positive framing 0.462 6.81
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3.2. Model fitting

Figure 2, shows the beta probability densities for positive and negative framing under
model M1. The histograms show empirical densities from the responses over the probabil-
ity ranges in each group. The solid line and dark grey histogram corresponds to the
respondents with negative framing. The broken line and hachured histogram are respond-
ents with positive framing. The figure also shows that negative framing results in a deci-
sion to intervene at a smaller probability that the threshold is not exceeded than does the
positive framing.

Table 4, shows the estimated parameters for M1. Figure 3 shows fitted beta distribu-
tions for model M3. Here again, decisions to intervene are at a smaller probability for
the respondents with negative framing in both professional groups, although the
difference is most marked for the public health and nutrition specialists.

Table 4, shows the estimated parameters for M3. The mean values for U are very
similar in both professional groups with negative framing. The estimates of U under
positive framing in the public health and nutrition specialists group is close to the

Figure 3. Fitted beta distributions for model M3 (negative or positive framing, locations pooled)
superimposed on histograms for the results for professionals from (a) agronomists and soil scien-
tists and (b) public health and nutrition specialists. The solid line and dark grey histogram corre-
sponds to the respondents with negative framing. The broken line and hachured histogram are for
respondents with positive framing.
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complement of this value under negative framing, and the dispersion is large. It is
possible that this reflects some misunderstandings of the probabilities with this group.
On this basis we pooled the negatively framed responses for further analysis.

The mean of U from the posterior distribution for the pooled (over professional
group) responses to the negatively-framed question was 0.31 (similar to the ML esti-
mate). The posterior density is shown in Figure 4.

Close to symmetrical, the highest-posterior density credible interval for U, is
½0:25�0:38�, so comfortably below 0.5. For positive framing, further analysis was based
on the separate professional groups. The mean of U from the posterior distribution for
the public health and nutrition specialists group to the positively framed question was
0.70 (very close to the ML estimate 0.71) with a highest-posterior density credible
interval for U, is ½0:55�0:85�: Whilst for the agronomists and soil scientists group it
was 0.46 (similar to the ML estimate) with a highest-posterior density credible interval
for U, is ½0:37�0:55�:

Figure 5(a) shows a map of the probability that the concentration of Se in teff grain less
than the threshold, 38mg kg–1 in Amhara region, Ethiopia. The dashed line is the probabil-
ity isoline or contour at which the probability is equal to the estimated mean value of Pt
for the pooled (over professional group) responses to the negatively- framed question. If
this value is used as a guide to decisions, then interventions would be recommended
where probabilities mapped on this figure exceed the specified isoline. In these circum-
stances intervention would be recommended over 50% of the mapped area (34,672 km2).

Figure 5(b) shows the same probabilities as 5a, but this time with two probability
isolines, one (black) is the estimated mean value of Pt for the response of the public
health and nutrition specialists group to the positively framed to the positively-framed

Figure 4. Posterior density for U and (solid bar) the highest posterior density credible interval
(95%) estimated from pooled data for all respondents with negative framing.
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Figure 5. (a) Probability that the concentration of Se in teff grain less than 38mg kg–1 in Amhara
region, Ethiopia. The dashed probability isoline is the mean probability value, Pt, at which a stake-
holder would judge that an intervention should be made. This is the probability at which either
professional group would recommend an intervention in Amhara region, Ethiopia which the ques-
tion was framed negatively. (b) Probability that the concentration of Se in teff grain exceeds 38mg
kg–1 in Amhara region, Ethiopia. The grey probability isoline is the mean probability value, Pt, at
which agronomists and soil scientists would judge that an intervention should be made which the
question was framed positively. The black probability isoline is the mean probability value, Pt, at
which public health and nutrition specialists would judge that an intervention should be made
which the question was framed positively.
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question, this encloses an area where an intervention would be recommended corre-
sponding to proportion, 12% of the mapped area (7,792 km2). The second isoline
(grey) is the estimated mean value of Pt for the response of the agronomist and soil
scientist group to the same question. Decisions based on this value of Pt would see
interventions over proportion, 40% of the mapped area (26,596 km2).

