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José L. Safanelli a, Jonathan Sanderman a,*, Dellena Bloom b, Katherine Todd-Brown b, 
Leandro L. Parente c, Tomislav Hengl c, Sean Adam d, Franck Albinet e,ah, Eyal Ben-Dor f, 
Claudia M. Boot g, James H. Bridson h, Sabine Chabrillat i,ag, Leonardo Deiss j, 
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A B S T R A C T   

Diffuse reflectance spectroscopy has been extensively employed to deliver timely and cost-effective predictions of 
a number of soil properties. However, although several soil spectral laboratories have been established world-
wide, the distinct characteristics of instruments and operations still hamper further integration and interoper-
ability across mid-infrared (MIR) soil spectral libraries. In this study, we conducted a large-scale ring trial 
experiment to understand the lab-to-lab variability of multiple MIR instruments. By developing a systematic 
evaluation of different mathematical treatments with modeling algorithms, including regular preprocessing and 
spectral standardization, we quantified and evaluated instruments’ dissimilarity and how this impacts internal 
and shared model performance. We found that all instruments delivered good predictions when calibrated 
internally using the same instruments’ characteristics and standard operating procedures by solely relying on 
regular spectral preprocessing that accounts for light scattering and multiplicative/additive effects, e.g., using 
standard normal variate (SNV). When performing model transfer from a large public library (the USDA NSSC- 
KSSL MIR library) to secondary instruments, good performance was also achieved by regular preprocessing (e. 
g., SNV) if both instruments shared the same manufacturer. However, significant differences between the KSSL 
MIR library and contrasting ring trial instruments responses were evident and confirmed by a semi-unsupervised 
spectral clustering. For heavily contrasting setups, spectral standardization was necessary before transferring 
prediction models. Non-linear model types like Cubist and memory-based learning delivered more precise es-
timates because they seemed to be less sensitive to spectral variations than global partial least square regression. 
In summary, the results from this study can assist new laboratories in building spectroscopy capacity utilizing 
existing MIR spectral libraries and support the recent global efforts to make soil spectroscopy universally 
accessible with centralized or shared operating procedures.   

1. Introduction 

Soil science has a data problem. There is simply not enough labo-
ratory capacity to meet the many needs for timely and accurate infor-
mation on basic soil properties. The application of diffuse reflectance 
spectroscopy (DRS) to soil and environmental sciences is rapidly 
maturing, and for soils has already contributed to generating quantita-
tive information (Frei and MacNeil, 2019; Nocita et al., 2015; Viscarra 
Rossel et al., 2022). DRS can increase laboratory throughput at a fraction 
of the cost of traditional wet chemistry methods (Seybold et al., 2019). 
But in order for DRS to be successfully deployed in laboratory-based 
conditions, representative spectral libraries and the appropriate data 
measurements are necessary (Shepherd et al., 2022). 

Soil spectral libraries along with corresponding laboratory mea-
surements of several attributes (reference values) have been established 
worldwide, spanning from very localized datasets to national or conti-
nental databases (Ramirez-Lopez et al., 2019; Summerauer et al., 2021; 
Viscarra Rossel et al., 2016). These libraries often have distinct features 
that require significant preprocessing and harmonization in order to 
make the data consistent and useful before their integrated use (Francos 
et al., 2023; Minasny et al., 2009). Special attention to this point has 
been made by the Global Soil Partnership (GLOSOLAN) of the Food and 
Agriculture Organization (FAO) from the United Nations and its Global 
Soil Laboratory Network initiative on soil spectroscopy (FAO GLOSO-
LAN, 2023) and the Institute of Electrical and Electronics Engineers 
(IEEE) Standards Association (AS) P4005 working group, which aims to 
define the standards and protocols for soil spectroscopy (IEEE SA, 2023). 

The main sources of variability when merging or working across soil 
spectral libraries come from the precision and reproducibility of soil 
analytical data used to calibrate spectral data and the collected spectra 
themselves. Laboratory reference data used to calibrate models from 
spectra are affected by cumulative issues on sample preparation, sub-
sampling, and instrument readings (Shepherd et al., 2022). Many lab-
oratories routinely monitor their analytical precision over time by using 
internal or external standard samples. But high variability between 
replicates may still remain an obstacle as reported by FAO GLOSOLAN in 

a global ring experiment of soil analytical determination (Suvannang 
and Hartmann, 2019). High intra and interlaboratory variability was 
found in a Forest Soil Survey project when three soil samples were 
shared across 52 laboratories in European countries (Cools et al., 2004). 
Although the same reference analytical methods were run on ring trial 
samples, it was not possible to link the causes of variation with the 
metadata provided by the participants. In a recent study, DRS was tested 
as a tool for routine use by commercial laboratories for internal quality 
control and as a complementary method for soil property estimation 
(Poppiel et al., 2022). The study suggested that spectral variations can 
be successfully employed for identifying analytical outliers with unsu-
pervised clustering, and some laboratories can use DRS in their daily 
routine to reduce costs of determination, especially for soil particle size 
distribution and organic carbon content. Moreover, the analysis of 
spectral data can indicate inconsistencies in wet laboratory analyses, 
and thus has a quality evaluation importance. 

A remaining research gap in soil spectroscopy is to quantify the 
variation in spectral responses across different instruments and the in-
fluence of this variation on predictions made using centralized or com-
bined soil spectral libraries. A seminal study found large differences 
among the DRS measurements of three different instruments across the 
visible, near and shortwave infrared region (VNIR-SWIR, 400–2500 nm 
[25000–4000 cm− 1]) (Pimstein et al., 2011), which formed the bases of 
the Internal Soil Standard (ISS) method later recommended for this 
spectral region of interest (Ben-Dor et al., 2015). Gholizadeh et al. 
(2021) found that the ISS method was able to mostly resolve differences 
between four VNIR-SWIR instruments when predicting soil organic 
carbon content. On the other hand, although DRS with Fourier- 
Transform in the mid-infrared region (FT-MIR, 2500–25000 nm 
[4000–400 cm− 1]) has been promoted as an accurate method to inter-
pret and predict soil properties (Ng et al., 2022; Sanderman et al., 2020), 
there is a lack of studies assessing different instruments as part of a large- 
scale interlaboratory comparison using FT-MIR. Previous studies have 
found contradicting results when transferring FT-MIR prediction models 
from centralized soil spectral libraries to a limited number of in-
struments and smaller datasets. Dangal and Sanderman (2020) found 
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that spectral standardization was necessary to deliver unbiased pre-
dictions for a test set of different geographical origin despite reaching 
good-to-excellent results without standardization. In turn, Sanderman 
et al. (2023) suggested that calibration transfer may not be necessary 
when they transferred a model from the USDA National Soil Survey 
Center Kellogg Soil Survey Laboratory (NSSC KSSL) FT-MIR spectral li-
brary to a localized spectral library collected with a different instrument 
model from the same manufacturer, with spectral preprocessing being 
enough to handle the spectral variability. 

