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Summary

The spatial variation of soil metal content arising from diffuse pollution in industrial regions cannot be
analysed by conventional geostatistical methods because predictions are influenced by metal content from
natural sources and extreme values from point-source pollution. We analyse a survey of soil arsenic, copper,
lead, and tin at 372 locations around Swansea (Wales, UK). We use the approach of Hamon et al. (2004) to
determine the natural metal concentrations in contaminated regions from the iron content. However, we find
that this indicator is not appropriate to the area around Swansea because the iron content is elevated across
the contaminated region. Therefore the natural concentration of each metal is approximated by the median
concentration on nearby uncontaminated rural soils on the same parent material. We divide the remaining
variation between diffuse pollution and point-source pollution by the robust winsorizing algorithm of Hawkins
& Cressie (1984). This leads to a plausible log-Gaussian model with a constant mean which represents the
diffuse pollution and estimates of the contribution of point-source pollution at each observation site. Point-
source pollution occurs at sites historically associated with production, transport and disposal of industrial
wastes. The pattern of diffuse pollution is consistent with emissions from multiple smelters located throughout
urban Swansea and the effects of prevailing wind and topography are evident.

Introduction

Soil contamination because of human activity has been identified
as one of the major threats to soil function by the European
Union in their thematic strategy for soil protection (Commission of
the European Communities, 2006). National governments across
the EU have separate legal frameworks for dealing with historic
soil contamination. Local agencies with statutory responsibilities
for the assessment and remediation of soil contamination require
effective methods to map the magnitude and extent of pollution.
The spatial distribution of metal and metalloid contaminants in
the soil is often complex because the effects of natural sources
of metals are combined with diffuse and point-source pollution.
Our understanding of the processes can be enhanced by spatial
predictions of the variations due to each of these three separate
sources. In areas of widespread soil contamination, knowledge
of the relative proportions of metal arising from natural and
anthropogenic sources could aid quantitative assessments of risk
to human health since the bio-availability of a soil contaminant
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can be related to the chemical form in which it entered the soil
(Smith et al., 2008).

Generally, regional estimates of the contribution of natural
sources to metal concentrations in contaminated soil are made
from the summary statistics of surveys made in areas which
are assumed to be unaffected by anthropogenic processes. It is
possible to distinguish between natural and anthropogenic sources
of some elements such as lead by stable isotopes (Clark et al.,
2006) but in other cases the metals (such as copper and tin)
may only have one stable isotope or analytical methods may not
be widely available for the determination of isotope fractions.
Hamon et al. (2004) tested whether various soil properties could
be used as indicators of the background or natural metal content of
contaminated soils. They found that the natural concentrations of
arsenic, chromium, cobalt, copper, lead, nickel and zinc could
be approximated from the iron and manganese concentrations
in the soil. Their tests were conducted in south-east Asia but
they suggest that these relationships may hold universally. This
approach assumes that the iron content of contaminated soils
is not elevated by anthropogenic processes. Such behaviour has
been observed in previous surveys of urban soil contamination in
the UK. For example, Figure 1 shows that metal processing in
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Figure 1 Empirical cumulative density functions of metal concentrations
in urban soil of Sheffield (n = 588 sites) and soil of surrounding rural
areas (n = 818 sites) developed over the same parent material type (Coal
Measures): (a) iron and (b) lead (Pb). For further details see Rawlins et al.
(2005).

Sheffield has enriched the lead content of the soils in comparison
with uncontaminated rural soils, but the iron content is relatively
unchanged.

Conventional geostatistical methods are most efficient when
the property being mapped approximates, or may be transformed
to approximate, a Gaussian distribution. However point-sources
of pollution lead to hotspots or outliers in the distribution of
soil metals which are inconsistent with the Gaussian assumption.
Therefore robust geostatistical methods have been applied to
surveys of soil metal pollution. Robust methods estimate the
statistics of the underlying variation of metal concentrations with
minimum effect of outliers. In geostatistical analysis we first
estimate a variogram model which describes the spatial variation
of the property of interest based on the observations. This model
is then used to predict the property at unsampled locations. In
conventional geostatistics the variogram model is estimated by
Matheron’s method of moments estimator (Webster & Oliver,
2007). This estimator is sensitive to outlying observations.
Therefore robust variogram estimators that model the underlying
variation in the presence of outliers have been devised. Three
such robust estimators were compared by Lark (2000). Lark
(2002) suggested a statistic which may be used to identify
outlying observations. This statistic was used to identify outliers
in surveys of heavy metal contamination in Sheffield, UK
(Rawlins et al., 2005) and Zhangjiagang, China (Zhao et al.,
2007). The outliers were removed from the datasets before
the diffuse pollution was predicted across these study regions.

