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Detecting Wheat Powdery Mildew and Predicting Grain Yield
Using Unmanned Aerial Photography

Wei Liu, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural
Sciences, Beijing 100193, China; Xueren Cao, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture,
Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Jieru Fan, Zhenhua
Wang, and Zhengyuan Yan, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Acad-
emy of Agricultural Sciences, Beijing 100193, China; Yong Luo, Department of Plant Pathology, China Agricultural University, Beijing
100193, China; Jonathan S.West,Rothamsted Research, Harpenden, AL5 2JQ, UK;Xiangming Xu,†NIAB EMR, New Road, East Malling,
Kent ME19 6BJ, UK; andYilin Zhou,† State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chi-
nese Academy of Agricultural Sciences, Beijing 100193, China

Abstract

High-resolution aerial imaging with an unmanned aerial vehicle (UAV)
was used to quantify wheat powdery mildew and estimate grain yield.
Aerial digital images were acquired at Feekes growth stage (GS) 10.5.4
from flight altitudes of 200, 300, and 400 m during the 2009–10 and
2010–11 seasons; and 50, 100, 200, and 300 m during the 2011–12,
2012–13, and 2013–14 seasons. The image parameter lgR was consis-
tently correlated positively with wheat powdery mildew severity and neg-
atively with wheat grain yield for all combinations of flight altitude
and year. Fitting the data with random coefficient regression models

showed that the exact relationship of lgR with disease severity and grain
yield varied considerably from year to year and to a lesser extent with
flight altitude within the same year. The present results raise an impor-
tant question about the consistency of using remote imaging informa-
tion to estimate disease severity and grain yield. Further research is
needed to understand the nature of interyear variability in the relation-
ship of remote imaging data with disease or grain yield. Only then can
we determine how the remote imaging tool can be used in commercial
agriculture.

Wheat powdery mildew, caused by the obligate fungi Blumeria
graminis f. sp. tritici (Bgt), is one of the most important wheat dis-
eases in the world. Host resistance and fungicides have been the main
management strategies for wheat powdery mildew (Opalski et al.
2006; Petersen 2015; Wolfe 1984). Fungicide application is still es-
sential for disease management because varieties often lose their re-
sistance in a relatively short period of time due to the rapid emergence
of new virulent pathogen races (Schepers et al. 1996). Rapid and accu-
rate monitoring the severity of wheat powdery mildew is of great im-
portance for disease management.
There has been increasing interest in using ground-based proto-

types of hyperspectral (Cao et al. 2013, 2015; Franke and Menz
2007; Zhang et al. 2012) and satellite remote sensing technologies
(Mirik et al. 2011; Nagarajan et al. 1984; Nilsson 1995; Zhang
et al. 2014) to monitor plant diseases. Compared with the ground-
based prototype of hyperspectral and satellite remote sensing tech-
nologies, unmanned aerial imaging achieves a good balance between
area coverage and image resolution (Li et al. 2012). Airborne sensor
data have been widely used to survey disease development, such as
cereal rust (Colwell 1956), bacterial blight of field beans (Wallen and
Jackson 1971), cotton root rot (Toler et al. 1981), and spot blotch of
barley (Clark et al. 1981). These studies depended mainly on photo-
graphic film due to the limitation of technology at the time, which

made image processing and information extraction complicated. Re-
cent development of remote sensing technology has opened new av-
enues for applying the technology in agriculture; one example is the
use of smaller, autonomous aerial platforms capable of flying at low
altitudes while carrying a diverse set of miniaturized sensors (Berni
et al. 2009; Garcia-Ruiz et al. 2013; Zarco-Tejada et al. 2012).
Image analysis of aerial digital photographs has appeared in the

agronomic literature in the last 20 years. Everitt et al. (1999) used air-
borne digital imagery to detect oak wilt disease. Martins et al. (2001)
suggested that small-format aerial photography acquired from a
400 m flight altitude is an effective tool for monitoring chestnut
ink disease. Aerial photography coupled with spatial analyses of late
blight-infected plants was effective for quantifying disease patterns
between different years (Johnson et al. 2003). Low altitude aerial im-
agery can detect laurel wilt disease in avocado at an average flight
altitude of 60 m above the ground (de Castro et al. 2015). Readily
available and inexpensive computers, digital cameras, and software
packages make this method an attractive option (Steddom et al. 2004).
Many studies have been carried out to predict wheat grain yield using
remote sensing information at different crop growth stages (Aparicio
et al. 2000; Babar et al. 2006; Cao et al. 2014), including the use digital
images taken with unmanned aerial vehicles (Jannoura et al. 2015;
Shanahan et al. 2001; Vega et al. 2015).
Most previous studies focused on the feasibility of using un-

manned aerial photography to detect plant diseases and predict crop
yield, but have rarely considered the variability (or consistency) of
such predictive relationships. Without such knowledge, it would be
difficult to assess how widely a given relationship could be used in
practice. The purpose of the present study was to determine the extent
of variability of using unmanned aerial photography to estimate
wheat powdery mildew severity and grain yield between different
flight altitudes over multiple years.