Thus, reducing spectral variations through spectra preprocessing is 
extremely important because FT-MIR laboratory measurements are still 
subject to particle size, light scattering, and multicollinearity issues 
(Barnes et al., 1989), especially when different instrumentation and 
operating procedures may change wavelength position, absorption 
shape, and albedo intensity (Pimstein et al., 2011). Spectral standardi-
zation or calibration transfer has been promoted in FT-MIR soil spec-
troscopy but only more recently this strategy has been further 
investigated (Pittaki-Chrysodonta et al., 2021). Similarly, with the 
widespread use of machine learning and chemometrics algorithms 
(Barra et al., 2021), some model architectures may be less sensitive to 
spectral variations due to their nature of handling large and complex 
datasets. 

In this study, we conduct to our knowledge the first large-scale ring 
trial experiment to better understand the lab-to-lab variability of mul-
tiple soil spectroscopy laboratories from around the world. The goal of 
this study is to conduct a systematic evaluation of different spectra 
preprocessing and modeling algorithms for reducing instruments’ vari-
ability in order to deliver better predictions from DRS FT-MIR. Simul-
taneously, the shared standard samples may form the basis of building 
calibration transfer among soil spectroscopy laboratories, especially in 
relation to the centralized USDA NSSC KSSL FT-MIR soil spectral library 
that can be leveraged to calibrate more robust prediction models. 

2. Material & methods 

A ring trial experiment is an interlaboratory comparison where the 
same set of samples are prepared using standard procedures and shared 
across multiple laboratories. The goal of such experimental design is to 
evaluate the reproducibility of an analysis (accuracy/bias) across the 
participant laboratories (Van Reeuwijk and Houba, 1998). However, the 
same set of samples can also be used for internal evaluation of the 
repeatability (precision/variance) as part of an quality control protocol. 
With the quantification of these sources of errors (bias and variance), 
one can ultimately propose solutions for better compatibility by sharing 
best practices among the laboratories network. In soil science, routine 
and research laboratories have been extensively tested as part of profi-
cient tests programs (Cools et al., 2004; Rayment et al., 2000; Wolf and 
Miller, 1998). In soil spectroscopy, however, this type of experimental 
setup has not been used in routine laboratories and a few attempts are 
described in the literature (Ben-Dor et al., 2015; Gholizadeh et al., 2021; 
Pimstein et al., 2011). In the following subsections, we describe how we 
established a large-scale soil spectroscopy ring trial network to evaluate 
FT-MIR instruments and laboratories. 

2.1. Soil samples 

Sixty soil samples that are routinely analyzed at the USDA NSSC 
KSSL (hereafter KSSL) and used for process quality control were pre-
pared as fine earth fraction (FE, i.e., air-dried and sieved < 2 mm) and a 
finely milled fraction (FM, which is FE run 3 min in a Retsch Mixer mill 
reaching < 180 µm) at Woodwell Climate Research Center for later 
distribution to ring trial participants. Additionally, ten samples from the 
Soil Science Society of America’s North American Proficiency Testing 
Program (NAPT) were also included in the package and prepared by the 
same approaches. Using a riffle-splitter, aliquots of about 15 g of FM 
fraction were divided out for each sample into 20 ml glass scintillation 

vials. These sets of 70 samples prepared to FM fraction were then 
shipped to the 20 participating laboratories (Fig. 1a). 

In this study, OC content (gravimetric percentage, %), clay content 
(gravimetric percentage, %), pH (log10 units), and exchangeable po-
tassium (K, cmolc kg− 1) were chosen as soil properties of interest 
because they usually present variable predictive model performance and 
have distinct relationships with absorbance patterns in the MIR spectra 
(Dangal et al., 2019). NAPT OC is the only property that does not 
necessarily have the same method as KSSL, with its reference values 
being defined as the median of multiple measurements and methods. For 
the KSSL soil set, OC was estimated by OC = TC − 0.12CaCO3, with TC 
measured by dry combustion and CaCO3 determined by a manometer. 
Clay content was measured using the pipette method of particle size 
analysis. pH was measured in a 1:1 soil-to-water solution using an ion- 
selective electrode. Finally, exchangeable K was determined using 
ammonium acetate (pH 7) (Soil Survey Staff, 2022). 

For data analysis, the two soil sets were pooled together to form a 
larger dataset (n = 70) and a potential incompatibility between KSSL 
and NAPT analytical results for total carbon (TC) and estimated organic 
carbon (OC) was verified by running the KSSL analytical procedures 
(Soil Survey Staff, 2022) (Fig. 1b). The results revealed a substantial 
correspondence of KSSL analytical procedures (R2 >= 0.99) to median 
NAPT values for TC and OC, confirming that pooling both datasets 
together will not yield systematic biases in further analysis (Supporting 
information Fig. S1). 

2.2. Instruments and spectra preprocessing 

Twenty instruments belonging to different organizations returned 
FT-MIR spectra for the 70 ring trial samples (Fig. 1b). The instruments 
span diverse manufacturers, models, internal optics, and sampling ac-
cessories (Supporting information Table S1 and Table S2). These met-
adata were used to group similar instruments into clusters to investigate 
potential drivers of the instruments’ variability (see the ’Statistical 
analysis and comparisons’ section). While spectral range varied between 
instruments, most instruments collected spectra at 4 cm− 1 resolution but 
the number of co-added scans varied from 10 to 64. With variable 
spectral range, format, and resolution, all spectra were transformed to 
absorbance (A = log10[1/R]), truncated to 4000–650 cm− 1, and resam-
pled to 2 cm− 1 interval using splines (Stevens and Ramirez-Lopez, 
2022). 

MIR spectra were processed as i) original return (raw), ii) baseline 
offset correction (BOC), iii) Savitzky-Golay (SG) 1st derivative 
(SG1stDer), iv) standard normal variate (SNV), v) SNV followed by 
SG1stDer (SNV + SG1stDer), and vi) spectral space transformation (SST) 
after SNV. BOC was implemented in this paper as an operation that finds 
and subtracts the minimum value of each sample spectra across the 
whole spectral range, bringing the spectral line to the origin (zero) at the 
position of the minimum value. SG1stDer is a polynomial moving- 
window function that moves across the spectra with a specified win-
dow size and a differentiation order. In this study, it was implemented 
with a second-order polynomial function, a half-window size of 11 
cm− 1, and a first-order derivative (Dotto et al., 2018). It can also work as 
a smoothing algorithm with a zero differentiation order. This smoothing 
operation was implemented before applying BOC and SNV with a half- 
window size of 11 cm− 1. Derivatives can remove both additive and 
multiplicative effects in the spectra, enhance absorption features, and 
reduce the baseline offset. SNV is a row normalization technique that 
centers (to mean 0) and scales (to 1 standard deviation) the spectra, not 
over the columns of a matrix. This preprocessing changes both the range 
of values and the amplitude of the curves and is intended to correct the 
scattering of light. The combination of SNV and SG1stDer was made to 
check for further improvements in handling scattering and additive/ 
multiplicative effects. SG1stDer and SNV preprocessing strategies were 
implemented using the prospectr R package v0.2.6 (Stevens and Ramirez- 
Lopez, 2022), while the other pretreatments were customized within the 
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R statistical programming language v4.2.0 (R Core Team, 2022). A 
visualization comparison is provided in the Supporting information 
Fig. S3. 

