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ABSTRACT 

 
The plant hormone gibberellin (GA) regulates many developmental processes during 

a plant’s life cycle, including root and hypocotyl growth. Bioactive GAs promote GA-

responsive growth and development by targetting DELLA proteins for degradation. 

Whilst the early steps of GA signalling are well understood it is not yet clear how the 

DELLA proteins alter the expression of GA-responsive genes. As other steps of the 

signalling pathway are encoded by multi-gene families it is possible that genetic 

redundancy is masking the transcription factors that act downstream of DELLAs. 

Using a chemical screen based on DELLA protein’s control of GA biosynthesis, 28 

chemicals which blocked the GA-mediated downregulation of GA20ox1::GUS activity 

were identified. Using GA-mediated RGA degradation as a marker, 11 chemicals were 

identified as acting downstream of DELLAs in the GA signalling pathway.  

One of the chemicals (N23) identified in the screen was found to induce agravitropic 

root growth, a response more often associated with perturbation of auxin signalling. 

However, N23 had no effect on auxin signalling based on the characterisation of its 

effect on auxin-inducible genes and AUX/IAA degradation. The mode of action of N23 

requires further investigation. However, N23 represents a potential for studying the 

role of GA in modulating gravitropism.   

The compound N16 potentially perturbs GA signalling by altering GA transport. It was 

found to block the uptake of both radiolabelled and fluorescent labelled GA into the 

root. Five days of exposure to N16 was required before any inhibition was observed 

on Col-0 roots but root elongation in ga1-3 seedlings was inhibited after only 24 hours 

suggesting that roots of wild type plants are saturated for GA. The site of action of 

N16 was not identified, but a putative oligopeptide transporter OPT6 was which is 

rapidly downregulated in the roots in response to GA application was investigated as 

a potential novel GA transporter. However, GA uptake assays in yeast strains 

overexpressing OPT6 proved inconclusive.  
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CHAPTER 1. INTRODUCTION 

 

1.1. THE PLANT HORMONES 

 

Plants exhibit a large degree of flexibility in both growth and development and this is 

in a large part due to the various endogenous phytohormones (hormones). Abscisic 

acid (ABA), auxins, brassinosteroids (BR), cytokinins, ethylene, gibberellins (GAs), 

jasmonate and strigolactones have all demonstrated a role in the coordination and 

control of plant development and growth in response to environmental cues. The 

major roles of ABA in development are in seed dormancy and response to 

environmental stress (Kermode, 2005). Auxins have a role in numerous plant 

development processes including, stem elongation, gravitropism, lateral root and 

shoot branching and vascular development (Perrot-Rechenmann and Napier, 2005; 

Sauer et al., 2013). Brassinosteroids promote cell elongation, are involved in vascular 

development, photomorphogenesis and senescence, whilst also being implicated in 

improving tolerance to salt and mild drought stress in crops (Clouse and Sasse, 

1998).  Cytokinin has been shown to regulate shoot growth, shoot apical meristem 

(SAM) size, leaf cell production and root growth through its promotion of cell division 

(Werner et al., 2001). Ethylene is a gaseous hormone required for root hair 

development, seedling growth, leaf and petal abscission, fruit ripening, seed 

germination and organ abscission (De Paepe and Van der Straeten, 2005). Ethylene 

also has a role in mediating the plant’s response to wounding as a result of pathogen 

attack or to stress (De Paepe and Van der Straeten, 2005). GAs promote seed 

germination, stem and root elongation, flowering, flower, leaf expansion, fruit growth, 

juvenile to adult transition and seed development (Achard and Genschik, 2009). 

Jasmonate is the plant hormone most commonly associated with the plant’s response 

to wounding as a result of pathogen and insect attack (Browse, 2005), whilst 

strigolactone  has been implicated in the inhibition of shoot branching,  root elongation 

and lateral root density (Ruyter-Spira et al., 2011; Umehara, 2011). Each hormone 

has been shown to have a distinct and complex metabolism and signalling pathway. 
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Despite the numerous advances made in modern genetics there is still much to learn 

about the hormone signalling pathways, progress possibly being hampered by genetic 

redundancy in the favoured model species, Arabidopsis thaliana (hereafter referred to 

as Arabidopsis). Additionally various studies have shown that specific plant 

phenotypes are the result of signalling from numerous hormones. Generally it has 

been found that auxin orchestrates growth and development whereas other 

hormones, e.g. GA, are required for the modulation of these growth processes (Teale 

et al., 2008). This project will focus on the study of the hormone GA and IAA, which 

interact with each other to control plant growth (Fu and Harberd, 2003).  

 

Auxin and GA are known to control similar aspects of plant development, such as 

organ elongation. With recent insights into their respective signalling cascades the 

existence of similarities between these pathways has become apparent. In both 

cases, activation of the signalling cascade results in the targeted degradation of 

repressor proteins. In the case of GA signalling, binding of GA with its receptor GID1 

(GA INSENSITIVE DWARF1) initiates the formation of a complex between GA, GID1, 

the F-box protein SLY1 and a member of the DELLA family of proteins, resulting in the 

ubiquitination and subsequent degradation of the DELLA proteins by the 26S-

proteasome. As DELLA proteins are transcriptional regulators that repress GA 

responses, their removal results in the initiation of GA-responsive growth, such as root 

elongation. The components of GA signalling that have been discovered so far have 

predominantly been identified by forward genetics-based approaches (reviewed in 

Hedden and Thomas, 2012). Despite these achievements in elucidating aspects of 

the GA signalling pathway, there has previously been limited success in the 

identification of components acting downstream of the DELLA proteins using these 

approaches. It is known that DELLA proteins are transcriptional regulators but they 

are unlikely to function as transcription factors due to the absence of a conserved 

DNA binding domain (Zentella et al., 2007). Recent work suggests that DELLAs 

regulate transcription through their association with transcription factors. For example, 

DELLA proteins control Arabidopsis hypocotyl cell expansion through their interaction 
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with the phytochrome interacting factors (PIFs) (de Lucas et al., 2008). One possible 

explanation for the early lack of success in identifying components downstream of 

DELLAs could be functional redundancy in the transcription factors. The components 

and mechanisms of the auxin signalling pathway are now well understood. Auxin 

binds to its receptor TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-

BOX (TIR1), which also acts as an F-box protein, leading to the formation of a 

complex with the AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) proteins which are 

subsequently ubiquitinated and degraded via the 26S-Proteasome. In the absence of 

auxin the AUX/IAA proteins bind to and inhibit the action of the auxin response factors 

(ARFs) which are transcription factors which can either activate or inhibit the 

expression of auxin responsive genes. As with GA signalling most of the components 

of auxin signalling have been identified by forward genetic approaches, particularly 

the study of mutants such as iaa and tir1 (Reed, 2001; Dharmasiri et al., 2005).    

 

1.2.  GIBBERELLIN 

 

1.2.1. Gibberellins history and use 

 

Gibberellin was initially isolated from the fungus Gibberella fujikuroi which causes 

stem overgrowth in rice plants (Stowe and Yamaki, 1957). Despite some bacteria and 

fungi producing GAs, comparisons between the Gibberella fujikuroi and the higher 

plant biosynthesis indicate there is no common ancestral origin (Hedden et al., 2002). 

Currently 136 different GA structures have been characterised in plants, fungi and 

bacteria (www.plant-hormone.info/gibberellins.htm). GAs comprise a group of 

tetracyclic diterpenoid carboxylic acids, a small number of which have bioactivity in 

higher plants. All identified GAs are given the name gibberellin A1-136 (shortened to 

GA1-136), depending on the order they were discovered. Only a limited number of GAs 

have intrinsic biological activity, the principal ones being GA1, GA3, GA4 and GA7 

(structures of GA1 and GA4 shown in Figure 1.1., page 13), of which only GA1 and 

GA4 are ubiquitous in plants. Other GAs are known to have bioactivity but these only 
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occur in selected plants and tissues. The first GA to be structurally characterised was 

GA3, which was isolated from Gibberella fujikuroi (Takahashi et al., 1955). Since the 

characterisation of this GA numerous others have been identified, particularly in 

immature seeds where the reasons for the high levels of accumulation and their roles 

are currently unclear. There is evidence of a role for GA in cell expansion, proliferation 

and seed germination (Swain et al., 1993; AitAli et al., 1997; Cowling and Harberd, 

