
Patron:		Her	Majesty	The	Queen	 	 Rothamsted	Research	
Harpenden,	Herts,	AL5	2JQ	
	
Telephone:	+44	(0)1582	763133	
Web:	http://www.rothamsted.ac.uk/	

	
	 	

	
	

Rothamsted Research is a Company Limited by Guarantee 
Registered Office: as above.  Registered in England No. 2393175. 
Registered Charity No. 802038.  VAT No. 197 4201 51. 
Founded in 1843 by John Bennet Lawes.	

	

Rothamsted Repository Download
A - Papers appearing in refereed journals

Schofield, R. K. and Blair, G. W. S. 1930. The Influence of the Proximity 

of a Solid Wall on the Consistency of Viscous and Plastic Materials. 

Journal of Physical Chemistry (1952). 34 (2), pp. 248-262. 

The publisher's version can be accessed at:

• https://dx.doi.org/10.1021/j150308a002

The output can be accessed at: https://repository.rothamsted.ac.uk/item/95x68/the-

influence-of-the-proximity-of-a-solid-wall-on-the-consistency-of-viscous-and-plastic-

materials.

© Please contact library@rothamsted.ac.uk for copyright queries.

20/08/2019 10:17 repository.rothamsted.ac.uk library@rothamsted.ac.uk

https://dx.doi.org/10.1021/j150308a002
https://repository.rothamsted.ac.uk/item/95x68/the-influence-of-the-proximity-of-a-solid-wall-on-the-consistency-of-viscous-and-plastic-materials
https://repository.rothamsted.ac.uk/item/95x68/the-influence-of-the-proximity-of-a-solid-wall-on-the-consistency-of-viscous-and-plastic-materials
https://repository.rothamsted.ac.uk/item/95x68/the-influence-of-the-proximity-of-a-solid-wall-on-the-consistency-of-viscous-and-plastic-materials
repository.rothamsted.ac.uk
mailto:library@rothamsted.ac.uk


THE INFLUENCE OF THE PROXIMITY OF A SOLID WALL ON THE
CONSISTENCY OF VISCOUS AND PLASTIC MATERIALS*

BY R. K. SCHOFIELD AND G. W. SCOTT BLAIR

Introduction
In attempting to derive an expression for the rate of flow of a viscous or

plastic material through a straight narrow tube of uniform cross-section
under a pressure gradient, it is usually assumed:

(1) that each particle of the material moves with constant velocity in a

straight line parallel to the axis.
(2) that there is no slip at the wall of the tube.
(3) that the velocity gradient at any point depends only on the shearing

stress at that point.
Using these assumptions, it is shown below that, no matter how complex

the relationship between velocity gradient and shearing stress (so long as

the former is fixed when the latter is fixed), the volume extruded in unit time
will depend, for a given stress at the wall of the tube, upon the cube of the
radius. While this is true for fluids, and is also true or nearly true for thick
paste„ of soil and other minerals, it is lound not to be generally true of such
pastes when examined over an extended range of concentration. Dis-
crepancies would occur if condition (1) were invalidated owing to turbulence;
but reasons are given for considering it unlikely that turbulence is responsible
for the effect, It is found that the mean velocity, instead of being propor-
tional to the radius, is divisible into two parts, one proportional to it and the
other independent of it, The second term apparently represents a velocity
imparted to the bulk of the material by an excessive velocity gradient near

the wall of the tube, suggesting that the proximity of a solid wall influences
the consistency of these materials and causes a breakdown of condition (3).
On subtracting the second term, the contribution made to the mean velocity
by the flowing of the bulk of the material is presumably left, from which con-

sistency constants relating to the material in bulk can be obtained inde-
pendent of the dimensions of the tube.

