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Abstract
Biology can be regarded as a science of networks: interactions between various biological

entities (eg genes, proteins, metabolites) on different levels (eg gene regulation, cell signalling)

can be represented as graphs and, thus, analysis of such networks might shed new light on the

function of biological systems. Such biological networks can be obtained from different

sources. The extraction of networks from text is an important technique that requires the

integration of several different computational disciplines. This paper summarises the most

important steps in network extraction and reviews common approaches and solutions for the

extraction of biological networks from scientific literature.

INTRODUCTION
The extraction of biological networks is

an emerging text-mining task, which

requires the integration of a wide range of

text-mining techniques to support systems

biological approaches in modelling,

analysis and simulation of biological

systems.1 Furthermore, network

extraction is also important for other

fields, such as database curation and

annotation.2 Some databases such as

TRANSPATH3 are in fact networks,

while others compile interactions

between biological entities such as

proteins, transcription factors or enzymes

and metabolites, eg BIND,4 DIP5 and

BRENDA.6 Furthermore, extracted

networks can be used to analyse and

interpret experimental results, ie to

support research and discovery.7 Another

application is to exploit implicit

information for generating new

knowledge by combining extracted

information into a set of hypotheses.8–12

The extraction of biological networks

requires a combination of several different

computational disciplines. Rather than

presenting a comprehensive overview

about each involved discipline or the

whole relation mining field, this paper

aims at introducing key aspects and

selecting examples that represent the

different possible approaches.

Figure 1 introduces the main steps

required for reconstructing biological

networks from free text and serves also as

guideline for the sections on ‘Approaches’

and ‘Tools’: first the texts to be searched

have to be chosen. Then entities (eg genes,

proteins, metabolites) have to be

identified and their (potential) relations are

to be inferred from the selected texts.

Finally, the entities and relations can be

combined as nodes and edges into a

network. The result produced in each step

serves as input of the next step. Extracting

structured information from unstructured

natural language sources cannot yet be

expected to produce accurate results that

can be used immediately and without

further consideration. Therefore, the

intermediate results of each step also

deserve separate validation and their

performance can be evaluated separately.

The remainder of the paper is organised

as follows: the next section (‘Approaches’)

presents (for each step of the workflow in

Figure 1) an overview of the different

approaches dealing with its respective

actions and questions. The section on

‘Tools’ presents some selected software

examples that capture either all network
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extraction steps as an integrated system or

one or several individual steps. The paper

closes with some final remarks in the

conclusion.

APPROACHES
Validation

Evaluation metrics:
recall, precision and
effectiveness

For each step (Figure 1), the performance

depends on the performance of the

previous steps. To quantify the

performance of text-mining results, three

major metrics are normally used: recall,

precision and effectiveness.13 The recall is

the fraction of correctly identified entities

(texts, gene names, protein interactions

etc) in the set of relevant (ie true positive)

entities, whereas the precision is the

proportion of extracted relevant entities

to all entities retrieved. Precision and

recall are sometimes also referred to as

specificity and sensitivity. In simple words,

the recall shows how much of the searched

information could be extracted and the

precision reflects the quality of the

method. From this it follows that in order

to calculate the recall, usually more

information about the searched texts is

needed in advance. On the other hand, in

order to estimate the precision, one only

has to validate a representative subset of

the results obtained. For this reason, often

the precision is reported without a recall.

However, to provide a balanced estimate

of the performance of a text-mining

approach, both values are combined in

the effectiveness measure, which is the

reciprocal of the mean of precision and

recall.

Texts
The first decision to be made for the

extraction of biological networks from

scientific literature is the selection of the

text sources. One drawback that cannot

be avoided is that even if relation mining

were 100 per cent successful in retrieving

all information from the respective

literature, these networks would reflect

mostly the current state of the literature,

ie they might suffer from both the

incompleteness and the biases of the

current research efforts in molecular

biology and genetics. In effect, networks

extracted from scientific literature are not

fully connected, and stronger connected

subnetworks might stem from research

activities concentrating on a couple of

interesting genes or substances.14

Although in principle any text source

can be used for text mining, in practice

abstract collections of scientific

publications and full text journal

publications are normally used. Abstract

collections have the advantage of

Figure 1: Overview
about the main steps and
their according actions in
network extraction and,
following this flow, the
paragraphs in section
‘Approaches’. Also the
software packages
described in ‘Tools’ are
chosen for handling tasks
appearing in one or
more of these steps
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D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article-abstract/6/3/263/308454 by Periodicals Assistant - Library user on 06 D

ecem
ber 2019



relatively high information density.