1999; Achard and Genschik, 2009). This raises the possibility that immature seeds 

require high level of bioactive GA to induce growth but must inactivate these GAs 

before germination is induced. Such a theory would explain the high levels of 

numerous inactive GAs observed in immature seeds. GA signalling comprises the 

biosynthesis and deactivation of bioactive GAs from their precursors, their perception 

by the GA receptor GID1, and the resulting signal transduction. Each of these stages 

is subject to regulation by spatial, developmental and environmental factors. The 

concentration of GA within plant tissues is determined by their rates of biosynthesis 

and deactivation. GA metabolism has been studied for over half a century with 

numerous enzymes within the pathway being identified by varied approaches 

including enzyme purification, functional screening of cDNA expression libraries and 

molecular genetic approaches using dwarf mutants defective in GA biosynthesis 

(Yamaguchi, 2008). More recently genomic tools have led to the identification of more 

enzymes (Yamaguchi, 2008). The discovery of the GA receptor GID1 has allowed the 

elucidation of the GA signalling pathway and the intricate role GA has in plant 

development (Ueguchi-Tanaka et al., 2005). As with most advances in understanding 

of GA signalling, GID1 was cloned following the identification and characterization of 

GA-insensitive dwarf mutant, in this case in rice. Famously, the varieties of wheat and 

rice that were important elements of the Green Revolution contain dwarfing alleles of 

the Rht1 and SD1 genes, respectively These mutations were shown to compromise 

GA signalling and biosynthesis, respectively (Peng et al., 1999; Ashikari et al., 2002; 

Monna et al., 2002; Spielmeyer et al., 2002).   
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1.2.2. The role of GA in development 

 

Possibly the first characterization of a GA mutant was the identification of a mutation 

in the gene encoding the ent-kaurene synthase (KS) enzyme in the dwarf5 maize 

mutant (Hedden and Phinney, 1979). Whilst many GA-response mutations studied in 

other plant species arose naturally, the early GA-responsive Arabidopsis mutants, 

ga1, ga2, ga3, ga4 and ga5, were produced by chemical mutagenesis (Koornneef and 

Vanderveen, 1980). These mutants can be divided into two categories: those with 

mutations in single copy genes (ga1, ga2, ga3) which produced seeds that did not 

germinate without exogenous GA application and produced plants that did not bolt 

and were infertile, and those (ga4, ga5) that resulted in semi-dwarfism, with fully fertile 

flowers and seeds that germinated normally. It was found subsequently that the 

phenotype of this latter group was due to genetic redundancy, with the mutant genes 

members of multigene families (Plackett et al., 2012). Further studies of these 

mutants led to the demonstration that GA1 encoded the enzyme ent-copalyl 

diphosphate synthase (CPS) which catalyzes the first step in the GA-biosynthetic 

pathway (Sun et al., 1992; Sun and Kamiya, 1994). Due to the negligible levels of GA 

produced by severe ga1 mutants, the ga1-3 allele is regularly used as a positive 

control for experiments where GA production is inhibited. Additionally, studies using a 

promoter::GUS reporter line and RT-PCR to analyse GA1 expression have 

demonstrated that GA biosynthesis occurs in specific cell types of developing tissues 

including shoot apices, root tips, developing flowers and seeds (Silverstone et al., 

1997). GA2 encodes the second enzyme in the GA biosynthetic pathway KS 

(Yamaguchi et al., 1998) whilst GA3 encodes the enzyme for the following step, ent-

kaurene oxidase (KO) (Helliwell et al., 1999). GA4 and GA5 encode GA 3-oxidase1 

(GA3ox1) and GA 20-oxidase1 (GA20ox1), respectively (Chiang et al., 1995; Phillips 

et al., 1995; Xu et al., 1995). Together the GA20ox and GA3ox enzyme families 

catalyze the final steps in the conversion of GA-precursors to bioactive GAs. GA 

biosynthesis is described in full in Chapter 1.3.1. From this initial starting point in 
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Arabidopsis many other GA mutants have been produced and characterized to fine 

tune our understanding of the roles of GA in various developmental processes.  

 

1.2.3. Role of GA in flowering  

 

GA-deficient mutants of Arabidopsis, which is a facultative long-day species, exhibit 

delayed flowering in long days, whilst requiring exogenous application of GA to flower 

in short-days (Wilson et al., 1992). Later reports showed that this induction of 

flowering is a result of primarily GA4 on the floral pathway integrators and under long 

day conditions can be bypassed by the light-dependent flowering pathway (Blazquez 

et al., 1998; Moon et al., 2003; Eriksson et al., 2006; Tan and Swain, 2006). ga1-3 

also demonstrates the role of GA in floral development. This GA-deficient mutant is 

infertile due to poorly developed stamens, which do not dehisce, and severely 

reduced fertility of the pistil (Goto and Pharis, 1999). Whilst this review focuses 

primarily on Arabidopsis it should be noted that GA-deficient mutations can also delay 

or even abolish flowering in other species (Plackett, 2011). 

 

1.2.4. Role of GA in seed germination 

 

GAs are known to have a wide variety of roles within Arabidopsis germination. To date 

GA has been implicated in the production of hydrolytic enzymes to weaken the seed 

coat, mobilization of seed nutrients, induction of plant embryo expansion and 

hypocotyl elongation upon germination (Gubler and Jacobsen, 1992; Saibo et al., 

2003; Penfield et al., 2006). As the GA deficient seeds (ga1-3) can still germinate and 

produce normal plants after GA application it can be concluded that GA is essential 

for germination (Koornneef and Vanderveen, 1980). However plants overexpressing 

the GA deactivating GA 2-oxidase2 (GA2ox2) enzyme exhibit a high level of seed 

abortion suggesting GA does have a role in the early aspects of seed development in 

addition to germination (Singh et al., 2002).  
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Due to their importance to agriculture the effect of GA on seed germination have been 

studied extensively in the cereal aleurone layer. During germination of the cereal 

grain, GA is produced in the embryo from where it is transported or diffuses to the 

aleurone layer induces the expression of hydrolytic enzymes. These are secreted into 

the endosperm to produce metabolites to nourish the germinating embryo and 

promote seedling growth. (Gubler and Jacobsen, 1992). GA also acts by 

counteracting the effects of the germination inhibiting hormone ABA. The ratio of ABA 

to GA signalling and the amount of the hormones present influences germination 

(Finch-Savage and Leubner-Metzger, 2006). 

 

1.2.5. GAs role in growth and elongation 

 

Restricted stem elongation is a useful agricultural trait that has been selected for in 

many crops, most famously in the semi-dwarf Rht-1 alleles in wheat and sd-1 in rice 

varieties that gave rise to the Green Revolution (Harberd et al., 1999). Further 

analysis of these mutants identified sd-1 as being a mutation in the rice GA20ox2 

gene whilst Rht-1 mutations affect the wheat DELLA protein that mediates GA 

signalling (Peng et al., 1999; Ashikari et al., 2002; Sun and Gubler, 2004; Pearce et 

al., 2011). Similarly the GA deficient Arabidopsis mutant ga1-3 displays severe 

dwarfism as a result of reduced leaf expansion and root elongation, and the 

elimination of bolting (Koornneef and Vanderveen, 1980). It has been shown that GA 

promotes organ growth by stimulating cell division and/or cell elongation (Sauter and 

Kende, 1992; Inada et al., 2000; Fu and Harberd, 2003; Ubeda-Tomas et al., 2008; 

Ubeda-Tomas et al., 2009). Application of GA to rice plants resulted in the increased 

expression of the cyclin cycA1;1 and the cyclin dependent kinase cdc2Os-3 which 

have been suggested to contribute to the progression of a cell from the G2 phase to 

mitosis during cell division. cycD1;1, which is involved in the transition of cells from G1 

to the DNA synthesis stage of cell cycling is also known to be up-regulated in 

Arabidopsis seeds after a 12 hour GA treatment (Ogawa et al., 2003). Taken together 

these results go some way to explaining the role of GA in cell division. Promotion of 
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cell elongation by GA involves loosening of cell walls, through the induction of  the cell 

wall loosening enzymes such as xyloglucan endotransxyloglucosylase and expansins 

(Chen et al., 2002). Additionally GA can promote cell expansion by increasing cell 

turgor through the stimulation of osmolytes production by aquaporins (Cosgrove and 

Sovonick-Dunford, 1989). 

 

In recent years there have been important advances in the understanding of the 

regulation of GA-mediated root growth. The expression of a non-degradable DELLA 

protein, gai, specifically in the endodermal cells of Arabidopsis seedlings blocked cell 

expansion in the root resulting in reduced root growth (Ubeda-Tomas et al., 2008). In 

a second study by the same group, gai expressed in the endodermis of the root 

meristem blocked division of all cells within the meristem (Ubeda-Tomas et al., 2009). 

