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In contrast with bird flocks, fish schools and animal herds, midge swarms maintain cohesion 

10 but do not process global order. High-speed imaging techniques are now revealing that these 

swarms have surprisingly properties. Here I show that simple models found on the Langevin 

equation are consistent with this wealth of recent observations. The models predict correctly 

that large accelerations, exceeding 10 g, will be common and they predict correctly the co-

existence of core condensed phases surrounded by dilute vapour phases. The models also 

15 provide new insights into the influence of environmental conditions on swarm dynamics. They 

predict that correlations between midges increase the strength of the effective force binding 

the swarm together. This may explain why such correlations are absent in laboratory swarms 

but present in natural swarms which contend with the wind and other disturbances. Finally, 

the models predict that swarms have fluid-like macroscopic mechanical properties and will 

20 slosh rather than slide back-and-forth after being abruptly displaced. This prediction offers a 

promising avenue for future experimentation that goes beyond current quasi-static testing 

which has revealed solid-like responses.

25 Keywords: Swarming, stochastic modelling, emergent properties
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Introduction

Aerial mating swarms of male midges and male mosquitoes form at dawn or dusk often over 

30 prominent landmarks (hereafter called ‘swarm markers’). These swarms can contain a few, 

hundreds, or even thousands of individuals and form to attract females from the surrounding 

vegetation. Females fly into these mating arenas and copulation occurs on the wing. In 

contrast with bird flocks, fish schools, animal herds and some other insect swarms (e.g., 

marching locusts) these cohesive swarms do not display coordinated motion. This has 

35 prompted the search for more nuanced ways to characterize collective motions in animal 

aggregates that go beyond the identification of global ordering or patterning.

Okubo [1] was the first to report on and attempt to characterize the three-dimensional flight 

patterns of swarming insects (the midge Anarete pritchardi). Analysis of stereoscopic 

40 photographic recordings revealed that motion inside the swarm looks more or less random in 

both velocity and acceleration, but each midge is, nonetheless, subject to an inward 

acceleration the magnitude of which increases with distance from the swarm centre. This 

prompted Okubo [1] to propose that midge swarms are analogous to self-gravitating systems 

and as a consequence the motion of midges within a swarm can be modelled by the Langevin 

45 equation. Ouellette and co-workers [2-8] have built on Okubo’s [1] ground-breaking 

experiments and in doing so have uncovered a wealth of detailed information about the 

behaviours of midge (Chironomus riparius)  swarms, resulting in the quantification of velocity 

and acceleration statistics, the identification of surprising macroscopic properties, including a 

finite Young’s modulus and yield strength, and most recently reporting on the co-existence of 

50 a core condensed phase surrounded by a dilute vapour phase. In parallel with these 

experiments, Reynolds and co-workers [9-10] have been refining Okubo’s model [1] and in so 

doing predicted that the effective attractive force towards the centre of the swarm increases 

both with distance from the swarm centre and with an individual’s flight speed. Clear evidence 

of such an attractive force was subsequently found in experimental data [10]. This success 

55 suggests that generalizations of the Langevin equation may encapsulate the key dynamics of 

insect swarms and so facilitate a better understanding of their collective behaviours, helping 

to reconcile conflicting observations made in the laboratory and in natural environments, and 

offering new challenges for experimentalists. Here I show that this is indeed the case by 

demonstrating that the models: capture the plethora of recent observations [2-8]; predict, in 

60 accordance with observations, that correlations will be absent in laboratory swarms but 

present in natural swarms [3,11-13]; and predict that going beyond current quasi-static testing 

[4] will uncover emergent fluid-like behaviours. This is timely because the exploration of swarm 
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“thermodynamics” and the characterization of swarms in terms of state variables and 

constitutive laws lies at the cutting edge of swarm research [3,8]. Traditionally models of 

65 collective motion have been validated by studying the group morphology they produce. But it 

is now recognised that morphology alone is not a good indicator of model correctness as 

different kinds of model can produce nearly identical group morphologies [7]. Models must 

now be able to capture both the intricate dynamics of swarms and the emergent “material” 

properties of swarms.

