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Abstract: Grain production must increase by 60% in the next four decades to keep up with the expected 
population growth and food demand. A significant part of this increase must come from the improvement 
of staple crop grain yield potential. Crop growth simulation models combined with field experiments and 
crop physiology are powerful tools to quantify the impact of traits and trait combinations on grain yield 
potential which helps to guide breeding towards the most effective traits and trait combinations for future 
wheat crosses. The dataset reported here was created to analyze the value of physiological traits identified 
by the International Wheat Yield Partnership (IWYP) to improve wheat potential in high-yielding 
environments. This dataset consists of 11 growing seasons at three high-yielding locations in Buenos Aires 
(Argentina), Ciudad Obregon (Mexico), and Valdivia (Chile) with the spring wheat cultivar Bacanora and a 
high-yielding genotype selected from a doubled haploid (DH) population developed from the cross between 
the Bacanora and Weebil cultivars from the International Maize and Wheat Improvement Center (CIMMYT). 
This dataset was used in the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat 
Phase 4 to evaluate crop model performance when simulating high-yielding physiological traits and to 
determine the potential production of wheat using an ensemble of 29 wheat crop models. The field trials 
were managed for non-stress conditions with full irrigation, fertilizer application, and without biotic stress. 
Data include local daily weather, soil characteristics and initial soil conditions, cultivar information, and crop 
measurements (anthesis and maturity dates, total above-ground biomass, final grain yield, yield 
components, and photosynthetically active radiation interception). Simulations include both daily in-season 
and end-of-season results for 25 crop variables simulated by 29 wheat crop models. 

Keywords: Wheat, yield potential, field experimental data, crop model ensemble, simulations. 
 
1 ORIGINAL PURPOSE: The original purpose of this dataset was to support a model inter-comparison 
(Guarin et al. 2022) as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP, 
https://agmip.org/) (Rosenzweig et al. 2013). The field experimental data were from high-yielding trait 
experiments to investigate and improve wheat yield potential in high-yielding environments using improved 
physiological traits (Bustos et al. 2013; Garcia et al. 2013; Garcia et al. 2014). This dataset contains field 
measurements of selectively bred high-yielding wheat cultivars, including the highest reported wheat grain 
yield in the literature – 16.6 t ha-1 dry weight (Bustos et al. 2013; Garcia et al. 2013), for benchmarking local 
and regional yield improvements and model improvement against an ensemble of 29 state-of-the-art wheat 
crop simulation models. 

mailto:j.guarin@columbia.edu
https://agmip.org/
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2 FIELD EXPERIMENTS: A full description of the experiment sites and treatments are available in Bustos 
et al. (2013) and Garcia et al. (2013). The critical information for the simulation of the high-yielding 
treatments used in the AgMIP-Wheat Phase 4 project is summarized below for crop model setup and 
analyses. 

The experiment consisted of three sites located at the University of Buenos Aires Facultad de Agronomía 

experimental field, Buenos Aires, Argentina (34°35’ S, 58°29’ W, 26 m a.s.l.), the Norman E. Borlaug 

experimental station, Ciudad Obregon, Mexico (27°25’ N, 109°54’ W, 38 m a.s.l.), and the Austral University 

of Chile experimental station, Valdivia, Chile (39°47’ S, 73°14’ W, 19 m a.s.l.). The dataset includes two 

