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Editorial on the Research Topic

Meiotic Recombination and DNA Repair: New Approaches to Solve Old Questions in Model

and Non-model Plant Species

Accurate segregation of chromosomes at the first meiotic division relies upon the establishment of
physical connections between homologous chromosomes, which with a few exceptions, are realized
by crossover recombination. Recombination also reshuffles genetic information between homologs,
and thus strongly influences genome evolution. At the molecular level, meiotic recombination is
initiated by the programmed induction of DNA double strand breaks (DSBs) and their subsequent
repair as a crossover (CO) or a non-crossover (NCO). However, COs are constrained and the
majority of DSBs are repaired as NCOs in plants. Gutierrez Pinzon et al. provide a comprehensive
overview of the most recent findings on the different steps controlling meiotic recombination,
with an emphasis on the different anti-CO pathways. Notably, one of these, involving the RecQ4
helicase, has previously been shown to be active in Arabidopsis, rice, pea and tomato (Séguéla-
Arnaud et al., 2015; Mieulet et al., 2018). Arrieta et al. extend this anti-CO role to the cereal
barley. Through a suppressor screen of a CO-defective mutant, they show that mutating the
RecQ4 gene in Barley can increase meiotic recombination by nearly two-fold. The RecQ4 anti-CO
pathway, initially discovered in Arabidopsis, appears thus largely conserved and translatable to
cereals. Mechanisms of meiotic recombination are thus largely conserved across plant kingdom.
Nevertheless specificities exist, as nicely illustrated by the characterization of the maize checkpoint
clamp loader RAD17 by Zhang et al. RAD17 is not essential for meiotic DSB repair in Arabidopsis,
while rice Osrad17 mutants exhibit extensive meiotic chromosome fragmentation leading to male
and female sterility (Hu et al., 2018). Here, Zhang et al., demonstrate that RAD17 is also essential
for meiotic DSB repair in maize but, remarkably and contrary to rice, only in male meiosis. Thus,
besides underlining the importance of studying various plant species, this work also points to
important differences between male and female meiosis (highlighted by Gutierrez Pinzon et al.).
New issues have also recently emerged at the forefront of research on meiotic recombination.
First, considering the impact of global warming, understanding how temperature affects meiosis
has become a major challenge and recent breakthroughs have been comprehensively described by
Gutierrez Pinzon et al. Second, Dziegielewski and Ziolkowski present an extensive review of the
knowledge around non-coding RNAs (ncRNAs) and their impact on plantmeiosis. NcRNAs are key
players in many biological processes, but their role in meiosis has remained elusive. An interesting
proposal of Dziegielewski and Ziolkowski is that ncRNA pathways regulate meiosis through the
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controlled expression of meiosis-specific genes and this role may
have evolved as a secondary effect of their primary function in the
control of transposable elements in germ cells.

Visualization of meiotic chromosomes has been of major
importance for our understanding of meiotic recombination
and the dynamics of chromosome behavior. Sims et al. provide
an overview of classical and advanced cytological sample
preparation methods, and review the latest developments in
microscopy techniques from epifluorescence, confocal laser
scanning and super-resolution microscopies in Arabidopsis.
The authors include representative STED (stimulated emission
depletion)-based images of Arabidopsis meiotic proteins
immunostained on chromosomes and suggest that nanoscale
imaging will help in characterizing the fundamental processes
of meiosis. Super-resolution microscopy has already provided
us with novel insights into CO interference by determining
the location, amount and intensity of the meiotic protein
HEI10 E3 ligase in Arabidopsis (Capilla-Pérez et al., 2021;
Morgan et al., 2021a). As an alternative approach of visualizing
plant chromosomes, Prusicki et al. review technical aspects
and applications of live imaging of meiosis in plants. The
development of novel genomic approaches has also advanced
our understanding of meiosis. For instance, Barr et al. develop an
INTACT system to purify meiotic nuclei in a high-throughput
manner in Arabidopsis and discover the importance of DNA
demethylation in plant meiosis. The meiocyte INTACT system
can be combined with single cell RNA sequencing (Nelms and
Walbot, 2019) and other genomic approaches such as ATAC-seq,
bisulfite-seq and ChIP-seq for mapping of meiotic chromatin
features. Post-translational modifications also play crucial roles
in the control of meiosis. Orr et al. highlight recent advances on
the roles of ubiquitination in plant meiosis and overview various
proteomic approaches for identifying substrates of ubiquitin
E3 ligases which include BioID/TurboID-based proximity
labeling. The proximity labeling and affinity purification–mass
spectrometry can be adapted to generate a wide view of protein
interactome during meiosis (Mair et al., 2019; Yang X. et al.,
2021).