70

Methods

Modelling of midge swarms 

Laboratory midge (Chironomus riparius) swarms do not show the choreographed movements 

of fish schools or bird flocks, but their members do occupy just a small portion of the space 

75 available to them [2-8]. The midges appear somewhat paradoxically to be tightly bound to the 

swarm centre while at the same time behaving as nearly free particles inside it [7]. Here 

following Okubo [1] I assume that the positions, x, and velocities, u, of such midges within 

laboratory swarms can be described by the stochastic differential equations 

(1)( ) ( ) ( )tdWtxubdttxuadu

udtdx

,,,, +=
=

80 where  is an incremental Wiener process with correlation property ( )tdW

. Equation (1) is effectively a first-order autoregressive stochastic ( ) ( ) ( )dttdWtdW τδτ =+

process in which position and velocity are modelled as a joint Markovian process. At second-

order, position, velocity and acceleration would be modelled collectively as a Markovian 

process. Physically, this hierarchy of models corresponds to the inclusion of a velocity 

85 autocorrelation timescale, at first order, and to the addition of an acceleration autocorrelation 

timescale, at second order, and so on [14]. Here the deterministic term, , is ( )txua ,,

determined by the requirement that the statistical properties of the simulated trajectories be 

consistent with the observations of Kelley and Ouellette [2]. Kelley and Ouellette [2] showed 

that: (1) the spatial distribution individuals from the swarm centre is approximately Gaussian 

90 in all three dimensions and weakly axisymmetric; (2) and that in sufficiently large swarms 

individual velocity distributions have long, nearly exponential tails.
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Mathematically these consistency conditions require that the joint distribution of velocity and 

position  be a solution of the Fokker-Planck equation),,( txuP

95
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where xc is the location of the swarm centre, σx is the root-mean-square position, and σu is the 

100 root-mean-square speed. Equation 2 implies that 
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when, without loss of generality, 
 
where T is a velocity autocorrelation timescale.  

T
b u

22σ=

The first term is a ‘memory term’ which causes velocity fluctuations to relax to their mean 

value. The second term is the ‘conditional mean acceleration’, and the third term is the 

stochastic driving noise. In accordance with observations the mean acceleration increases 

110 linearly with distance from the swarm centre and with speed relative to the swarm centre 

[2,10]. Note, however, that in small swarms (<10 individuals) velocities are observed to be 

Gaussian rather than exponentially distributed [1,2], and in this case a directly analogous 

calculation gives
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115 This model is identical to the model posited by Okubo [1]. The linear increases in mean 

acceleration (force) with distance from the swarm centre in the two models, Eqns. (5) and (6), 

are consistent with midge swarms behaving as self-gravitating systems [1]. This is consistent 

with midges interacting primarily via long-range acoustic stimuli and with ‘adapting’ their 

response to the overall sound level so that acoustic sensitivity drops when there is a strong 

120 background noise [16]. Adaptivity is a common feature of biological sensory systems. 

Gorbonos and Gov [17] showed that adaptivity also prevents collapse of the swarm and 

therefore confers on the swarm a natural stability mechanism. This is related to Jeans 

instability which in stellar physics causes the collapse of interstellar gas clouds and so star 

formation when the internal gas pressure cannot prevent gravitational implosion. Two and 

125 three-dimensional models can be formulated in a directly analogous way [10] but in contrast 

with one-dimensional models they are not uniquely determined by prescribed distributions of 

position and velocity. Models differ in the propensity to which simulated trajectories tend to 

orbit around the swarm centre. Models of midge swarms producing orbiting trajectories can 

currently be discounted because there are no reported observations of such behaviours. 

130

In contrast with laboratory swarms, the velocities of midges within natural swarms are 

correlated [11,12], i.e., the midges are effectively interacting by velocity matching. Later I 

suggest that the correlations are induced by environmental disturbances. The modelling 

framework can be extended to take explicit account of such interactions between individuals, 

135 following the approach of Thomson [18] who devised a stochastic model for the motion of 

particle pairs in turbulence. One of the simplest such models is given by

 (7)
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where the subscripts denote different individuals,  is the velocity correlation matrix with τ
components , 

 
denotes components of  and where  is an incremental jiij uu=τ 1−

ijτ 1−τ ( )tdW

140 Wiener process with correlation property . Modelled velocities ( ) ( ) ( ) dttdWtdW ijji δτδτ =+

are Gaussian with mean zero (and close neighbours will have similar velocities by virtue of 

the correlations). The first term describes how an individual velocity relaxes to a weighted sum 
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of the velocities of its neighbours. The second term is an attractive force that binds individuals 

to the swarm centre. The third and fourth terms ensure that the spatial distribution of 