Materials and Methods
Plot design and yield determination. Field experiments were

conducted at the Langfang Experimental Station, Institute of Plant
Protection, Chinese Academy of Agricultural Sciences (39.5°N,
116.6°E) in Hebei Province, China, in 2009–10, 2010–11, 2011–12,
2012–13, and 2013–14. Jingshuang 16, a winter wheat cultivar highly
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susceptible to powdery mildew, was sown in rows (interrow distance
of 0.25 m) with seeding rates of 120 kg/ha on 6 October in each year.
There were six fungicide treatments (six concentrations of triadime-
fon [300, 240, 120, 60, 30, and 15 g active ingredient ha−1]) and one
untreated control. A random block design (with three blocks) was
used; in total, there were 21 plots, and each plot was 5 m long and
4 m wide. Seedlings (sown in 10-cm pots) with sporulating Bgt le-
sions were maintained in a greenhouse compartment and trans-
planted to the center of each plot on 2 April 2010, 25 March 2011,
23 March 2012, 22 March 2013, and 22 March 2014 as spreaders
to ensure powdery mildew development. The number of pots with
Bgt spreaders corresponded to the concentrations of triadimefon
for each plot: 6, 5, 4, 3, 2, 1, and 0 pots plot–1 for 0, 15, 30, 60,
120, 240, and 300 g active ingredient of triadimefon ha–1, respec-
tively. This combination of triadimefon concentration and inoculum
strength was used to create varying severities of powdery mildew. No
other diseases and pests occurred in the field plots during the exper-
imental periods.
The fungicide triadimefon was applied at an appropriate concen-

tration on 13 April 2010, 15 April 2011, 12 April 2012, 11 April
2013, and 11 April 2014. Control plots were sprayed with water.
Manual weeding was carried out. At the harvest time, a subplot of
10 consecutive rows in each plot was randomly selected for harvest-
ing. Grains were threshed and dried under the sun before weighing.
Disease assessment. Disease severities of powdery mildew were

assessed at growth stage (GS) 10.5.4 (Large 1954). Five positions
in each plot (four at the corners and one at the center) were chosen
for disease assessment; 20 plants at each position were assessed on
a 0 to 9 scale (Saari and Prescott 1975; Sheng and Duan 1991). A to-
tal of 100 plants were assessed for each plot. Disease index (DI) for a
plot was estimated as:

DI =
+i=9

i = 0ipni

9p+i=9
i = 0ni

× 100

where n0, n1…n9 are the number of plants with mildew severity val-
ues of 0, 1…9, respectively.
Acquisition of unmanned aerial digital image. Table 1 summa-

rizes imagery acquisition in all the years. In 2009–10 and 2010–11, a
Canon EOS 500D camera (Canon Inc., Japan) was mounted on a
fixed-wing unmanned aerial vehicle (YUYAN-09 UAV, Zero Tech
Inc., China). This vehicle was controlled by an autopilot computer
and programmed to capture digital images at user-selected view-
points to ensure complete coverage of the field. The speed of the
UAV was nearly 50 km/h. The location of the aircraft and approxi-
mate altitude of the pictures were recorded by a GPS installed on
the UAV. In 2011–12, digital images were taken with a Canon
EOS 500D camera fitted to an eight-rotor UAV. In 2012–13 and
2013–14, unmanned aerial digital images were taken with Canon
EOS 5D Mark II (Canon Inc., Japan) and Panasonic DMC-GH3
(Panasonic Inc., Japan) cameras, respectively. All the cameras were
pointed in the vertical viewing. Disease severity was first assessed
before aerial imagery which was taken on clear, sunny noon times be-
tween 11:00 h and 13:00 h (Beijing time, GMT +8:00) from 200,
300, and 400 m above the ground level in 2009–10 and 2010–11,
and from 50, 100, 200, and 300 m above the ground in 2011–12,
2012–13, and 2013–14 seasons. All images were saved in JPEG for-
mat at the highest quality option allowed by their cameras, with im-
age size of 4,272 × 2,848 pixels and 35 mm focal length in 2009–10,