Along with powerful genetic screening of plant meiotic
mutants, these advanced approaches have helped to confirm
that COs are not evenly distributed along plant chromosomes.
For instance, they are enriched in distal regions but also in
interstitial regions that are at junctions with heterochromatin in
Arabidopsis. In contrast, COs are almost exclusively restricted to
distal regions in cereals. A correlation between CO distribution,
transposon content and DNA methylation exists in plant species
(Lambing et al., 2017). Raz et al. use Virus-Induced Gene
Silencing to down-regulate the expression of genes coding for
DNA methylases recombination proteins in tetraploid wheat
and show that it is possible to influence the pattern of
recombination using non-transgenic approaches. This technique
has the potential to facilitate plant breeding by creating novel
genetic diversity in regions normally deprived in meiotic
recombination. However, in order to profoundly impact future
breeding strategies, the control ofmeiotic recombination remains
to be fully understood. Kuo et al. provide an overview on
the factors known to be involved in CO distribution and

hypothesize that the formation of COs near the telomere is a
default position caused by the pairing of the telomeres prior to
the initiation of recombination. Aguilar and Prieto extend this
concept and review our current knowledge on the dynamics
of the telomeres and sub-telomeres. The authors suggest that
distal chromosome recognition could play an important role in
the correct chromosome pairing in polyploid species. Since the
telomeric repeats are highly conserved between plants species,
the authors propose that the sub-telomeric regions, rather
than the telomeres, may help differentiating homologous from
homoeologous pairing. These new models of CO distribution
and chromosome pairing will likely drive future experimental
investigations. Kuo et al. further propose that a change in
the composition of the chromosome axis between Arabidopsis
and wheat could be a major contributor to the different
patterns of recombination observed between the two species.
In support to this model, Osman et al. perform a detailed
analysis of meiotic recombination in hexaploid wheat and show
that the chromosome axis and DSBs initiate first in distal
regions before occurring in interstitial and proximal regions.
The authors speculate that the sequential events of meiotic
progression have an influence on the position of COs along the
chromosomes, with the regions recombining first being more
likely to form a CO while the regions recombining last rarely
recombine. This recombination pattern is also influenced by an
interfering signal that initiates at the CO sites and inhibits the
formation of additional COs in adjacent regions. The formation
of a CO involves the linkage between two chromatids from
each of the two homologous chromosomes. It had remained
unknown if interference can spread across the chromatids that
are not directly involved in the CO. To answer this long-
standing question, Sarens et al. develop a novel approach to
quantify chromatin interference. The authors found that the
interfering signal represses the formation of a second CO on the
two chromatids of each chromosome and concluded that CO
interference acts on the whole chromosome. In a separate study,
Morgan et al. (2021b) showed that CO interference occurs along
multiple connected axes to repress the formation of multivalent
connections in tetraploid Arabidopsis arenosa.

One of the most important challenges in meiosis arises after
whole genome duplication (WGD). The presence of more than
two chromosome sets in the same meiosis may lead to the
formation of univalents and multivalents during prophase I and
subsequent chromosome mis-segregation during anaphase I. To
face these problems, polyploids have developed strategies to
control pairing preferences that result in diploid-like behavior
during meiosis and disomic inheritance. Svačina et al. use
allohexaploid bread wheat as a model to review molecular
mechanisms and regulators involved in maintaining diploid-
like pairing behavior in allopolyploids (polyploids resulted from
the hybridization of related species). WGD is a prominent
evolutionary process relevant for crop improvement. Indeed,
many cultivated plants such as wheat, tobacco, potato, cotton, or
sugarcane, among others, are polyploids. In addition, polyploids
often display better tolerance to abiotic stresses (Van de Peer
et al., 2021). Natural polyploids may emerge through several
pathways, described in detail by Svačina et al., with the
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generation of unreduced gametes being the more predominant.
The production of these gametes, although highly influenced by
the environment, also has a genetic basis (Van de Peer et al.,
2017). The presence of mutations in certain genes may have
contributed to polyploidisation, facilitating the formation of
unreduced gametes by defects in either meiosis I or II. Recently,
it has been reported that the function of the STRUCTURAL
MAINTENANCE OF CHROMOSOME 5/6 (SMC5/6) complex
is essential to ensure accurate gametophytic ploidy in Arabidopsis
(Yang F. et al., 2021). Mutants defective for this complex
generate unreduced gametes by recombination-independent
mechanisms and produce triploid offspring. Yang et al. analyzed
autotetraploid plants deficient for SMC5/6 and found even
more drastic meiotic defects than in diploids, highlighting the
importance of this complex in the maintenance of tetraploid
genome stability. The meiotic function of other SMC complexes
(cohesin, condensin) and associated cofactors, also involved in
genome maintenance, is reviewed by Bolaños-Villegas. Besides
polyploidy, holocentricity is another challenge to the proper
progression of meiosis in the evolution of several plant
species. Holocentric chromosomes possess multiple kinetochores
dispersed along their length rather than a single region that
functions as the centromere. As well as chromosome duplication,
holocentric chromosomes evolved several times during plant
evolution (Mandrioli and Manicardi, 2020). In plants, the
presence of holocentric chromosomes is linked to inverted

meiosis, a meiosis with a reverse order in which segregation
of homologous chromosomes occurs during meiosis II. In an
interesting review, Hofstatter et al. describe adaptations during
meiosis in holocentric plants.

Overall, our Research Topic provides an in-depth overview
of the latest developments in meiosis and will be of interest
to a broad readership on meiosis, genome evolution and
plant breeding.
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