Further, they are often already manually

annotated and categorised in a structured

way that can be exploited for pre-

filtering. Whereas MedLine15 is the

largest and most widely used

bibliographical resource in the biological

domain, other abstract collections and

indexing services should also be

considered, since MedLine does not

necessarily provide the best domain

coverage for a specific type of network to

be extracted.16 However, in most text-

mining approaches, MedLine is used,

which is probably because MedLine is

freely available for non-commercial

purposes.

Identification of
entities in texts

Recently, an increasing number of

text-mining approaches also utilise full

text journal publications,17–19 and the

success of the open access model20 will

remove the financial hurdle for getting

hold of a reasonable number of electronic

full text publications. Yet dealing with full

text publications is also more challenging

on a technical level as one has to deal with

a range of different formats (pdf, HTML)

in which the publications are provided.

The more demanding aspect is that the

substructure is not always the same.

However, since the typical sections of

scientific publications (abstract,

introduction, methods, results, discussion,

figure captions, tables, etc) largely differ in

their information density,21 it is not

surprising that those text-mining

applications applied on full texts perform

best which take the substructure of the

paper into account.22

Once appropriate text sources have

been identified, often the next step is to

filter the text sources. In many cases, this

is a simple need to reduce the amount of

data into a manageable subset: mirroring

and indexing all 15 million MedLine

abstracts into a local database requires

several days on a modern computer.23

The other reason for filtering is to

improve the precision of the subsequent

text-mining steps by removing

‘obviously’ irrelevant text sources. Often,

simple methods (keywords, year of

publication) are used for filtering. Yet

there is the danger that such a simple

approach may discard relevant texts. In

order to define an organism-specific filter

for mice, a naı̈ve filter would only

consider abstracts that contain the words

‘mouse’ or ‘mice’ or ‘mus musculus’.

However, such a filter will miss the

18,000 MedLine abstracts with ‘murine’

as the only word that indicates that they

also refer to the same taxonomical entity.

In other words, naı̈ve keyword filters may

easily miss relevant information and thus

already reduce the recall of the whole

text-mining process by filtering out

relevant texts too early. For such reasons,

advanced statistical and machine learning

methods can be applied for pre-

filtering.24,25

In summary, the selection of the text

sources and the definition of appropriate

filters have a significant influence on

subsequent steps: in the worst case, by

selecting the wrong text sources or by

applying the wrong filters even the best

named entity recognition (NER, see

‘Entities’) and relation mining (see

‘Relations’) methods are deemed to fail.

Entities
Before relations can be searched in texts,

the entities of the relations have to be

identified. Entities represent objects of the

real world as, for example, proteins, genes

and diseases. Usually these objects do not

match simply to one name or symbol in

natural language. Thus, many different

words or symbols (as synonyms,

abbreviations, acronyms or different

spellings) have to be considered when a

real world entity is searched in texts.

NER is a longstanding NLP (natural

language processing) discipline on which

a wide range of techniques exists. The

different approaches and applications in

bioinformatics are very well reviewed by

Cohen and Hersh26 and Krauthammer

and Nenadic.27 In the following, we will

outline the basic ideas and principles.

According to Krauthammer and

Nenadic,27 NER consists of three steps:

term recognition, term classification and

Selection of appropriate
text sources
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term mapping, although term

classification is not an important step for

the purpose of network extraction from

scientific literature.

For term recognition, the following

approaches can be used:

• Keywords: in the simplest case, lists of

keywords are used to identify relevant

entities.