4,752 × 3,168 pixels and 50 mm focal length in 2010–11, 4,752 ×
3,168 pixels and 35 mm focal length in 2011–12, 5,616 × 3,744 pix-
els and 24 mm focal length in 2012–13, and 4,608 × 2,592 pixels and
15 mm focal length in 2013–14.
Separating soil background from wheat canopy. We used the

maximum likelihood classification, a commonly used method in su-
pervised classification, to reduce the influence of soil background on
information extraction from unmanned aerial digital images (ERDAS
software, ERDAS, Inc., United States). After supervised classification,
data were subjected to themask processing (ERDAS software, ERDAS,
Inc., United States) to extract only the information on the wheat can-
opy for subsequent statistical analysis.
Extracting information from digital images. Each pixel recor-

ded three primary colors: red (R), green (G), and blue (B), all in
the range of 0 to 255. These three primary colors are usually used
in the case of light sources such as color monitors; other secondary
colors can be derived bymixing RGB primary colors in different pro-
portions. The observed colors through our human eyes belong to the
secondary colors (Gonzalez and Wintz 2001), such as white or gray
powdery mildew colonies. ERDAS software was used to extract
R, G, and B values from each masked digital image.
The HSI (hue-saturation-intensity) system is another commonly

used color space in image processing and is directly related to
RGB values (Huntsherger et al. 1985; Kim and Park 1996). In the
HSI color space, H (hue) represents the basic colors, with values from
0° to 360°; S (saturation) is a measure of the purity of the color from
0% (gray) to 100% (fully saturated); and I (intensity) describes the
brightness of an image and is the sum of the light of all wavelengths
within the visible spectrum (Cheng et al. 2001; Kampmann and
Hansen 1994; Karcher and Richardson 2003).
RGB values can be transformed to HSI values by the following

formulas (Gonzalez and Wintz 2001):

I =
R+G+B

3(
H =W ;   B#G

H = 360°−W ;   B>G

S = 1 −
3minðR;G;BÞ

R+G+B

W =COS − 1

0
B@ 2R−G−B

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR−GÞ2 + ðR−BÞðG−BÞ

q
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RGB values need to be normalized to the range of [0, 1] before ap-
plying the above formulas; this can be done with the equation

y=
x

255

where x and y represent the RGB values before and after normaliza-
tion, respectively.
The ratio G/R was previously proposed as one imaging variable to

characterize winter wheat canopy (Adamsen et al. 1999). In addition
to this ratio, two other composite variables, G–R and (G–R)/(G+R),
were also used to study their relationships between imaging data with
disease index or grain yield.
Data analysis. Liner and nonliner data fitting results suggested

that the relationships of disease index and yield with image variables

Table 1. Key information for aerial imagery collected in each season

Season Flight altitude Unmanned aerial vehicle Camera Camera resolution Focal length

2009–10 200, 300, 400 m YUYAN-09 UAV (fixed-wing) Canon EOS 500D 4,272×2,848 35 mm
2010–11 200, 300, 400 m YUYAN-09 UAV (fixed-wing) Canon EOS 500D 4,752×3,168 50 mm
2011–12 50, 100, 200, 300 m E-Epic UAV (spiral wing) Canon EOS 500D 4,752×3,168 35 mm
2012–13 50, 100, 200, 300 m E-Epic UAV (spiral wing) Canon EOS 5D Mark II 5,616×3,744 24 mm
2013–14 50, 100, 200, 300 m E-Epic UAV (spiral wing) Panasonic DMC-GH3 4,608×2,592 14 mm
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R, G, B, and I are logarithmic. Therefore R, G, B, and I were logarith-
mically transformed on the base of 10, where lgR = log10(R/255),
lgG = log10(G/255), lgB = log10(B/255), and lgI = log10(I/255). Cor-
relation of imaging variables with disease index and yield were cal-
culated with the corr.test command in R (version 3.3.0).
In total, we have 18 datasets (i.e., combinations of year and flight

altitude) to assess the relationship of disease index or yield with un-
manned aerial digital imagery. For each dataset, there were 21 data
points (i.e., individual plots). Random-coefficient regression models
were used to study the relationships of disease index and grain yield
with imagery variables, focusing on the consistency of such relation-
ships (i.e., variability in the slope and intercept estimates). LME4
package in R (version 3.3.0) was used to fit random coefficient
models.
Because not all flight altitudes were used in all years, we were not