spring wheat genotypes, one check cultivar (Bacanora) from the International Maize and Wheat 
Improvement Center (CIMMYT) and one high-yielding doubled haploid (DH) line from the cross between 
Bacanora and Weebil with improved radiation use efficiency (RUE), light extinction coefficient (K), potential 
grain filling rate (GFR), and potential grain size (GWpot) and slightly decreased fruiting efficiency (FE) and 
grain filling duration (GFD) (Table 1). The entire experiment consisted of 105 spring wheat DH lines, but 
only the best-yielding DH lines for each location are reported here. 
Each growing year consisted of one to three replicates where the wheat crops were grown with ample N 
supply, full irrigation, and agronomic practices to reach potential yield for the local soil and weather 
conditions. All other crop factors including weed, disease and pest control, and potassium, phosphate, and 
sulphur fertilizers, were applied at levels to prevent yield limitation. The soil at Buenos Aires was a silty clay 
loam, classified as Vertic Argiudoll, and each replicate was sown in flat plots with five rows 2.1 m long by 
0.9 m wide and 0.175 m between rows. The soil at Ciudad Obregon was a sandy clay, classified as Typic 
Caliciorthid, and each replicate was sown in a 2.5 m long by 0.8 m wide plot consisting of one raised bed 
with two rows per bed and 0.25 m between rows. The soil at Valdivia was a volcanic ash, classified as a 
Typic Hapludand, and each replicate was sown in either a continuous plot of three rows 1.5 m long with 
0.15 m between rows (2008 and 2009) or split plots 2 m long by 1.5 m wide with 0.15 m between rows 
(2010). At each site, the temperature and solar radiation data were provided from a weather station located 
< 2 km from the experimental field and the rainfall, wind speed, and relative humidity data were obtained 
using the NASA POWER database (https://power.larc.nasa.gov) (Kratz et al. 2014; White et al. 2011). The 
average grain yield of each treatment for the three high-yielding locations is shown in Figure 1. 

3 SIMULATION OF FIELD EXPERIMENTS: The treatments described above were simulated by 29 wheat 
crop models (Guarin et al. (2022); see CIM_AgMIP_model_names.txt). Simulations were carried out using 
standard AgMIP protocols (Rosenzweig et al. 2013; Asseng et al. 2015) in two steps, one step for model 
calibration for the check cultivar Bacanora, and the second step for ‘blind’ simulations of the high-yielding 
DH line. The simulation results reported here are for both steps. 
For step one modelers had access to all the experimental data for the check cultivar, Bacanora, for the five 
growing seasons at Valdivia, Chile (2008-2009, 2009-2010, 2012-2013, 2013-2014 and 2014-2015), one 
growing season at Buenos Aires, Argentina (2009-2010) and four growing seasons at Ciudad Obregon, 
Mexico (2009-2010, 1990-1991, 2015-2016 and 2016-2017) for a total of 10 site-year-treatment 
combinations. The data at Ciudad Obregon, Mexico in 1990-1991 were obtained from a previous AgMIP 
study (Asseng et al. 2015; Martre et al. 2017). The soil profile at Buenos Aires was from in situ 
measurements (Garcia et al. 2013).The soil profile at Ciudad Obregon was from Hernandez-Ochoa et al. 
(2018). The soil profile at Valdivia was based on the Natural Resources Conservation Service (NRCS) 
volcanic ash profile and Asseng et al. (2017). Detailed initial soil conditions were not available for each 
location. Therefore, as water and nitrogen (N) were managed to limit any stress, total initial soil mineral N 
(NO3

− and NH4
+) content was assumed to be equal to 140 kg N ha-1. To ensure no water stress, 

supplementary irrigation was provided. For each experiment, the dates and rates of irrigation were 
calculated using the DSSAT-NWheat model (Kassie et al. 2016) automatic irrigation routine. Modelers used 
either the irrigation dates and rates provided by DSSAT-NWheat or their model-integrated unlimited water 
and N routine to prevent any simulated water or N stress. 

https://power.larc.nasa.gov/
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Figure 1. Observed average grain yield of cv. Bacanora (solid blue bars) and the high-yielding DH line 
(dashed orange bars) for the 11 treatments at Buenos Aires, Argentina (BA), Ciudad Obregon, Mexico 
(CO), and Valdivia, Chile (VA) from the experimental data (Bustos et al. 2013; Garcia et al. 2013; Garcia 
et al. 2014). Global average yield (solid gray bar) based on the latest reported global statistics for 2020 
(FAOSTAT 2022) included for comparison to high-yielding observations. Error bars indicate standard 
deviation of the observed replicates. Bacanora data at Valdivia in 2010 was not available. All yields 
shown are with 0% moisture content. 