• Rules and regular expressions: for

example entities such as fungal gene

symbols, Arabidopsis gene symbols or

enzyme numbers follow a standardised

distinct syntax, which can reliably be

extracted and identified by regular

expressions (ie a string that describes

or matches a set of strings, according

to certain syntax rules). Yet,

unfortunately not all taxonomical

entities apply sensible genome

nomenclature guidelines.

• Dictionaries and ontologies: whereas

dictionaries usually are simple term

collections, ontologies also store typed

relations between the terms, as, for

example, ‘is a’ or ‘part of’ relations.

Terms in ontologies are usually

regarded as concepts. Entries in

dictionaries and concepts of ontologies

often contain several synonyms for the

same entities. Thus in a dictionary or

ontology-based approach the known

relations between terms (as, for

example, synonym relations) are

exploited to identify a searched term

in the the text. Apart from manual

curation, dictionaries and ontologies

can be extracted from free text28–30 or

from scientific databases.31

Dictionary-based approaches can

achieve a balanced precision and recall

more than 80 per cent.32–34 Another

advantage of using dictionary-based

approaches is that the non-trivial task

of term mapping (see below) becomes

obsolete, and some dictionary-based

approaches can also be used for

discriminating between different word

senses (mouse as a pointing device

versus mouse as an organism).2,35

Koehler et al.36 present for this

purpose an integrated approach where

ontologies and databases are mapped

in order to perform concept-based

term identification and text indexing

(see also ‘Tools’).

• Machine learning: one of the most

commonly used techniques is machine

learning. Here, support vector

machines (SVMs)37,38 as well as

hidden Markov models39,40 are

broadly and successfully applied.

Depending on the NER method used,

equivalent entities are not always

recognised as the same real-world entity,

since for most proteins and genes, several

synonyms exist. In consequence,

relationship mining methods that are

developed on top of such NER methods

would generate a good deal of

redundancy. Such problems can be

overcome by selecting an appropriate

NER technique, or by subsequent

computational or manual linkage of the

equivalent entities (term mapping).41

At the end of this step, the distinct

entities (including in one entity all

respective names, synonyms, etc) can be

used as the nodes of the finally resulting

network.

Relations
If the entities are defined and localised in

the texts, relations between them can be

inferred. Usually, the relations to extract

are binary. They may or may not be

directed or weighted with additional

information. Furthermore, it is often

required to determine the type of the

relation,42 eg whether they link proteins

that interact, or whether they connect

transcription factors that regulate genes.

Most current efforts in relationship

mining deal with protein–protein

interactions: yet, also in these cases the

different kinds of interactions (activation,

binding, etc) need to be characterised.

Relation mining approaches range

from applying simple statistical heuristics

Identification of
relations between the
recognised entities
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(eg by considering co-occurrences of

search terms or estimating term frequency

distributions) to syntactical and semantical

sentence analysis (eg syntactical or

semantical parsing) using NLP methods.43

In rule-based approaches a set of additional

rules, which for example reflect prior

experiences with the considered relation

mining task, is added to improve the

search.22 Furthermore, machine learning

methods can be used, for example, to

adapt patterns from text or to discriminate

significant words.19,33

One of the most straightforward

relation mining approaches is the co-

occurrence search. The basic assumption here

is that for describing a relation between

two entities their names usually occur in

the same text or part of the text. Thus, for

co-occurring entities a relationship can be

assumed.

Very basic approaches work with lists

of keywords: for example a co-occurrence

approach on the sentence level to search

for nuclear receptors, their binding

proteins and an interaction verb resulted

in a precision of 22 per cent when all

extracted relations were examined

manually.44

Extraction of
relations by using
natural language
parsers

Another co-occurrence approach is

applied in the PubGene database45 (see

also the section on ‘Tools’) which

contains gene–gene relations and was

created by searching for pairs of gene

names in MedLine abstracts. The

extracted relations are weighted by the

number of articles in which they were

detected. Manual examination of two sets

with each 500 randomly selected relations

resulted in a precision of 60 per cent for

relations found in only one article and 71

per cent for those found in five articles

(recall not reported). Further evaluations

were conducted by comparing the results

with known gene–gene interactions from

databases (DIP,5 OMIM46). Between 45

and 51 per cent of the interactions in the

database were also found by PubGene.

