Patron: Her Majesty The Queen Rothamsted Research
\D Harpenden, Herts, AL5 2JQ

ROTHAMSTED Telephone: +44 (0)1582 763133
RESEARCH Web: http://www.rothamsted.ac.uk/

Rothamsted Repository Download

A - Papers appearing in refereed journals

Gower, J. C. 1958. A Note on an Iterative Method for Root Extraction.
The Computer Journal. 1 (3), pp. 142-143.

The publisher's version can be accessed at:

e https://dx.doi.org/10.1093/comijni/1.3.142
» https://doi.org/10.1093/comjnl/1.3.142

The output can be accessed at: https://repository.rothamsted.ac.uk/item/8wv3q.

© Please contact library@rothamsted.ac.uk for copyright queries.

10/05/2019 09:53 repository.rothamsted.ac.uk library@rothamsted.ac.uk

Rothamsted Research is a Company Limited by Guarantee
Registered Office: as above. Registered in England No. 2393175.
Registered Charity No. 802038. VAT No. 197 4201 51.

Founded in 1843 by John Bennet Lawes.

https://dx.doi.org/10.1093/comjnl/1.3.142
https://doi.org/10.1093/comjnl/1.3.142
https://repository.rothamsted.ac.uk/item/8wv3q
repository.rothamsted.ac.uk
mailto:library@rothamsted.ac.uk

A Note on an Iterative Method for Root Extraction
by J. C. Gower

Summary: A double iterative method for evaluating y/x!'/" is derived and it is shown that
if —1<C y"<<x <1 then it can be arranged that all terms occurring in the iteration are

also within this range.
are mentioned.

INTRODUCTION

A method commonly used on electronic computers as
a basis for a square root subroutine is the double
iterative procedure defined as follows:

i1 = ai (1 — i) W!
e Lo, —3).)]
Ck 1 acr(cx))

If initially @y = y and ¢o = x — I, then it can be
shown that ¢, — 0 and simultaneously a; — y[+/x. By
setting y = x this gives the result @, — 1/x.

The method seems to have originated with the EDSAC
group at Cambridge (Wilkes, Wheeler and Gill, 1951),
and was adopted on several of the earlier computers;
at Manchester and Rothamsted for instance. There are
three reasons why the scheme was particularly suitable
for machines built at that time. Firstly, the method only
requires a few cycles of iteration (see Table 1). Secondly,
no division is necessary, a great saving on those machines
which require a special subroutine for this operation.
Lastly, if y> < x < 1 then all subsequent values of a;, ¢,
are fractional so that there is no danger of overflow in
the accumulator. With computers with a built-in
division order and facilities for working in floating-point
arithmetic, the last two of these advantages have become
of less importance. For such machines the well-known
iterative procedure a, . ; = 4(a; + x/a;) is adequate for
evaluating 4/x and, in fact, has the advantage that
round-off errors cannot accumulate.

The object of this note is to throw more light on the
mechanism of this double iterative procedure and its
rate of convergence, and to show how it can be generalized
to evaluate y[x!/". The results are of general interest
and may be of value even when working on a floating-
point machine.

DERIVATION OF THE GENERAL FORMULAE
Consider the double iterative process:
oy = a(l + acy) ()
O+ cxp) = diey - 3)
Evidently if ¢, — O as k increases then a; — y[x!/".
Equations (2) and (3) imply that:
(I 4 cxe) = (1 4 (1 + acy)" 4

The constant o is to be chosen so that ¢, — 0 as k
increases, and so that this convergence is as rapid as
possible. The best that can be done with (4) is to

142

The rate of convergence is then discussed and some special cases

ensure a second-order process in ¢, by defining « such

that the term in ¢, vanishes.* This gives « = — 1/n.
(2) and (4) now become:
a1 = a1 — cxfn))
Crrr = (L4) (1 — ¢xfn)* — 1. (6)

If ¢, — 0 then by (3), a; — »[x!/".

As initial conditions choose ay =y and ¢y = x — 1,
values which are consistent with (3). For the par-
ticular case n = 2, (5) and (6) give rise to the formulae (1).
It is easy to show by an elementary, though rather
lengthy, study of (6) that if ¢, is a negative fraction

—1< - << +a)exp(—c) —1<0. (7)

If 0 <x <1 then —1 < ¢y <O and it immediately
follows from (7) that all values of ¢, are negative fractions
which converge to zero as k increases. It further follows
from (3) that |a;|” < |y"[x| and therefore a; is frac-
tional for all values of k provided that the final result
y[xt" ds itself fractional.