145 individuals is uniform on average. Without these terms, individuals would tend to drift apart 

because relative velocities tend to decrease as individuals come together and increase as 

they move apart, leading to a net outward drift; a process akin to turbophoresis. The third and 

fourth terms counter this drift which on average is given by . They are, in effect, a 
j

ij

x∂
∂

−
τ

velocity-dependent mean acceleration. The model, Eqn. 7, reduces to the phenomenological 

150 model of midge swarms proposed by Passino [19] when the fourth term is averaged over 

velocity, i.e. when is approximated by . Passino [19] noted that such a kj
k

il
lj uu

x∂
∂− ττ 1

2

1

j

ij

x∂
∂τ

2

1

term represents a short-range “repulsive” interaction when velocity correlations are positive. 

When a pair of simulated midges are much closer than the correlation length-scale the 

acceleration between them becomes strongly repelling. This is consistent with the 

155 observations of Puckett et al. [7] who reported that accelerations become strongly repelling 

when the separation between a pair of midges is less than 12 mm (about 2 body lengths); a 

separation comparable to the correlation length-scale, 26mm [3]. 

Results

160 Ramifications of speed-dependent effective forces: Biological Insights

Reynolds and Ouellette [9] recognised that Lévy flight patterns can result from speed-

dependent effective forces and they found some support for such flight patterns in laboratory 

swarms of the midge Chironomus riparius. The occurrence of Lévy flight patterns may be 

accidental but they may have biological significance.  Lévy flight patterns could provide males 

165 with a highly effective searching strategy for locating females that have flown into the swarm 

[9]. This may be biologically significant because competition within the swarm appears to be 

a scramble to be the first to locate a female which may actively attempt to avoid capture [20] 

The identification of speed-dependent effective forces may also lead to a more detailed 

understanding of the origins of interactions between midges which probably arise from 

170 acoustic sensing [10]. 
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Ramifications of speed-dependent effective forces: Large accelerations

Another ramification of speed-dependent forces, the occurrence of very heavy tailed 

distributions of unconditional accelerations (resulting in accelerations exceeding 10 g), has 

175 been hiding in plain sight [1,2]. The distribution of unconditional accelerations is determined 

by

(8)( ) ( ) ( )dudxxuPxuAPAp ,,∫ ∫
∞

−∞−

∞

∞

′=

where  is the conditional distribution of accelerations. It is seemingly natural to ( )xuAP ,′

suppose that conditional accelerations are Gaussian distributed with mean  and xuA ,

180 variance . Mean accelerations are observed to increase linearly with distance from the 
2
Aσ

swarm centre, and swarm profiles are, to good approximation, Gaussian [2].  It follows from 

these observations and from Eqn. 8 that the distribution of unconditional accelerations will also 

be Gaussian, if mean accelerations are independent of velocity. Such distributions of 

acceleration are not observed. Heavy tailed distributions of unconditional accelerations can 

185 only arise when the mean accelerations depend on both position and speed.  For example, 

for the model given in Eqn. 5, evaluation of Eqn. 8 in the saddle point approximation gives a 

stretched exponential distribution,

(9)( ) 3/1

3/2
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2

3
exp~ A

A
Ap

u
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σ
σ

(‘~’ means distributed as). This prediction compares favourably with the observations of Kelley 

190 and Ouellette [2] (Fig. 1). This shows that for the observed distributions of velocity and 

observed speed-position dependent mean accelerations to be consistent with the observed 

unconditional distribution of acceleration, the distribution of conditional accelerations must (to 

good approximation) be Gaussian.  In other words, the heavy tails of the unconditional 

distribution of acceleration are not indicative of new dynamics beyond those characterised by 

195 the velocity distribution and the mean acceleration statistics. This finding mirrors that of tracer-

particle accelerations in high Reynolds-number turbulence which also have stretched-

exponential distributions [21] and which have been interpreted within the context of 

“superstatistics” where one has a superposition of Gaussians whose variance fluctuates over 

a wide spatial-temporal range [22,23].