The performance of co-occurrence

searches also depends on the part of the

text in which co-occurrences are

considered. Ding et al.13 compared recall,

precision and effectiveness in single

phrases, sentences or the whole abstracts.

Interestingly, some relation types can best

be extracted at the sentence level, whereas

others perform better when whole

abstracts are considered. Therefore, as a

further enhancement, co-occurrence

searches can be combined with a set of

simple rules that determine the context

size and order of the co-occurrence. For

example, to extract protein–protein

interactions24 in Drosophila the texts were

divided into fragments (ie sentences or

part of sentences). Then only co-

occurrences of protein names and an

interaction verb (all taken from

predefined lists) possessing the form

‘protein A – verb – protein B’ are

extracted from these fragments.

Scoring the extracted relations and

possible relation types can further help to

improve the precision. Stephens et al.47

weight each co-occurrence of two gene

names in a text by their frequency in the

respective text and their inverse frequency

in all documents (association score);

keywords describing the type of

interaction add an additional value. Using

this scoring, a search for genes from the

same pathway in 5,072 MedLine abstracts

resulted in recall and precision rates about

60 and 90 per cent respectively.

Whereas in co-occurrence approaches

only simple rules or patterns are applied to

a small set of two or three extracted

entities and additional words, NLP48

techniques parse and analyse the sentences

in greater detail. Shallow parsers

(sometimes referred to as partial parsers) are

used to identify the syntactic information

that is assumed to be the most important.

Here, mainly part-of-speech (POS)

taggers are used for tagging each word in

a sentence with its most likely

grammatical function (noun, verb, etc).48

This can then be used to infer the

relations described.49,50 Deep parsers try to

reconstruct the complete sentence

structure as a tree structure51,52 and apply

a grammar, such as, for example, the

combinatory categorial grammar

(CCG),53 which first localises target verbs

Extraction of relations
by searching for co-
occurring terms
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to scan afterwards the neighbourhood for

the entities of the relations. Generally, full

sentence parsers can be distinguished into

such reconstructing the syntax or the

semantics of a sentence, or a mixture of

both. A review by McDonald et al.52

introduces both approaches and mixtures

of them and gives an overview on

applications in the biomedical text-

mining field and the resulting

performances, advantages and drawbacks:

while syntax-based approaches need no

further domain-specific information, they

can easily be applied in different domains,

but suffer from a lower precision than

semantic parsers. For biological relation

mining with one exception (Leroy et al.49

reports 90 per cent) no higher precision

rates than 83 per cent are reported. The

only reported recall was about 47 per

cent.54 Contrarily, semantic grammars

apply domain specific resources and thus

result in an increased precision (up to 91

and 96 per cent), but are often evaluated

in a smaller sample of documents.

Consequently, balanced or hybrid

approaches have been developed, which

try to exploit the benefits of both

syntactic and semantic full parsing. The

precision of such hybrid systems is high

(eg 8952 or 91 per cent51), but the recall is

still relatively low (3552 and 21 per cent51

respectively).

Comparing NLP approaches with

simple co-occurrence assumptions shows

that NLP techniques result in some cases

in a higher precision, as one could expect

from intensive grammar analyses, but at

the cost of speed and recall. On the other

hand, NLP methods produce knowledge

that can be exploited in steps which have

to be performed separately when using

co-occurrence searches. The POS tagging

information can be, for example, used in

the NER and the direction or the type of

the relation can be easier inferred using

the exact structure of the sentence.

Also machine learning techniques have

been applied to relation mining. An

approach that combines dynamic

programming and sequencing alignment

algorithms as normally used for the

comparison of nucleotide sequences is

described by Huang et al.18 This approach

was applied to 50 full text papers and

resulted in a precision/recall of 80.5 and

80.0 per cent. Furthermore, genetic

algorithms have been used as learning

strategy to optimise the set of extracted

patterns as well as to train finite state

automatons for finding new patterns in

text.19 Others use trained classifiers such

as SVMs55 on unprepared25 or shallow

parsed texts56 to select texts describing an

interaction.