 
For step two, a ‘blind’ simulation study was conducted for the best-yielding DH lines at each location using 
the same initial growing and management conditions from the calibration, but the measured data were not 
provided. One additional season at Valdivia, Chile was included (2010-2011). Only calculated trait percent 
changes (Table 1 final column) and instructions describing how to modify the calibrated cv. Bacanora traits 
for the high-yielding DH line (Guarin et al. 2022) were provided to simulate growth for the seasons that the 
DH line was grown, i.e., three seasons at Valdivia, Chile (2008-2009, 2009-2010, and 2010-2011), one 
season at Buenos Aires, Argentina (2009-2010), and one season at Ciudad Obregon, Mexico (2009-2010). 
The RUE and K of the DH line were calculated using the average of the two best-yielding DH lines from 
Chile because detailed light interception data was only measured in Chile. The FE, GWpot, GFD, and GFR 
were calculated using the mean percent change between the best-yielding DH line and Bacanora from each 
of the three locations (Table 1). In addition to the five ‘blind’ DH line treatments, the five Bacanora 
treatments corresponding to these treatments were re-simulated in step two for comparison to step one to 
ensure model consistency. 
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Table 1. Physiological trait description and measurements of Bacanora and the best-yielding doubled haploid (DH) line for each treatment used 
in the AgMIP high-yielding step 2 simulations. Average values are calculated for both Bacanora and the DH line across the three locations in the 
observed field experiment data (Bustos et al. 2013; Garcia et al. 2013; Garcia et al. 2014). The percent change (%) between Bacanora and the 
DH line is shown for each treatment and the average across all treatments. Bacanora data at Valdivia in 2010 was not available. DM, dry matter; 
GS, growth stage; PAR, photosynthetically active radiation; LAI, leaf area index; BA, Buenos Aires, Argentina; CO, Ciudad Obregon, Mexico; VA, 
Valdivia, Chile. To simulate the best-yielding DH line, modelers were provided with the average of the percent change of each treatment. Modified 
after: Guarin et al. (2022). 

Trait Units Calculation 

BA 2009 CO 2009 VA 2008 VA 2009 VA 2010 Average 

Average of 
% change 

of each 
treatment Bac. DH93 % Bac. DH34 % Bac. DH18 % Bac. DH28 % DHa Bac. DH % 

Radiation use 
efficiency 
(RUE) 

g MJ-1  Slope of above-
ground biomass DM 
(GS10 to GS89) vs. 
cumulative 
intercepted PAR 

2.89            3.86 2.89 3.86 34 34 

Light 
extinction 
coefficient at 
GS31 (K) 

m2 m-2  Exponential 
coefficient of 
cumulative PAR (pre-
anthesis) vs LAI at 
stem elongation 

            0.46 0.42b 0.46 10 10 

Fruiting 
efficiency 
(FEspike) 

grain g-1 

DM 
Grain number divided 
by DM of spike at 
anthesis  

143 114 -20 66 72 9        105 93 -11 -5 

Potential 
grain size 
(GWpot) 

mg DM 
grain-1 

Average single grain 
DM under potential 
growth conditions 

29 38 33 39 40 2 39 42 7 39 48 23  36 42 15 16 

Potential 
grain filling 
duration 
(GFD) 

°Cd Thermal time (base 
temperature 0°C) 
between anthesis and 
physiological maturity 

654 698 7 779 674 -14 674 634 -6 799 764 -4  727 693 -5 -4 

Potential 
grain filling 
rate (GFR) 

mg DM 
°Cd-1 

Grain DM divided by 
thermal time (base 
temperature 0°C) 
between anthesis and 
physiological maturity 
under potential growth 
conditions 

0.044 0.055 24 0.050 0.059 19 0.058 0.066 14 0.048 0.062 29   0.050 0.061 21 21 

a Valdivia 2010 treatment is the average of the two best yielding DH lines (DH18 and DH28). 
b Bacanora average K was calculated from the Valdivia 2012 treatment (data not shown in table but included in data files). 
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Model outputs include emergence date, anthesis date, maturity date, grain dry mass yields, total above-
ground biomass, leaf area index, number of grains per square meter, grain dry weight, harvest index, 
crop N dynamics, crop transpiration and evapotranspiration, soil water and N dynamics, and intercepted 
photosynthetically active radiation (PAR). Not all models simulated all variables. Variables not simulated 
are indicated by “NA”. Simulation results are reported for each individual model and for the multi-model 
ensemble median (e.median). 