However, although outliers are likely to be dominated by point-
source pollution they may still contain information about the
diffuse pollution. Therefore Marchant et al. (2010) used a robust
prediction algorithm (Hawkins & Cressie, 1984) to winsorize the
observations. This winsorizing process separated each observation
into two components, one related to localized processes and one
related to diffuse processes. A similar approach was applied
by Papritz (2007) when mapping pollution around a Swiss
smelter.

Although the winsorizing algorithm of Hawkins & Cressie
(1984) was devised more than 25 years ago it has not been
widely applied. Instead Reimann et al. (2005) identified outliers
in geochemical data by looking at properties of the empirical data
distribution. This approach does not account for the dependence
structure of the data and therefore does not explore whether the
outliers are extreme relative to their nearest neighbours. The local
Moran’s I statistic used by Zhang et al. (2008) does compare
each observation with its neighbours but the weight applied to
each neighbour is selected arbitrarily. In contrast the winsorizing
algorithm of Hawkins & Cressie (1984) ensures that the amount of
influence each neighbour has is determined from a robust model
of the underlying variation of the property.

In this paper we are concerned with mapping the metal content
of soils around the Swansea and Neath Valleys (Wales, UK) using
a survey of 390 observations made at 372 sites. Swansea was the
world-centre of copper-smelting in the late 18th and early 19th
centuries and there were other non-ferrous smelters processing
arsenic, lead, zinc, silver and tin. Our aim is to quantify the effects
of diffuse pollution across the study region. We test whether the
natural soil content of arsenic, copper, lead and tin can be related
to the concentrations of iron by conducting a second survey in
a rural area that is not contaminated. We subtract our estimate
of natural metal concentrations from the urban observations and
separate the anthropogenic metal concentrations which remain
into components due to diffuse and point-source pollution by
robust geostatistical methods. This analysis yields a continuous
map of diffuse metal pollution across the region and estimates of
the point-source pollution at each observation site. We interpret
the patterns of point-source and diffuse pollution in relation to
maps of current and historical land use and to two factors which
dominate the deposition of airborne metals, prevailing wind and
topography.

Theory

Geostatistical prediction of soil properties

The variation of a soil property may be described by the linear
mixed model (LMM) which divides the spatial variation between
fixed and random effects (Lark & Cullis, 2004) and accounts
for variation between observations made at the same site, which
we may think of as measurement error. The fixed effects are a
linear combination of q covariates and represent variation of the
expectation of the property across the study region. The random
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effects describe the spatially correlated component of variation of
the property. The LMM is written

z = Mβ + Zu + ε, (1)

where z is a length n vector of observations of the property of
interest at ns ≤ n distinct sites, the matrix M (n × q) is the design
matrix for the fixed effects and contains values of the covariate
at each observation site, the vector β of length q contains the
fixed effects coefficients, the n × ns matrix Z is the random
effects design matrix, the vector u of length ns contains the
random effects and the length n vector ε contains measurement
errors. The design matrix Z allows multiple observations from
the same location to be included. If observation i is made at site
j then element (i, j) of Z is 1. The other elements of the j th
column are 0. The random effects are assumed to be a realization
of a Gaussian random function U with expectation zero across
the study region and covariance matrix V. If the assumption
of Gaussian underlying random effects is not plausible for a
particular dataset then a transformation should be applied. The
measurement errors are assumed to be independent realizations of
a Gaussian function with expectation zero and variance σ 2

ε . The
measurement errors can be distinguished from the nugget variation
only if n > ns .

The elements of V are obtained from a parametric function
C(h) where h is the lag vector separating two observations. It is
common in the geostatistical literature for the spatial covariance
of a random variable to be expressed in terms of the variogram

γ (h) = 1

2
E

[{U (x) − U (x + h)}2] . (2)

For a second-order stationary random variable

C (h) = C (0) − γ (h) . (3)

The variogram may vary with both the length and direction of h.
In this paper we assume that the function is isotropic and varies
only according to the length of h which we denote h.

A number of authorized variogram functions have been
suggested which ensure that V is positive definite. One such
example is the Matérn function (Matérn, 1960),

γ (h) = c0 + c1

{
1 − 1

2ν−1
� (ν)

(
h

a

)ν

Kν

(
h

a

)}
for h > 0,

γ (h) = 0 for h = 0, (4)

where c0 is the nugget variance, c1 is the partial sill variance, a is a
distance parameter, ν is a smoothness parameter, Kν is a modified
Bessel function of the second kind of order ν (Abramowitz &
Stegun, 1972) and � is the gamma function.