Theoretical.
If condition (1) of the introduction be granted, so that the particles are

not accelerated, the stress, W, at the wall of a tube of length L and radius R
to which a pressure difference P is applied is PR/aL; while the stress, S, at a

point T within the tube and distant r from the axis is Pr/aL. Consequently
r can be expressed in terms of S thus:

r = R/W. S. (1)
* Soil Physics Department, Rothamsted Experimental Station, Harpenden, England
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If v be the velocity at T, we may write in accordance with condition (3)

dv/dr = -f(S).
Substituting the value of r given by equation (i), and integrating

v =

R/Wj^f(S)dS, (ii)

if, in accordance with (2) v = o when S = W. The flow dV, between r

and r + dr = 2 7rdr.v. Substituting for r and v from equations (i) and
(ii) and integrating,

" w./"s /",(s,dsds »

From this it is clear that, for any given material, V/ttR3 should depend only on

W if the three conditions are fulfilled.
By making specific assumptions about the form of f (S), V/ttR3 can be

evaluated. Thus using the Maxwell assumption that
f (S) = MS

where µ (the fluidity) is the reciprocal of the viscosity, equation (iii) reduces
to Poiseuille’s equation in the form

V
irR3

1

mW.4

In the same way the expression based on the Bingham1 assumption can

be deduced. Here it is supposed that the material does not flow unless a

stress exceeding a critical value, SQ, be applied to it and that, at stresses
higher than S0, the velocity gradient equals µ (S — S„). Again µ is a con-

stant having the dimensions of a reciprocal viscosity, and is usually called the
mobility. When such a material is forced through a tube, a central cylinder
of radius RS0/W, within which the stress is less than So, moves as a solid
plug, and only the material outside this cylinder flows. When W is less than
So, no flow occurs, and V = o. In substituting in equation (iii) to obtain
the value of V when W exceeds S0, it must be remembered that, since f(S) is
discontinuous, being zero from o to SQ and µ (S — S0) from S0 to W, the in-
tegrations must be carried out in two stages. This has the effect of splitting
V into two terms, thus

y rs. r w z-w z-w

Sv=wd 8   M(S-So)dS.dS +^JSa
8 J M(S-So)dS.dS.

The first is the contribution of the plug, the second is that of the flowing
material between it and the wall. This reduces to

V
irR3

which is subject to the condition that W > S0. This is equivalent to the

E. C. Bingham: “Fluidity and Plasticity,” (1922).
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equation1 deduced by Buckingham,2 and independently by Reiner.3 The
graph connecting V/ttR3 and W corresponding to this equation is tangential
to the W axis at W = S0. It is strongly curved for values of W only slightly
exceeding Sc, but at higher values approximates to a straight line of equation

V
ttR3

This line makes an intercept on the W axis equal to 4/3. S0, and, like the cor-

responding graph of the Poiseuille equation, has a slope of 1/4. µ. The true
curve is steeply asymptotic to the limiting straight line, the discrepancy in
V being less than 1% when W exceeds 2.2 times the intercept of the limiting
straight line.

If the parabolic relation
f(S) = µ Sn

of the Ostwald type4 be assumed, equation (iii) reduces to

V
   3 n + 3

. µ .WQ

which is equivalent to the equations given by Farrow, Lowe and Neale,5
and Porter and Rao.6 The constant µ has dimensions which depend on the
exponent n. The graph in this case starts from the origin, and is curved
throughout its length. The curvature is never very strong, but it decreases
only slowly with increasing W.

Experiments.
The modified Bingham plastometer used in this work has already been

described.7 The paste to be investigated is made by mixing the soil, clay
or other mineral with water into a smooth paste, which is then forced through
a one hundred mesh-per-inch sieve to remove any coarse particles. The
paste is then diluted to the required concentration, and sucked into the
plastometer bulbs which, for the high-stress work here described, have a

capacity of 100 c.c. each. The material is forced alternately from one bulb
into the other through one of a series of standardised tubes, the level in the
bulbs being kept approximately the same by tilting the whole system about
a pivot. For this more accurate work with larger bulbs it becomes necessary
to correct the pressures for the resistance offered by the bulbs themselves.
For this purpose the bulbs are connected directly with one another, and the
pressures corresponding to a series of volume-flows are measured. By graphi-

1 Buckingham’s equation contains an additional term which is negligibly small when
W exceeds S. and which is referred to below.