Different from regular spectral preprocessing, SST is a spectral 
standardization method that requires the same set of samples to be 
shared across different instruments to estimate a transformation matrix. 
Ring trial samples are intended to work as standard samples for cali-
bration transfer, but in this paper the original full set (n = 70) had to be 
split into two subsets defined as spectral standardization (RT SST, n =
50) and holdout test (RT test, n = 20) sets (Fig. 2) for proper evaluation 
of modeling results. Kennard-Stone deterministic sampling algorithm 
(Kennard and Stone, 1969) was run on SNV KSSL spectra to subset 50 
samples, an optimal number for spectral standardization defined as per 
the previous analysis of Sanderman et al. (2023). Before the subsetting, 
the KSSL SNV spectra were compressed by principal component analysis 
(PCA) to retain 99.99 % of the original variability. 

Spectral space transformation is a relatively new method and was 
first described by Du et al. (2011). Its adoption in soil spectroscopy is 
very limited, although some recent studies have indicated that SST 
outperforms other spectral standardization methods, i.e., direct stan-
dardization (DS) and piecewise direct standardization (PDS), especially 

when a small number of standard samples are available to be shared 
across laboratories or instruments (Pittaki-Chrysodonta et al., 2021; 
Sanderman et al., 2023). The method is based on the transformation of 
spectra of a secondary instrument onto the spectral space of the primary 
one. The transformation matrix is estimated with singular value 
decomposition using the same algorithm as employed in the PCA. 
Similar to PCA, one can determine the number of orthogonal features to 
create a new dataset with scores. In this study, SST was set to retain 
components explaining 99.99 % of the original cumulative variance and 
was implemented using the R statistical programming language. The 
primary instrument set for SST was the Bruker Vertex 70 at the KSSL 
(instrument #16), because we wanted to be able to use predictive 
models built from its large public library. All the other ring trial in-
struments were treated as secondary instruments and transformed to the 
KSSL space. Detailed information about SST can be found in Pittaki- 
Chrysodonta et al. (2021). 

2.3. Modeling framework 

The instruments were first compared regarding their internal pre-
diction capacity using repeated cross-validation. This analysis was 

Fig. 1. A) Global laboratories participating in the diffuse reflectancemid-infrared (MIR) ring trial. b) Overview of the main steps employed in this study.  
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proposed to evaluate whether an instrument can deliver reliable results 
considering its specifications and spectral characteristics. Using the 
whole ring trial set (n = 70) and the standard chemometric algorithm of 
partial least squares regression (PLSR), each instrument had its internal 
performance evaluated by 10-fold cross-validation repeated 10 times 
using the pls package v2.8–1 in R (Liland et al., 2022). An outcome of 
this analysis is that the results may indicate a baseline performance for 
comparison with the model transfer mode. 

The main interest of this study, in turn, was to assess the performance 
changes from model transfer, i.e., applying a fitted model of a primary 
soil spectral library onto the different spectra versions generated by each 
ring trial instrument. This exercise emulates the challenges of soil 
spectroscopy integration and the use of legacy soil spectra libraries. 
Model calibration was made using a subset (n = 15,000, Fig. 2) of the 
large KSSL MIR spectral library that has been employed in previous 
studies (Sanderman et al., 2021), which is the instrument #16 (Table S1 
and S2). The KSSL MIR spectral library has been steadily increasing in 
size and spectral diversity. It is one of the largest publicly available soil 
spectral libraries, representing the major soil types of the USA and other 
territories (Ng et al., 2022; Wijewardane et al., 2018). In combination 
with additional datasets, it is being used to develop global estimation 
services of soil properties (Shepherd et al., 2022) and others are working 
to integrate the KSSL with regional spectral libraries already developed 
by the participating laboratories of this ring trial. All the subsequent 
analyses of this study are conducted considering the KSSL MIR as the 
primary soil spectral library for model calibration. 

Before model fitting, soil reference data were checked for asym-
metrical distribution using skewness and kurtosis metrics. Soil proper-
ties falling outside the range of − 3 and 3 for skewness or kurtosis were 
natural-log transformed to match a normal probability distribution 

function (PDF), which was the case of OC and exchangeable K. Predic-
tion performance metrics were calculated in the natural-log space for 
these soil properties, therefore error metrics were not displayed in the 
original measurement unit. A statistical description of the ring trial soil 
samples is provided in Supporting information Table S3 and Table S4, 
while the PDFs of the three subsets (KSSL calibration set, RT SST set, and 
RT test set) are visualized in Supporting information Fig. S2. 

Combining with the four assessed soil properties and six spectral 
preprocessing steps, three modeling algorithms (PLSR, memory-based 
learning (MBL), and Cubist) were evaluated in terms of dealing with 
the shifts between calibration and application domains in the model 
transfer mode. PLSR is widely used in the chemometrics field as it is a 
multidimensional method that handles the collinear nature of spectral 
measurements (Barra et al., 2021; Soriano-Disla et al., 2014). It is 
considered a global fitting method that maximizes both the target and 
covariate variance by linearly combining decomposed orthogonal latent 
features, which can be optimized by defining the number of factors 
explaining much of the original variance. In addition, with PLSR it is 
possible to estimate the variable importance in the projection (VIP) 
metric to verify the influence of specific wavelengths across the whole 
modeling spectrum (Chong and Jun, 2005; Rossel and Behrens, 2010). 
MBL, on the other hand, is a local fitting method that searches for the 
closest subset of samples (neighbors) of a given calibration set before 
model fitting, with each sample having its model fitted by an algorithm 
(Ramirez-Lopez et al., 2013; Saul and Roweis, 2003). 

In this paper, MBL was implemented with the aid of the resemble R 
package v2.2.1 (Ramirez-Lopez et al., 2022) by setting the MBL’s 
dissimilarity threshold (k_diss) ranging from 0.5 to 3.0, with 0.5 in-
crements, resulting in 6 options that are truncated by a minimum and a 
maximum number of neighbors as 50 and 200 (k_range). MBL’s local fit 

Fig. 2. Principal component analysis of 70 ring trial (RT) samples (spectral space transformation set [RT SST] or holdout test set [RT test]) projected onto the Kellogg 
Soil Survey Laboratory (KSSL) mid-infrared (MIR) spectral library (subset with n = 15,000, small dots) used for calibration in the transfer model mode. The spectra 
were preprocessed by Standard Normal Variate. 