Conventionally the covariance parameters α = [
c0, c1, a, ν, σ 2

ε

]
are fitted by Matheron’s method of moments (Webster & Oliver,
2007). A point estimate of the variogram is made for several
lag distances h based upon the mean squared difference between

observations separated by lag h and a model is fitted to this point
estimate by weighted least squares (Webster & Oliver, 2007). If
the mean of the property varies over the study region then an
initial estimate of the fixed effects coefficient can be made by
least squares and the variogram is fitted to the residuals rather
than the observations. Once the covariance parameters of the
LMM have been fitted they may be substituted into the best linear
unbiased predictor (BLUP) to calculate β̂, an estimate of the fixed
effects parameters and Ẑ(x0), a prediction of the soil property
at unobserved site x0. The BLUP, which is often referred to as
universal kriging or kriging with external drift when fixed effects
are included, also yields an estimate of the prediction variance σ 2

at each unobserved site. The BLUP predictions are weighted sums
of the observations with the weights λ determined according to
the LMM.

The validity of the fitted LMM may be confirmed by leave-one-
out cross validation. For each sampling location i = 1, . . . n, the
value of the property at site xi is predicted by the BLUP using
z(−i), the vector of observations excluding z (xi ) to calculate

θi =
{
z (xi ) − Z̃(−i)

}2

σ 2
(−i)

, (5)

where Z̃(−i) and σ 2
(−i) denote the prediction and prediction

variance at xi when z (xi ) is omitted from the transformed
observation vector. If the fitted model is a valid representation
of the spatial variation of the soil property and the prediction
errors are Gaussian then θ = [θ1 . . . θn]T is a realization of
a χ2

1 distribution with mean θ = 1.0 and median θ̆ = 0.455.

Quantile–quantile (QQ) plots of the (θi)
1
2 can be drawn to confirm

that the assumption of Gaussian errors is reasonable.

Robust geostatistical methods

The LMM representation of spatial properties assumes that the
random effects can be transformed to a multivariate Gaussian
distribution. However this assumption will not be plausible if
the variation of a property due to an underlying process is
contaminated at a small proportion of sites by a secondary process
which leads to the observations at these sites being outliers. In
a survey of soil metal pollution the underlying process may be
the diffuse pollution and the secondary process the point-source
pollution. The Matheron method of moments estimator is sensitive
to outliers which lead to inflated estimates of the variance of the
underlying process. Often these estimators ensure that upon cross-
validation θ ≈ 1.0 but the outliers cause θ̆ to be significantly
less than 0.455. Outliers also have undue influence on BLUP
predictions, leading to an exaggeration of the spatial extent of
hotspots around an outlier.

Robust method of moments variogram estimators have been
devised by Cressie & Hawkins (1980), Dowd (1984) and Genton
(1998). The methods make robust point estimates of the variogram
of the underlying variation. Lark (2000) tested these estimators
by looking at validation statistics of variogram models fitted to
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simulated data. He suggested that θ̆ was a suitable robust statistic
to assess the fitted variograms. Lark (2000) found that Matheron’s
estimator out-performed the robust estimators when the property
was not contaminated. However when there was contamination,
each of the robust estimators out-performed Matheron’s estimator.
The relative performance of the robust estimators varied with the
form of contamination.

Lark (2002) suggested that once a robust variogram model
has been fitted, outliers could be identified by a threshold on
the θi from cross-validation. Rawlins et al. (2005) followed
this approach and removed outliers before predicting soil metal
concentrations at unsampled sites. However the removal of entire
observations discards information about the underlying process.
Therefore, when analysing a survey of soil metal contamination
across France, Marchant et al. (2010) used a winsorizing algorithm
suggested by Hawkins & Cressie (1984) to divide each observation
into a component from underlying processes and a component
from the secondary processes. They then applied the BLUP to the
underlying variation and mapped the observations of the secondary
process separately. The steps of this winsorizing algorithm are

1. Estimate a robust variogram of z.
2. Compute the BLUP weights λj(−i),

j = 1, . . . , i − 1, i + 1, . . . , n

required for leave-one-out cross validation and the correspond-
ing kriging variance σ 2

(−i).
3. Compute the weighted median z̆(−i) for i = 1 . . . n. The

weighted median solves∑n
j=1,j �=i λj (−i)sign

{
z̆ (xi ) − (

xj

)} = 0,
where sign (y) = −1 for y < 0 and sign (y) = 1 otherwise.
This equation may have more than one solution but Hawkins &
Cressie (1984) state that the number of solutions is always odd
and therefore a unique solution can be defined by the median
of these solutions.

4. Winsorize the data by replacing zi by

zc (xi ) =

⎧⎪⎨
⎪⎩

z̆(−i) + cσ(−i) if z (xi ) − z̆(−i) > cσ(−i),

z (xi ) if |z (xi ) − z̆(−i)| ≤ cσ(−i),

z̆(−i) − cσ(−i) if z (xi ) − z̆(−i) < −cσ(−i),

(6)

where c is a constant, 1.5 < c < 3.0.
5. Predict the property at unsampled locations by application of

the BLUP to zc rather than z.