2 E. Buckingham: J. Am. Chem. Soc., Test. Mat., 1921, 1154.
3 Reiner: Kolloid-Z., 39, 80 (1926), etc.
4 Wo. Ostwald (and others): Kolloid-Z., 36, 99, 157, 248 (Zsigmondy Festschrift) 252

(1928); 38, 261 (1926); 41, 56, 112 (1927). (This type of equation was, of course, not origi-
nated by Ostwald, but he has made much use of it.)

1 Farrow, Lowe and Neale: J. Textile Inst., 19, T 18 (1926).
6 Porter and Rao: Trans. Faraday Soc., 23, 311 (1927).
7 G. W. Scott Blair and E. M. Crowther: J. Phys. Chem., 33, 321 (1929).
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cal intrapolation the correction, Pb, corresponding to each volume-flow can

be estimated. As no appreciable increase in resistance is caused by intro-
ducing a few millimeters of narrow tubing between the bulbs, it may safely
be concluded that no kinetic energy correction is necessary with these meas-
urements. The tubes had been carefully selected with a view to uniformity
of bore and were standardised by weighing the quantity of mercury required
to fill them. A series of constant pressures are applied by means of com-

pressed air, the pressure being measured on a water or mercury manometer
according to its magnitude. The air displaced by the clay is allowed to
escape through an air-capillary of suitable dimensions. The pressure dif-
ference (negligible in comparison with the applied pressure) is measured on
an alcohol manometer at an angle of one in ten (the flow-meter), and is
directly proportional to the volume of flow of paste per second. The mois-
ture content of the paste is determined by heating a sample for one hour in
an oven at a temperature of i6o°C. The concentration, K, is expressed as
the number of grams of dry matter per ioog paste. Volume concentrations
are calculated on the basis of a constant specific gravity for the dry material
of 2.7.

In carrying out this work efforts have been made to use as wide a range of
radii as possible. Although it is hoped in the future to increase this still
further, difficulties will first have to be overcome. Thus the use of very wide
capillaries involves large volumes of material and consequently big bulb
correction (always difficult to determine accurately). Moreover the in-
creased length that must be given to the tube necessarily entails a sacrifice
of uniformity in the bore. Thus beyond certain limits, the loss in accuracy
renders further increase in radius of no advantage. With very narrow tubes
so coarse a system as a soil-paste behaves erratically.

In Table I are given, as an example, the complete data for a sample of
Broadbalk Field subsoil similar to that of which the clay-fraction has been
used in the previous work.

Table I
Plastometric data for Broadbalk subsoil paste (33.5 g dry soil per 100 g paste).

Cap. II. R = 0.093 cm. L = 12.

P a V
8.0 3.0 2.0

9.0 4.2 2.7
10.0 4.4 3.0
II-O 5-2 3-5
12.0 5-7 3-7
13.0 6.7 4.6
14.0 7.0 4.8

cm.

Pb S V.

I . I 3-5  75
I -3 3-9 1.05
1   4 4-4 1 .10

i-5 49 I -3°
i-5 5-4 1.42
1 .8 5-7 1 .68
1.8 6.2 1 -75
1   9 6.7 2 052
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Cap. III. R = 0 .073 cm. L = 12.10 cm.
P a V Pb S V.

14.0 2 .8 1.9 1 .0 5-2 i-i3
16.0 3-7 2-5 I -3 5·9 1.49
20.0 4.2 2.9 1 -4 7 ·4 i-73
22.0 5-i 3-5 1 -4 8.2 2 .08
24.0 5-7 3-9 i-5 9.0 2.32
26.0 6.1 4.2 1.6 9-7 2.50
28.0 6.8 4.6 1.8   . 4 2-74

O 7-3 5 '° 1.8 I I . 2 2.97

Cap. 7 R = 0.059 cm L = 10 60. cm

P a V Pb s V.