Different relation mining strategies

were compared in the ‘KDD Challenge

Cup’.22 Despite the differences in their

approaches, all winning teams have in

common that they take the order of

words into account rather than

considering a text simply as a ‘bag of

words’. The fact that the winning team

applied a purely rule-based approach, and

that the other top performing approaches

also used a rule-based component in their

systems, indicates that machine learning

approaches cannot yet compete with rules

developed by experts.

Relation mining as described so far can

be characterised as reconstructing

established knowledge, whereas other

approaches try to generating de novo

hypotheses by combining extracted

relations. Wren et al.10 and Srinivasan and

Libbus9 both extend and improve the

open discovery approach originally

proposed by Swanson8 and Smalheiser in

the mid-1980s. The basic assumption is

that pairs of terms found in different texts

and sharing the same ‘intermediate’ terms

can be linked. An important

improvement is to establish a robust and

meaningful score for the extracted

potential relations. Combining even only

a few co-occurrence pairs usually results

in a high number of possible implicit

links. Wren et al.10 use fuzzy logic

methods and compare extracted networks

with random networks. Srinivasan and

Libbus9 use combined weights that rank

the importance of each identified term

(similar to the above-mentioned scoring

proposed by Stephens et al.47). In both

Inferring hypotheses as
new knowledge from
text
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D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article-abstract/6/3/263/308454 by Periodicals Assistant - Library user on 06 D

ecem
ber 2019



papers hypotheses could be found that

have not been reported in a single paper

before and that led to new directions for

experimental validation. Van Der Eijk et

al.12 introduce the associative concept

space (ACS) as a metric for weighting the

distance between pairs of terms according

to the length of the chain of intermediate

terms which connect them. Using this

method, clusters of functionally related

genes could be identified.57 In Chilibot11

(see also ‘Tools’) the whole extracted

network is used to generate a network

with hypothetical new interactions.

However, experimental validation is in

most cases still the only way to prove

these hypotheses.

As a result of relation mining, links of

the network to be created can be gained.

They might directly consist of a relation

between two entities or consist of two or

more combined relations.

Networks

Combining extracted
entities and relations
into a network

Finally, the nodes and links created in the

steps ‘Entities’ and ‘Relations’ can be

integrated into a network. Yet such

networks are incomplete and may contain

incorrect entities and relations. As already

discussed, in each of the different steps a

range of methods can be applied that vary

significantly in their precision and recall.

Therefore, currently only very few

approaches are published where networks

extracted from texts are used for analysis

and further investigations.

Using extracted
networks for analysis
and validation of
experimental results

One possibility of dealing with the

uncertainty in the resulting networks is to

apply a score that represents the quality of

the extracted relations. Such a score can

be used as an edge weight to visualise the

likelihood of the correctness of relations.

New discovered relations then could be

drawn in a different way24 and thus the

network visualisation can be used for

manual comparison with existing

knowledge by experts.17,45,58,59

In principle, extracted networks can be

used for answering specific biological

questions or to provide deeper insights

into the general structure of biochemical

network topologies. In some cases the

resulting network topologies have been

investigated. Some topological

characteristics of the network can be

attributed to the bias of scientific literature

(trendy topics and terms resulting in

waves of publications on related genes,

proteins, etc).14 Two papers studying the

network topology11,60 report that the

distribution of the node degrees is scale-

free, ie it follows a power law, meaning

that most of the nodes obtain a small

connectivity whereas a few nodes (so-

called hubs) are highly connected (for a

good introduction into network theory

see Newman61 and Albert and

Barabasi62). Again, Chen and Sharp11

interpret this as the reflection of the

intensity of a subject investigated, ie most

topics are only scarcely considered and a

few are intensively studied. Interestingly,

Blaschke and Valencia60 discovered a

correlation between the distance of nodes

in the network and their functional

relationship. Especially for classifying the

correctness of new relations, this could be

a helpful measure. In summary, not much

work on graph-based analysis of biological

networks extracted from text sources

exists. So far, topological properties of

hypothetical networks have been mainly

used for validating and analysing the

correctness of the extracted networks.