Marchant et al. (2010) repeated the above algorithm for
different values of c and calculated cross-validation θ statistics
for each zc. The use of a robust variogram estimator in stage
1 ensured that for large c, θ̆ ≈ 0.455 but in the presence of
outliers θ > 1.0. The value of θ decreased more rapidly than θ̆

as c was decreased and their final prediction of the underlying
variation was based upon the zc for which θ was closest to 1.0.
In the original formulation of the Hawkins & Cressie (1984)
algorithm the mean of z was assumed to be constant and the

BLUP in Step 2 was equivalent to ordinary kriging. Papritz (2007)
expanded the algorithm to include fixed effects. The fixed effect
coefficients were estimated by a robust regression estimator and
the winsorizing algorithm was applied to the residuals.

Methods

The study area

The study region encompasses an area of south Wales (UK) shown
in Figure 2 with the underlying soil parent materials (British Geo-
logical Survey, 2006). Figure 3 shows the urban area of Swansea
and includes topographic features such as the Swansea and Neath
Valleys which extend to the north and north-east from Swansea
Bay. In the wider study region, bedrock is the parent material
and is dominated by medium to coarse-grained sandstone of the
Penant Sandstone Formation, which also includes claystones, silt-
stones and minor fine-grained sandstones that contain coal seams.
The glacial tills are mostly associated with the Late Devensian
glaciation and include clasts of Old Red Sandstone and Carbonif-
erous Limestone from the Brecon Beacons. In the Swansea Valley,
the till deposits are overlain by glaciolacustrine deposits which
include clay and silt (Figure 3). Glaciolacustrine deposits, includ-
ing sand and gravel deposits, also occupy the Neath Valley. During
the Holocene, alluvium was deposited and peat deposits formed
in upland and lowland areas of restricted drainage. The dominant
soils across the study region have been described as fine loamy
soils, sometimes with slight waterlogging (Soil Survey of England
and Wales, 1983).

In Swansea in the late 18th and early 19th centuries there were
many smelters processing copper, arsenic, lead, zinc, silver and
tin. The height of the chimney stacks was increased in the 19th
century to disperse the toxic fumes from the copper smelters.
The lead-smelting industry was particularly significant in the
17th to 19th centuries, although compared with copper a greater
proportion of smelting was undertaken in the ore fields. A total of
250 000 t of raw copper ore was processed in the Swansea Valley
annually in the mid-19th century yielding 22 000 t of refined
copper; the dominant source of ore was Devon and Cornwall
(Hughes, 2000). The copper industry was considered to be the
principal contributor to Swansea’s pollution problems. Newell &
Watts (1996) used a Gaussian plume model to estimate annual
average concentrations of suspended airborne arsenic, lead and tin
during the mid-19th century in the vicinity of the Llanelli copper
smelter 12 miles north-west of Swansea. The estimates were
between 10 and 15 μg m−3. In contrast, current EC regulations
stipulate limits of 2 μg m−3. More recently remediation has
been undertaken; the Lower Swansea Valley project of the 1960s
and 1970s reclaimed slag heaps and large tracts of derelict
land.

The urban survey

Soil samples were collected in 1994 from 372 sites around
Swansea on a regular grid at a density of four sites per square
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Figure 2 Parent materials across the study region in relation to Swansea (shown in outline) and the soil sampling locations for estimation of natural metal
concentrations (n = 23).

kilometre (Figure 3). Marchant & Lark (2007a,b) showed that the

efficiency of regular grid surveys could be greatly improved if a

few additional samples were collected from sites close to sites on

the regular grid. These additional samples lead to a more accurate

estimate of the variogram over small lag distances. Therefore

additional samples were collected 20 m away from six of the

regular grid sites. At these six sites both the sample from the grid

site and the additional sample 20 m away were split into two

sub-samples to allow measurement errors to be explored. Thus a

total of 390 samples were collected.