4. Discussion

4.1. Our findings

Our results have shown (Figure 4) that a reasonably precise estimate of the mean
probability value, Pt, at which a stakeholder would judge that an intervention should
be made, can be elicited from a stakeholder group. The estimated mean value of Pt
from a group of stakeholders in Malawi and Ethiopia, 0.31, is shown visually as a con-
tour on the map of probabilities for Amhara region in Ethiopia (Figure 5(a)). This is the
estimated mean probability at which either professional group would recommend an
intervention in Amhara, Ethiopia and Malawi, if the question were framed negatively
(i.e. in terms of deficiency). This Pt should not be interpreted as an objective optimal
threshold value for the decision. Rather, it reflects the judgement of some group of
stakeholders and their tacit assessment of losses and costs associated with making a
choice with uncertain information. The methodology provided here to elicit this quan-
tity from a stakeholder group allows us to identify a threshold Pt to use so as to pre-
sent uncertain information with an interpretation which reflects the assumptions and
decision-making of a particular stakeholder group. The elicitation method may also
help to make that tacit process of judgement more explicit.

We also examined whether the elicited Pt depended on the specific interests of the
group, and whether it is prone to framing effects (i.e. how the question is posed). With or
without the effects of professional group (bothM1 andM3), our results show that the nega-
tive framing resulted in a decision to intervene at a much smaller probability than positive
framing. We also observed similar estimates of U for both professional groups within the
negative framing. With the public health and nutrition specialists group positive framing
resulted in a much larger threshold probability of deficiency for intervention than was the
case with the agronomists and soil scientists group.

Framing effects are well known in the psychology of decision-making. Decisions are
influenced by irrelevant aspects of the way information is presented, even though the
same information is presented with different framings (Tversky and Kahneman 1981).
In this example, a negative framing of the question draws the participant’s attention
to deficiency, rather than to sufficiency, and hence to a more conservative decision.
We see such an effect despite preparatory activities in the experiment to draw the
attention of participants to the possibility, and the implications, of interpretative errors
in both directions, as suggested by Almashat et al. (2008). The greater consistency of
responses across professional groups with negative framing may indicate that stake-
holders find this easier to interpret. This maybe because stakeholders are accustomed
to think about the specific problem in terms of nutrient deficiency. This shows the
importance of framing spatial information, and statements of its uncertainty, in terms
with which the user of the information is familiar.
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We noted above that our samples and predictions, with associated probabilities
were on a consistent, fixed support. A change of support (e.g. to predict a mean value
across a ward or other small region, or a cell in raster GIS) will reduce the local uncer-
tainty of the prediction. It would be interesting to see whether awareness that a prob-
ability refers to a mean across a local administrative unit, rather than a small bulk
sample from within a field (which is particularly relevant to the nutrient supply to sub-
sistence farmers) changes stakeholder’s interpretation, and whether any such effect
interacts with framing.

4.2. Generalizability, and topics for further work

The probability threshold which we estimated here is for a very specific problem,
micronutrient concentration in staple crops, and is unlikely to serve as a general one
for interpretation of spatial information. We would expect the threshold probability to
differ between settings depending on the particular stakeholder perspective on the
costs entailed if an intervention is not recommended where it should be, or is imple-
mented unnecessarily. The approach which we have used could be applied to differ-
ent groups and different problems and settings where decisions are based on
uncertain information.

The framing effect which we have seen has been identified in other studies on
decision-making under uncertainty (e.g. Chen et al. 2014), and so is likely to apply in
other cases where probabilities are used to indicate whether the state of affairs at a
location requires an intervention. In our case negative framing led to a more conserva-
tive outcome because the stakeholders are directed to think in terms of nutrient defi-
ciency. This cannot be generalised for different problems and settings. For example, in
the case of assessing concentrations of a potentially harmful element in soil against
soil guideline values, a positive framing (probability that the threshold is exceeded)
might be expected to result in more conservative decisions.

It would be interesting to see whether the interaction of professional group and
framing holds more generally for other problems (e.g. the interpretation of informa-
tion on environmental contaminants). In particular our finding in this instance, that
the interpretation of probabilities was more consistent between professional groups
under the framing which led to more conservative decisions, would be of practical sig-
nificance if it is found to hold consistently.