Rather than analysing the topological

properties, the extracted networks can

also be used in context with experimental

data in order to validate the extracted

network as well as to evaluate the

experiments. For example Jenssen et al.45

could show that their extracted co-

occurrence gene networks reflect

biologically meaningful relationships from

three large-scale experiments. The

resulting PubGene database and tool also

allows gene expression data to be analysed

in context of extracted networks (see also

‘Tools’). Karopka et al.63 apply their

extraction approach on lists of gene names

from experiments to compare the

extracted relations with the

experimentally determined ones. Albert

et al.44 searched for protein interactions of

nuclear receptors and compared these
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text-mining results with data from yeast

two-hybrid screens. Here they found

similarities of the nuclear receptors

regarding their connectivities. Also

properties of some specific proteins were

investigated and could be experimentally

validated. Another example for the use of

extracted networks is the curation of

specific pathways, eg the Wnt pathway.64

It is worth mentioning that also most

experimental data are far from being

complete and unambiguous. Hoffmann

and Valencia65 compared protein

networks of the same organism created

with different experimental methods and

found many differences in the topologies

of the networks. Thus, biological

interaction networks extracted from texts

can be used as additional source for

validation. For this purpose tools as

Chilibot11 or iHOP66,67 can also be used

to navigate through the papers

constituting an extracted network (see

also ‘Tools’).

Additionally the creation and visual

inspection of hypothetical relations can be

used to explore new features of the

considered entities.11 For example Wren

et al.10 report the discovery of new

relationships between cardiac hypertrophy

and potential drug targets.

TOOLS
This section introduces selected tools that

implement one or more of the approaches

discussed for each step of the workflow

(Figure 1) in the previous section. Table 1

gives an overview of recently developed

and available software.

Examples for integrated applications

Table 1: Selected tools. The columns for methods indicate to which part(s) of the workflow the tool can be used for

No. Name Main website Methods Availability Platforms

Texts Entities Relations Networks

1 PASTA http://www.dcs.shef.ac.uk/research/
groups/nlp/pasta/

3 3 3 3 Public Web

2 PathwayAssist http://www.ariadnegenomics.com/
products/pathway.html

3 3 3 3 Commercial Win

3 Chilibot http://www.chilibot.net 3 3 3 3 Public Web
4 E-Utilities http://eutils.ncbi.nlm.nih.gov/entrez/

query/static/eutils_help.html
3 Public Web, Java

5 TnT http://www.coli.uni-saarland.de/
�thorsten/tnt/

3 Public Unix

6 CASS http://www.vinartus.com/spa/ 3 Open source Unix
7 AiSee http://www.aisee.com/ 3 Commercial Win, Unix
8 PubGene http://www.pubgene.org/ 3 3 3 3 Commercial Web, Win
9 GraphViz http://www.graphviz.org 3 Open source Lin, Win
10 BioNLP http://www.geneticxchange.com/ 3 3 Commercial Java
11 GATE http://www.gate.ac.uk/ 3 3 Open source Java
12 ONDEX http://sourceforge.net/projects/

ondex
3 3 3 3 Open source Lin

13 MedlineR http://dbsr.duke.edu/pub/MedlineR/ 3 3 3 Open source R
14 Pajek http://vlado.fmf.uni-lj.si/pub/

networks/pajek
3 Public Win

15 PubMatrix http://pubmatrix.grc.nia.nih.gov/ 3 3 3 Public Web
16 iHop http://www.pdg.cnb.uam.es/UniPub/

iHOP/
3 3 3 3 Public Web

17 MedKit http://metnetdb.gdcb.iastate.edu/
medkit/

3 Open source Java

18 Textomy http://www.litminer.ca/ 3 3 n.a. n.a.
19 Snowball http://snowball.tartarus.org/ 3 Open source Lin, Java
20 Qtag http://www.english.bham.ac.uk/staff/

omason/software/qtag.html
3 Different licence Java

21 NLProt http://cubic.bioc.columbia.edu/
services/nlprot/index.html

3 Public Lin, Win

22 Ingenuity http://www.ingenuity.com 3 Commercial Web
23 Cytoscape http://cytoscape.org 3 Open source Java
24 Osprey http://biodata.mshri.on.ca/osprey/ 3 Different licence Lin, Win