able to treat year and flight altitude as separate factors when fitting a
random coefficient model. Instead, a single factor was used to repre-
sent different combinations of year and flight altitude. Disease index
or yield production yij in the jth plot of the ith height-year combina-
tion was related to an imaging variable:

yij =mi + xijbi + eij;
i = 1; 2;…; 18;   j = 1; 2;…; 21:

mi ~
�
m;s2

m

�
;bi ~

�
b;s2

b

�
; eij ~

�
0;s2

�
BLUPs (best linear unbiased predictors) of individual intercepts

(mi) and slopes (bi) are generated by the LME4 package (R ver-
sion 3.3.0).

Results
Correlations between unmanned aerial digital image variables

and disease index. Figure 1 shows the correlation of disease index
with unmanned aerial digital image variables. lgR, lgG, lgB, and
lgI were significantly correlated positively with disease index at all
different flight altitudes over the five seasons. Correlation coeffi-
cients of disease index with lgR, lgG, lgB, and lgI ranged from
0.61 to 0.91, 0.58 to 0.88, 0.53 to 0.92, and 0.60 to 0.92, respectively.
H, G/R, and G–Rwere negatively correlated with disease index, with
the correlation ranging from –0.83 to –0.53, –0.91 to –0.46, and
–0.87 to –0.42, respectively. (R–G)/(G+R) was positively correlated
with disease index, while S did not show a consistent correlation with

Fig. 1. Coefficients of correlation of winter wheat powdery mildew index with imaging variables extracted from digital images at five flight altitudes over five seasons. ‘s,’ ‘4,’ ‘+,’ ‘×,’
and ‘à’ represent the years 2010, 2011, 2012, 2013, and 2014, respectively; R, G, B, I, H, S means the value of red, green, blue, intensity, hue, and saturation acquired from aerial
photography, respectively; lgR, lgG, lgB, and lgI means the logarithms of the value of red, green, blue, and intensity, respectively; G/R, G–R, and (G–R)/(G+R) are composite
variables that combine the values of red and green.
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disease index. There was considerable variability in the magnitude of
the correlation among 18 year-height combinations, especially be-
tween years.
Modeling relationships of disease indices with imaging

variables. As lgR had the greatest and most consistent correlation
with disease index, only lgR was used in random-coefficient regres-
sion modeling. For the intercept, m and s2

m were estimated to be
–814.51 ± 72.91 and 54,455, respectively; the corresponding values
for the slope (b and s2

b) were 458.67 ± 38.36 and 15,336, respec-
tively. All four estimates were significantly different from zero.
Residual variance (s2) was 188. The fitted random coefficient regres-
sion models are shown in Figure 2, which shows considerable differ-
ences in the BLUPs of intercept and slopes, particularly between
years.
There is near perfect negative correlation (r = –0.99) between

BLUPs of intercept and slope estimates (Fig. 3). The relationship
can be expressed as: mi = (–1.82 ± 0.085) × bi + (22.85 ± 39.832).
The variability disease index with lgR based on the 10%, 50%, and
90% quantile fitted models are shown in Figure 4, which graphically
illustrates the variability in the relationship.
Correlations between unmanned aerial digital image parame-

ters and grain yield. Correlations between grain yield and variables
extracted from unmanned aerial digital imagery are given in Table 2.
There were large differences in these correlation coefficients among
the 18 year-height combinations, particularly between years. Grain

yield was correlated negatively with lgR, lgG, lgI, lgB, and (R–G)/
(R+G), and positively with H, G–R, and G/R. In contrast, correlation
of grain yield with S was inconsistent, ranging from 0.75 to –0.78.
Relationships of wheat yield production with imaging variables.

Because of its high and consistent correlation with grain yield, only lnR
was used in random coefficient regression modeling. The fitted model
was as follows: Yieldij = mI + (lgRij)bi + eij, mi~ (21.37 ± 3.122,
153.07), bi~ (–9.14 ± 1.584, 39.20), eij~ (0, 0.0766). Both s2

m and s2
b

were significantly greater than zero, indicating significant differences
in the intercept and slope among the 18 year-height combinations. As
for mildew index, there appeared to be greater variability in the lgR-
yield relationship among years at a given height than among heights
within the same year (Fig. 5).
The correlation between BLUPs of slopes and intercepts was

–0.999 (Fig. 6). The relationship was: mi = (–1.98 ± 0.025) × bi +
(3.28 ± 0.265). The variability yield estimation with lgR based on
the 10%, 50%, and 90% quantile fitted models is shown in Figure 7;
this also graphically illustrates the variability between yield and pa-
rameter lgR.