Samples were collected according to the protocols of the

Geochemical Surveys of Urban Environments (GSUE) project

(Fordyce et al., 2005) across Swansea, Neath, Port Talbot and

the Mumbles area of the Gower Peninsula. Sample sites were
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Figure 3 Soil sampling locations (n = 373) in Swansea and their parent materials types superimposed on a digital elevation model. Grid coordinates are
metres of the British National Grid (BNG).

selected from open ground as close as possible to the centre of

each of four 500-metre squares within each kilometre square of

the British National Grid (BNG). Typical locations for sampling

were gardens, parks, sports fields, road verges, allotments, open

spaces, schoolyards and waste ground. Each composite sample

was based on nine samples of equal size from the corners, sides

and centre of 2 m × 2 m squares. Each sample was collected at

a depth range of 0–15 cm from the soil surface using an auger

of diameter 35 mm. At each site, information was recorded on

location using 1:10 000 scale Ordnance Survey maps, a description

of any visible contamination (metallic, pottery, bricks, plastics,

etc.), Munsell colour, soil clast lithologies (sandstone, limestone,

etc.) and land use. All soil samples were disaggregated following

air-drying and sieved to less than 2 mm. All samples were coned

and quartered, and a 50-g sub-sample was ground in an agate

planetary ball mill. The total concentrations of 18 major and

trace elements were determined by wavelength- and energy-

dispersive X-ray fluorescence spectrometry (XRF-S) (Epsilon5

instrument, PANalytical). In this paper we only consider five

elements (detection limits in parentheses): arsenic (1 mg kg−1),

copper (1 mg kg−1), total iron expressed as Fe2O3 (0.01%), lead

(2 mg kg−1) and tin (1 mg kg−1). For brevity we refer to these

variables as metal concentrations although arsenic is a metalloid.

Brief descriptions of the local land use at and around each site

were tabulated for the years 1900 and 2007 from Ordnance Survey

maps of the area.
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The rural survey

The sampling locations for the rural survey are shown in Figure 2.
In selecting the area in which to locate sampling sites we wished
to (i) avoid the effects of atmospheric metal deposition in the
vicinity of Swansea, giving consideration to the prevailing south
and south-westerly wind directions, (ii) avoid the influence of
other smaller urban areas around Swansea and (iii) ensure the
soils were derived from the same dominant parent material types
that are found around Swansea (the Penant Sandstone Formation
and glacial till).

We selected an area approximately 25 km to the west of
Swansea where these conditions were met; this area is also 2 km
downwind of the coast, ensuring minimal atmospheric sources of
metal. We chose to sample the soil at 23 sites; 15 sites over sand-
stone parent material and eight sites over areas where glacial till
had been mapped (British Geological Survey, 2006). The precise
sampling locations were randomly selected although limitations in
access to sites due to crops and livestock were taken into account.
The soil samples were collected in January 2007. At each sampling
site, five incremental soil samples were collected using a Dutch
auger at the corners and centre of a square (20 m × 20 m) and
combined to form a composite sample of approximately 0.5 kg.
At each of these five points, any surface litter was removed and
the soil sampled to a depth of 15 cm. On return to the laboratory,
the same preparation and analytical protocols were applied to each
sample as those described above for the urban survey.

Statistical analysis of soil metal concentrations around
Swansea

We assume that the spatial variation of soil metal concentrations
in the urban soil is the sum of three factors, (i) natural sources
of metals, (ii) diffuse pollution and (iii) point-source pollution.
We attempted to separate these three components of variation.
The variation due to natural sources was modelled from the rural
observations. Regression analyses were conducted on the rural
observations to evaluate the relationships between the four metals
of interest and the total iron concentration as suggested by Hamon
et al. (2004). Also, the empirical cumulative distribution func-
tion (CDF) for the rural iron observations was compared with the
corresponding CDF from the Swansea urban survey to determine
whether the soil iron concentration had been enriched in Swansea.

The predicted contribution of natural sources to the observed
soil metal concentrations was subtracted from the total urban
observation to leave the observed component due to anthropogenic
processes. These anthropogenic observations were highly skewed
and therefore the data were log-transformed. The components due
to diffuse pollution and point-source pollution were separated by
robust geostatistical methods. The approach was broadly similar
to that applied by Marchant et al. (2010) when mapping metals
across France. Matérn variograms were fitted to the anthropogenic
observations of each metal by the method of moments in conjunc-
tion with Matheron’s estimator and the robust estimators suggested
by Cressie & Hawkins (1980), Dowd (1984) and Genton (1998).

Cross-validation was performed for each fitted variogram and the
estimator with θ̆ closest to 0.455 was selected. The observations
were then winsorized according to the algorithm of Hawkins &
Cressie (1984) for various values of the constant c, 1.5 < c < 3.0.
This algorithm removes both positive and negative outliers. How-
ever, we expect that the majority of outliers will be positive and
caused by point-source pollution. Therefore we only censor these
positive outliers.

The mean of θ was calculated for each c and the winsorized
observations zc for which θ was closest to 1.0 were assumed to
be observations of the diffuse pollution. The zc observations were
predicted across the study region by the BLUP with a global search
neighbourhood and these predictions were back-transformed to the
original units by the exponential transform. We note that this leads
to an estimate of the median rather than the mean in the original
units. We consider the median to be the more appropriate statistic
for a contaminated dataset. The difference between the anthro-
pogenic observations and the observations of the diffuse pollution
were assumed to be the effect of point-source pollution.