J.L. Safanelli et al.                                                                                                                                                                                                                              



Geoderma 440 (2023) 116724

6

was made by weighted-average PLSR (local_fit_wapls) with a minimum 
and a maximum number of orthogonal factors defined between 5 and 20 
(min_pls_c = 5, max_pls_c = 20), respectively, and being internally 
optimized by leave-nearest-neighbor-out cross-validation (vali-
dation_type = “NNv” within mbl_control). Three different dissimilarity 
methods (diss_method) were used: ’cor’, ’pls’, and ’pca’. Considering the 
large number of hyperparameters that can be set for MBL, especially 
from the combination of diss_method and k_range, the resulting pre-
dictions from 18 models were ultimately averaged. This operation can 
be viewed as an ensemble MBL as the hyperparameters impact only the 
subsetting of samples selected as neighbors (resample), as the model 
optimization is automatically done by NNv. 

Lastly, the tree-based algorithm Cubist (Quinlan, 1992, 1993) was 
also tested as it has been routinely used in soil spectroscopy studies 
(Barra et al., 2021; Li et al., 2022; Sharififar et al., 2019). This algorithm 
takes advantage of a decision-tree splitting method but fits linear 
regression models at each terminal leaf. It also uses a boosting mecha-
nism (sequential trees adjusted by weights) that allows the growth of a 
forest by tuning the number of committees. In addition, it corrects the 
final prediction by the nearest neighbors’ influence. To control potential 
model overfitting due to multicollinearity and large dimensionality 
before fitting the models, principal component loadings fitted with the 
KSSL calibration library that retained 99.99 % of the original cumulative 
variance were applied to all ring trial instruments’ preprocessed spectra 
to reduce the original feature size. 

All the prediction algorithms were fine-tuned by hyperparameter 
grid searching of the lowest root mean square error (RMSE) using 10- 
fold cross-validation. The modeling pipeline was implemented in the R 
software (version 4.2.0) following tidymodels framework (Kuhn and 
Wickham, 2020) and several packages, i.e., pls v2.8–1, Cubist v0.4.1, 
resemble v2.2.1, recipes v1.0.1, and yardstick v1.0.0 (Kuhn and Quinlan, 
2022; Kuhn and Vaughan, 2022; Kuhn and Wickham, 2022; Liland et al., 
2022; Ramirez-Lopez et al., 2022). Internal performance parameters of 
the KSSL library evaluated by 10-fold cross-validation with their fine- 
tuned hyperparameters (PLSR and Cubist) are provided in Supporting 
information Table S5. 

2.4. Statistical analysis and comparisons 

Variability across instruments was first assessed with exploratory 
data analysis. For this, spectral visualizations of selected instances 
measured by the 20 different instruments allowed their comparison 
before and after preprocessing, indicating if preprocessing can help 
reduce the instruments’ variability. The spectra were also analyzed in 
terms of spectral dissimilarity by defining the KSSL ring trial spectra as 
the reference and calculating the Euclidean distance, which was esti-
mated with the aid of the resemble R package v2.2.1 using the ’f_diss’ 
function by centering and scaling the spectral matrices (Ramirez-Lopez 
et al., 2022). Each sample yielded a dissimilarity value, which was 
visually compared across instruments. 

The performance of both internal cross-validation and model transfer 
was evaluated by goodness-of-fit metrics including Lin’s concordance 
correlation coefficient (CCC), root mean square error (RMSE), average 
error (bias), and the ratio of performance to the interquartile range 
(RPIQ) using the yardstick R package v1.0.0 (Kuhn and Vaughan, 2022). 
However, the visual comparisons and statistical analysis were made 
using solely Lin’s CCC, with the other metrics being provided in the 
Supporting information. Lin’s CCC is a robust metric that not only en-
compasses overall accuracy but also the bias or deviation of a model 
from the perfect 1:1 line between observed and predicted values. In 
addition, the visualizations based on Lins’ CCC are standardized with a 
scale ranging from − 1 to 1 (Lin, 1989). 

For interpreting the effects of preprocessing and model selection, 
pairwise comparisons were employed by using permutation tests of Lin’s 
CCC values. Permutation tests are robust because they do not require 
rigid statistical assumptions (distribution-free) and allow estimating the 

effect size of any statistics (Hollander et al., 2013). In this analysis, Lin’s 
CCC values from all the modeling combinations were pooled together 
and grouped by the categories of a factor of interest. For a given pair of 
categories being tested (e.g., SNV versus SG1stDer preprocessing), the 
original effect size (true difference between a statistic of the two sam-
ples) is compared with several estimates of effect size after randomly 
shuffling the pair of samples. The null hypothesis of getting by chance 
the effect holds if the final proportion (p-value) of the permuted statistic 
is higher than a significance level. The effect size was measured on the 
median statistics using 10,000 simulations. With a matrix of all pairwise 
p-values assessed at a 5 % significance level, the factor levels were 
categorized by compact letter displays (Graves et al., 2019). 

Lastly, a metadata clustering analysis was conducted to investigate 
possible associations of instruments’ characteristics to their final pre-
diction performance. K-means clustering was first performed on raw 
spectra compressed by principal component analysis by testing up to 20 
clusters. The optimal number of clusters was determined using the 
Elbow method with the Akaike Information Criterion (Dotto et al., 2020; 
Safanelli et al., 2021). The proportion of samples belonging to a cluster 
was estimated for each instrument and the cluster with the majority was 
defined as representing the instrument. After that, two instruments were 
manually adjusted based on instrument characteristics and the overall 
performance from the transfer model approach, as they have fallen into 
separate groups not sharing similar performance characteristics. To help 
in the interpretation, correspondence analysis was employed to explore 
the relationship between metadata characteristics and the clusters (both 
qualitative variables) (Viscarra Rossel et al., 2016). The chi-square test 
evaluated whether there was a significant association between the cat-
egories of the two variables at a 5 % significance level. The relationships 
were summarized and interpreted with asymmetrical biplots by dis-
playing metadata information (columns) over the cluster space (rows) 
(Greenacre, 2016). 

3. Results 

3.1. Spectral dissimilarity 

Spectral response varied considerably across the 20 instruments from 
this ring trial experiment (Fig. 3a-c). Most of the differences are visible 
in terms of baseline offset, with slight changes over the spectral ab-
sorption features. However, a few instruments (#9 Thermo Fisher 
Nicolet, and #13 Perkin Elmer FT-IR II) had contrasting spectral vari-
ations, with their spectral curve being more compressed compared to the 
other instruments (Fig. 3a). When the samples were preprocessed by 
SNV, much of the spectral dissimilarities seen with raw were largely 
reduced (Fig. 3b). Despite being a promising correction algorithm, the 
remaining visible dissimilarity of some instruments with SNV demanded 
further processing to properly align the spectral curves (Fig. 3c). 