The authors suggest that GA controls cell division via this tissue by degrading the 

DELLA proteins which in turn allows cell expansion. Cell division is governed by the 

size of neighbouring cells therefore the expansion and division of endodermal cells in 

response to GA allows the expansion and division of cells in the neighbouring tissues. 

 

It is becoming increasingly clear that GA achieves a control of root growth as a result 

of interactions with numerous other signalling pathways. Fu and Harberd (2003) 

demonstrated that shoot apex produce auxin is required for the DELLA protein 

degradation within the root and thus regular root growth. 

 

1.2.6. The role of GA mutants in agriculture 

 

The study of GA signalling and biosynthesis in Arabidopsis furthers the scientific 

communities’ understanding of the mechanisms of plant growth. Due to the 

importance of GA mutants within agriculture this information could potentially lead to 

more manageable and productive crops. As mentioned previously the wheat Rht-1 

and rice sd-1 mutants played an integral role in improving crop yields during the 

Green Revolution. Both these varieties produced shorter plants that were less likely to 
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lodge in wet or windy weather and produced higher yields upon fertiliser application as 

more biomass was partitioned to the grain as opposed to the stem (Harberd et al., 

1999; Peng et al., 1999; Pearce et al., 2011). The Rht-1 mutations occur in the wheat 

DELLA gene and result in mutant proteins that constitutively repress GA signalling 

(Peng et al., 1999; Pearce et al., 2011). There are numerous Rht-1 alleles producing 

plants of varying heights (Ellis et al., 2005b). The limitation of the Rht-1 varieties is 

due to the pleiotropic effects caused by altered GA sensitivity, within the plant 

resulting in alterations to GA controlled process, including, fertility and root growth, 

and not just the desired stem elongation (Bai et al., 2013). For example, the inhibition 

of stem elongation in Rht may be of benefit to reduce lodging but the accompanying 

reduced root elongation may limit nutrient capture (Lynch, 2007). It is therefore 

important to understand GA control of different aspects of organ growth which may 

allow us to uncouple the responses allowing a more targeted manipulation of GA-

responsive growth. Additionally the targeted control of separate development 

processes may be possible with the identification of GA signalling components 

downstream of the DELLA proteins.  

 

1.3. GA BIOSYNTHESIS AND SIGNALLING 

 

1.3.1. GA biosynthesis 

 

The major components of GA biosynthesis have been identified in both monocot and 

dicot plants and indicate that there is a conserved pathway in higher plants (Hedden 

and Phillips, 2000; Yamaguchi, 2008). GA biosynthesis can be sub-divided into three 

specific stages. The first stage is a methylerythritol phosphate pathway which 

produces the hydrocarbon intermediate ent-kaurene from geranylgeranyl-

pyrophosphate (GGPP) (Kasahara et al., 2002). Initially it was believed that GA 

biosynthesis competed with other pathways, such as carotenoid biosynthesis, for 

GGPP as a substrate. However, van Schie et al. (2007) showed that Arabidopsis and 

tomato plants lacking geranyl diphosphate synthase had reduced GA levels but 
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carotenoid levels were unaffected, indicating that ent-kaurene is synthesised from a 

separate pool of GGPP by a GGPP synthase that requires GPP as a substrate. The 

production of ent-kaurene from GGPP requires the conversion of trans-geranylgeranyl 

diphosphate (GGDP) to ent-copalyl diphosphate (ent-CDP) via a proton-initiated 

cyclisation catalysed by the class II terpene cyclase, CPS (also known as ent-kaurene 

synthase A). The conversion of ent-CDP to ent-kaurene, initiated by phosphate 

ionization, is catalysed by the class I cyclase, KS; both reactions occur in the plastid 

(Figure 1.2.) (Sun and Kamiya, 1994; Hedden and Phillips, 2000; Sakamoto et al., 

2004). Both CPS and KS are encoded by single genes in Arabidopsis (Koornneef and 

Vanderveen, 1980).  

 

The second stage of GA biosynthesis involves the conversion of ent-kaurene to GA12, 

which is a common precursor for all GAs in plants (Hedden and Phillips, 2000), is 

catalysed by two cytochrome P450 monooxygenases: KO and ent-kaurenoic acid 

oxidase (KAO) in the endoplastic reticulum (Figure 1.2.) (Helliwell et al., 2001; 

Yamaguchi, 2008). KO has also been shown to localise to the plastidic outer envelope 

(Helliwell et al., 2001). KO catalyses the C-19 hydroxylation of ent-kaurene→ent-

kaurenol→ent-kaurenal→ent-kaurenoic acid, with the initial step being rate limiting 

and the subsequent intermediates being retained at the enzyme active site (Morrone 

et al., 2010). Again KO is encoded by one gene in Arabidopsis whilst rice possess five 

KO-like genes with only one (OsKO2) genuinely encoding a functional KO enzyme 

(Sakamoto et al., 2004). Conversion of ent-kaurenoic acid to GA12 by KAO is a three 

step process via the intermediates ent-7α-hydroxykaurenoic acid and GA12-aldehyde 

that requires the successive oxidations of C-7β, C-6β and C-7 (Figure 1.2.) (Hedden 

and Kamiya, 1997). As only one gene encodes the KO enzyme in Arabidopsis (GA2), 

mutants lacking this gene display a severe GA-deficient phenotype, e.g. severely 

dwarfed and require GA application to germinate (Koornneef and Vanderveen, 1980). 

Using a KAO encoding gene sequence from barley, GRD5, two homologous 

sequences in Arabidopsis were identified, KAO1 and KAO2 (Helliwell et al., 2001). 

Due to genetic redundancy Arabidopsis KAO mutants have not been identified. KAO 
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loss-of-function mutations in pea, sunflower and rice result in severe dwarfism 

(Davidson et al., 2003; Sakamoto et al., 2004; Fambrini et al., 2011). Interestingly a 

pumpkin 2-oxoglutarate-dependent dioxygenase (ODD) has been shown to convert 

GA12-aldehyde to GA12, although this has not been observed in other species (Lange, 

1997). 

 

After GA12 the biosynthesis pathway branches into two separate oxidation pathways, 

which form the final stage in the synthesis of bioactive GAs (GA1, GA3, GA4) (Figure 

1.2.). The production of GA1 and GA3 (in monocots) first requires the C-13 

hydroxylation of GA12 to GA53 (Yamaguchi, 2008). Both P450 and ODD enzymes have 

been shown to catalyse the 13-hydroxylation of GA12 (Sponsel and Hedden, 2004). In 

rice two P450s have been shown to catalyse the conversion of GA12 to GA53, but in 

Arabidopsis and Stevia rebaudiana these enzymes catalyse the 13-hydroxylation of 

ent-kaurenoic acid (Sponsel and Hedden, 2004; Brandle and Richman, 2008; 

Yamaguchi et al., 2008; Magome et al., 2013). The second branch in the pathway 

from GA12 is the C-20 oxidation which ultimately results in the bioactive GA4. GA20ox, 

an ODD, performs a series of 20-oxidations that converts GA12→GA15→GA24→GA9 

(Figure 1.2.) (Hedden and Kamiya, 1997). In the 20-hydroxylation reaction the C-20 

methyl group is oxidised to form an alcohol then an aldehyde which leads to the loss 

of C-20 when a γ-lactone is formed between C-19 and C-10 (Figure 1.1.) (Hedden 

and Thomas, 2012). The aldehyde intermediates of the C-20 oxidation accumulate to 

high levels in the plant, as do the alcohol intermediates to a lesser extent (Webb et al., 

1998), suggesting the intermediates have to rebind to GA20ox for oxidation to 

continue. The oxidation of the alcohol intermediate can be prevented by the 

lactonisation with the C-19 carboxylic acid, although some tissues contain a GA20ox 

capable of oxidising the C-20 lactone form (Ward et al., 1997).  There is little 

information as to how the C-20 is lost. There is some evidence that the formation of a 

free radical on C-10 that reacts with C-19 carboxylic acid to form a lactone is involved 

(Ward et al., 2002). Another study has shown that C-20 is lost directly as carbon 

dioxide, although this would require an as yet unidentified intermediate after the C-20 
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aldehyde (Kamiya et al., 1986). The conversion of GA53 to GA20 via GA44 and GA19 

also requires C-20 oxidation by GA20ox. (Figure 1.2.).  