We note that the choice of robust variogram estimator was based
upon non-robust cross-validation statistics. The θ̆ statistic could
have been assessed after the observations had been winsorized but
this would lead to an excessive number of computations since it
would require that the winsorizing algorithm was applied for each
of the four robust variograms and a range of c values.

Results

Prediction of natural metal concentrations

Table 1 shows the summary statistics of the rural soil metal
concentrations and the correlations between these metals and
total iron. In each case these correlations are small and the
p-values for the null hypothesis that the metal concentrations
are independent of the total iron content are greater than 0.4.
Additionally, the empirical CDFs (Figure 4) demonstrate that iron
concentrations are greater throughout the urban survey than in the
rural survey. Both of these findings indicate that the method of
Hamon et al. (2004) for determination of the component of the
metal concentrations due to natural sources is not appropriate for
our study. Therefore we approximated the natural concentration
of each metal by its median in the rural survey (Table 1).

Geostatistical prediction of anthropogenic metal
concentrations

The Matheron and robust variograms fitted to each log-
transformed metal are compared in Figure 5. For the anthro-
pogenic component of each of the metals the cross-validation
statistics for the Matheron variogram had θ̆ < 0.455 (Table 2) and
therefore the variogram was not valid. In each case, θ̆ increased
to a value closer to 0.455 when a robust estimator was used.
The θ value was greater than 1.0 for each of the robust estima-
tors. However, it was possible to select a winsorizing constant
1.5 < c < 3.0 such that θ for the winsorized component zc was
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Table 1 Summary statistics of metal concentrations at sites for usual background value sites (UBV; n = 23) and from the urban survey of Swansea (USS;
n = 373). Units mg kg−1 unless stated

Element As Cu Fe2O3 % Pb Sn

Dataset UBV USS UBV USS UBV USS UBV USS UBV USS

Mean 31.3 76.8 36.1 161 3.99 6.29 49.6 432 7.6 58

Median 30.2 53.0 35.7 114 3.97 5.92 48.0 224 7.3 31

Standard deviation 15.0 126.7 11.1 173 0.90 2.34 13.9 926 2.6 92

Skewness 2.89 11.00 1.09 4.01 0.31 1.89 1.01 11.00 2.07 5.39

Correlation with Fe 0.10 0.09 1 −0.06 −0.18

p-valuea 0.67 0.65 0 0.78 0.41

ap-value for null hypothesis that variable is independent of Fe2O3.
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Figure 4 Empirical cumulative density functions of iron concentrations
in urban soil of Swansea (n = 373 sites; sampled in 1994) and rural sites
(n = 23 sites; sampled in 2007).

approximately 1.0. The values of θ̆ for the winsorized component
were in the range 0.4 ≤ θ̆ ≤ 0.455. Our use of the θ̆ statistic to
assess the suitability of the models assumes that the prediction
errors are Gaussian. We confirm that this assumption is reason-
able with QQ plots (Figure 6). For the robust variogram fitted to
the uncensored observations the majority of standardized errors
lie close to the x = y line and indicate that it is reasonable to
assume that the prediction errors for the underlying variation are
Gaussian. A number of prediction errors deviate from the x = y

line at both extremes of the distribution. However, by censoring
only the positive outliers all these errors move closer to the x = y

line. This indicates that the negative outliers are artefacts. They
are located close to positive outliers and are only outliers rela-
tive to these observations. After winsorizing, all of the prediction
errors for copper and arsenic are close to the x = y line. For lead
and tin it appears that the winsorizing process has removed too

large a proportion of some observations. The predicted maps of
the metal concentrations because of diffuse pollution (the censored
observations) and the observations of the point-source pollution
(the difference between the observations and the censored obser-
vations) are shown in Figure 7.

Distribution and magnitude of point and diffuse metal
pollution

There are some common features in the maps of diffuse pol-
lution of each metal. In each, the long-axis of the areas with
elevated concentrations is consistent with the prevailing wind
direction (oriented approximately 225◦ clockwise from north).
Diffuse pollution is elevated on the western side of the Swansea
Valley and within the wider Neath Valley. Less pollution is evi-
dent on the western edge of the study region. The lead and
tin diffuse pollution is concentrated into a few localized regions
whereas larger areas of elevated copper and arsenic diffuse pol-
lution are evident. The pattern of arsenic diffuse pollution is
dominated by one large area to the south-east of the Swansea
Valley.

