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A B S T R A C T   

Machine learning (ML) is an advanced computer algorithm that simulates the human learning process to solve 
problems. With an explosion of monitoring data and the increasing demand for fast and accurate prediction, ML 
models have been rapidly developed and applied in air pollution research. In order to explore the status of ML 
applications in air pollution research, a bibliometric analysis was made based on 2962 articles published from 
1990 to 2021. The number of publications increased sharply after 2017, comprising approximately 75% of the 
total. Institutions in China and United States contributed half of all publications with most research being 
conducted by individual groups rather than global collaborations. Cluster analysis revealed four main research 
topics for the application of ML: chemical characterization of pollutants, short-term forecasting, detection 
improvement and optimizing emission control. The rapid development of ML algorithms has increased the 
capability to explore the chemical characteristics of multiple pollutants, analyze chemical reactions and their 
driving factors, and simulate scenarios. Combined with multi-field data, ML models are a powerful tool for 
analyzing atmospheric chemical processes and evaluating the management of air quality and deserve greater 
attention in future.   

1. Introduction 

Air pollution is harmful to human health and ecosystem stability, 
causing 7 million premature deaths and a $2.9 trillion global economic 
loss every year (IQAir, 2020). The global premature mortality burden 
resulting from ambient PM2.5 and ozone exposure continues to increase 
(Chowdhury et al., 2020). In response to mounting risks, ground 
monitoring and remote sensing of pollutant emissions, transformation 
and deposition have played an important role in revealing the dynamic 
changes in air pollution (Cetin et al., 2018; Elsunousi et al., 2021; Hu 
et al., 2017; Kuerban et al., 2020; Li et al., 2023; Sevik et al., 2019; Wen 
et al., 2022; Xu et al., 2022a), and there has been a resultant explosion in 
monitoring data. Making full use of these data could provide a sound 
scientific basis for effective control of air pollution and policymaking. 

The atmosphere is a changeable and open environmental system 
containing a range of pollutants and complex chemical processes, in 
which the relationships between components and controlling factors are 
not simply linear. Traditional statistical regressions models, such as 
parametric regression models, have limitations for fitting nonlinear 

relationships when dealing with the large and growing quantity of data 
in atmospheric science, including poor prediction accuracy for nonlinear 
problems analyzed using ‘Big Data’ (Feng et al., 2011). Some regression 
models are also complicated with too many explanatory variables, and 
their requirements for variable distribution are strict. These disadvan-
tages are obstacles when trying to dig deeper into complex data and 
obtaining more valuable information. More convenient and accurate 
methods are urgently required for effective data analysis. 

As artificial intelligence rapidly develops, machine learning (ML) is 
playing an increasingly important role in dealing with very large data 
sets. To date, commonly used ML algorithms are supervised learning 
algorithms such as artificial neural networks (ANN), random forest (RF) 
and support vector machine (SVM). These are mainly based on sample 
data for computer modeling for classification and regression (Zhong 
et al., 2021). ML models can establish direct relationships between data 
and weaken the impact of outliers (Ucun Ozel et al., 2020), delivering a 
higher prediction accuracy and robustness when dealing with large data 
sets (Chen et al., 2022; Yuchi et al., 2019). They produce a better fit to 
the data with a smaller root mean square error (RMSE), especially in 
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nonlinear situations (Chen et al., 2022; Feng et al., 2011; Zimmerman 
et al., 2018). Also, multiple types data like integers and strings can be 
introduced when model construction. ML models are relatively simple, 
less time-consuming and low-cost compared to numerical models. These 
advantages make ML models increasingly popular in atmospheric sci-
ence research (Liao et al., 2021; Zheng et al., 2021). Combined with 
multiple fields of data, ML models are key components for many tasks, 
such as short-term forecasting (Yan et al., 2021), analysis of the chem-
ical behavior of pollutants (Huang et al., 2021) and impact assessment 
(Lv et al., 2023). 