200
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Emergence of fluid-like macroscopic mechanical properties 

The coordinated movements of individuals within strongly correlated aggregations such as 

bird flocks is visually striking and a result much research has been directed at characterizing 

the conditions under which ordering will emerge. But insect swarms can behave collectively 

205 without ever exhibiting long-scale order, prompting the search for different descriptions. Ni et 

al. [4] have suggested that the dynamics of insect swarms may be characterised in terms of 

macroscopic state variables and constitutive laws instead of low-level interactions. Ni and 

Ouellette [3] subsequently showed that single laboratory swarms can be pulled apart into 

multiple daughter swarms and that when this done quasi-statistically, swarms appear to more 

210 solid-like rather than liquid- or gas-like in that they have a finite Young’s modulus and yield 

strength but do not flow like viscous fluids.  Nonetheless, model predictions suggest that fluid-

like properties will emerge in dynamic tests has a consequence of speed-dependent restoring 

forces. Simulations with speed-independent forces (Eqn. 6) predict that after being suddenly 

displaced from its marker, a swarm will eventually return to its equilibrium position after ‘sliding’ 

215 back-and-forth passed the marker whilst maintaining it equilibrium density profile (Fig. 2a). 

Simulations with speed-dependent forces (Eqn. 5), on the other hand, predict a fluid-like 

response, as the swarm ‘sloshes’ back-and-forth passed the marker before returning to 

equilibrium (Fig. 2a). These predictions do, however, presuppose that the non-equilibrium 

dynamics do not differ from the equilibrium dynamics as encoded in the model and which are 

220 derived from equilibrium position-velocity statistics. The distinction between speed-

independent and speed-dependent forces is, however, predicted to be of importance only after 

relatively large, sudden perturbations and will not manifest itself in quasi-stationary tests.  

Natural swarms are also predicted to have fluid-like properties because accounting for 

correlations leads to speed-dependent restorative forces (Eqn. 7) (Fig. 2b). If correlations were 

225 not accompanied by speed-dependent restorative forces then they might be expected to 

endow swarms with solid-like macroscopic properties.

Phase co-existence 

Midges in laboratory swarms are very weakly correlated, with correlation lengths of only a few 

230 body lengths. These swarms are, nonetheless, behaving collectively. A recent study showed 

that laboratory swarms consist of a core ‘condensed’ phase surrounded by a dilute ‘vapour’ 

phase [8]. These two phases maintain distinct macroscopic properties even though individual 

insects pass freely between them. The emergence of such phases is predicted by 3-

dimensional models of uncorrelated swarms with and without speed-dependent forces [10] 

235 (Fig. 3). In this modelling midges are collisionless and their dynamics are not governed by 
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interactions between midges, but instead are governed by the overall forces which binds the 

swarm to its centre. In accordance with observations [8], the model predicts that (at least 

approximately) the average pressure of the condensed phase increases linearly with density 

so that  (i.e., it’s thermal). The average pressure of the vapour phase is observed and 
np ∝

240 predicted to increase sub-linearly with density so that . From a thermodynamic 
2/1~ np

perspective this is strange because the scaling exponent, γ, is expected to be the ratio of heat 

capacities, cp/cv and thus greater than unity because at constant pressure, specific heat is 

always greater than at constant volume. Moreover, for an ideal gas γ=1+2/N where N is 

number of the degrees of freedom of a molecule. 

245 Velocity correlations in laboratory and natural swarms

Natural swarms of the midges Cladotanytarsus atridorsum, Chironomidae and 

Ceratopogonidae, and of the mosquitoes Anopheles gambiae and Anopheles coluzzii display 

strong correlations that are totally incompatible with models of non-interacting midges [11-13]. 