Of the four metals, copper has the greatest number of sites
at which point-source pollution is evident. Local details from
Ordnance Survey maps of recent (2007) and historic (1900) land
use at the sites affected by point-source pollution are presented in
Table 3. Land use at or around the vast majority of these sites is
associated with either production (works), transport (railways and
docks) or potential disposal (collieries and quarries) of industrial
wastes. At two sites where large concentrations of lead were
reported (2768 and 3942 mg kg−1) the land use information does
not indicate any local source for the metal; the latter site was
recorded as a domestic garden during the survey which could be
of some concern given the potential implications for human health
through exposure to lead in the soil.

Discussion

The survey confirms that the soils around Swansea remain sub-
stantially contaminated by historic metal and metalloid pollution.
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Figure 5 Matheron (dashed curves and ‘•’s) and best robust variograms (continuous curves and ‘×’s) for log-transformed metal concentrations.

The soil metal concentrations cannot be represented by conven-

tional geostatistical methods because the combination of diffuse

and point-source pollution leads to complex patterns of variation.

When conventional models were fitted to the data they were found

to be invalid. The estimated variances were inflated by a small

number of large observations at former industrial sites and thus

it was not possible to quantify accurately the uncertainty of the

predictions which result. However, plausible models did result

when the diffuse and point-source pollution were mapped sep-

arately by robust geostatistical methods. In a previous survey,

robust methods were also required to map diffuse metal pollution

around Sheffield (Rawlins et al., 2005) and it is likely that similar

methods will be required to assess metal contamination in other

industrial regions.

Table 2 Cross-validation statistics for variograms fitted by Matheron’s
estimator and the best robust estimator.

Cu As Pb Sn

θM
a 1.15 1.03 0.88 0.97

θ̆M 0.35 0.39 0.30 0.40
Estimator Dowd Genton Dowd Dowd
θR

b 1.40 1.19 1.03 1.15
θ̆R 0.44 0.46 0.41 0.44
c 2.1 2.3 2.7 2.4
θc

c 1.01 1.01 1.00 1.00
θ̆c 0.40 0.44 0.41 0.44

aθM cross-validation statistic for Matheron estimator.
bθR cross-validation statistic for best robust estimator.
cθc cross-validation statistic for winsorized data.
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Figure 6 QQ plots for the standardized prediction errors from a robust
variogram for the transformed observations (left) and the winsorized
transformed observations (right).

It was not possible to map the variation of the natural
metal content of the soil. A relationship between natural metal
concentrations and total iron in the soil suggested by Hamon et
al. (2004) does not apply in this study region. However, since the
variation of metals from natural sources in this survey was dwarfed
by the anthropogenic contribution it was adequate to assume that
the natural concentration of each metal was constant across the
study region and to approximate it by the median concentration
in a nearby uncontaminated rural area.

Documentary evidence suggests that the majority of the
diffuse metal pollution across Swansea was the result of
atmospheric deposition of metals to the soil following their
dispersal from smelter stacks (Hughes, 2000). The patterns of
diffuse pollution are consistent with emissions from numerous
smelters located throughout the urban areas. The patterns are
influenced by the topography of the region and the prevailing wind
direction. The spatial predictions could potentially be improved
if these factors are included in a process model of deposition

following atmospheric dispersal from specific sources across the
region.

The model used in this study assumed a constant mean across
the study region. Once the winsorizing had been completed a
LMM including fixed effects could have been fitted to the cen-
sored observations. We did test models where elevation and parent
material were included as fixed effects. However modified likeli-
hood tests (Marchant et al., 2009) suggested that these did not lead
to a significantly improved fit. We suggest that elevation is not a
suitable fixed effect because the amount of contamination differs
on each side of the valleys and that the proximity of a source of
contamination is a more important factor than the parent mate-
rial. Anisotropy could also have been added to the model at this
stage.

The pattern of sites where point-source pollution was identi-
fied is consistent with metal production, transport and disposal
occurring at numerous sites across the urban area. We note that
the robust algorithm identifies local outliers as well as global out-
liers. Local outliers are not necessarily extreme in comparison
with the whole dataset but are extreme in comparison to neigh-
bouring observations. For example one copper observation has
been identified as an outlier despite the concentration only being
100 mg kg−1. This is because there was a second observation
from the same site of 40 mg kg−1. Such outliers would not be
found by algorithms based upon the empirical data distribution
(Reimann et al., 2005).

There were some differences between the soil contamination
observed in Swansea and that previously observed in Sheffield
(Rawlins et al. 2005). Elevated concentrations of total iron were
observed throughout urban Swansea but not urban Sheffield.
We hypothesize that the difference between the situations in
Swansea and Sheffield are because Sheffield was a centre of
metal processing whereas Swansea was a centre of metal smelting.
Therefore more ferrous waste was brought into Swansea within
the metal ores. Also, the median concentration of lead in topsoil
from diffuse pollution in the survey of Swansea (180 mg kg−1)
was substantially larger than the value of 73 mg kg−1 (urban
median of 161 mg kg−1 minus rural median of 88 mg kg−1)
reported by Rawlins et al. (2005) in Sheffield. These estimates
are comparable because in each case statistical outliers or hotspots
in the urban area were removed from the data. We believe that
the substantially larger concentrations of lead across Swansea, in
comparison to Sheffield, result from atmospherically deposited
metal due to smelting of metal ores within the urban area of
Swansea.