The variations previously identified with raw or SNV were largely 
reduced by SST (Fig. 3c). Considering that instrument #16 (Bruker 
Vertex 70) is used as the reference spectra, the Euclidean dissimilarity 
between each instrument and the KSSL first assessed in the raw spectra 
(overall median dissimilarity of 1.53) decreased by about 147 % after 
applying SNV (overall median dissimilarity of 0.62) and 247 % after 
applying SST (overall median dissimilarity of 0.44) (Fig. 3d-f). The 
decrease from SNV to SST, however, varied from 150 % (instrument 8) 
to − 30 % (instrument 10). Comparing the improvement between the 
raw spectra to SST pretreated spectra, the dissimilarity for instrument 
#1 (Bruker Tensor II) increased, while instruments #1 (Bruker Tensor 
II), #10 (Bruker Vertex 70), #17 (Bruker Invenio R, and #20 (Bruker 
Alpha I) showed a negative effect from SNV to SST. Similarly, some soil 
samples were misaligned after applying SST (Fig. 3f), with differing 
sample ids found for those having an Euclidean distance higher than 1.5. 
Other preprocessing visualizations are provided in Supporting infor-
mation Fig. S4. 
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3.2. Internal calibration performance 

Soil organic carbon was the soil property that achieved the best in-
ternal cross-validation performance with PLSR (Lin’s CCC, overall me-
dian 0.95 ± IQR 0.02) (Fig. 4). Soil pH ranked second and reached a 
stable performance regardless of the MIR instrument and preprocessing 
employed (overall median 0.91 ± IQR 0.05). This stable performance 
among instruments was also observed for exchangeable K (overall IQR 
0.05), although its results were the worst among the tested soil prop-
erties (overall median Lin’s CCC 0.73). Clay content had the highest 
variable performance among the MIR instruments, being also more 
sensitive to spectra preprocessing (overall median 0.81 ± IQR 0.14). 

There were only small differences in OC model performance for the 
different preprocessing methods, except for BOC where the performance 
for five instruments was substantially lower than for other preprocessing 
techniques (Fig. 4). This pattern was also observed for soil pH and 
exchangeable K, albeit with different magnitudes. Clay was the most 
sensitive soil property to preprocessing, where SNV and SNV followed 
by SG1stDer (overall median for both techniques being 0.86) were the 

best methods for improving model performance. Among all combina-
tions tested, it seems that BOC was the preprocessing step that had the 
lowest overall performance (median 0.84 ± IQR 0.19). 

Despite good overall performance across the 20 instruments, there 
was substantial variation especially for clay content (Fig. 4). Instrument 
#13 had the lowest Lin’s CCC for OC (median 0.91 ± IQR 0.01) and clay 
(median 0.67 ± IQR 0.03). Another interesting outcome from this 
experiment was that instrument #16, the KSSL Bruker Vertex 70 used as 
the primary instrument in calibration transfer mode, outperformed most 
of the other instruments for OC (median 0.96 ± IQR 0.02), clay (median 
0.92 ± IQR 0.01), and exchangeable K (median 0.79 ± IQR 0.03). The 
variation among preprocessing techniques for this instrument was 
particularly low for OC and clay, indicating that other instruments may 
be more affected by spectral composition and quality assurance during 
scanning conditions. 

3.3. Model transfer performance 

One of the main interests of this study was to explore whether lab-to- 

Fig. 3. Spectral variation of sample 19 for the raw (a), standard normal variate (SNV) (b), and spectral space transformation (SST) (c) spectra. Each spectral curve 
represents one ring trial participant laboratory. Euclidean dissimilarity of ring trial test samples (n = 20) for raw (d), SNV (e), and SST (f) pretreatments considering 
instrument 16 (Bruker Vertex 70 from the Charles E. Kellogg Soil Survey Laboratory - KSSL) as the reference spectra. 
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lab variability could be reduced by spectral preprocessing before 
executing model transfer and prediction. Model transfer from the KSSL 
library to spectra from the ring trial instruments resulted in OC 
achieving the best performance (Lin’s CCC, overall median 0.90) 
(Fig. 5a). Soil pH ranked second (overall median 0.81) and clay yielded 
an overall performance of 0.76. The result for exchangeable K was the 
worst among the tested soil properties, i.e., an overall median for Lin’s 
CCC of 0.71. In comparison, the overall median performance of the KSSL 
instrument #16 with the ring trial test samples (n = 20), with pooled 
model types and preprocessing strategies, reached a Lin’s CCC of 0.96, 
0.84, 0.92, and 0.83 for OC, clay, pH, and exchangeable K, respectively 
(Supporting information Table S6). 

An important result from this experiment is that among the most 
common preprocessing without spectral transformation, SNV always 
ranked amongst the best for all soil properties (Fig. 5a). For SNV, the 
10th percentile was the highest among the possible preprocessing when 
excluding SST, which indicates that the dissimilarity can be reduced to a 
certain degree when standard samples are not available, except for some 
very contrasting instruments. The median and 10th percentiles (in 
parenthesis) of SNV for OC, clay, pH, and K were 0.90 (0.75), 0.77 
(0.31), 0.81 (0.52), and 0.77 (0.42), respectively. 

For most soil properties (OC, pH, and K), spectral space trans-
formation (SST) largely reduced the spectral dissimilarities between the 
calibration and application domains (Fig. 4a). The median Lin’s CCC 

Fig. 4. Internal calibration performance (Partial Least Square Regressions with a 10 times repeated 10-fold cross-validation) of all ring trial instruments (n = 20) 
through Lin’s concordance correlation coefficient (CCC) with different spectral preprocessing. 
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values for these soil properties were 0.93, 0.85, and 0.81, respectively. 
Similarly, the 10th percentile was the highest among all preprocessing 
techniques, indicating that the SST algorithm makes a robust correction 
before delivering the predictions even for the more extreme cases of 
spectra dissimilarity. 

An analysis of the sensitivity of model types (Fig. 5b) to spectral 
dissimilarity revealed that despite PLSR achieving a comparable per-
formance to Cubist for OC (median 0.90) and K (median 0.78), the 10th 
percentile indicates that this model type is more sensitive to extreme 
variations of calibration and application domain for OC (10th percentile 
0.57) and clay (10th percentile 0.15). Cubist models ranked first for OC 
(median 0.91), pH (median 0.84), and K (median 0.76), while MBL 
outperformed only for clay (median 0.81). Nevertheless, MBL was the 
least sensitive model type for OC (10th percentile 0.69) and clay (10th 
percentile 0.61). 