Bibliometric analysis is a valuable tool for analyzing the research 
status of a specific field (Qin et al., 2022a; Zhang and Chen, 2020). It can 
not only provide an analysis of the development of themes in research 
(Zhang et al., 2020b), but also show interrelations between countries, 
institutions and authors by revealing social networks (van Eck and 
Waltman, 2010). With the aim of advancing the understanding of ML, 
we made a bibliometric analysis of its applications and the development 
in global air pollution research. This provides further insight into the 
most appropriate application of ML in atmospheric science research in 
the future. 

2. Materials and methods 

2.1. Data collection 

Literature recorded in the Web of Science (WoS) core database from 
1990 to 2021 was collected. The search and analysis processes are 
shown in Fig. 1. Keywords used for this initial selection are shown in 
Tab. S1, and a total of 1834 documents were collected in database1. 
However, some documents were missed because the names of specific 
ML algorithms rather than “machine learning” were used in the titles or 
keywords of these papers. Therefore, keywords were expanded with 
specific ML algorithm names such as ANN, RF, and SVM. The keywords 
used in the second collection together with the retrieved paper numbers 
are shown in Tab. S2. A total of 3930 documents were collected in 
database2. The percentages of research articles, conference papers and 
reviews were 75.4%, 23.9% and 1.3%, respectively. Peer-reviewed 
publications identified as “article” and “review” were selected for 
further analysis (Bao et al., 2021; Qin et al., 2022a; Zhang et al., 2020b). 
After removing duplicate documents and irrelevant items, a total of 
2962 publications were selected and formed into a new database named 

“Local Database” for subsequent analysis. The required information 
from each document, such as keywords, abstract, authors, source, 
reference, etc., was downloaded in “txt” format for analysis. 

2.2. Bibliometric analysis methods 

Based on the Local Database, four types of analytical and visualiza-
tion software were used for bibliometric analysis. Firstly, HistCite Pro 
(v2.1) was used to output informetric indicators, including the annual 
variation of publications and keyword occurrence, as well as citations of 
literature and journals. Then, three mature types of visualization soft-
ware were introduced for social-relation analysis to reveal active groups, 
researchers, and their collaboration networks. The “bibliometrix” 
package in R, and an online bibliometric analysis software (https:// 
bibliometric.com/) described the country distribution and collaboration 
networks. VOSviewer (v1.6) was used to construct bibliometric maps of 
institutions and authors. Finally, a term co-occurrence map was created 
from titles and abstracts for cluster analysis in VOSviewer to show the 
main directions and focuses of current research. 

Fig. 1. Flow chart of the bibliometric analysis.  

Fig. 2. Number of publications and frequency of occurrence of keywords from 
1990 to 2021 
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Fig. 3. (a) Distribution of publications by country; (b) Collaboration network of countries; (c) Analysis of single country publications (SCP) and multiple country 
publications (MCP). 
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3. Results and discussion 

3.1. Temporal changes in the number of publications and keywords 

The number of publications in the Local Database and the frequency 
of occurrence of the top 15 keywords are shown in Fig. 2. The publi-
cations increased from 1990 to 2021, with the first published research in 
1993, applying ML to predict ambient SO2 concentrations (Boznar et al., 
1993). Research publications totaled less than 100 each year and 
increased slowly before 2015, with most research focusing on pollutant 
prediction by means of ANN. An explosive growth of publications 
occurred after 2017, with the total each year approaching 800 in 2021, 
illustrating the rapidly increasing interest in ML applications to air 
pollution research. 