4 DATA FORMAT, STRUCTURE, AND AVAILABILITY: An overview of the main tables and files from the 
data is given in Table 2. Experimental (means of crop measurements) and simulation (model output) data, 
model input (cultivar information and crop management), soil description, initial conditions, and daily 
weather data (incoming solar radiation, maximum and minimum air temperature, rainfall, wind speed, dew 
point temperature, vapor pressure, and relative humidity) for simulation setup are provided in a Microsoft 
Excel (version 2019) and a JavaScript Object Notation (JSON) file. These files follow the AgMIP Crop 
Experiment (ACE) data schema. The ACE JSON file was created from the Microsoft Excel file by using the 
data translator available at https://github.com/agmip/translator-excel-python. The ACE JSON can be used 
to create model input files using QuadUI desktop utility for ACE input and output data translation 
(http://tools.agmip.org) or model-integrated translators (Porter et al. 2014). Data are also provided in tab-
delimited text format. All text files are UTF-8 encoded. The names, descriptions, and units of the variables 
(key) are provided in the Microsoft Excel file and in text files with their correspondence and conversion 
factors in the International Consortium for Agricultural Systems Applications (ICASA) standard (White et al. 
2013). Data available at https://doi.org/10.7910/DVN/VKWKUP. 

Table 2. Overview of the main dataset files. All files are provided in space- (weather data) or tab- (all 
others) delimited text format. Site description, soil, weather, initial conditions, crop management, cultivar 
description, and measurement data are provided in the Microsoft Excel (.xlsx) and JavaScript Object 
Notation (.json) format used in the AgMIP experiment and tab-delimited format. These *.xlsx, .json, and 
tab-delimited files all contain exactly the same information - for ease of use. 

File name Content 

CIMXXXYYYYDDDYYYYDDD.wth Space-delimited file of weather data. XXX is the 
three-character code for the site followed by a four-
digit code for the starting year (YYYY), a three-digit 
code for the starting day of the year (DDD), a four-
digit code for the ending year (YYYY), and a three-
digit code for the ending day of the year (DDD). 

CIM_AgMIP_weather_key.txt Tab-delimited file with names, definitions, and units 
of measured weather variables in ICASA format. 

CIM_AgMIP_measurement_key.txt Tab-delimited file with names, definitions, and units 
of measured variables in ICASA format. 

CIM_AgMIP_measurements_summary.txt Tab-delimited file of summary means of all 
available crop measurements. 

CIM_AgMIP.xlsx; CIM_AgMIP.json; 
CIM_AgMIP_tab_delimited 

Microsoft Excel file, JavaScript Object Notation file, 
and tab-delimited files with site description, soil, 
weather, initial conditions, crop management, 
cultivar description, and measurements. 

CIM_AgMIP_model_names.txt Tab-delimited file with the name, version, and two-
letter code of the 29 wheat crop models. 

CIM_AgMIP_simulation_key.txt Tab-delimited file with the name, definition, and 
units of the simulated variables in ICASA format. 

CIM_AgMIP_summary_simulations_stepX.txt Tab-delimited file of the summary model outputs. X 
indicates experiment step (1 or 2). 

CIM_AgMIP_daily_simulations_stepX.txt Tab-delimited file of the daily model outputs. X 
indicates experiment step (1 or 2). 

 

 

https://urldefense.proofpoint.com/v2/url?u=https-3A__github.com_agmip_translator-2Dexcel-2Dpython&d=DwMD-g&c=sJ6xIWYx-zLMB3EPkvcnVg&r=O-numdCgHgjCYWF2PQyALw&m=24bb-Ki4LZ_B-eHkBoJXT6eiftKfz0FvKWQyz-OVyYY&s=JZxj1wVD3gf4Xh2RGXbk25WbZ-U0nQz_v18SaxRpeHg&e=
http://tools.agmip.org/
https://doi.org/10.7910/DVN/VKWKUP
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