 

The final oxidation step of the GA biosynthesis pathway, the conversion of GA9 to GA4 

and GA20 to GA1, is the 3β-hydroxylation by the ODD, GA3ox enzyme (Lester et al., 

1997; Martin et al., 1997; Williams et al., 1998). Additionally in monocots GA3 is 

formed from GA20 via GA5, with all the reactions being catalysed by GA3ox (Spray et 

al., 1996; Itoh et al., 2001; Appleford et al., 2006). Both classes of ODD are encoded 

by multiple genes in all plant species with Arabidopsis possessing five GA20oxs and 

four GA3oxs (Mitchum et al., 2006; Plackett et al., 2011). Multiple genes for the GA 

ODDs may be a consequence of them being the primary sites of regulation of GA 

biosynthesis, allowing a fine control of the pathway (Hedden and Thomas, 2012). Due 

to multiple genes encoding GA20ox and GA3ox, a level of genetic redundancy is 

observed in mutants of these genes. ga4 (ga3ox1) and ga5 (ga20ox1) only display 

mild GA deficient phenotypes, such as semi-dwarf stature (Koornneef and 

Vanderveen, 1980). Further studies of mutants lacking multiple paralogues from each 

family have shown that the different GA20ox and GA3ox genes have distinct roles in 

development. For example, analysis of various GA20ox combination knock-outs 

demonstrated the redundant role of GA20ox1, -2 and -3 in the floral transition and 

only minor roles for GA20ox4 and -5 (Plackett et al., 2012). 

 

The regulation of the biosynthesis pathway is a complex process responding to cues 

from environmental, homeostatic and developmental factors resulting in GA 

intermediates existing at higher levels than their bioactive forms and biosynthesis 

proceeding when bioactive GAs are required (Kobayashi et al., 1988). Other 

hormones also regulate GA biosynthesis with auxin, ABA and ethylene signalling 

affecting GA biosynthetic gene transcription (Ross, 1998; Ross et al., 2000; Gomez-

Cadenas et al., 2001; Xie et al., 2006; Bjorklund et al., 2007; Oh and Wehner, 2007; 

Zentella et al., 2007; Hattori et al., 2009). Whilst the levels of bioactive GAs in some 

tissues are controlled by synthesis there is also evidence that GA mobility is 
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necessary in some cases. Expression patterns of GA20ox and GA3ox in both the 

roots and floral tissues do not show complete overlap (Silverstone et al., 1997; 

Mitchum et al., 2006; Hu et al., 2008), suggesting some level of GA mobility. As a 

result the transcription of early and late GA biosynthesis genes may be spatially 

distributed. In the roots early GA biosynthesis gene CPS has been shown to be 

expressed in the root apical meristem (RAM), cell division zone and the cell 

elongation zone (Silverstone et al., 1997). GA3ox, a late GA biosynthesis gene, was 

shown to be expressed in the vasculature above the cell elongation zone as well as in 

the RAM, cell division zone and the cell elongation zone (Mitchum et al., 2006). 
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1.3.2. Deactivation of GA 

 

As with all plant hormones it is essential for the plant to be able to rapidly regulate the 

levels of bioactive GA in response to environmental cues. GA inactivation provides the 

primary method for control of bioactive GA levels in plants. The most prevalent 

Figure 1. 1. Molecular structure of GA in biosynthesis pathway. 

Italicised numerals shown of GA12 structure denote carbon position in 

GA structure. Coloured regions on GA1 and GA4 represent common 

structural features that confer bioactivity: green (3 hydroxyl group), blue 

(lactone group) and purple (6 hydroxyl group). Red (C2) and yellow 

(C13) circles represent carbon positions with structural or biological 

significance. 
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method of GA deactivation is the 2β-hydroxylation of bioactive GAs by the GA2ox 

enzyme (Figure 1.2.). Whilst the GA2ox genes encode a large gene family it is 

possible to divide them into two subfamilies based on function and sequence 

phylogeny (Han and Zhu, 2011). One group of these ODD enzymes oxidises the C19-

GAs, including the bioactive GAs. These enzymes can act as 2β-hydroxylases but can 

also oxidise the 2β-hydroxy group to a ketone (Sponsel and Macmillan, 1978). The 

second group of GA2ox enzymes acts on the C20-GA intermediates. In Arabidopsis 

five GA2ox genes are known: GA2ox-1, -2, -3, -4, -6 with GA2ox5 being a pseudo 

gene (Thomas et al., 1999; Hedden and Phillips, 2000; Jasinski et al., 2005). Loss of 

function mutants for each gene displayed no distinct phenotype, suggesting functional 

redundancy, but a loss-of-function GA2ox quintuple mutant showed an increased level 

of bioactive GA and phenotypic characteristics consistent with GA overdose (Rieu et 

al., 2008a). Exogenous application of GA to Col-0 had a greater effect on plant 

development than seen in the quintuple GA2ox mutant (Rieu et al., 2008a) suggesting 

that GA2oxs are the most important enzymes for reducing levels of bioactive GAs. 

However, the fact that the quintuple ga2ox mutant only displayed a partial GA 

overdose phenotype indicates that there are still other bioactive GA deactivating 

enzymes working within the plant.  

 

Several other mechanisms that lead to the inactivation of bioactive GAs have been 

identified in plants. ELONGATED UPPER INTERNODE (EUI) identified in rice 

encodes a P450 mono-oxygenase that converts GAs into their 16α,17-epoxides, 

although this conversion was less effective with the 13-hydroxylated GAs (Zhu et al., 

2006). The GA methyl transferases 1 and 2 (GAMT1, 2) were also shown to abolish 

biological activity of C19-GAs by methylating the 6-carboxy group (Varbanova et al., 

2007; Xing et al., 2007). GAMT1 and 2 are members of the salicylic acid MT, benzoic 

acid MT and theobromine synthase (SABATH) family of methyl transferase, but 

GAMT1 and -2 are specific to GAs.  
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1.3.3. GA signalling 

 

For a biological response to occur in response to a plant hormone a pathway involving 

the perception and signal transduction of this signal is necessary. In the last decade 

our understanding of the GA signalling pathway has improved dramatically. First the 

GA receptor GID1 must perceive the bioactive GA in the cell. The binding of GA to 

GID1 results in the degradation of a transcriptional regulator, the DELLA protein, by a 

26S-proteasome which ultimately changes the transcriptional output of the cell and 

causes a physiological response (summarised in Figure 1.2.). 

 

1.3.3.1. GID1 

 

The first stage of the GA signalling cascade is initiated through the interaction of 

bioactive GAs with the GID1 receptor (Figure 1.2.) (Ueguchi-Tanaka et al., 2005). 

Initially identified in rice, the GID1 gene encodes a soluble nuclear protein which has 

some homology to a human hormone sensitive lipase (Ueguchi-Tanaka et al., 2005; 

Gallego-Bartolome et al., 2010). Arabidopsis was shown to have three paralogues of 

the GID1 receptor GID1a, GID1b and GID1c (Griffiths et a., 2006). In Arabidopsis the 

three GID1s can function redundantly (Nakajima et al., 2006). The crystal structures of 

the rice GID1 and Arabidopsis GID1a show a GA binding pocket and a flexible N-

terminal extension (Murase et al., 2008; Shimada et al., 2008). GA binds to GID1 by 

the C-3 hydroxyl group hydrogen-bonding to the Tyr31 residue in the GA binding 

pocket (Murase et al., 2008; Shimada et al., 2008). This brings about a conformational 

change in GID1 that causes the N-terminal extension to close over the GA binding 

pocket. Once bound, the N-terminal region of the GA-GID1 complex has increased 

binding affinity for the DELLA protein at a domain containing the DELLA, TVHYNP 

and LExLE motifs (Griffiths et al., 2006a; Murase et al., 2008; Shimada et al., 2008). 

DELLA proteins lacking the DELLA and TVHYNP domains lose the ability to bind 

GID1 (Griffiths et al., 2006a; Willige et al., 2007). 
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Arabidopsis GID1b shows a slight GA-independent interaction with DELLA (Griffiths et 

al., 2006a). The gid1 triple mutant in Arabidopsis displays a dwarf phenotype more 

severe than the GA biosynthesis mutants, and the application of GA does not rescue 

growth (Griffiths et al., 2006a). gid1 single and double mutants show only small 

differences in vegetative growth when compared to wild-type and expression analysis 

shows all GID1 genes are expressed to some degree across all tissues. This 

evidence indicates a level of functional redundancy for the GID1 gene in Arabidopsis. 