Discussion
Unmanned aerial digital images were acquired at Feekes growth

stage (GS) 10.5.4 from 50, 100, 200, 300, and 400 m above the
ground in five consecutive seasons. Most imaging variables extracted
from the digital photography were highly correlated to the disease

Fig. 2. Fitted random coefficient models relating lgR (an imaging variable extracted from unmanned aerial digital photography) to powdery mildew index on winter wheat at the same
flight altitude among different years (A), and in the same year among different flight altitudes (B).
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index of wheat powdery mildew and grain yield. However, the exact
relationships varied considerably among combinations of survey
years and flight altitudes, particularly among years.
Among all image features extracted from unmanned aerial digital

photography, the color feature lgR is most highly and consistently
correlated positively with powdery mildew index. Red reflectance
values decrease as the nitrogen application rate increases (Jia
et al. 2004; Zubillaga and Urricariet 2005). It would be interesting
to assess whether red reflectance can differentiate the effect on can-
opy characteristics due to powdery mildew and nitrogen input.
Wheat grain yield was negatively correlated with lgR, similar to a
previous study that reported that there were significant negative
correlations between corn yield and parameter R (Blackmer and
Schepers 1996).
Random-coefficient regression modeling indicated that the exact

relationships of grain yield or disease index with lgR varied signifi-
cantly with survey year and flight altitude, particularly between
years. For example, when randomly sampled lgRwas 1.9, the disease
index and yield values estimated by 10%, 50%, and 90% quantile
models can be 46.85, 59.54, and 72.24; and 4.653, 4.011, and
3.369297, respectively. The variability in the relationships of lgR
with disease index and grain yield is less between flight altitudes
within the same year is also supported by fixed effect regression (re-
sults not shown). Ground resolution of the images and camera focal
length are likely to be the main reasons for the variability observed in
the image-disease index relationship between different flight heights.
The camera focal length and image resolution were preset to the same
in each year for all flight altitudes. Thus, the higher the flight altitude
is, the greater coverage in photos, leading to decreased resolution
with increasing flight altitude. However, it should be noted that,
for a given year, the image data at different flight altitudes were
obtained on the same day for the same wheat planting. Nevertheless,
the condition in the weeks before and at the day when imaging was
taken may differ considerably among years. Thus, differences in fac-
tors (e.g., weather conditions, plant growth vigor/nutrient status, and
some other unknown reasons) that could affect remote digital pho-
tography are expected to be greater between years than between

flight altitudes in the same year. In addition, we tried to have the same
lighting conditions by measuring at similar times of day in similar
weather conditions, but we used three brands of camera and two
brands of UAV in the five years. Different brands of UAVs and cam-
eras have different systems (e.g., metering system, focusing systems,
and image sensor systems). Furthermore, different camera calibration
standards may lead to differences in the color rendition. The differ-
ences in UAV and camera are expected to contribute to the observed
between-year variability in the relationship of image features with
disease or yield. To assess the relative effects of between- and
within-year variability on the relationship of disease or grain yield
with digital image features, further experiments need to be carried
out in which images are taken on different days for different planta-
tions. Moreover, images should be saved in RAW format, with stan-
dard color as a reference, through the use of standard color plate
(such as Pantone) to calibrate the photographs. In addition, a large
range of disease severities among plots would be desirable, particu-
larly plots with very low or no diseases that may be used to calibrate
imaging data for the year-to-year differences in crop development/
characteristics.
The use of aerial photographs has been used to study the occur-

rence (Everitt et al. 1999; Martins et al. 2001) and epidemic (Johnson
et al. 2003) of plant diseases. Previous studies have focused on
demonstrating that imaging features are related to traits of our inter-
ests, e.g., disease, yield, and canopy structure. However, the consis-
tency (repeatability) of such a relationship has not yet received
much attention. This consistency is crucially important in determin-
ing whether the imaging technology can be used in practice and, if
so, what the scope of its application is. The present study, on the one
hand, shows that certain image features are highly correlated with
disease index and grain yield. On the other hand, it also shows that
we cannot ignore the variability in the relationship of image features
with disease or grain yield (Fig. 4 and Fig. 7). In addition, BLUPs of
the slope and intercept have near perfect negative correlations; thus
effectively, there is only one parameter to estimate. This needs to be
taken into consideration in future research. For example, when con-
ducting simulation studies, we cannot independently sample the

Fig. 3. BLUPs (best linear unbiased predictors) of the slopes and intercepts describing
the relationship of winter wheat powdery mildew with lgR (an imaging variable
extracted from unmanned aerial digital photography).