3.4. Metadata analysis 

It was possible to identify four main spectral clusters using the raw 
spectra (Supporting information Fig. S5). Most of the variation com-
pressed by the first principal component before running k-means was 
due to baseline offset, despite column-normalization of the pooled 
datasets and the remaining variance retaining further components (total 
of 7). Two manual adjustments were made to this initial clustering: 1) 
instrument #17 (Bruker Invenio with HTS-XT accessory) was moved 
from cluster 2 (C2) to cluster (C4); and 2) instrument #14 (Thermo 
Fisher Nicolet with a Pike DRIFT accessory) was moved from C4 to C2 
(Supporting information Fig. S6). After these two adjustments, cluster 1 
(C1) was associated with one Bruker Alpha using the Bruker front- 
reflectance accessory. Cluster 3 (C3) was associated with the remain-
ing five Bruker Alpha I and II instruments using the standard DRIFT 
accessory and one Vertex model also using a standard DRIFT accessory. 
Bruker Tensor, Vertex, and Invenio models all using the HTS-XT diffuse 
reflectance accessory and MCT detectors (n = 6) were grouped into 
cluster 4 (C4). In contrast, cluster 2 (C2) contained all the other man-
ufacturers (Perkin Elmer, Thermo Fisher, Agilent) using various stan-
dard DRIFT accessories (n = 6). Additional details of the instruments in 
each cluster can be found in Supporting information Tables S1 and S2. 
For metadata with at least two levels of category, the correspondence 
analysis revealed significant associations (after the chi-squared 

independence test at a 5 % significance level) with the defined clusters. 
Although some metadata information was heavily unbalanced, general 
associations could be drawn from it, especially considering that the 
primary instrument of this study belonged to C4. The clustering analysis 
is fully characterized in the Supporting information. 

The calibration transfer performance assessed across the defined 
clusters revealed that the most consistent cluster was C4, which con-
tained the KSSL Bruker Vertex #16 and six other instruments with 
similar configurations (Fig. 6a). Lin’s CCC median and 10th percentile 
(in parenthesis) of this group were 0.93 (0.84), 0.81 (0.67), 0.88 (0.81), 
and 0.80 (0.58) for OC, clay, pH, and K, respectively. Cluster 2, on the 
other hand, had the poorest performance for all soil properties, reaching 
Lin’s CCC of 0.81 (0.07), 0.69 (0.02), 0.71 (0.17), and 0.53 (0.07) for 
OC, clay, pH, and K, respectively. The remaining clusters had signifi-
cantly different performances but always fell between the range of C2 
and C4. 

Considering the previous results where SNV and SST stood out from 
the other preprocessing and both MBL and Cubist were less sensitive to 
instruments variability, a detailed analysis of these factors with the 
defined cluster confirmed that SST was most capable of reducing spec-
tral dissimilarity among calibration and application domains (Fig. 6b). 
SNV was not sufficiently efficient in dealing with the incompatibility 
issues present in C2, reaching an overall performance (both model types 
pooled together) of 0.83 (0.24), 0.78 (0.14), 0.65 (0.19), and 0.45 (0.09) 
for OC, clay, pH, and K, respectively. In contrast, spectral standardiza-
tion with SST was able to improve performance in C2 to 0.91 (0.78), 
0.77 (0.73), 0.84 (0.71), and 0.72 (0.56) for OC, clay, pH, and K, 
respectively. In comparison, C4, which includes six other instruments 
apart from the KSSL Bruker Vertex, achieved an SST performance of 0.91 
(0.87), 0.76 (0.69), 0.88 (0.85), and 0.76 (0.73) for OC, clay, pH, and K, 
respectively. The small differences between median and 10th percentile 
suggests all instruments in cluster C1, C3 and C4 performed well after 
SST, with a significant reduction of inaccuracy for C2. 

The instruments that had the highest influence on decreasing per-
formance due to contrasting spectral responses (Lin’s CCC lower than 
group 10th percentile), both in the preprocessing and model types 
comparison, were in most of the cases instruments #9 (Thermo Fisher 
Nicolet), #12 (Thermo Fisher Nicolet), and #13 (Perkin Elmer FT-IR II) 
(Supporting information Fig. S18), all belonging to cluster C2. A great 
difference, in turn, is that SST significantly improved the performance 
for all soil properties, e.g., Lin’s CCC of OC from 0.02 to 0.80 for in-
strument #13 (Perkin Elmer FT-IR II), when compared to using SNV 
only (Supporting information Table S15). However, for other in-
struments belonging to C2 that were not too contrasting to instrument 
#16 (instruments #4 [Perkin Elmer Spectrum 100], #5 [Agilent 4300], 
and #14 [Thermo Fisher Nicolet] with low Euclidean dissimilarity), the 
spectral transformation enhancement was not significant, with some soil 
properties being impaired by SST (Supporting information Fig. S18). 

4. Discussion 

4.1. Internal calibration 

Internal calibration performance was generally good across all in-
struments (Fig. 4). This indicates that despite having contrasting spec-
tral responses for the same soil sample due to the particular 
characteristics of each instrument (Fig. 3a), models calibrated using 
their internal soil spectral library will deliver good estimates when new 
samples are measured by the same scanner and standard operating 
procedures (SOP). OC was the most consistent soil property that had 
minimal changes in performance regardless of the preprocessing and 
instrument employed (Fig. 4). In contrast, Clay was very sensitive to 
preprocessing (especially to BOC), and exchangeable K did not reach the 
same overall prediction capacity as OC, Clay, and pH. These overall 
performance findings are notably similar to a previous study that eval-
uated the MIR spectral range for the accurate measurement of soil 

Fig. 5. Lin’s concordance correlation coefficient (CCC) for (a) different pre-
processing and (b) model types, after performing calibration transfer from the 
KSSL soil spectral library on ring trial instruments’ spectra. Left panels include 
all model types and instruments. Right panels include all spectral treatments 
and instruments. Medians not sharing any letter are significantly different by 
permutation test at the 5% significance level. The top box notch refers to the 
median, while the box bottom notch represents the 10th percentile. 
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properties (Ng et al., 2022). Ng et al. (2022) grouped OC, Clay, and pH in 
a set of highly predictable soil properties (accuracy group A), while 
exchangeable K fell into the accuracy group C of a total of four levels (A, 
B, C, D). 

Of all the preprocessing techniques, BOC produced the most variable 
results likely because the correction was implemented in this study with 
a very naive approach. It consisted of finding the lowest value for each 
spectrum and subtracting it across the whole spectral range, i.e., BOC 
was only capable of handling baseline offset. Light scattering effects 
mostly caused by particle size slightly distort the spectral responses and 
have caused a shift in the position of the lowest value across the spec-
trum (Johnston and Aochi, 2018). This was the case with sample 44 for 
instrument #6 (Bruker Alpha I, the most impacted by BOC), where the 
lowest value of sample 44 (sand content = 99.61 %) deviated from the 
other samples’ position (Supporting information Fig. S15). It seems that 
some instrument configurations may be more sensitive and propagate 
the shift of BOC into the calibrated models, especially if a model of a soil 
property of interest relies on the variation around the lowest value po-
sition. Soil minerals, for example, have a vibrational group around 
1200–970 cm− 1 that is related to Si-O-Si stretching (Johnston and Aochi, 
2018), the same region that was impacted by the lowest-value deter-
mination of BOC preprocessing of sample 44 in instrument #6 (Bruker 
Alpha I). This impact differed from the other preprocessing methods that 
found a way to manage sample 44 with extreme sand content and its 
impacts of light scattering before delivering a prediction. Therefore, 
users are recommended to be more cautious with the default operations 
of baseline offset correction in currently available spectroscopy software 

and opt for methods that further account for scattering effects, such as 
SNV and multiplicative scatter correction (MSC). 