Changes in keywords are mainly reflected in two topics: ML algo-
rithms and research targets. With the rapid increase of publications after 
2015, the types of ML algorithms also increased. The phrase “machine 
learning” is now found in many papers, with ML algorithms such as 
“RF”, “SVM” and “deep learning (DL)” appearing more and more 
frequently in recent years. The increasing use of multiple ML algorithms 
probably results from the requirement for better prediction accuracy. 
ANN has been used to predict atmospheric pollutant concentrations at a 
certain point in the past (Gardner and Dorling, 1999; Yi and Prybutok, 
1996). With algorithm innovation, some emerging ML models can 
obtain more accurate prediction with less bias. For instance, DL has the 
capacity to achieve hourly forecasting and grid mapping to display high 
spatial-temporal resolution prediction of pollutants (Brokamp et al., 
2017; Najafi et al., 2016; Qin et al., 2019; Yan et al., 2021). RF supports 
the analysis of the relationships between target pollutants and variables 
and so pollution formation mechanisms (Li et al., 2022b; Ye et al., 2022). 

Fine particulate matter (PM2.5), ozone, inhalable particulate matter 
(PM10) and volatile organic compounds (VOCs) have been the main 
target pollutants, among which PM2.5 has been of the most concern, with 
a greatly increased frequency of ML model applications after 2017. The 

application of ML models for indoor air quality control also gradually 
increased after 2015 (Ren and Cao, 2019; Yuchi et al., 2019). Generally, 
the main applications of ML were for predicting chemical characteristics 
of pollutants, including concentrations and their spatial and temporal 
variation. 

3.2. Influential countries and groups 

A total of 101 countries have conducted air pollution research using 
ML. The distribution and collaborations of active groups are shown in  
Fig. 3. China leads with the most publications (1023), followed by the 
USA (376) and India (186). Fig. 3b shows the collaborations of each 
country, in which cooperation between China and the USA have been 
the most frequent (180), followed by China and the UK (59) and the USA 
and the UK (39). Multiple country publications (MCP) are an indicator of 
international collaboration. However, the proportion of MCP for the top 
three countries was less than 30% (Fig. 3c), which shows that most 
research was conducted independently. 

A total of 2836 institutions contributed to the application of ML to air 
quality research, of which 96 published more than 10 articles. The 
collaborations in these 96 papers are shown in Fig. 4: the bigger the size 
of the label, the more publications; the lighter the color, the more recent 
the publication. The Chinese Academy of Sciences published the most 
papers with 147 documents, followed by Tsinghua University (China) 
(56), and Wuhan University (China) (53). Most of the affiliations with 
the higher numbers of publications were in China, and Chinese in-
stitutions accounted for 70% of the top 20 institutions. 

Local and global citation scores are the citation number in the Local 
Database and global WoS core databases, respectively. The ratio be-
tween local and global citation scores (R(L/G)) was calculated to indicate 
the impact of each institution. A high R(L/G) means that an institution has 
had a significant impact on air pollution research by applying ML. The 
results in Tab. S3 show that Emory University has the highest R(L/G) 
value of the top 20 institutions, followed by Peking University and 

Fig. 4. Collaboration networks of the 96 institutions that each published > 10 papers. Note: The larger the marker, the more articles published; the lighter the color 
the more recent the publication. 
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Sichuan University. Most Chinese institutions in the top 20 have both 
more publications and a higher R(L/G), suggesting China has had the 
greatest influence in this field. In Fig. 4, the lighter colors of Sun Yat-sen 
University (China), Fudan University (China) and Southeast University 
(China) show that the number of publications from these organizations 
has increased rapidly in recent years, suggesting that they could be 
important centers for ML applications in atmospheric research in the 
future. 

Regarding authors, 11030 were recorded, but only 169 (1.5%) could 
be described as ‘active’, publishing more than 5 papers. The co-author 
relationships and details of active authors are shown in Fig. 5 and 
Tab. S4. Liu Yang ranked first with 27 publications, followed by Guo 
Yuming (18) and Kumar Ashok (16). Authors concentrated in the middle 
of Fig. 5 have multiple collaborations, but most authors have few if any 
collaborations. This indicates that associations between authors are 
generally weak and large research groupings have not yet formed. 
Greater collaboration should be advocated. The average publication 
year of each author is shown in Tab. S4, with 76% of authors was after 
2019, suggesting that the application of ML to air pollution research is 
still a novel field. 