Probabilities are not straightforward to interpret. As noted above, our experimental
procedure included presentations to participants about uncertainty and its implica-
tions for decision making prior to their completing the exercise. However, it would
have been possible to spend more time in ‘priming’ participants before the exercise.
This could be achieved by discussion of probability problems from everyday life, like
weather forecasts, when decisions are made. This might reduce the framing effect, as
well as the rate of rejection due to inconsistent or anomalous interpretations.
However, the responses based on minimal priming are perhaps of more practical inter-
est, because they may better represent how a stakeholder approaches probabilistic
information in the course of their ordinary working life. The fact that eight returns
received from our experiment had to be discarded because they were inconsistent or
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anomalous underlines the difficulties that stakeholders with professional expertise in
their own fields may have with the interpretation of probability. This has already been
recognized (e.g. Spiegelhalter et al. 2011), although paradoxically, Jenkins et al. (2019)
found that stakeholders seem to attach greater authority to numerical statements of
probability than to calibrated phrases.

Some professional groups may have been able to handle and interpret probabilities
better than others because of the content of education and training programmes
which they typically complete. Further work to assess this, with a more varied range
of professional groups, would be interesting, and might help to show how profes-
sional skills in the interpretation of uncertain spatial information could be best be
developed, either in higher education curricula or in particular professional training.

When decisions are made, stakeholders weigh up the pros and cons for the deci-
sion they make. We suggest that this process might be better-emulated in an experi-
ment such as ours if more time could be spent in engagement with stakeholder
groups to co-create scenarios for decision-making, and outcomes which are possible
given the uncertainty in the spatial information which is used and the stakeholders’
professional experience.

4.3. Implications for practice in GIScience

The mean value of Pt obtained in this experiment will be used for practical purposes
to aid interpretation of maps of nutrient supply from staple crops produced in the
GeoNutrition project. We shall add a contour line to probability maps (for negative
framing), as in Figure 5(a), annotating the legend to indicate that the mean threshold
value applied by our stakeholder group means that interventions would be recom-
mended where the probability takes larger values. The value can also be used as a
starting point for discussion with other stakeholder groups, at national and local level,
about the implications of the spatial information provided by the project.

In GIScience, it is common to validate prediction distributions by assessing the
coverage of prediction intervals for validation data at different probabilities. Lark et al.
(2019) provide an example from the study of soil nutrients. The coverage of the pre-
diction intervals may be consistent with their probability over some ranges of values
but not others. One value of this study for practical purposes in the GeoNutrition pro-
ject is that we shall be able to focus our assessments of methods for spatial mapping
on the validity of prediction intervals for probabilities close to Pt.

If decisions are based on uncertain information, presented in terms of the probabil-
ity that a variable exceeds or falls below a threshold, then, other factors being equal,
the decision process is equivalent to selecting a value of Pt. We suggest that this be
done through a transparent process in which the underlying questions are examined
by relevant stakeholders. Our experimental procedure, supplemented by standardized
processes to co-create scenarios and to set the scene on uncertainties, could provide
the basis for a formal elicitation methodology to achieve this. There is increasing inter-
est in the use of elicitation methods to formalize the decision processes and concep-
tual models which individuals and communities of stakeholders may hold and use, at
least tacitly, when forming expert judgements. Methods for expert elicitation have
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been applied to problems in medical diagnosis, the interpretation of data on natural
hazards and engineering design (e.g. O’Hagan et al. 2006).

The development of an elicitation procedure should take account of our findings
with respect to framing effects, differences between professional groups and the inter-
action of professional group with framing. In our particular study there was greater
consistency between the two professional groups with negative framing, and a more
conservative outcome. These would be reasons for using negative framing when elicit-
ing Pt for this particular problem, but as we note above further work is needed to see
how far this finding can be generalized. At the very least it is important to ensure that
framing is done consistently (i.e. we do not use mix positive and negative framing for
the same problem) and that framing is coherent with standard terminology in the
relevant stakeholder community, e.g. whether nutrient supply is generally described in
terms of deficiency (deficient or not) or sufficiency (sufficient or not).