The variability of clay prediction in the internal performance eval-
uation was further verified by the importance of spectral features used 
by the models. Considering the VIP metric, which calculates the 
importance of each original wavenumber to the orthogonal projection of 
PLSR, it seems that clay was more sensitive to offset and scattering ef-
fects than other soil properties (Supporting information Fig. S16). While 
OC had similar important features shared by either BOC or SNV, SNV’s 
important features for clay were largely more distinct than BOC. SNV 
spectral features had a larger amplitude of VIP across the whole spectral 
range, while BOC had an overall parabolic shape with features being 
more influential around the limits of the spectral range, a possible effect 
of remaining light scattering and multicollinearity over important 
vibrational groups that was not properly accounted by BOC (Barnes 
et al., 1989). 

Some instruments consistently outperformed others in the internal 
performance evaluation, especially instruments #16 (Bruker Vertex 70) 
and #18 (Burker Invenio S) for OC; instruments #16 (Bruker Vertex 70) 
and #17 (Burker Invenio R) for Clay; instruments #3 (Bruker Vertex 70) 
and #9 (Thermo Fisher Nicolet) for pH; and instruments #11 (Bruker 
Alpha II) and #16 (Bruker Vertex 70) for K (Fig. 4). This grouping is 
confirmed by the compact letter display from the permutation test, with 
all these instruments being at least classified with letter a (best) (Sup-
porting information Fig. S17). Instrument #16 is the Bruker Vertex 70 
from KSSL that follows rigid quality control and quality assurance for 
measuring MIR soil spectra (Method 7A7; Soil Survey Staff, 2022). The 

Fig. 6. Lin’s concordance correlation coefficient (CCC) for (a) different spectra clusters after performing calibration transfer from the KSSL soil spectral library on 
ring trial instruments’ spectra. Left panels include all model types, preprocessing, and instruments. Medians not sharing any letter are significantly different by 
permutation test at the 5% significance level. The top box notch refers to the median, while the box bottom notch represents the 10th percentile. MBL and Cubist 
model types, treated with SNV or SST preprocessing, are highlighted for different soil properties (b). 
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other instruments that outperformed in the internal calibration perfor-
mance fell into different clusters: C1 for instrument #11 (Bruker Alpha 
II), C2 for instrument #9 (Thermo Fisher Nicolet), C3 for instrument 
#17 (Burker Invenio R), and C4 with instruments #3 (Bruker Vertex 70), 
#16 (Bruker Vertex 70), and #18 (Bruker Inveio S), indicating that in-
ternal calibration performance seems to be independent of the results 
from the model transfer mode. 

4.2. Model transfer 

There was large variability in predictive performance across the 20 
instruments when we applied the large KSSL models (calibration sample 
size = 15,000), with a number of instruments performing quite well with 
standard preprocessing techniques. However, a few instruments failed to 
produce reasonable results mostly due to the contrasting spectral pat-
terns exemplified in Fig. 3. SNV consistently ranked the best or second 
best preprocessing and especially presented the highest 10th percentile 
among all of them. In fact, SNV was originally proposed to deal with 
multiplicative effects of particle size, scatter, and multicollinearity is-
sues in diffuse reflectance spectroscopy (Barnes et al., 1989). Although 
the first derivative (i.e., SG1stDer) has been routinely used in soil 
spectroscopy studies (Barra et al., 2021), SNV is preferred especially 
because the centering and scaling operations do not affect the inter-
pretation of the spectral features. SNV is a normalization method that 
brings the mean absorbance to the origin and rescales the amplitude of 
variation to one standard deviation, transforming it into a compressed or 
stretched curve. The combination of SNV with SG1stDer was clearly not 
a good choice for pH and K (Fig. 5a), although some instruments 
benefited from this special combination during their internal perfor-
mance evaluation (Fig. 4). Despite SG1stDer having an overall lower 
dissimilarity (median = 0.58, IQR = 0.24) than SNV (median = 0.62, 
IQR = 0.35), results from Fig. 5 demonstrate that SNV pretreatment was 
on average always as good as or better than either of the SG1stDer 
pretreatment options. Spectral derivatives are complex, often difficult to 
interpret, and are dependent on the segment and gap size definitions 
(Barnes et al., 1989), therefore SNV only is instead recommended. 

Averaged across all soil properties, Cubist with SNV is the best choice 
for C4 and equal to Cubist with SST for C3. However, SST gives a sig-
nificant performance boost to C1 and C2, which were highly affected by 
instrument or sampling accessory incompatibility to KSSL Bruker Ver-
tex. This pattern holds for SOC, pH and exchangeable K although with 
Exc. K, PLSR models with SNV outperformed Cubist with SNV. The 
pattern was less clear for clay content with SST still being critical for C2 
but other pretreatments gave much better performance in other clusters. 
In turn, MBL yielded a higher 10th percentile compared to Cubist in all 
cases. Previous research with a Bruker Alpha similar to the one in used in 
C1 in this study (Sanderman et al., 2023) and a Bruker Vertex (instru-
ment #8 of C3 in this study) (Dangal and Sanderman, 2020) have 
indicated that spectral standardization might not be necessary for some 
cases. Using the KSSL MIR spectral library and independent test sets, 
Dangal et al. (2019) found that Cubist and MBL outperformed PLSR and 
random forest models across 10 soil properties analyzed. Cubist is a 
hybrid rule-based and linear regression algorithm that is prone to 
overfitting when dealing with a high number of features, especially 
considering that spectral measurements are also multicollinear. To 
control this, dimensionality reduction via orthogonal projection or 
feature selection (Minasny and McBratney, 2008; Padarian et al., 2019) 
are highly recommended but may increase the complexity of operations. 
In this study, PCA was set to retain 99.99 % of the original cumulative 
variance of the training set to account for small changes in spectral 
absorption features of farther components. Therefore, it is recom-
mended to find the tradeoff between compression (viable number of 
components) and spectral representation level (farther components may 
retain unique features, but increases the model complexity) using these 
model configurations. 