3.3. Journals with most impact 

The influence of journals can be assessed by analyzing the number of 
publications and citations in each, which can guide researchers as to 
where best to submit manuscripts. A total of 686 journals have published 
papers applying ML to air pollution, but only 54 journals published more 
than 10 papers in this field. The details of the 20 journals that published 

the most papers are shown in Tab.S5. European and American journals 
contributed the most publications. Although papers from China domi-
nate, Chinese journals published relatively few of these, highlighting the 
need for relevant and high impact journals based in China. Most journals 
are in the environmental science category. However, some such as IEEE 
Access and Sensors are not classified as environmental by the JCR, 
indicating that some of the research is interdisciplinary. These papers 
involved topics such as ML algorithm modification and efficiency 
improvement for chemical detection (e.g. Al-Janabi et al., 2019; Spinelle 
et al., 2017). 

The journal Atmospheric Environment published by far the most pa-
pers (154), followed by Science of the Total Environment (97) and Envi-
ronmental Pollution (72). R(L/G) and R(year) (the ratio of ML-related 
publications after 2017 to total publications in that journal) of the top 
journals are shown in Fig. 6. A high R(year) value indicates that a journal 
has a strong interest in air pollution research that applies ML and has 
received an increasing number of articles in the 5 years to 2021. The R(L/ 

G) and R(year) values of Environmental Pollution and IEEE Access exceeded 
the mean values and ranked third and fourth for the number of publi-
cations. These two journals have a strong interest in air pollution 
research that applies ML and are regularly selected by those researching 
ML-related to air pollution, suggesting that they are very suitable for 
future research submissions. Some journals with high R(L/G) values were 
distributed in the lower right quadrant of Fig. 6. These had high citations 
in the Local Database, and most were classic scientific journals pub-
lishing in atmospheric science, such as Atmospheric Environment, Atmo-
spheric Pollution Research, and Atmospheric Chemistry and Physics, or were 
influential journals in the environmental field such as Science of the Total 

Fig. 5. Collaboration network of authors.  
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Environment and Environmental Science & Technology. Most papers pub-
lished in these journals were concerned with applying ML to chemical 
processes of air pollutants formation. 

3.4. Research focuses 

Cluster analysis was conducted using VOSviewer to better under-
stand the foci of ML-related articles. As shown in Fig. 7, publications 
were divided into four categories. Cluster 1 contains papers reporting 
‘sensors’, ‘classification’, ‘detection’, ‘VOCs,’ and similar topics. 
Research in Cluster 1 was mainly focused on applying ML models to 
identifying specific signals in software for improving the efficiency of 
chemical detection. ML models have been applied not only to VOC 
detection but also to PM2.5, carbon monoxide (CO) and nitrogen dioxide 
(NO2) monitoring (Spinelle et al., 2017; Srivastava, 2003; Wang et al., 
2014; Zhang et al., 2021a; Zimmerman et al., 2018), in which ANN is the 
most widely used machine learning algorithm. The different sensitivities 
of each sensor resulted from the range of detection materials used that 
respond differently to the target gas (Penza and Cassano, 2003). It is 
difficult to meet the detection requirements with a single sensor, but the 
cost will increase when using multiple sensors (Lee et al., 2002). 
Therefore, ML algorithms are introduced in a data processing module for 
calibration and improving detection efficiency. Initially, unique signal 
values for the pure gas are recorded for each sensor and input to the data 
processing module with a high frequency. Then ML algorithms use the 
input data as “training data” for model development (Zhang et al., 
2021a). The constructed models are packaged in the instrument oper-
ating software. When a gas mixture is detected, ML models can analyze 
the data and rapidly identify each gas with a similar signal value (Barash 
et al., 2012; Zhang et al., 2012). 