15.0 i-5 1 .0 0.7 5-3 0-93
20.0 2.4 1.6 I .0 7·  1.48
25.0 3-2 2 .0 I . I 8.g 1.98
0> O b 4.0 2 .6 I -3 I I . I 2 . 50

35-o 4-8 3-i i-4 12.5 3 00

Cap. IV. R = 0 .048 cm. L = 12.25 cm.

P a V Pb s V.

16 .0 °-5  34 0.6 3-9  47
24.0 1 -°S .72 0.7 6 .0  99
28.0 1 -3 .88 0   7 7 -o 1.22

32 .0 1.6 1.09 0.8 8.0 1   5°
38.0 i-95 i-33 0.8 9-5 1.85
40.0 2 .0 1 .36 0.8 10.0 1 .88

42.0 2 .1 i-43 0.8 i°-5 1.98
44.0 2 .25 i-53 1 .0 II .0 2.12

Cap. V. R = 0.040 L = 12.30 cm.

P a* V Pb s V.

20.0 o-3 .06 0.6 4.2 .40

25 -o o-5 . 10 0.6 5   3 .66

3°·° 0.7  T3 0.6 6.4  93
35 ° 0.85 . 16 0.6 7   4 1 -i3
40.0 1 -°5 .20 0.6 8-5 1 -35
45 ·0 1 .2 •23 0.6 9-6 1 .60

Bulbs alone without capillary.
(A water manometer was used, but P is given converted into cm. Mercury).

P 0.5 1.0 1.5 2.0

a *0.2 0 2.0 6.0 8.0
3' O.4 0 1.4 4.I 5-4

* (V/a = .19)·
P is pressure in cm. mercury,
a is flowmeter reading (V/a = 0.68).
V is volume flow in cm5/secs.
Pb is pressure due to bulbs in cm. mercury.
S is stress in dynes/mm.2 (calculated from P —Pb).
v is mean velocity in metre/secs.
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It is well known that the data obtained with such an apparatus when

plotted on a V/ttR3 — W basis fall into two groups. In one, which may con-

veniently be called type A the points for a single tube lie, within the limits of
experimental error, on a straight line passing through the origin. In the other

?o

20

NO RIGIDITY, NO SPREADING
GLYCERINE WATER MIXTURE

V/lTR3 I
/ · tPAOujs O.H5lcm.

0.093$ cm I
a 0766 c m fROUG»£N£D0.0730cm. ------

0.0593 cm.
O.OAÜO cm.
OOAOAcm.

  
— -

 /
STRESS(w)

(OYNES/mm*)

PISIOITY NO PEGULAf? 5PP£AD/NG
9POAOPALK P/ELO A/P-OPY

y/7r/%3 SO/L· f N= 5?. OX)

AO

50

J3,

-20

STRESS (YV)
(OYNES/MM.2)

NO R/G/O/TY, QUT SPREADING
PASTE Of CLAY ERACT/ON fK=2.36Z)
v/m?3

)l- -09-

5TRE55 (x/J
DYNES fNXp)

-0 9-0.7.
RlG/OITY ANO SPREADING

KA OUN {K = 3 7 2%)
v/mz3

-Bp

STRESS (YV)
OYRES/MN1)

10 1014 2 i
Fig. 1

Legends incorporated in four corners of each quarter of drawing.

(type B) this is not the case. Our own measurements not only confirm this
fact but show that each group must be further subdivided according as the
curve obtained is or is not independent of R. There are thus four possibilities,
an instance of each which is given in Fig. 1.