The correlation scale increases with the swarm size, and this was interpreted by Attansasi et 

250 al. [12] under the guise of criticality. This is markedly different from laboratory swarms which 

are uncorrelated. Ni and Ouellette [3] suggested that a likely explanation for this difference is 

the influence of external environmental factors. Laboratory swarms are very well controlled, 

with no temperature gradients, air flows, or other dynamic disturbances. In natural swarms all 

of these influences are unavoidably present. The onset of correlated movements may 

255 therefore be triggered by the presence of external perturbations, as seems to happen in 

laboratory swarms those centre-of-mass traces out elliptical, oscillatory trajectories when the 

swarm is disturbed by periodically modulated sound recordings of male midges [5]. This 

possibility finds support in the results of numerical simulations for correlated swarms obtained 

using Eqn. 7 (Fig. 4). Correlations are seen to enhance the strength of the effective force that 

260 binds the swarm to its centre, and this effect is seen to be maximal when the correlation scale 

is comparable with the swarm size. This can also be seen analytically by integrating the 

conditional mean acceleration (Eqn. 7) for one individual, over the positions and velocities of 

all other individuals. Correlations may therefore help to maintain the coherence of the swarm 

and so be selected for, as swarm coherence may promote the collective signalling to females 

265 [13]. In accordance with observations, correlations are also predicted to result in coherent 

“dancing” of the swarm [11], and “milling” of the centre-of-mass [5] (Fig. 5). The “dancing” seen 

in natural swarms [11] may, in fact, be “sloshing” because such swarms are predicted to have 

fluid-like properties. Correlations are also predicted to enhance the dispersal (normal diffusion) 

of swarm centroids after swarms break free from their nucleation markers (results not shown).
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270 Conversely, anticorrelations (episodes of antiparallel flight) reduce the strength of the effective 

force that binds swarms to their centres. Puckett et al. [24] reported that midges spend about 

15% of their time engaged in nearly harmonic oscillations conducted in synchrony with other 

midges, and that these pairwise interactions do not typically occur between midges that are 

nearest neighbours. The predicted incumbent weakening of the effective binding force may be 

275 an accidental (mathematical) consequence of these pairwise interactions, which nonetheless 

could be crucial if laboratory swarms are to break free from their markers and so crucial for 

the emergence of true swarming behaviour. In any case the weakening due to anticorrelations 

cannot be as pronounced as the strengthening due to correlations, as any number of midges 

can be correlated but only pairs of midges can be maximally anticorrelated. Anticorrelations 

280 have, in fact, only observed between pairs of individuals in laboratory swarms [24], whereas 

correlations (parallel) flights are present in pairs and within larger subgroups [11-13]. 

Ground effects

285 In contrast with wild swarms and bird flocks, laboratory swarms are only weakly axisymmetric. 

Large swarms are longest in the vertical dimension whereas small swarms are elongated in a 

horizontal direction [2]. Kelley and Ouellette [2] speculated that this might be because 

individuals join the swarm by in flying from above, thereby extending the large swarm in the 

vertical direction. This was later corroborated by Ni and Ouellette [4] who reported that above 

290 the swarm there are diffuse trajectories, as individuals entering and leaving the swarm tend to 

do so from above. The results of numerical simulations (Fig. 6) suggest that this is not a novel 

dynamic, different from the swarm dynamics encoded in the model, but may just be a 

consequence of the ground inhibiting downward movement of the swarm. In the modelling 

such an impermeable barrier to movement was implemented through the imposition of a 

295 simple reflective boundary condition which is seen to distort the swarm profile in the vertical 

direction but not in the horizontal directions (Fig. 6). At the boundary, the vertical component 

of velocity changes sign. Further analysis is presented in the Appendix.

Discussion

300 Midge swarms behave collectively without displaying coordinated motion of the kind seen in 

bird flocks, animal herds and fish schools [2], and in the laboratory are only weakly correlated 

[5]. This has prompted the search for more general indicators of the collective nature of 

swarming. In a pioneering suite of studies Ouellette and co-workers [2-8] have revealed that 

insect swarms have surprising macroscopic mechanical properties that can be characterised 
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305 in terms of macroscopic state variables and by constitutive laws instead of low-level 

interactions. Here I showed that many of these surprising properties along with other facets of 

insect swarms are predicted by simple models based upon the Langevin equation; models 

that are close relatives of Okubo’s [1] original model of midge swarms. 

310 The models are easy to formulate, computationally inexpensive and can be studied 

analytically. They were shown to predict correctly many recent and intriguing observations 

including: the occurrence of anomalously large accelerations [2]; the presence of a condensed 

core surrounded a dilute vapour that does not have a straightforward thermodynamic 

counterpart [8]; and emergent macroscopic mechanical solid-like properties [4]. The models 

315 also predict the occurrence of fluid-like behaviours which await experimental verification and 

thereby provide new lines of enquiry beyond the static [8] and quasi-static tests [4] which have 

revealed emergent macroscopic mechanical properties similar to solids that do not flow like 

viscous fluids.  