Words such as ‘emission’, ‘NOx’, ‘optimization’ and ‘engine’ are 

distributed in Cluster 2. Research in this cluster focused on vehicle 
exhaust mitigation, where ML algorithms, especially ANN, are used to 
optimize parameters for reducing engine emissions (Hosamani et al., 
2021; Lv et al., 2013). Typical exhaust emissions contained particulate 
matter (PM), nitrogen oxides (NOx), hydrocarbons (HC) and CO 
(Gugulothu et al., 2021; Norouzi et al., 2020; Roy et al., 2014), which 
are influenced by engine type and fuel blending (Deh Kiani et al., 2010; 
Gugulothu et al., 2021). An effective design is critical for improving fuel 
efficiency and reducing emissions. To select the optimal design, ML 
models have been used to avoid consideration of the instantaneous 
combustion process and predict exhaust emissions quickly at low cost 
(Arcaklioğlu and Çelıkten, 2005). Usually, data collected from pre-
liminary experiments can provides a rough range of parameters for 
model optimization. Parameters are then adjusted based on ML models 
for reducing emissions without having to repeat experiments. 

Words such as ‘forecasting’ and ‘root mean square error’ (RMSE) are 
prominent in Cluster 3, while ‘particulate matter’, ‘China’, ‘observation’ 
and ‘estimate’ dominate in Cluster 4. These two fields of research both 
focused on the application of ML algorithms for fast and accurate pre-
diction of pollutants, combined with historical meteorological, 
geographic and atmospheric pollutant data (Benhaddi and Ouarzazi, 
2021; Hu et al., 2017). Commonly used ML methods were conventional 
neural network algorithms, especially DL, including convolutional 
neural networks (CNN) and long short-term memory (LSTM), with mean 
square error (MSE) and RMSE as evaluation indicators (Sun et al., 2020; 
Zhong et al., 2021). However, the purposes of these models are not the 
same. Alone or associated with atmospheric numerical models, most ML 
models in Cluster 3 were used to improve the accuracy of short-term 
forecasting for atmospheric contamination, especially PM2.5 (Huang 
et al., 2021; Yan et al., 2021). In Cluster 4, most ML models were used to 
reveal the chemical characteristics of pollutants. Early research mainly 
focused on the spatiotemporal distribution of PM2.5 (Chen et al., 2018; 
Gupta and Christopher, 2009; Hu et al., 2017), but gradually expanded 
to the chemical characterization of specific components and precursors 
in PM2.5 with the development of ML models (Brokamp et al., 2017; Xu 
et al., 2017). Cluster 4 contained most articles (31.4%) and these had a 
more recent publication date (Fig. S1), indicating that applying ML for 
analyzing the chemical characteristics of atmospheric pollutants has 
become a recent focus of research. 

The five most highly cited articles in the past 30 years were analyzed 
to provide more insight into recent research priorities (Tab. S6). Among 
these, Feng et al. (2015) was one of the earliest publications, in which 
ANN was combined with geographic models and wavelet transformation 
to improve the accuracy of forecasting PM2.5 concentrations in North 
China. Following this, Di et al. (2016) and Hu et al. (2017) used RF and 
CNN, respectively, to estimate PM2.5 concentrations with high spatial 
resolution across the United States, based on meteorological parameters, 
satellite aerosol optical depth and land-use variables. Li et al. (2017) 
used LSTM layers to explore the spatiotemporal correlation of pollutants 
for more accurate predictions in Beijing, China. Chen et al. (2018) used 
meteorological parameters, remote sensing data and land use informa-
tion to create a PM2.5 prediction model with RF and estimated the his-
torical trend of PM2.5 pollution across China. These five papers all 
focused on applying ML for analyzing the chemical characteristics of 
regional pollution, similar to the research papers that group into Cluster 
4. This shows again that using ML models to analyze the chemical 
characteristics of atmospheric pollutants has been an important research 
focus. 