With the water-glycerine mixture (type Ai) a single straight line through
the origin gives an adequate representation throughout the range of stress
used. This is not true of the dilute suspension of very fine soil particles.
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(type A2) Here the best line though passing through the origin has a larger
slope the smaller the radius. Thus the disconcerting fact is here revealed that
a straight Une through the origin obtained with a single tube is not by itself a

proof that Poiseuille’s law is being obeyed.
The thick paste of Broadbalk Field surface soil gives points which, though

more erratic than those for water-glycerine, show no regular trend with change
of radius. Nevertheless they cannot be represented as falUng on a straight
line through the origin (type Bi). The behaviour of thick soil pastes has al-
ready been described in detail in the earlier paper,1 where it is shown that the
curves can be interpreted in the light of the Bingham postulate. New and
more accurate measurements over a wider concentration range has shown
that a sUght spreading noticeable in some of the earlier data and attributed
to experimental error cannot be so explained. In thinner pastes of soils,
clays and simple minerals such as barytes and gypsum the spreading is very
marked. A kaolin paste of moderate consistency is given as an example
(type B2). Here as with type A2 V/ttR3 for a given value of W increases as

R decreases.
An alternative way is to regard type B2 as the general case: the other

three being special and simpler cases. Such a view raises the question as to
whether all these systems are susceptible to the same treatment, and can there-
fore be represented by a single though complex, equation. Already in the
interpretation of curves of the Bi type, two distinct schools of thought have
developed, one of which bases its treatment on Bingham’s postulate and the
other on the Ostwald postulate. This is not the place to enter into a general
discussion of the relative advantages of the two methods, suffice it to say that
all the soil and mineral pastes investigated in this laboratory are more amen-
able to the first method; and that although there undoubtedly are systems
such as benzene-rubber and pastes of at least some starches that give curves

of a shape not accounted for by the simple Bingham postulate, it is neverthe-
less true that much of the data which is represented as conforming to a

relationship of the Ostwald type can as well be cited in support of the simple
linear relationship. (Vide Herschel and Bulkley,2 Porst and Moskowitz,3
Scott Blair,4 Ostwald5).

Hatschek6 has criticised the practice of extrapolating flow-curves by means

of straight lines, and considers that, failing a discontinuous change from a

curved to a straight portion, the choice of the portion to be regarded as straight
is arbitrary and a matter of scale. According to the Bingham treatment
these straight lines are asymptotes to which the true flow-curve approximates
more and more closely as the stress increases. It is clear in general that the
error involved in drawing an asymptote to an experimental curve depends on the

1 G. W. Scott Blair and E. M. Crowther: J. Phys. Chem., 33, 321 (1929).
8 Herschel and Bulkley: Ind. Eng. Chem., 16, 927 (1924) etc.; Proc. Am. Soc. Teat.

Mat., 26, 621 (1926).
3 Porst and Moskowitz: J. Ind. Eng. Chem., 14, 49 (1922).
4 Scott Blair: Kolloid-Z., 47, 76 (1929).
5 Ostwald: Kolloid-Z., 47, 176 (1329).
4 Hatschek: “The Viscosity of Liquids,” 209 (1928).
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steepness of approach. It would certainly be difficult to draw the asymptote
to a rectangular hyperbola given only a portion of the curve; but the criticism
loses its force where the curve is of the Buckingham-Reiner type. In this
case, already noted, the discrepancy in V is less than 1% for values of W
greater than 2.2 times the intercept. Above this limit the difference between
the true curve and the limiting straight line should be outside the limits of
experimental error. This is borne out in practice with soil and clay pastes,
so that linear extrapolation appears justified with these materials.

Discussion.
These experiments yield the result that for many viscous suspensions

(type A) as well as plastic pastes (type B), V/ttR3 does not depend only on W.
As the variation of the former quantity sometimes approaches twofold for a

twofold variation of radius, the effect is evidently quite outside the limits of
ordinary experimental error. Moreover the fact that the apparatus gives a

very satisfactory verification of Poiseuille’s law for true fluids indicates that
it works satisfactorily. The effect has every appearance of being genuine.
The next step therefore is to seek its cause. This must lie in a breakdown of
one or more of the three conditions set out in the introduction. These will
be considered in turn.