320 The models may also help to reconcile seemingly conflicting reports about the importance of 

correlations, hinting at the potential importance of environmental conditions on collective 

behaviours [11-13]. And conversely, provide new insights into the practical implications of the 

occurrence of anticorrelated pairs in laboratory swarms. It has been hypothesised that 

correlations (i.e., parallel flights) allow for mate recognition via wingbeat frequency matching 

325 [25], and that observed interactions represent a means of obtaining information on what may 

be occurring in a part of the swarm outside an individual's perceptive range [14,26]. It has 

even been suggested that the males are competing for space with the swarm, so that the 

parallel flights are a form of ritualized aggression in males [27]. But none of these hypotheses 

are consistent the presence of correlations of natural swarms, and their absence (or 

330 replacement by anticorrelations) in laboratory swarms [3,24]. Here it was suggested that by 

increasing the strength of the effective force that binds midges to the swarm centre, 

correlations help natural swarms to counter disturbances due to environmental perturbations. 

And conversely, that anticorrelations might help laboratory swarms to break free from their 

swarm markers.  This hypothesis could be tested in the laboratory.

335
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Appendix

Stochastic modelling of the swarms’ exterior

Mean accelerations (restoring forces) are observed to increase linearly with distance from the 

swarm centre [1,2] and so midge swarms are behaving like self-gravitating systems [1]. This 

415 is not unexpected as midges are thought to interact primarily via long-range acoustic sensing 

and because acoustic and gravitational sources decay in a similar way [16]. Outside of the 

swarm mean accelerations are therefore be expected to decrease linearly with the square of 

the distance from the swarm centre [28]. Okubo’s [1] model for within-swarm trajectories, Eqn. 

6,  can therefore be supplemented by an additional model( )xx σΛ≤

420         (A1)
( )

( )
dW

T
dt

xx

xx
dt

T

u
du u

c

c
xu

2

2
23 2sgn σσσ +

−
−

Λ−−=

for outside-swarm trajectories. Within-swarm positions and velocities remain Gaussian. 

Outside the swarm, velocities are also Gaussian but the background equilibrium distribution 

of midges is given by

         (A2)( ) 





−

Λ
=

c

x

xx
x

σρρ
3

0 exp

425 If  then the density profile is continuous across the edge of the swarm




 Λ−= 2

0 2

3
expρ

 and individuals can be move freely in and out of the swarm, as is observed to ( )xx σΛ=

occur at the top of large swarms [2,4]. Other choices for the far field midge concentration, ,0ρ

result in discontinuous density profiles and confinement as mean accelerations are 

determined by  (see Eqn. 4). The extension to non-Gaussian velocity statistics is 
x∂

∂ρ
ρ
1

430 straightforward and as before leads to velocity-dependent mean accelerations that have 

similitude with Gerber’s [29] long-forgotten controversial theory of speed-dependent gravity. 

Intriguingly by reconciling an inverse-square restoring force with homogeneous velocity 
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statistics the new model, Eqn. A1, has resonance with modified Newtonian dynamics [30], a 

contemporary but controversial theory of gravity. Modified Newtonian dynamics may therefore 

435 govern the transfer of midges into and out of the swarm whilst Gerber's gravity governs what 

happens inside the swarm.
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440

Figure 1 Individual midge accelerations. Standardised acceleration probability density 

functions. Predictions (solid-line) from the model, Eqn. 5, with speed-dependent forces are 

shown together observations (● median recording, ● maximum recording, ● minimum 

recording) of horizontal accelerations [2]. There are no adjustable parameters in the predicted 

445 standardized pdf. Models with speed-independent forces predict that accelerations are 

Gaussian distributed.