Rice gid results in a severely dwarfed plant and a similar phenotype is observed in the 

barley loss-of-function mutants; gse1 (Ueguchi-Tanaka et al., 2005; Chandler et al., 

2008). The phenotypes of the gse1 and gid1 triple mutants suggest that GID1 is the 

primary GA receptor.  

 

1.3.3.2. DELLA proteins 

 

The DELLA proteins that form a complex with GA and GID1 are a class of proteins 

defined by a C-terminal GRAS domain (Figure 1.2.) (Pysh et al., 1999). Like all GRAS 

proteins DELLAs contain two leucine heptad repeats (LHR1 and -2) and three 

conserved motifs VHIID, PFYRE and SAW (Bolle, 2004). Mutations within the C-

terminal GRAS domain often result in a loss of DELLA function (Silverstone et al., 

1998). DELLA proteins possess two distinct regions that separate them from other 

members of the GRAS family of proteins, the DELLA and TVHYNP regions which as 

previously discussed are essential for GID1 binding. DELLA loss-of-function mutations 

display constitutively active GA signalling resulting in GA independent growth. This is 

illustrated by their rescue of GA biosynthetic mutants (Silverstone et al., 1997; 

Silverstone et al., 1998). 

 

In Arabidopsis there are 5  DELLA paralogues: GIBBERELLIN INSENSITIVE (GAI), 

REPRESSOR OF GA1-3 (RGA), RGA-LIKE1 (RGL1), RGL2 and RGL3 (Dill and Sun, 

2001). These 5 proteins have both specific and overlapping functions. RGL3 has a 

role in environmental stress response (Achard et al., 2008a; Wild et al., 2012). RGA, 
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RGL1 and RGL2 are all required for floral development (Cheng et al., 2004a; Tyler et 

al., 2004) whereas repression of vegetative growth is a result of GAI and RGA 

function (Dill and Sun, 2001; King et al., 2001a). The DELLA proteins are conserved 

across plant species, such as in wheat (Rht-1), rice (Slender Rice1, SLR1), barley 

(SLN1) and Brassica (BnRGA) (Peng et al., 1997; Fu et al., 2002; Sun and Gubler, 

2004; Gao et al., 2012). 

 

1.3.3.3. DELLA degradation 

 

It is known that the DELLA proteins repress all developmental processes that are 

regulated by GA, e.g. germination and cell elongation (Achard and Genschik, 2009). 

GA therefore acts by relieving DELLA repression of these processes. The process 

promoted by DELLA proteins are downstream negative aspects of GA signalling 

(Zentella et al., 2007). 

 

As described earlier the presence of GA in the cell leads to the formation of the 

DELLA-GA-GID1 complex in the nucleus. The formation of this complex allows for 

association with an F-box protein, which forms part of a  Skp-Cullin-F-box (SCF) E3 

ubiquitin ligase; the resulting ubiquitination of the DELLA targets it for degradation 

(Figure 1.2.) (Silverstone et al., 2001). In Arabidopsis there are two closely related 

SCF E3 Ub ligases involved in DELLA degradation: SLEEPY1 (SLY1) and SNEEZY 

(SNE/SLY2) (McGinnis et al., 2003; Strader et al., 2004). In the sly1 mutant, 

overexpression of SNE partially represses the mutant phenotype by reducing RGA 

and GAI accumulation, but not RGL2 (Strader et al., 2004; Ariizumi et al., 2011). This 

suggests that the two SCF proteins have different DELLA targets. Whilst the SCF-

GID1 complex is required for DELLA ubiquitination and degradation it is possible for 

just the binding of the GID1 protein to inactivate the DELLAs (Ariizumi et al., 2008; 

Ueguchi-Tanaka et al., 2008). Whilst DELLA degradation is likely the main form of 

control on the DELLA proteins other studies have shown that 

phosphorylation/dephosphorylation also plays an important role in DELLA function (Fu 
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et al., 2002; Sasaki et al., 2003; Gomi et al., 2004; Hussain et al., 2005; Itoh et al., 

2005; Hussain et al., 2007). 

 

1.3.3.4. Regulation of developmental processes by DELLA proteins 

 

It has been postulated by Ogawa et al. (2000) that DELLAs can function as 

transcription factors and studies showing association of RGA to chromatin would 

support this proposal (Zentella et al., 2007; Zhang et al., 2011). The lack of any 

obvious DNA-binding domain within DELLAs would suggest that they primarily 

function through transactivation and interaction with other regulatory proteins and not 

as transcription factors (Daviere and Achard, 2013). Recent studies in rice have 

demonstrated the potential of DELLAs as transactivators (Hirano et al., 2012). Fusion 

of the rice SLR1 with the activation domain of the herpes simplex virus protein VP16 

resulting in decreased plant growth, whereas fusion of SLR1 with the repressor 

domain had no effect on plant growth. The transactivation ability of SLR1 was 

suppressed by binding to GID1. These results indicate that DELLAs are repressing 

plant growth and potentially other GA responses by activating the transcription of 

downstream genes. This is supported by the findings of transcriptional profiling 

studies which demonstrate that many genes are upregulated by DELLAs (Zentella et 

al., 2007). 

 

Important findings in our understanding of DELLA functionality have been the 

demonstration that they directly interact with and regulate the activity of transcription 

factors. In all cases the DELLAs act by binding to and inhibiting the activity of 

transcription factors. The first of these to be identified were the PIFs which mediate 

phototropic growth of the hypocotyl (Figure 1.3.) (de Lucas et al., 2008; Feng et al., 

2008; Gallego-Bartolome et al., 2010). PIF4 is a basic helix-loop-helix (bHLH) 

transcription factor, which modulates light-regulated genes involved in 

photomorphogenesis. PIF4 previously had been shown to up-regulate cell elongation 

but this upregulation can be inhibited by its destabilisation through phytochrome B. de 
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Lucas et al. (2008) demonstrated in vitro and in planta that RGA bound to PIF4 

preventing it from binding to its target promoter sequence and thus suppressing cell 

elongation. RGA binds to the PIF4 at its bHLH DNA-binding domain. Another closely 

related PIF, SPATULA (SPT), has been shown to interact with RGA and RGL2. Unlike 

PIF4 the DELLA regulation appears to act post-transcriptionally on the SPT transcript 

accumulation (Josse et al., 2011). The DELLA-PIF interaction is also known to 

contribute to the accumulation of chloroplasts in etiolated tissue through the inhibition 

of PIF transcriptional activity (Cheminant et al., 2011). 

 

Since the discovery of the PIFs as DELLA-interacting proteins, numerous other 

DELLA partners have been identified. DELLAs have a role in plant defence due to 

their competitive binding to JASMONATE ZIM-DOMAIN (JAZ). DELLAs have been 

shown to compete with MYC2 for JAZ binding, the binding of JAZ-DELLA allowing 

MYC2 to activate JA response (Figure 1.3.) (Hou et al., 2010). The DELLA RGA has 

also been shown to bind MYC2 to prevent its regulation of the sesquiterpene 

biosynthesis pathway (Hong et al., 2012). The zinc finger C2H2 protein 

INDETERMINATE DOMAIN1 (IDD1)/ENHYDROUS (ENY) has also been shown to 

interact with DELLAs (Figure 1.3.) (Feurtado et al., 2011). It is thought that ENY 

mediates the effect of GA on ABA accumulation during seed maturation through its 

interaction with the DELLAs. ALCATRAZ is reported to block DELLA function in 

defining the separation layer responsible for fruit opening (Arnaud et al., 2010). 

HOOKLESS1 (HLS1) regulates apical hook formation in dark grown seedlings and is 

promoted by ETHYLENE INSENSITIVE 3/EIN3-LIKE 1 (EIN3/EIL1). DELLAs have 

been shown to bind directly to the DNA binding region of EIN3/EIL1 thus repressing 

up-regulation of HLS1 expression by this transcription factor (Figure 1.3.) (An et al., 

2012). Overexpression of BRASSINAZOLE RESISTANT1 (BZR1) is known to restore 

cell elongation in GA deficient plants; DELLA proteins can repress this function by 

direct binding to BZR1 thus preventing its DNA-binding capability (Bai et al., 2012). 