A breakdown of the condition that the particles move with a constant
velocity parallel to the axis would occur if the flow were turbulent. Although
no complete theory of turbulent flow has yet been advanced, it is generally
considered that its presence is marked by a falling off in the slope of the flow-
curve as the stress is increased. Such a falling off does occur at very high
stresses, particularly with the more dilute suspensions; but the curves obtained
with a view to elucidating the effect under discussion were not followed far
enough for this to happen, and as can be seen from the examples given, show
no signs of curvature over the range examined. It might be urged that the
close approximation to linearity arises from a chance cancellation of opposite
curvations, in a manner similar to that suggested to explain the “Laminarast’’
or linear portion of the flow-curves obtained by Ostwald and Auerbach.1
As against this, it should be pointed out that many hundreds of flow-curves
for clay and soil pastes have now been accumulated in this laboratory, and
not one reliable curve has been obtained which cannot be fairly represented by
a straight line at sufficiently high stresses. It seems inconceivable that an

exact cancellation of two unconnected tendencies should occur in all these
cases. It is more reasonable to interpret the straightness as an indication
that these materials are obeying both condition (1) and the Bingham postulate
and to endeavour to deduce an equation of the Buckingham-Reiner type based
on a modification of conditions (2) and (3).

Until the results to be expected when flow is turbulent have been more

fully worked out, it is impossible to exclude it altogether from the possible
causes contributing to the effect. All that can be said at present is that there

1 Oatwald and Auerbach: Kolloid-Z., 38, 261 (1926); 41, 56 (1927).
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is no positive evidence that turbulence is present in these experiments. This
statement applies with equal force to the ‘structure’ type of turbulence postu-
lated by Ostwald as to the more general type.

On plotting the mean velocity V/ttR2 rather than V/ttR3 against W, a

regularity becomes apparent. A typical set of curves plotted in this way

from the data in the table is shown in Fig. 2. Since according to the Bucking-
ham-Reiner equation (see above) the points should lie above the limiting
straight line by more than 1% at values of W less than 2.2 times the intercept
these have been omitted, and only those for stresses above 4.4 dynes/mm2
have been used for locating the limiting straight lines. As these have a

common intercept their slopes would be proportional to R were V/ttR3
dependent only on W. Actually when the slopes   are plotted against R a
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straight line can in all cases be drawn through the points, but for types A2
and B2 this does not, when extrapolated, pass through the origin, but gives
a positive intercept on the slope axis. Curves connecting   and R which
may conveniently be spoken of as derived curves are given in Fig. 3 for the
four sets of curves of Fig. 1. The derived curve obtained from Fig. 2 together
with ones for pastes of barytes and gypsum are given in Fig. 4. If turbulence

0 .05 .10 .15
Fig. 3

Derived curves

were the sole cause of the effect, the disturbance would presumably be most
marked in the widest tube. In these conditions the mean velocity for a given
stress on the wall should be more nearly proportional to the radius with the
smaller tubes than with the wider ones. In other words the derived curve
should approximate more closely to a straight line through the origin the
smaller the radius. It will be seen that the curves in Figs. 3 and 4 taken as a
whole do not support this idea.

If, on the other hand, the derived curves are in reality straight lines (as
shown), the fact that some give an intercept might be interpreted as indicating
that conditions (1) and (3) are fulfilled, but that in such cases there is a slip
at the wall. The slope  , and hence the mean velocity at a given value of W
can in these cases be separated into two components, one proportional to



258 R. K. SCHOFIELD AND G. W. SCOTT BLAIR

the radius and one independent of it. It seems more probable however that
the second component instead of representing an actual slip at the wall should
be regarded as a velocity imparted to the bulk of the material by excessive
flowing of the material in the immediate vicinity of the wall. Provided that
the thickness of the region in which this excessive flow takes place is both
independent of the radius and also small in comparison with it, the effect on

Fio. 4
Derived Curves

the mean velocity would be the same as that of a slip at the wall itself. There
would however be a difference in tubes so narrow that the radius is of the
same order of magnitude as the thickness of the region of excessive flow, as in
this case the derived curve would bend round towards the origin.