In the theoretical framework for this study we noted that a threshold probability,
Pt, can be expressed in terms of the relative losses of contrasting decisions relative to
those made with perfect information. We also noted that these losses, in general, are
not accessible as they may be complex and have multiple components including
actual costs (e.g. money required for interventions, the economic value of disability-
adjusted life years saved or not saved) but also losses which are less tangible, and
which may not be directly commensurable, (the value of public health, political and
reputational losses). It is possible that the elicitation of a value of Pt could help to
make public or community discussions of these losses more explicit. For example, if a
stakeholder group decides that interventions to address micronutrient deficiency be
recommended if probability of deficiency is �0.1 then it could be pointed out that
this implies that the losses arising from a failure to intervene where intervention is
required are nine times larger than the losses arising from an unnecessary interven-
tion. Stakeholders might then reflect on whether this undervalues the opportunities to
apply resources to other better-focussed interventions. This discussion could be built
into a group elicitation process on the lines of the behavioural elicitation methods
proposed by Reagan-Cirincione (1994) under which, after initial modelling of values
returned by individuals, a group works together to arrive at a consensus.

We note one further development of our approach, which could be of practical
relevance. In our conceptual framework we assume discrete states: an intervention
happens or does not in response to whether or not a spatial variable exceeds a
threshold. In practice spatial information might be used to set a continuous value at
which some intervention is applied (e.g. a rate of fortification of a foodstuff, or a rate
for a fertilizer or other agronomic input). In such a case, rather than discrete losses,
there may be a continuous loss function of the error of the prediction, which is zero
at zero error and increases with both under- and over-estimation of the target vari-
able. If we assume that the loss function is piece-wise linear with error in the target
variable, and that a1 is the loss per unit of error of overestimation and a2 is the loss
per unit of error of underestimation, then the expected loss is minimized at a location
with some particular prediction distribution for the target variable if we use as our
estimate of the target variable the value X

^

X
^ ¼ F�1 Poð Þ, (14)
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where F�1ðpÞ denotes the quantile of the prediction distribution corresponding to
probability Po and

Po ¼ a2
a1 þ a2

, (15)

(Journel 1984). The formal similarity with our conceptual model for Pt in the case of
discrete decisions (intervene or not) is apparent. Lark and Knights (2015) showed how
the continuous loss-function model could be used to compute an implicit loss func-
tion, the loss function implied by a particular level of effort to obtain spatial informa-
tion, and suggested that this could be used to support decision making about
sampling effort. However, it requires a value for the ratio of a1 and a2. One approach
to obtaining this would be to provide stakeholders with scenarios in which the pre-
dicted value of the target variable is at the threshold for intervention, and to elicit a
value of Pt which, under negative framing, could be regarded as an approximation to
Po in Equation (15) above.

Visualization of spatial uncertainty is important in GIScience. It is important to use
appropriate colour scales to visualize spatial information, including uncertainty (Kunz
et al. 2011, Kinkeldey et al. 2014). Uneven colour scales, such as rainbows, can distract
from the information content of the image, and even generate artefacts (Crameri et al.
2020). Probabilities are ordered, continuous quantities, and we have no particular
interest in values relative to a centric value (as we might for a variable on a scale from
–1 to þ1). For this reason, following Crameri et al. (2020), we decided that a sequential
colour scale was appropriate. Because we wish to have good discrimination across the
range of probabilities, a two-hue sequential scale is preferred. We therefore selected
the ‘terrain’ HCL (hue-chroma-luminance) colour scale (Zeileis et al. 2020) to present
probabilities to participants.

5. Conclusions

Much effort in GIScience and spatial statistics has focused on how to obtain prediction
distributions, and probabilities from these (disjunctive kriging, indicator kriging,
Bayesian methods), but it is clear (e.g. Chagumaira et al. 2021) that the task of com-
municating the uncertainty in spatial information is not complete when that is
achieved, at least if the objective is that a general range of stakeholders should be
able to use the information. This paper is a step towards that development. In our
study we have shown we can go beyond just computing probabilities, and consider
how uncertainty can be communicated to a diverse group of end-users for decision
making for interventions. We also have shown that a reasonably precise estimate of
the mean probability value at which a stakeholder would judge that an intervention
should be made, can be elicited from a stakeholder group with particular expertise
and interests.

There were more consistent estimates of the mean probability value under negative
framing. This might not apply generally, whether it is should be a matter for further
research. Note that ‘negative’ framing relative to a threshold in this setting gives rise
to a conservative response, but that in other contexts (e.g. if the threshold is a pollu-
tant), the positive framing might be expected to do so. Hence the framing effect can
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be pronounced in the interpretation of probabilistic representation of uncertainty pre-
sented as maps, and that this effect interacts with professional group.
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