3.5. Developments 

In recent years, ML models have been applied ever more widely 
owing to the continuous innovation of algorithms. Analyzing articles in 
the impactful journals (Tab. S5) and highly cited papers (contained but 
not limited to Tab. S6), provides new insights for developments of ML 
applications in air pollution research. 

Fig. 6. Comparison of R(L/G) and R(year) for the 20 journals publishing the 
most ML-related papers. (AE: Atmospheric Environment; STE: Science of the 
Total Environment; EP: Environmental Pollution; IA: IEEE Access; APR: At-
mospheric Pollution Research; A: Atmosphere; ESPR: Environmental Science 
and Pollution Research; JCP: Journal of Cleaner Production; RS: Remote 
Sensing; S: Sensors; AQAH: Air Quality Atmosphere and Health; IJERPH: In-
ternational Journal of Environmental Research and Public Health; ASB: Applied 
Sciences-Basel; EST: Environmental Science & Technology; ACP: Atmospheric 
Chemistry and Physics; BE: Building and Environment; E: Energy; SAB: Sensors 
and Actuators B-Chemical; SU: Sustainability; ER: Environmental Research). 
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One important development is a focus on more diversified targets 
across larger domains. As noted in Section 3.4, the main application of 
ML models has been to predict and analyze the chemical characteristics 
of pollutants. Initially, ML models were used because they were an 
emerging and exciting way to obtain accurate and rapid predictions of 
atmospheric pollutant concentrations such as SO2, NOx, particulate 
matter and ozone at a specific place (Hooyberghs et al., 2005; Moseholm 
et al., 1993). Subsequently, rapid development has enabled the models 
to fill gaps resulting from incomplete monitoring. Not limited to PM2.5, 
concentrations and the spatial-temporal variation of multiple pollutants 
can be predicted at large scales, including carbonaceous materials, 
inorganic water-soluble ions and metal elements in PM2.5 (Li et al., 
2020a; Zhang et al., 2020c; Zhu et al., 2021), and their gaseous pre-
cursors such as ammonia, ozone and nitrous acid (Cui and Wang, 2021; 
He et al., 2021; Ren et al., 2022). ML models have also been used to 
quantify cloud condensation nuclei, which are important for aerosol 
formation but difficult to monitor directly (Nair and Yu, 2020), and to 
estimate emission and deposition fluxes of pollutants to explore their 
source and sink. Quantitative predictions of NH3, NOx, VOCs and even 
greenhouse gas emissions have been achieved (Bakay and Ağbulut, 
2021; Li et al., 2021; Xu et al., 2021; Zhang et al., 2021b). Current 
research has also revealed the regional pattern of reactive nitrogen 
and/or sulfate in bulk deposition using ML models (Li et al., 2020b; Lu 
et al., 2020). ML models have become effective approaches to explore 
the transformation and transport of pollutants in atmosphere. With the 
development of ML models, it has been possible to predict multiple 

pollutants simultaneously, and we can expect their use to provide even 
more detail such as the vertical distribution of individual pollutants. 