The first component of the mean velocity, since it is proportional to R is
presumably due to the flow of the material in bulk, and therefore equal to
V/tR2 calculated from equation (iii) using the appropriate value for f(S).
In cases where the Bingham postulate is applicable to the material in bulk
the first component will be that given by the Buckingham-Reiner equation
and the slope of the derived curve will equal \µ. The second component of
mean velocity is equal, according to the constructions in Figs. 2 and 3, to
 0 (W —C) when    is the intercept of the derived curve on the   axis and C
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the common intercept of the flow curves (Fig. 2) on the W axis (which accord-
ing to the Buckingham-Reiner equation should equal 4/3 So)

The existence of a very thin layer of fluid of the consistency of water,
separating the paste from the wall has been assumed by Buckingham to ac-

count for the small movement which occurs at stresses so low that the bulk
of the material does not flow. This view, slightly modified, was adopted in
the earlier paper, where it was shown experimentally that this flow is related
to the stress thus:

V/irR2 = v =    (W —A) (vii)

A being a constant stress below which no movement occurs, e the thickness
of the layer and   its mobility. It might at first appear that the second com-

ponent of the velocity is the same as the above. This, however, can hardly
be the case since  0 is found to have a magnitude some 100 times that of c .
For this reason the second component, unlike the Buckingham term, cannot
be neglected at high stresses when the material is flowing. Assuming a value
of   equal to the fluidity of water in bulk, the thickness e is of the order
io~5cm. The corresponding thickness calculated from  0 is of the order io_3cm
As the mobility of the modified layer cannot be greater than that of water in
bulk and is probably less, this latter is a minimum estimate.

Experiments with tubes, the walls of which had been etched with fluoride
also reveal an essential difference between the two phenomena. It was found
(loe. cit.) that etching greatly interferes with the motion at very low stresses
and renders equation (vii) inapplicable. No corresponding influence on  0
is observed. Thus it will be seen from Figs. 1 and 3, that the points obtained
with the etched tube fall into fine with those for the smooth tubes. A further
distinction is apparent in the behaviour of pastes made from soils that have
previously been air-dried. Movement at low stress is inhibited whereas no

similar interference is found at high stresses. It would appear therefore that,
where the derived curve does not pass through the origin, there exsits in the
immediate neighbourhood of the wall of the tube a region in which the viscous
or plastic properties of a material flowing through it are modified. When a lami-
nated material such as a clay paste flows through a tube particles near the wall
will tend to align themselves in the direction of flow, and be unable to rotate
under the influence of the viscous couple acting in them. In the bulk of the
material the particles will rotate sufficiently to prevent any alignment. If
indeed there be any such an orientation near the wall it might give rise to
an increase in mobility as the wall is approached and thus to a deviation
from equation (iii) such as is actually observed. On the other hand attempts to
eliminate the  0 term by the use of materials which are believed to be devoid of
laminar structure has so far proved unsuccessful. Only true fluids show both
no    term and no rigidity. An alternative explanation would involve an in-
creased concentration of the suspended material towards the centre of the
tube relative to the region near the wall, the relatively more dilute material
having a greater mobility. In order to test this idea a sample of clay sus-

pension giving a high value for  0 was forced through a metal tube through
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the side of which a hole had been drilled. This hole was very small so that
the exuding of material through it would scarcely interfere with the flow in
the tube. Although a large variation in concentration would have to be as-

sumed to account for the value of <r0 observed, no appreciable difference
n concentration was found between the exuded material and the rest.

We are not, therefore, in a position to offer a detailed physical explanation
of the effect observed. Yet the view that the properties of the material are
modified in the neighbourhood of the wall is supported by another fact which
has been repeatedly observed, but which has hitherto received no explana-
tion. It will be seen that in Fig. 2 of the previous paper (p. 326) the ratio
of the extrapolated intercept on the pressure axis in the V-P curve, to the
pressure at which flow at the wall just starts, is somewhat greater than the
4/3 necessitated by the Buckingham-Reiner equation. This discrepancy
may well be due to a decreased value of S0 in the neighbourhood of the wall.