19

Figure 2a Predicted emergence of solid-like and fluid-like behaviours. Distributions of 

positions, Px, and velocities, Pu, at times t=2T (red lines), t=4T (green lines), t=6T (yellow lines) 

450 and t=8T (blue lines) after at swarm at equilibrium and centred on x=0 is suddenly displaced 

to x=5. Predictions for speed-dependent forces (lower panel) and speed-independent forces 

were obtained using Eqns. 5 and 6. A fluid-like ‘sloshing’ behaviour is predicted to arise when 

forces are speed-dependent, and a solid-like ‘sliding’ behaviour is predicted to arise when 

forces are speed-independent. Predictions were obtained for and T=1 a.u. 1,1 == ux σσ
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455

Figure 2b Predicted emergence of solid-like and fluid-like behaviours. Distributions of 

positions, Px, and velocities, Pu, at times t=2T (red lines), t=4T (green lines), t=6T (yellow lines) 

and t=8T (blue lines) after at swarm at equilibrium and centred on x=0 is suddenly displaced 

to x=5. A fluid-like ‘sloshing’ behaviour is predicted to occur as the swarm returns to 

460 equilibrium. Predictions were obtained using Eqns. 7 for a swarm containing 10 midges with 

a Gaussian density profile and exponential velocity correlations, 

and characterized by and b=1 a.u. ( )cjiu xxR σσ /exp95.0 2 −−= 1,1,1 === cux σσσ

Fluid-like behaviours are also predicted to emerge when correlations are weaker, i.e. when

, and when they are shorter-ranged, i.e., when .( )cjiu xxR σσ /exp2.0 2 −−= 2/1=cσ

465
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Figure 3 Topological analysis of the simulated swarm structure and pressure statistics. 

A 3-dimensional spherically-symmetric swarm containing 38 individuals was simulated using 

the model of Reynolds et al. [10] with speed-independent forces. The topological structure of 

470 the simulated swarm was identified by creating a simplicial complex from the positional data 

by associating each one with a sphere of radius ε/2. The simplicial complexes were then 

quantified in terms the number, Nc, of connected components in the complex. When ε is very 

small, all insects will appear to be isolated, and conversely when ε is very large, all insects will 

be part of the same connected component.  Here, a single large cluster (which lies in the 

475 middle of the swarm) (red line) is seen to be surrounded by small unconnected components 

(blue line). The ‘condensed core’ and ‘dilute vapour phases’ are seen to have distinct pressure 

statistics. Here pressure  where V is the volume of the phase, N is the i

N

i
ii rau

NV
.

3

1

1

2∑
=

+=Π

number of constituent individuals, ui is the velocity of insect i, ai is its acceleration, and ri is its 

distance from the swarm centre. Predictions do not change significantly when forces are taken 

480 to be speed-dependent. Model predictions are strikingly similar to the observations of Sinhuber 

and Ouellette [8].
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Figure 4 Predicted enhancement of attraction to swarm centre due to correlations. 

485 Predictions were obtained using the model, Eqn. 7, for correlated swarms. Model outputs (o) 

for the swarm density profile, Px, and the velocity correlations, R, are seen to be consistent 

with model inputs (red solid lines), i.e., with a Gaussian density profile and exponential velocity 

correlations, . This demonstrates that the model is working ( )cjiu xxR σσ /exp95.0 2 −−=

correctly. Mean accelerations (forces) towards the swarm centre are greater than they are in 

490 uncorrelated swarms (black dashed line). Predictions are shown for a swarm with N=3 insects 

having and b=1. This enhancement is seen to increase as the number 1,1,1 === cux σσσ
of insects increase (N=5, o; N=10, o).
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495 Figure 5 Correlations are predicted to result in coherent periodic motion (dancing). 

Predictions of the motion of a swarm’s centre-of-mass obtained using the model, Eqn. 7, for 

correlated swarms (red lines). Predictions are shown for a swarm with N=10 insects having 

exponential correlation and and b=1. Shown for comparison are model 1,1,1 === cux σσσ

predictions for an uncorrelated swarm with  and b=1 a.u. The 0,1,1,10 ==== cuxN σσσ
500 spike in the spectrum is indicative of near-periodic motion.
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Figure 6 Predicted distortion in the vertical swarm density profile due to the presence 

of the ground. A spherical symmetric swarm centred on x=y=z=0 was simulated using the 

505 model of Reynolds et al. [10]. A reflective boundary condition was imposed at height z=-1.5 to 

mimic the expected influence of the ground. Model predictions (o) are shown together with 

unperturbed Gaussian density profiles (solid-lines) with equivalent means and variances. In 

accordance with observations [2,4] above the swarm there are diffuse trajectories, as 

individuals entering or leaving the swarm tend to so from above.

510