The microRNA156 (miR156)-targeted SQUAMOSA PROMOTER BINDING-LIKE 

(SPL) transcription factors activate the expression of MADS box and miRNA172 
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genes and are also bound by DELLAs thus inactivating their transcriptional activation 

and delaying floral transition (Figure 1.3.) (Yu et al., 2012). Park et al. (2013) showed 

that the BOTRYTIS SUSCEPTIBLE1 INTERACTOR (BOI) binds to DELLAs, the 

complex binding to and repressing expression from the promoters of GA responsive 

genes. DELLA proteins are also known to bind to the prefoldin protein, sequestering 

them to the nucleus thus preventing their role in the complex for chaperoning tubulin 

folding which controls the direction of cellular elongation (Figure 1.3.) (Locascio et al., 

2013). To date the prefoldin protein is the only know example of a DELLA protein 

function that does not involve gene expression. 

 

Some members of the MYB gene family are transcription factors that are known to act 

downstream of GA signalling (GAMYB) (Gubler et al., 1995; Gocal et al., 2001; 

Achard et al., 2004). In rice it appears that the GAMYB is solely responsible for 

transmitting the GA signal during stamen development (Aya et al., 2009). In the barley 

aleurone it has been shown that constitutive expression of GAMYBs can simulate GA 

regulated gene expression (Gubler et al., 1995). Despite a role for GAMYB in relaying 

the GA signal it has not yet been demonstrated that they are under DELLA regulation. 

In fact, transcriptomic studies demonstrate DELLA regulation of the two Arabidopsis 

GAMYBs (MYB33, MYB65). Microarray data has shown SCARECROW-LIKE 3 

(SCL3) to be a direct target of DELLAs in Arabidopsis seedlings. However, scl3 null 

mutants show increased signalling of GA biosynthetic genes and reduced GA 

responses (Figure 1.3.) (Zentella et al., 2007; Zhang et al., 2011). These results 

indicate that SCL3 is a positive regulator of GA signalling, and has a role in the 

homeostatic regulation of GA signalling. Furthermore, SCL3 regulates its own 

expression through interaction with DELLA and acts antagonistically with DELLA in 

the control of downstream GA responses and upstream GA biosynthesis genes. 
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1.3.3.5. DELLA proteins control the homeostasis of the GA signalling pathway 

 

As mentioned previously one of the major stages in GA signalling homeostasis is the 

deactivation of bioactive GAs by the GA2ox enzymes. Additionally homeostasis of 

bioactive GAs is maintained through the regulations of GA biosynthesis genes 

(Hedden and Phillips, 2000; Olszewski et al., 2002; Yamaguchi, 2008). Mutants with 

reduced bioactive GA have increased expression of some GA3ox and GA20ox 

biosynthetic genes and reduced GA2ox expression, and the converse is observed in 

plants with high levels of bioactive GA (Ogawa et al., 2003). Zentella et al. (2007) 

showed using microarrays of Arabidopsis that the presence of DELLA proteins 

increases expression of the GA3ox1 and GA20ox2 genes. To date SCL3 is the only 

GA biosynthesis regulatory protein known to interact with DELLA but other proteins 

have been implicated. In rice YABBY1 (YAB1) has been shown to bind to the 

promoter region of GA3ox and repress its expression (Dai et al., 2007). Additionally 

comparison of the expression patters of GA3ox, EUI, YAB1 and SLR1 between the 

YAB1 and slr1-1 mutants indicate that GA signaling is required for GA-mediated 

repression of YAB1. The bZIP transcription factor RSG (REPRESSION OF SHOOT 

GROWTH) has also been shown to bind the DELLA proteins and control the 

expression of GA20ox and GA3ox genes in tobacco (Fukazawa et al., 2006). 

 

Other proteins have been shown to control GA biosynthesis although as yet there is 

no known interaction between them and the DELLA proteins. knotted1-like homeobox 

(KNOX) proteins suppress GA20ox1 expression in tobacco (Figure 1.3.) (Sakamoto et 

al., 2001). Additionally the expression of other GA signaling genes was effected, 

including SLR1 and GID1. Whilst studying the light dependent hypocotyl elongation of 

the cryptochrome1/cryptochrome2 mutant in Arabidopsis, Zhao et al. (2007) 

demonstrated that cryptochromes were required for the upregulation of GA2ox and 

down-regulation of GA20ox and GA3ox under blue light (Figure 1.3.). Similar results 

were observed in rice (Hirose et al., 2012). This result is a further example of the 

many environmental cues involved in the regulation of GA biosynthesis and signalling. 
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More recently dehydration-responsive element-binding proteins (DREBs) have been 

shown to reduce levels of bioactive GAs in tomatoes by specifically binding to the 

dehydration-responsive element/C-repeat elements of the CPS promoter and 

reducing CPS expression (Figure 1.3.) (Li et al., 2012). Ethylene response factors and 

C-repeat binding factors have also been shown to regulate the expression of GA2ox 

genes in response to cold and salt stress (Jung et al., 2010; Kurepin et al., 2013). 
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Figure 1. 3. DELLA protein regulation of GA biosynthesis and 

Arabidopsis development through their interaction with 

transcriptional regulators. 

Genetic pathways showing transcriptional regulators that regulate the 

late steps of GA biosynthesis. Also shown are components which 

regulate Arabidopsis developmental processes and whose activity is 

directly controlled through the binding of DELLA proteins. Solid arrows 

indicate direct interactions whilst dotted arrows represent indirect 

interactions. 
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1.3.3.6. GA transport 

 

There is some evidence that bioactive GAs are produced within the required tissues 

with GA3ox and GA20ox being expressed in the elongating organs of rice and 

tobacco (Itoh et al., 1999; Kaneko et al., 2003). However, the expression of these 

enzymes at the sites of GA action does not rule out the transport of early 

intermediates in the GA biosynthesis pathway. ent-kaurene, GA4, GA6, GA15 GA20 and 

GA24 have all been postulated as forms of transported GA (Proebsting et al., 1992; 

King and Ben-Tal, 2001; Yamaguchi et al., 2001; King, 2003; King, 2006; Kramer, 

2006). One example of where GA transport is required is in germinating cereal seeds 

as bioactive GAs are synthesised in the scutellum epithelial cells of the embryo and 

move to the aleurone to drive production of α-amylase and other hydrolytic enzymes 

(Kaneko et al., 2002). The aleurone does not have the capacity to produce GAs and is 

therefore dependent on this external source of bioactive GA (Kaneko et al., 2002). 

Additionally, petal are non-autonomous for GA, requiring the hormone to be supplied 

from the anthers and receptacle (Weiss and Halevy, 1989). Other studies have shown 

that GA1, GA3, and GA4 are all transported between different tissues (Drake and Carr, 

1979; Eriksson et al., 2006; Shani et al., 2013)  

 

A more in-depth review of GA transport is provided in Chapter 5.1. 

 

1.4. AUXIN 

 

1.4.1. The Auxin Receptors 

 

To date three classes of proteins have been shown to bind and potentially perceive 

bioactive auxin (indole-3-acetic acid or IAA): AUXIN BINDING PROTEIN 1 (ABP1), 

TIR1 and the recently identified SKP2A (Figure 1.4.). ABP1, unlike the nuclear 

localised SKP2A and TIR1, is thought to be active in the extracellular space. The 

binding affinity of ABP1 was found to be highest at pH 5.5, the pH found in the 
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extracellular space, whilst ABP1 was shown to have no binding at pH 7 which is the 

pH of the endoplastic reticulum where ABP1 is predominantly localised (Tian et al., 

1995). As ABP1 is a soluble protein a carrier protein would be required to transport 

IAA the signal into the nucleus and as yet no obvious candidates have been identified. 

A glycosylphosphatidylinositol (GPI)-anchored protein in maize has been suggested 

as a potential ABP1 interactor but as this also lacks a transmembrane domain it is 

unlikely to be a facilitator of the IAA signal (Shimomura, 2006). Both leucine-rich 

repeat receptor-like protein kinase and phospholipases have been postulated as 

downstream elements of ABP1 signalling, but as yet there is no direct evidence for 

this (Sauer et al., 2013). As little is known about how ABP1 functions there is little 

information of how it controls development. T-DNA insertion mutants of ABP1 in 

Arabidopsis are embryo lethal, showing the integral role of this protein in plant 

development (Chen et al., 2001). There is some evidence that ABP1 is required for 

auxin-dependent cell cycle and cell expansion (David et al., 2007; Braun et al., 2008) 

and auxin-triggered ion fluxes (Sauer and Kleine-Vehn, 2011). ABP has also been 

implicated in the control of (PINFORMED) PIN localisation to the plasma membrane 

due to its role in auxin induced inhibition of clathrin-mediated endocytosis (Robert et 

al., 2010) and a cell polarity-generating mechanism which activates the Rho-GTPases 

ROP2 and -6. These ROPs control endocytosis and cytoskeleton reorganization via 

the effectors RIC4 and RIC1 (Xu et al., 2010). ABP1 has been shown to act upstream 

of ROP6 and RIC1 regulated clathrin-mediated endocytosis of the auxin efflux 

transporters (PINs) (Chen et al., 2012). These results indicate that ABP1 may have an 

involvement in the control of auxin transporter membrane proteins and suggest ABP1 

could act purely on the protein level rather than on transcriptional activity. As such 

ABP1 could be controlling cellular responses to local auxin gradients, such as those 

observed in the leaf (Sauer et al., 2006; Scarpella et al., 2006).  