The Determination of Consistency Constants.
Methods for determining absolute consistency constants have hitherto

been based on the supposition that, provided the motion is not turbulent,
V/ttR3 depends only on W and the nature and concentration of the material.
Where this is not true (Types A2 and B2) the methods require modification
whether the constants are defined with reference to the curves obtained by
plotting V/7rR3 against W (Buckingham-Reiner equation) or by plotting the
logarithms of these quantities (Farrow, Lowe and Neale equation). In such
cases, it is impossible to define a viscous constant for the material from meas-

urements made with a single capillary, since there would be a progressive
change in its value with radius were the usual method adopted. An instance
is given in Fig. 5 where the viscosity as given (1) by the Poiseuille-Bingham
method for wide and narrow capillaries respectively and (2) from the slope
of the derived curve is plotted against the concentration. The latter
construction has the advantage of giving a single constant independent of
radius, which, if the considerations advanced above are correct is a measure of
the viscous properties of the bulk of the material.

Moreover, the shape of the viscosity-concentration curve as given by the
second construction is such as would be expected if the deviation from lin-
earity were due simply to a decrease in the extent of hydration of the par-
ticles. This shape is not reproduced in the curves derived from the single
capillaries. The curve from the smallest capillary has an upward curvature
of the type frequently obtained for concentration curves for hydrophylic ma-

terials with a simple Ostwald viscometer.
It is at least apparent that measurement of the viscosity of suspensions

cannot be considered to be reliable unless made with at least two tubes of
reasonably differing radii.

The method at present used in this laboratory for determining the con-

sistency constants for soil and clay pastes is as follows:
The data for a series of four or five different capillaries having a total

range of radius of at least two-fold are plotted out on a V/ttR2:PR/2L basis,
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the values of P having previously been corrected for the resistance of the
bulbs. The best straight lines are then drawn through the points in such a

way that they converge on the stress axis. The point at which these extra-
polations converge is taken as the rigidity, C.1 The slope ( ) of each curve
is then measured (i.e. the rise in V/ttR2 per unit increase in stress) and a
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Fig. 5

is plotted separately against R. The slope of the derived curve (dR/d )
divided by 4 is taken as the viscous constant  ' (pseudo-viscosity =  /µ)
and the intercept of the extrapolated curve on the <r axis as  0, a measure of
the wall effect.

Fig. 5 shows an interesting relationship for a clay fraction between  0
and concentration, the value of cr0 passing through a maximum at a low

1 This is, of course, the “limit of rigidity” i.e. Bingham's yield value, not the rigidity
modulus.
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concentration and disappearing for pure water and also at high concentrations
where the high rigidity limits a further extension of the concentration range.
Accurate measurements of    at low concentrations are not easy, and the
values are liable to a fairly large error, but there can be no doubt as to the
general shape of the curve. It is of interest that the maximum of the curve
occurs at about the same concentration as that at which rigidity first makes
its appearance.

Since the dimensions of  0 are somewhat inconvenient, an alternative
method is to extrapolate the derived curves still further onto the negative
radius axis. In this way a hyperthetical length (R„) is obtained which must
be added to each radius before the equation stating the proportionality of the
slope of the V/ttR2: PR/2L curves to (viscosity X radius) can be applied.
In other words R3(R + R0) takes the place of the R4 in the equations of
Poiseuille or Buckingham-Reiner when written so as to give V directly in
terms of P.

Our thanks are due to Dr. B. A. Keen for his interest and criticisms
throughout the progress of this work.

Summary
If, in considering the flow of a plastic material through a narrow tube, it

be assumed that the velocity gradient at any point depends only on the
stress at that point, it necessarily follows that the mean velocity for a given
stress at the wall of the tube should be directly proportional to the radius
of the tube. Although thick soil pastes conform closely to this requirement,
thinner pastes whether they show rigidity or not give marked discrepancies.
These discrepancies can be accounted for by assuming that in the immediate
proximity of the wall a modification of the plastic properties occurs, which
imparts an additional velocity to the bulk of the material. By first sub-
tracting this velocity a viscosity constant is obtained independent of the
dimensions of the tube.