Fig. 4. The variability disease index of wheat powdery mildew with parameter lgR (an
imaging variable extracted from unmanned aerial digital photography) based on the
10%, 50%, and 90% quantile fitted models.
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Table 2.Coefficients of correlation between unmanned aerial digital parameters at 50, 100, 200, 300, and 400m flight altitude and grain yield during five seasonsa

Year Height lgR lgG lgB lgI H S G–R G/R (R–G)/(R1G)

2010 200 –0.8110** –0.8093** –0.8064** –0.8202** 0.7410** –0.0898 0.7995** 0.7977** –0.8005**
2010 300 –0.8197** –0.8170** –0.8503** –0.8296** 0.7972** 0.6983** 0.7995** 0.8058** –0.8075**
2010 400 –0.8412** –0.7553** –0.7913** –0.8442** 0.6155** –0.3709 0.6235** 0.6680** –0.6602**
2011 200 –0.6837** –0.6913** –0.6323** –0.6798** 0.6671** –0.6037** 0.5880** 0.5892** –0.5901**
2011 300 –0.6545** –0.6209** –0.4411 –0.5988** 0.7021** –0.7791** 0.5967** 0.6352** –0.6356**
2011 400 –0.6541** –0.5933** –0.5881** –0.6205** 0.6698** –0.6538** 0.6261** 0.6411** –0.6413**
2012 50 –0.7794** –0.7997** –0.7976** –0.7994** 0.4279 –0.6868** 0.3569 0.3919 –0.398
2012 100 –0.6902** –0.7347** –0.659** –0.7134** 0.3934 –0.7775** 0.3400 0.354 –0.3595
2012 200 –0.5232* –0.5023* –0.3491 –0.4912* 0.4438* –0.7193** 0.4198 0.4188 –0.422
2012 300 –0.4473* –0.5211* –0.3224 –0.4456* 0.3005 –0.5751** 0.2553 0.2593 –0.2629
2013 50 –0.5727** –0.5486** –0.6848** –0.6051** 0.4854* 0.4242 0.6667** 0.6428** –0.6436**
2013 100 –0.5874** –0.5649** –0.6924** –0.6179** 0.4963* 0.3969 0.6699** 0.6516** –0.6519**
2013 200 –0.6048** –0.5811** –0.7119** –0.6349** 0.5270* 0.2592 0.5982** 0.6230** –0.6246**
2013 300 –0.6514** –0.6342** –0.7464** –0.6766** 0.5409* –0.0736 0.5854** 0.6087** –0.6104**
2014 50 –0.7740** –0.7466** –0.7962** –0.7745** 0.6749** 0.7503** 0.6668** 0.6812** –0.6801**
2014 100 –0.8327** –0.7942** –0.7871** –0.8178** 0.8157** –0.1257 0.8243** 0.8196** –0.8215**
2014 200 –0.8118** –0.7408** –0.7535** –0.7999** 0.7724** –0.3004 0.7800** 0.7749** –0.7764**
2014 300 –0.8324** –0.7630** –0.7871** –0.8192** 0.7954** –0.3285 0.8002** 0.7985** –0.7993**

a Values in bold indicate the highest correlation values. Asterisk (*) indicates correlation coefficient significant at P = 0.05, (**) indicates correlation coefficient
significant at P = 0.01.

Fig. 5. Fitted random coefficient models relating lgR (an imaging variable from unmanned aerial digital photography) to wheat grain yield at the same flight altitude among different
years (A), and in the same year among different flight altitudes (B).
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intercept and slope from the estimated normal distributions. Other-
wise, we might have invalid output, e.g., negative yield or disease.
In summary, the present results demonstrate that relationships of

image features with winter wheat powdery mildew and yield varied

considerably among years and, to a lesser extent, with flight altitudes.
With the rapidly increasing image resolution and capacity for storing
and processing digital data (Bock et al. 2010), and the flexibility, sta-
bility, and operability of UAV platforms, unmanned aerial digital
photography is perceived to be valuable in the assessment of plant
disease and estimation of yield. The present results demonstrated that
further research is necessary to define the scope within which such a
UAV-based imaging system can be used in practice.
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