2 7 0 & HENRY STEWART PUBLICATIONS 1467-5463. BRIEF INGS IN BIOINFORMATICS . VOL 6. NO 3. 263–276. SEPTEMBER 2005
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that combine all steps into one system are

PIES,68 SUISEKI,69 PreBIND,56

GeneWays59 and PASTA70 (the last one is

tool no. 1 in Table 1). The commercial

software package PathwayAssist (2) also

addresses the whole workflow. It uses

MedScan51,71 as module for text mining,

which is also available separately and

based on NLP techniques. After

retrieving PubMed abstracts according to

a user-defined query, sentences are

filtered out that do not contain at least

one concept of a dictionary. The

remaining sentences are further processed

with a syntactic parser and a semantic

interpreter. The resulting relationships

can then be visualised and analysed within

PathwayAssist. The reported precision is

91 per cent with a recall of 21 per cent.

Integrated tools:
applying all steps of
network extraction

Chilibot11 (3) is a web service to

construct networks from genes, proteins,

drugs and other biological concepts. It

uses the E-Utilities (4) service (ESearch

and EFetch) at NCBI for retrieval of

documents by submitting a query

consisting of the pairwise combinations of

the user’s input terms and their synonyms.

Acronyms contained in the user input are

automatically resolved to their long-term

phrases. Retrieved abstracts containing

less than 30 per cent of the acronym’s

phrase terms are rejected. Sentences from

the abstracts that contain two or more

query terms and synonyms are further

processed by the POS tagger TnT72 (5)

and the shallow parser CASS (6).

Following that, the resulting sentences are

classified into one of six categories

according to the presence/absence of

terms indicating special relationships. For

visualisation of the extracted relationships

AiSee (7) is used in Chilibot. The

extracted network can in addition be used

for navigating the related literature. The

precision of the system was determined to

be between 74 and 79 per cent depending

on the category and the recall to be about

90 per cent.

PubGene45 (8) is an integrated system

widely used in different projects. It is a

commercial tool, but developed in

academic research. The basic version

described in Jenssen et al. 45 uses a

dictionary of gene symbols and names

collected from HUGO nomenclature

database, LocusLink, GDB and

GENATLAS to identify genes in

Medline. Each gene thereby is

represented by its primary gene symbol.

With the resulting gene–article–index

co-occurrences of pairs of genes in the

abstracts are calculated (see also

‘Relations’ in the previous section). The

retrieved network can be enriched with

DNA microarray data. The visualisation is

done with GraphViz (9).

The systems described so far integrate

all parts of the overall workflow. Building

blocks of these applications are tools that

cover either one task, eg TnT, or many

parts, eg BioNLP73 (10). A public

available framework that provides the

basic architecture for the development of

information extraction applications is

GATE74 (11). In the field of biological

relation mining it is used, for example, in

PASTA70 and by Karopka et al.63 GATE

includes a set of components, which can

be replaced or extended easily as the

framework is provided as a Java API.

Beside usual modules like a Tokenizer, a

Sentence Splitter or a Tagger,

components for recognising relations and

finding identical entities (Orthomatcher,

Coreferencer) are available.

The ONDEX (12) suite is intended for

integration of databases, network

extraction and graph analysis. Here, a

concept-based entity recognition using

mapped ontologies is applied in a first step

(see also ‘Entities’) and used for text

mining with a co-occurrence search. It is

not restricted to PubMed abstracts as texts

are imported into a relational database

format (PostgreSQL).

The library MedlineR75 (13) uses the

statistical environment and programming

language R to define procedures for

retrieving articles from NCBI, mapping

terms to MeSH and mainly to calculate

co-occurrences of terms. The visualisation

of the associations is realised through the

generation of an output file in the Pajek

(14) format.