 

Recently it has been shown that SKP2A can bind directly to auxin (Jurado et al., 

2010) resulting in the promotion of the interaction of this receptor with the cell cycle 

factors, DPB and E2FC, leading to their degradation (del Pozo et al., 2006; Jurado et 
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al., 2008). Interestingly SPK2A is also degraded under high auxin conditions (del 

Pozo et al., 2006; Jurado et al., 2008). SKP2A shares many similarities with the best 

understood auxin receptor TIR1, since both are nuclear localised and the binding site 

of auxin in SKP2A was discovered using the TIR1 binding site as a template. TIR1 

was postulated as an auxin receptor after the application of auxin to crude plant 

extracts promoted the interaction between SCF
TIR1

 and the AUX/IAAs. The presence 

of radio-labeled IAA in a purified SCF
TIR1

-AUX/IAA complex later confirmed TIR1’s 

role as an auxin receptor (Figure 1.4.) (Dharmasiri et al., 2005; Kepinski and Leyser, 

2005). Further analysis of the X-ray crystal structure of TIR1 showed a core ring-like 

structure for IAA binding (Tan et al., 2007). TIR1, like SLY1 in the GA signalling 

pathway, is an F-box protein in a SKP-Cullin F-box (SCF) type ubiquitin E3 ligase. As 

with SLY1 and GA TIR1 requires the presence of the other components of the SCF 

complex and a 26S-proteasome to have any downstream function, which ultimately 

leads to the degradation of the AUX/IAAs and activation of auxin-responsive gene 

expression (Figure 1.4.). Unlike the GA signalling pathway, where the SLY1 subunit of 

the SCF
SLY1

 E3 ubiquitin ligase binds to DELLA proteins in association with the GID1-

GA complex, TIR1 binds directly to AUX/IAAs in the presence of auxin (Figure 1.4.). 

SCF
TIR1

 does not require post-translational modification after auxin binding as is the 

case in many other SCF ubiquitin E3 substrate interactions (Petroski and Deshaies, 

2005). Similar to other components of hormone signaling pathways there is a level of 

functional redundancy mediating auxin signalling, with the presence of five TIR1 

paralogues in Arabidopsis (ABF1 to -5), that bind auxin with different affinities 

(Villalobos et al., 2012). 

 

1.4.2. TIR1-auxin binding induces AUX/IAA degradation 

 

Auxin induces the formation of a TIR1-AUX/IAA receptor-ligand interaction therefore 

implicating AUX/IAA as an auxin co-receptor (Figure 1.4.). AUX/IAA domain II binds 

auxin, the co-factor inositol hexakisphosphate and TIR1 upon auxin binding to TIR1, 

essentially forming a lid over the TIR1 auxin binding site (Dharmasiri et al., 2005; 
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Kepinski and Leyser, 2005; Tan et al., 2007). Aux/IAAs are nuclear localised proteins 

with four domains: domain I represses transcription, domain II regulates protein 

stability and domains III and IV at the C-terminus allow for the binding with other 

components of the IAA signalling pathway (Ulmasov et al., 1999; Worley et al., 2000; 

Ouellet et al., 2001; Tiwari et al., 2004). The demonstration that AUX/IAAs are 

stabilised by the presence of the proteasome inhibitor MG132, highlights the 

importance of the 26S-proteasome in controlling their degradation (Ramos et al., 

2001).  

 

The study of gain-of-function AUX/IAA mutants in Arabidopsis has demonstrated the 

complexity of auxin-mediated AUX/IAA degradation. The CUL1 subunit of the SCF 

complex requires covalent modification by conjugation to the RELATED TO 

UBIQUITIN (RUB) protein. The RUB conjugation in turn requires the action of E1, E2 

and Ring box 1 which appears to be an E3 enzyme. Loss-of-function mutations in any 

of the genes encoding these enzymes results in reduced SCF
TIR1

 effectiveness (del 

Pozo and Estelle, 1999; Gray et al., 2001; Gray et al., 2002; Dharmasiri et al., 2003). 

Furthermore if the RUB protein is not cleaved by COP9 SIGNALOSOME post-

modification of CUL1, the SCF effectiveness is reduced (Schwechheimer et al., 2001; 

Petroski and Deshaies, 2005). CULLIN-ASSOCIATED and NEDD8-DISSOCIATED1 

(CAND1) bind unmodified CUL1 mutually exclusively of SKP1 (Petroski and 

Deshaies, 2005), inhibiting SCF activity and AUX/IAA degradation. Interestingly, 

cand1 Arabidopsis mutants show decreased AUX/IAA degradation, potentially due to 

a requirement for CAND1 in SCF cycling (Cheng et al., 2004b; Chuang et al., 2004; 

Feng et al., 2004; Petroski and Deshaies, 2005). 

 

1.4.3. AUX/IAA-ARF interaction represses ARFs role as transcriptional 

regulators of auxin-responsive genes 

  

In Arabidopsis there are 29 Aux/IAA proteins (IAA1-20 and IAA26-34). With this level 

of genetic redundancy it is unsurprising that there has been limited success assessing 
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loss-of-function AUX/IAA mutations (Overvoorde et al., 2005).  In contrast gain-of-

function mutants have provided important information on the role of AUX/IAAs in auxin 

signalling (Woodward and Bartel, 2005). For example the gain-of-function 

IAA12/BODENLOS (BDL) mutant confers the same embryo and seedling lethal 

phenotype as the arf5/monopteros (arf5/mp) (Hamann et al., 2002), indicating the 

antagonistic relationship between the AUX/IAAs and the ARFs (Figure 1.4.). Later 

studies revealed that IAA12 interacts with ARF5, negatively regulating ARF5 activity 

(Hardtke et al., 2004). Both ARFs and AUX/IAAs contain C-terminal domains III and 

IV which are the sites of heterodimerization (Kim et al., 1997) and subsequent 

repression of ARF transcriptional activation (Tiwari et al., 2003). Whether an ARF acts 

as a repressor or activator is dependent on its middle region (MR) domain. A Q-rich 

MR (e.g. ARF19) will result in activation and an S-rich region (ARF9-18) will result in 

repression (Hagen and Guilfoyle, 2002; Okushima et al., 2005). Genetic analysis has 

shown that specific ARFs are involved in specific auxin controlled developmental 

processes including; ARF5/MP and ARF17 in embryogenesis (Hardtke and Berleth, 

1998; Mallory et al., 2005); ARF7, ARF10, ARF16 and ARF19 in root development 

(Mallory et al., 2005; Okushima et al., 2005; Wang et al., 2005a), ARF2, ARF3/ETTIN 

(ETT), ARF6 and ARF8 in flower development (Sessions et al., 1997; Ellis et al., 

2005a; Nagpal et al., 2005; Schruff et al., 2006), and ARF1 and ARF2 in senescence 

(Ellis et al., 2005a).   

 

The ARFs control transcription through the VIVIPAROUS1/ABSCISIC ACID 

INSENSITIVE 3 (VP1/ ABI3) like DNA binding domain at the N-terminus (Ulmasov et 

al., 1997a). This domain interacts with the auxin-response elements (ARE) of 

promoters of certain auxin-inducible genes, including AUX/IAAs and GH3s (Ulmasov 

et al., 1995) (Figure 1.4.). These promoters contain a 6 nucleotide motif, GAGACA, 

although as there is variability in the 1
st
 two nucleotides, the consensus sequence 

being GACA (Ulmasov et al., 1995; Abel et al., 1996; Ulmasov et al., 1997a). Differing 

binding affinities of TIR1/ABFs, AUX/IAA and ARFs allow for fine tuning of the auxin 

signalling pathway. As mentioned previously, there is extensive functional redundancy 
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within the three important central components within the auxin signalling pathway; 

TIR1/ABFs (6), AUX/IAA (29) and ARFs (23). In the TIR1-AUX/IAA interaction the 

auxin interaction surface is not strikingly conserved giving rise to certain TIR1/ABF-

AUX/IAA pairs with specific auxin affinities. Using a yeast heterologous system it was 

shown that TIR1-AUX/IAA7 had a high affinity of Kd ≈ 10 nM whilst TIR1-AUX/IAA12 

had a much lower affinity of around 300 nM (Villalobos et al., 2012). Sauer et al. 