Simulating chemical reactions and diagnosing driving factors are 
important capabilities of ML models for dissecting chemical processes. 
Combined with quantum chemical methods, ML models can be used to 
analyze atmospheric chemical processes such as new particle formation, 
and heterogeneous and photochemical transformations of pollutants 
(Kubečka et al., 2022; Xia et al., 2022). For example, well-constructed 
ML models have been used to construct potential energy surfaces in 
order to obtain thermodynamic information about atmospheric radical 
reactions and cluster configurations in atmospheric nucleation (Liu 
et al., 2022; Stocker et al., 2020; Zhang et al., 2020a), providing more 
detailed parameters for thermodynamic and numerical models (Ander-
son et al., 2022; Xia et al., 2022). The importance of variables can be 
identified via the contribution of quantifying factors that can be used to 
explore the key factors affecting pollutant formation.Tree-based models 
were commonly applied, such as regression tree, RF and gradient boost 
regression tree (Carslaw and Taylor, 2009; Xu et al., 2021). When 
tree-based models are created, the importance of variables should be 
tested to reduce Gini importance or variance (Strobl et al., 2008). This 
can assist in the evaluation of factor weight, revealing the sensitivity of 
pollutants to these factors. For example, Zhang et al. (2020c) studied the 
chemical components of PM1 (particulate matter less than 1 µm) by a 
similar approach with RF models and found that components were 
sensitive to relative humidity. Based on importance diagnose of vari-
ables, Ye et al. (2022) showed that a prediction bias for ozone 

Fig. 7. Network visualization of a term co-occurrence map. The bigger the label, the more publications.  
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concentrations in chemical transport models resulted from the under-
estimation of dry deposition and cloud optical depth. Further, coupled 
with a SHapley Additive ExPlanation (SHAP) approach, any ML model 
can provide a clear explanation of variable importance (evaluating 
contributions in physical units such as μg/m3), which can support the 
dimension reduction of variables for the source apportionment of pol-
lutants (Hou et al., 2022; Qin et al., 2022b; Zhang et al., 2022). 

Scenario simulation with ML models enables researchers to evaluate 
control strategies. As with traditional numerical models, researchers can 
evaluate the effectiveness of management measures for air pollution 
mitigation at regional or even global scales. For example, Li et al. 
(2022a) predicted a decreasing trend of global aerosol pollution from 
2020 to 2100, based on a number of projections in the Coupled Model 
Intercomparison Project Phase 6. Xu et al. (2022b) forecasted ammonia 
emissions and their resultant health impacts in 2030 under several 
scenarios in which nitrogen fertilizer was replaced by agricultural 
wastes. ML models are also an alternative for clarifying the factors 
driving air quality change over the short term. Research has simulated 
atmospheric pollutant variation under various emission scenarios to 
assess the impact of reduced anthropogenic activity during COVID-19 
lockdowns periods (He et al., 2021; Shi et al., 2021). Compared to 
traditional numerical models, ML models are simpler and easier for new 
users. Moreover, data from economic, energy-related and other fields 
can be incorporated into ML models to further identity key driving 
factors, providing more comprehensive evaluations of regional or na-
tional air quality management. More scenario simulations using ML 
models are expected in the future. 

Although ML has shown great potential in air pollution research, 
there are still some issues worth noting when considering its future 
application. Firstly, outputs of ML models are highly dependent on the 
quality of training data. Representativeness rather than number of var-
iables is the basis for better model performance; pre-process variables 
must be carefully selected, and model users must have enough experi-
ence and patience to debug the models effectively. Secondly, outputs are 
merely the results of computer calculations and sometimes may 
contradict current understanding due to the “black box” effect if there is 
no good understanding and what the model does. Therefore, after model 
construction, the simulations should be fully verified and interpreted 
based on atmospheric theory. 

4. Conclusion 

Publications that apply ML to air pollution research have increased 
rapidly in the past 30 years and grew exponentially after 2017. Domi-
nant research groups were based mainly in China and the United States, 
which together accounted for more than 50% of all articles. Research 
institutions and groups were relatively scattered, and large research 
collaborations have not yet formed. However, the application of ML to 
air pollution research has reached maturity, with a strong focus on the 
chemical characteristic analysis of pollutants, short-term pollutant 
forecasts, improving pollutant detection efficiency and optimizing 
design for emission reduction. Based on representative training data and 
effective verification, ML models supported by advanced algorithms 
have considerable potential to comprehensively interpret air pollution 
formation and control, including exploring the chemical characteristics 
of multiple pollutants, quantifying atmospheric chemical process and 
their driving factors, and simulating scenarios. 
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