& HENRY STEWART PUBLICATIONS 1467-5463. BR IEF INGS IN BIOINFORMATICS . VOL 6. NO 3. 263–276. SEPTEMBER 2005 2 7 1

Extraction of biological interaction networks

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article-abstract/6/3/263/308454 by Periodicals Assistant - Library user on 06 D

ecem
ber 2019



PubMatrix76 (15) is, in contrast to

MedlineR, a web-based tool intended for

interactive querying. To calculate a co-

occurrence matrix the user has to define

two lists of terms, a search list and a

modifier list. The terms of the list, which

can be simple keyword lists or gene

symbols, are used to create PubMed

queries. This is realised by pairwise

combining the terms of the different lists.

Finally, the resulting matrix contains the

frequency of co-occurrences. Another

interactive querying tool is the iHOP

service (16). It enables the search of genes

in a pre-calculated co-occurrence

network of genes and proteins (from eight

organisms). In contrast to other systems

the user retrieves fragments of sentences,

which contain relations of the searched

gene, and then selects relevant relations

that should be added to a user specific

literature network.

Specialised tools:
applying individual
steps of network
extraction

Finally, there exist a number of

software packages that can be used in each

single step of the network extraction

workflow (Figure 1): the acquisition of

texts can simply be done by using the

E-Utilities of NCBI. MedKit77 (17) is also

very useful for this purpose and more

powerful. On the other hand more

sophisticated methods can be applied to

get more appropriate text corpora.

Textomy56 (18), for example, is part of

the PreBIND56 system and uses SVMs for

classifying texts.

For identifying entities in text in most

systems standard NLP techniques can be

applied. In the biomedical domain public

available tools have already been used, eg

Snowball (19) for stemming or Qtag (20)

for part-of-speech tagging. Specialised

taggers for biological knowledge also exist

under different licensing conditions.

A publicly available system which

addresses this task is NLProt78 (21). It uses

different dictionaries, eg a protein names

dictionary extracted from Uniprot and a

common names dictionary derived from

Merriam-Webster, in combination with

SVMs. For training the SVMs in the first

step each abstract is split into single tokens

separated by spaces. From these tokens

sample phrases are constructed that are

composed of three parts. SVMs then are

trained for each of these parts separately.

This enables the system to be trained for

different purposes, eg one SVM was

trained on central words and one for the

environment. The system achieves a

precision of 75 per cent and a recall of 76

per cent even for novel protein names.

Analysis and visualisation of the

generated networks can be supported

using specialised biological pathway and

network analysis tools, as eg Ingenuity

(22), Cytoscape (23), Osprey (24) or

ONDEX (12). These tools enable users to

analyse experimental data such as gene

expression results in context of the

biological networks. Ingenuity makes use

of a knowledge base, but it could not be

determined from the available

information in the web whether this

database or only part of it has been built

using text mining.

More generic applications as, for

instance, Pajek (14) are also very useful

especially in analysing topological

properties of the biological networks. For

importing networks as text files the

accepted formats of theses tools range

from simple tab delimited files to

common standards, as, for example, GML

or PSI.

CONCLUSIONS
Which of the presented extraction

methods performs best obviously depends

highly on the specific types of networks

to be extracted, and on the typical

structure of a publication that contains a

relation. For example, protein–protein

interactions are often dealt with at the

sentence level and achieve a good

precision (up to 95 per cent, but low

recall in those few cases where the recall is

also reported).18,51,56 The type of

networks to be extracted might also

determine whether it is sufficient for the

actual relation mining to use simple

heuristics (as, for example, approaches

based on co-occurrences of search terms

in the same context) or whether there is a

potential benefit in using advanced
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methods (such as eg syntactic or semantic

parsing of sentences).

Although several systems exist that can

be used for certain types of networks

(mainly gene–gene and protein–protein

interactions), a coherent ‘all-in-one’

solution for extracting biological

networks from text does not exist, nor is

it appropriate to address the different

types of problems in the same way.

Contrariwise, the currently existing

approaches and tools provide a set of solid

building blocks that can be used to

develop customised applications.
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