The above has shown that the iterative procedure
defined by (5) and (6), together with the initial con-

TABLE 1

THE NUMBER OF ITERATIONS REQUIRED FOR ¢, TO BECOME
LESS THAN 2731, FOR VARIOUS VALUES OF X

Number of iterations ‘ Minimum value
required | of x

0-99998
0-99609
0-9375
0-75
0-5
0-2929
0-1591
0-0830
0-0424
0-0214

OO0 NP W —

—

* To obtain a third-order process we may introduce a quadratic
term f)’ci into (2), which gives rise to:

(A + cx+1) = (I +)l + xck + fep).

Equating the coefficients of cx and t’i to zero yields values of
« and f which give the desired third-order process. Higher-order
processes may be obtained in a similar way but the formulae so
obtained become complicated unless n = 1.

6102 Ae|\ 01 uO Jasn Aseiqi - JUBISISSY S|eoIpoudd AQ 02 1LZLY/2Y LIS/ L AdBISqe-a[o1ue/|ulwoo/woo dnoolwapede//:sdiy wouy papeojumoq

Root Extraction

ditions @y = y, ¢y = x — 1, is suitable for the evaluation
of y/x"" on an electronic computer working in fixed-
point arithmetic, provided that the signs of x and y are
first adjusted to ensure that x is positive.

The asymptotic form of (6) is:

=+ c)exp(—c) — 1. ®)

This formula is of value in discussing the rate of con-
vergence of ¢, and in theory gives a method for evaluating
y[x!/" for large values of n. The accuracy of such a
method would depend on the error in the equivalence of
exp (—co) and (1 — ¢o/n)", and is unlikely to be of
much use in practice.

The above derivation does not require » to be integral.
However, for non-integral values the evaluation of (6)
would itself require some form of root extraction unless
n is sufficiently large for formula (8) to be used.

CONVERGENCE

Formula (7) gives narrow bounds to the convergence
process for ¢, and it is a remarkable fact that this con-
vergence is almost independent of n. This may be seen
by drawing the curves ¢, .; = — ¢} (n = 1) and that of
formula (8) (n = o0) which correspond to the slowest
and fastest rates of convergence respectively. These two
curves diverge from each other only slightly and enclose
the curves corresponding to all the other values of .
In view of this an adequate idea of the behaviour of the
convergence for all values of n can be obtained by dis-
cussing the slowest case (corresponding to n =1, or
division). Table 1 gives some figures for the number of
iterations required for ¢, to become less than 273! for
various values of x. It will be noticed that convergence
becomes slower as x decreases, and is actually infinitely
slow when ¢, = — 1 (i.e. when x is zero).

To make x as large as possible and so reduce the
number of iterations, it should be arranged that
1" < x < 1. This can be done by multiplying x by the
largest permissible power of 2", y being multiplied by
the same power of 2. Apart from improving con-
vergence this also improves accuracy by preserving more
digits throughout the computation. Table 2 gives the
average number of iterations required for various values
of n, assuming that all x in the range 1" << x <1 are
equally likely and that the convergence is governed

REFERENCE

TABLE 2
AVERAGE NUMBER OF ITERATIONS REQUIRED FOR ¢; TO
BECOME LESS THAN 2731 IF x IS SCALED SO THAT
e x < 1.

Average number of
iterations

1 4-37
-05
29
.49
-60
-68
73
76
78
-78
.80

QO VXA A W —
N

N —

sufficiently closely by ¢, ., = — ¢f. The actual per-
formance will be slightly better than this.

SPECIAL CASES
() n=1
a1 = a(l — ¢ L
Crpy — — Cf.)
This is a perfectly valid basis for a division subroutine.

(if) n =2 The formulae (1) are arrived at, giving a
subroutine for y/4/x or 4/x as used on
many computers.

(ii) n=23

ap . = a(l — %)
oo = (18 — 8e - D). f

This will evaluate y/x* or y* if we set ¢y = y2 — 1.

A theoretical investigation of the effect of rounding
errors is difficult, but the method has been in use for
values of n up to n = 3 and has been found to be satis-
factory. More experience is needed of the behaviour of
the process for higher values of »n but, even if rounding
errors do become serious, the method can be used to
give a very good first approximation for some trial and
error method where the result is built up digit by digit.

(1) WiLkes, M. V., WHEeLER, D. J., and GiLL S. (1951). The Preparation of Programs for an Electronic Digital Computer.

Cambridge, Mass.: Addison-Wesley Press.

143

6102 Ae|\ 01 uO Jasn Aseiqi - JUBISISSY S|eoIpoudd AQ 02 1LZLY/2Y LIS/ L AdBISqe-a[o1ue/|ulwoo/woo dnoolwapede//:sdiy wouy papeojumoq