4.3. Recommendations 

Overall, the metadata analysis suggested that the major differences 
in spectral responses occurred due to manufacturer and model variations 
that ultimately represent different hardware and internal optics. In 
addition, due to the high occurrence of similar Bruker models in the ring 
trial, it seems that even minor changes in hardware, sampling acces-
sories, and optical parts are enough to cause slight variations of spectral 
responses for the same set of soil properties that ultimately can lead to a 
significant spread in model performance (see C3 in Fig. 6a). However, 
for these Bruker models (C3 and C4), SNV alone was sufficient to correct 
baseline offset and light-scattering effects (Fig. 6b). SNV correction 
alone was sufficient for some other manufacturers from cluster C2 that 
did not have too contrasting spectral responses to instrument #16 
(Bruker Vertex), i.e., instruments #4 (Perkin-Elmer Spectrum-100), #5 
(Agilent 4300 Handheld FTIR), and #14 (Thermo Fisher Nicolet) 
(Supporting information Table S15). It is worth noting again that despite 
sometimes poor KSSL model transfer results, all the instruments were 
generally good when they were evaluated by internal calibration per-
formance. When legacy soil spectral libraries or diverse instruments are 
combined together to form a larger and more robust database, or 
already-fitted models are leveraged to make new predictions outside the 
original purpose or feature space, then spectral standardization may be 
necessary. 

While there is no one-size-fits-all approach to working with the KSSL 
library, some clear recommendations have come out of this study: 

1. For Bruker instruments with the HTS-XT accessory and MCT detec-
tor, the KSSL library can be used directly with almost any mathe-
matical pretreatment (either preprocessing or spectral 
standardization), although SNV preprocessing is still highly recom-
mended due to the known issues found in FT-MIR (scattering and 
multicollinearity).  

2. For Bruker Alpha instruments with the standard DRIFT accessory, 
SNV preprocessing performs equally as well as SST when Cubist is 
used for model building.  

3. For instruments from other manufacturers using a standard DRIFT 
accessory, spectral standardization is necessary for producing reli-
able estimates from the KSSL library.  

4. Given that there isn’t always an obvious best choice for modeling, we 
recommend testing several models and several preprocessing 
methods. When validation samples aren’t available for picking the 
best approach we recommend using an ensemble of these 
combinations.  

5. Lastly, the quality of predictions also depends on the spectral library 
used for calibration. Therefore, when using the KSSL library, users 
need to ensure that the KSSL library is representative, based both on 
spectral similarity and range of soil properties of interest, of the 
target samples. 

4.4. Further action 

The results of this study highlight the importance of standardizing 
the spectral acquisition procedures across different laboratories and 
instruments to ensure the reliability and transferability of soil spec-
troscopy predictions. This is in line with the historical experience of wet- 
chemistry laboratories, which have developed quality control and cer-
tification mechanisms to reduce the variability and uncertainty in soil 
analysis. However, unlike wet-chemistry laboratories, spectral sensing 
offers a unique opportunity to leverage the power of open data and 
collaborative platforms to share and access soil information for the 
global good. One such initiative is the Open Soil Spectral Library (OSSL), 
which aims to provide a comprehensive and harmonized repository of 
soil spectra and metadata from various sources and instruments (Safa-
nelli et al., 2023). The OSSL also offers support and training for users 
who want to generate predictions from their own spectra or use the 
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existing models from the library. By contributing to and using the OSSL, 
soil spectroscopists can benefit from the collective knowledge and 
expertise of the soil spectroscopy community, as well as enhance the 
richness and diversity of soil data for research purposes. 

Our study also demonstrated that shared standard samples can form 
the basis of building calibration transfer among soil spectroscopy labo-
ratories, especially in relation to the centralized USDA NSSC KSSL FT- 
MIR soil spectral library that can be leveraged to calibrate more 
robust prediction models, which is included in the OSSL. In addition, our 
study demonstrated a willingness to participate in the ring-trial research 
to extend the capability of the OSSL to generate soil information for the 
global good. Therefore, we encourage further action to promote the 
OSSL and its goals, as well as to explore the potential of hybrid soil 
laboratories that combine wet-chemistry and spectral methods to meet 
the growing demand for soil information (Demattê et al., 2019; Lal et al., 
2021; Nocita et al., 2015; Shepherd et al., 2022). 

5. Conclusion 

For the first time, a large interlaboratory soil spectroscopy compar-
ison was made using twenty FT-MIR laboratory instruments. By uni-
formly preparing and shipping several aliquots of the same soil samples, 
which reduced potential effects of variable soil analytical de-
terminations, we quantified the amount of spectral variance among 
laboratories and determined the impact of model predictions by 
assessing the instruments’ internal performance with those obtained by 
transferring models from a centralized spectral library, i.e., the USDA 
NCSS KSSL FT-MIR library. In this highly participatory study, we found 
that all instruments can deliver good predictions when calibrated 
internally, i.e., using the same instruments’ characteristics and standard 
operating procedures for predicting new samples, by solely relying on 
regular spectral preprocessing that accounts for light scattering and 
multiplicative/additive effects (e.g., using standard normal variate - 
SNV). When performing model transfer from the large KSSL FT-MIR li-
brary, instruments’ variability can be reduced by regular preprocessing 
(SNV) if the secondary instruments have the same instrument manu-
facturer as the KSSL FT-MIR library. Significant differences between the 
KSSL FT-MIR library and contrasting ring trial instruments responses 
were evident and confirmed by a semi-unsupervised spectral clustering. 
For heavily contrasting setups, spectral standardization is necessary 
before transferring prediction models. Non-linear model types like 
Cubist and MBL (local fitting) deliver more precise estimates because 
they seem to be less sensitive to spectral variations than global PLSR, 
although they are still affected by highly contrasting conditions. In 
summary, the results from this ring trial experiment may assist new 
laboratories in building spectroscopy capacity utilizing existing FT-MIR 
spectral libraries and support the recent global efforts to make soil 
spectroscopy universally accessible with centralized or shared operating 
procedures. 
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P., Sayão, V.M., Demattê, J.A.M., 2019. Robust soil mapping at the farm scale with 
vis–NIR spectroscopy. Eur. J. Soil Sci. 70 (2), 378–393. https://doi.org/10.1111/ 
ejss.12752. 

Ramirez-Lopez, L., Stevens, A., Viscarra Rossel, R., Lobsey, C., Wadoux, A., Breure, T., 
2022. Resemble: regression and similarity evaluation for memory-based learning in 
spectral chemometrics. R Package Vignette R Package Version 2 (2), 1. https://cran. 
r-project.org/package=resemble. 

Rayment, G.E., Miller, R.O., Sulaeman, E., 2000. Proficiency testing and other interactive 
measures to enhance analytical quality in soil and plant laboratories. Commun. Soil 
Sci. Plant Anal. 31 (11–14), 1513–1530. https://doi.org/10.1080/ 
00103620009370523. 

Rossel, R.A.V., Behrens, T., 2010. Using data mining to model and interpret soil diffuse 
reflectance spectra. Geoderma 158 (1–2), 46–54. https://doi.org/10.1016/j. 
geoderma.2009.12.025. 

IEEE SA. (2023). P4005 - Standards and protocols for soil spectroscopy. https://sagroups. 
ieee.org/4005/. 
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