In England and Wales, the first tier of a human health or
ecological risk assessment is a comparison between observed
total soil metal concentrations at a site and their guideline values
(Environment Agency, 2009) or screening values (Environment
Agency, 2008). In the case of human health risk assessment,
the revised Soil Guideline Values for arsenic concentrations in
topsoil (32 mg kg−1 for residential land use) are exceeded by
the predicted sum of natural content and diffuse pollution for
89% of the study area. Ecological health risks are assessed
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Figure 7 Predicted maps of diffuse metal pollution (a),
(c), (e) and (g) and point-source metal concentration
(b), (d), (f) and (h). Labels on locations of point-source
pollution correspond to entries in Table 3. The origin of
the maps is at British national grid reference 260 000,
187 000 and the ticks denote 5000-m increments.

according to the difference between observed concentrations and

ambient background metal concentrations (ABC) in soil. The

proposed screening values for lead (167 mg kg−1) and copper

(88 mg kg−1) are exceeded by the predictions of diffuse pollution

for 44 and 58% of the study area, respectively. When the ABCs

are established, it is important to ensure that they do not include

any diffuse metal pollution.

Exposure to soil Pb can also occur through inhalation of air-

borne particulates. Average monthly Pb concentrations (ng m−3)

of fine (PM10), particulates measured during 2008 in air from

sites in Swansea (Swansea Coedgwilym; 8 ng m−3) and another

in Port Talbot (Port Talbot Margam; 11.9 ng m−3) were below the

average of 16 ng m−3 from all 24 sites in the UK Heavy Metals

Monitoring Network (Brown et al., 2010). Another site in Swansea

(Morriston) had annual average concentrations of particulate Pb in

air of 20.5 ng m−3, somewhat greater than the national average.

Although there is some evidence that the enhanced concentra-

tions of topsoil Pb concentrations across Swansea may enhance

its concentration in airborne particulates, the overall relationship

is complex and requires further study.

Conclusions

This study illustrates that when soil properties are mapped it is
vital to validate the statistical model of the property to ensure
that it is appropriate. Conventional geostatistical models were not
appropriate for the prediction of diffuse soil metal contamination
across urban Swansea because the estimated variograms and
predictions were overly influenced by point-source pollution.
However, these different components of contamination were
separated and mapped by robust geostatistical methods. The large
concentrations of tin, lead, copper and arsenic in topsoil across the
urban Swansea area have significant implications for human health
and ecological risk assessments according to current guidance
for England and Wales. The methods described in this paper are
likely to be required to map soil pollution around other industrial
centres.
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Table 3 Land use (current and historic) types for point-source metal and metalloid contaminants (soil concentration in mg kg−1). References correspond
to labels in Figure 7. Features next to land use (derived from Ordnance Survey maps) are shown in parentheses.

Land use at given date

Ref. Concentration 2007 1900

Cu
1 323 Grassland No detail on map
2 1160 Waste ground (railway) Field close to steelworks and colliery
3 100 Field Field close to colliery
4 1119 Domestic garden Railway Yard
5 354 Waste ground (railway) Close to railway; Close to Morriston spelter works; Railway yard
6 999 Waste ground (railway) Railway Yard and Swansea Chemical works
7 1477 Path (river, quarries, works) Close to Ni and Co works; Close to station
8 1297 Railway Close to canal tow path and railway yard
9 1149 Docks Below high water mark

10 667 Docks/Landing stage (works) Baglam Bay–No development, next to river Neath
11 259 Industrial estate Field, adjacent to railway
12 172 Ground around housing Ground around housing
13 376 Ground around housing Ground around housing

As
7 917 Path (river, quarries, works) Close to Ni and Co works; Close to station
9 398 Docks Below high water mark

14 407 Field (quarry) Field close to pit
15 2047 Quarry Field
16 214 Close to railways Railway sidings
17 501 Field adjacent to colliery Field (grassland)

Pb
9 6075 Docks Below high water mark

18 3942 Domestic garden Domestic Garden
19 2768 Domestic garden Field

Sn
2 351 Waste ground (railway) Field close to steelworks and colliery
7 834 Path (river, quarry, works) Close to Ni and Co works; Close to station
9 452 Docks Below high water mark

20 553 Industrial estate Tin plate works
21 919 Field (pit) Field close to brick works and quarry
22 329 Quarry Field
23 99 Railway Industrial estate
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