(2013) postulated that differences in TIR1/ABF-AUX/IAA interaction could explain the 

large dynamic range of auxin responses and the variety of developmental processes 

under auxin control. Similarly the homologues of TIR1/ABF show differing auxin 

affinity and AUX/IAA degradation rates. ABF4 and -5 show a higher binding affinity for 

certain synthetic auxins. Yeast assays have shown that TIR1 and ABF2 induce a 

more rapid degradation of AUX/IAAs than ABF1 and -3 due to their higher affinity for 

IAA (Parry et al., 2009; Havens et al., 2012).  The AUX/IAA-ARF interactions also 

possess another level of complexity and control due to the 667 possible interactions 

that can occur. Furthermore, the 23 ARFs can compete with each other for ARE 

binding sites (Sauer et al., 2013). 
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1.4.4. Auxin Transport 

 

Auxin is one of the few hormones for which the mechanism of intercellular transport is 

well understood. To date auxin transport and the auxin gradient it creates have been 

implicated in root gravitropism, shoot branching, phototropism and leaf shape (Chen 

et al., 1985; Emery et al., 1998; Miguel et al., 1998; Friml et al., 2002a; Nordstrom et 

al., 2004; Morita, 2010). The process of auxin transport can be separated into three 
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Figure 1. 4. Summary model of auxin transport and nuclear 

signalling via TIR/AFB.  

IAA maintained in plant cells through auxin transport. IAA can diffuse 

through the lipidic plasma membrane or be transported by the 

AUX1/LAX influx carriers into the cell. IAA can exit cells by the action of 

PGP- or PIN-type efflux carriers. PIN1/2 contributes to polar auxin 

transport. PIN3/4/7 allow for asymmetric auxin distribution and tropic 

response. In cell IAA binds TIR1 receptor in the SCFTIR1 complex, 

recruiting the Aux/IAA repressors to TIR1 resulting in AUX/IAA 

destruction and the subsequent activation of the auxin-response genes 

by the ARFs. 



 

32 | P a g e  
 

main components: auxin efflux, auxin influx and ATP-dependent auxin transport 

(Figure 1.4). Auxin efflux is maintained by the PIN proteins, first identified in 

Arabidopsis plants with the PINFORMED inflorescence phenotype of pin mutants 

(Okada et al., 1991; Galweiler et al., 1998). To date eight PIN proteins have been 

identified, which fall into two different classes: five complete PINs (PIN1, -2, -3, -4, 

and -7) and three short PINs (PIN5, -6 and -8) which lack the long hydrophobic loop 

found in the other PIN proteins (Mravec et al., 2009). It is believed these shorter PINs 

have a function in the compartmentalisation of auxin within the cell (Mravec et al., 

2009). Whilst all PINs function as efflux transporters, the polarity of their localisation 

can differ. PIN1 and -2 are predominantly polar localised (shootward and rootward 

ends of the cell) whilst PIN3, -4 and -7 have apolar as well as polar localisation (Friml 

et al., 2002b; Friml and Palme, 2002; Friml et al., 2002a; Blilou et al., 2005; 

Wisniewska et al., 2006) (Figure 1.4.). The localisation of the PINs is usually related to 

their specific control of plant development. PIN2’s primary role is in root gravitropsim, 

PIN3 redirects auxin for directional growth whilst PIN1, -4 and -7 are required for a 

variety of developmental processes, including organogenesis (Chen et al., 1998; 

Muller et al., 1998; Friml et al., 2002b; Friml et al., 2004; Zazimalova et al., 2007; 

Rahman et al., 2010). Recent studies have shown that PIN localisation within the cell 

can be altered by phosphorylation (Michniewicz et al., 2007; Zhang et al., 2010).  

 

In Arabidopsis auxin influx is performed by an amino acid permease family of plasma 

membrane (PM) H+-symporters which consists of AUX1, LAX1, -2 and -3 with AUX1 

and LAX3 being the high affinity transporters (Bennett et al., 1996; Parry et al., 2001; 

Yang et al., 2006; Kerr and Bennett, 2007; Swarup et al., 2008; Yang and Murphy, 

2009) (Figure 1.4.). The auxin transport model suggests that the AUX1/LAX 

transporters function to create auxin sinks from which they can then be transported to 

specific areas of the plant to induce developmental processes (Marchant et al., 2002; 

Kramer, 2004; Swarup et al., 2005; Kramer and Bennett, 2006; Bainbridge et al., 

2008; Swarup et al., 2008; Ugartechea-Chirino et al., 2010; Vandenbussche et al., 

2010). aux1 and lax3 mutants show a distinct lack of gravitropism or lateral root 
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formation, respectively (Mirza et al., 1984; Bennett et al., 1996; Swarup et al., 2008), 

showing that certain paralogues have roles in specific developmental processes.  

 

The ATP-binding cassette transporter B subfamily/PGLYCOPROTEIN 

MULTIDRUGRESISTANCE (ABCB/PGP) P-glycoproteins use energy from ATP to 

transport auxin. ABCB1, -4 and -19 have been shown to transport auxin in 

Arabidopsis and are implicated in long distance transport (Figure 1.4.) (Noh et al., 

2001; Multani et al., 2003; Petrasek et al., 2006; Blakeslee et al., 2007; Cho et al., 

2007; Lewis et al., 2007; Peer and Murphy, 2007; Wu et al., 2007; Yang and Murphy, 

2009; Knoller et al., 2010). As with the other auxin transporters, each ABCB 

transporter has a role in specific developmental processes. ABCB1 controls the 

movement of auxin out of apical tissues (Bandyopadhyay et al., 2007). ABCB4 also 

has roles in shootward auxin transport, root hair elongation, and light/sucrose-

dependent primary root growth (Santelia et al., 2005; Terasaka et al., 2005; Cho et al., 

2007). Mutants lacking ABCB4 show increased rates of gravitropic bending (Lewis et 

al., 2007). The abcb19/pgp19/mdr1/fby-1 mutant shows increased rates of phototropic 

bending (Noh et al., 2003; Lin and Wang, 2005; Rojas-Pierce et al., 2007; Nagashima 

et al., 2008). Interestingly the mutants lacking ABCB4 and -9 show an increase in 

tropic responses that require auxin, suggesting ABCB transporters may have an 

important role in maintaining precise hormone levels in the cells. This would explain 

why ABCB4 can function as an auxin import transporter under low auxin 

concentrations and as a much more effective exporter under high auxin conditions 

(Figure 1.4.) (Terasaka et al., 2005; Peer and Murphy, 2007; Yang and Murphy, 2009; 

Kim et al., 2010). 

 

1.4.5. Auxin biosynthesis 

 

Despite the extensive data on both auxin signalling and transport the understanding of 

auxin biosynthesis in plants is still quite poor. It has been postulated that there are two 

separate types of auxin biosynthesis pathways (Figure 1.5.): the tryptophan (trp)-
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independent pathway which may have indole-3-glycerol phosphate or indole as early 

precursors but the route of the biochemical pathway to IAA is still poorly understood 

(Jian et al., 2000; Zhang et al., 2008); and the Trp-dependent pathway for which 

several different pathways have been suggested (Mashiguchi et al., 2011; Won et al., 

2011) (Figure 1.5.). Little is known about the localization of the auxin biosynthesis 

enzymes within the cell, although tryptophan is known to be synthesized within the 

chloroplast (Radwanski and Last, 1995). A complete trp-dependent auxin biosynthesis 

has been identified in the bacteria Agrobacterium rhizogenes, Agrobacterium 

tumefaciens and Pseudomonas syringae. Agrobacterium rhizogenes, which induces 

the hairy roots, contains a large root inducing plasmid with both the 

AUX1/IAAM/TMS1 and AUX2/IAAH/TMS2 genes (Comai and Kosuge, 1982; 

Schroder et al., 1984; Thomashow et al., 1984; Yamada et al., 1985; Camilleri and 

Jouanin, 1991). Initially AUX1 encodes the tryptophan-2-monooxygenase enzyme 

which catalyzes the conversion of Trp to indole-3-acetamide (IAM) which is 

subsequently converted to IAA by an indole-3-acetamide hydrolase which is encoded 

by AUX2 (Figure 1.5.) (Yamada et al., 1985; Camilleri and Jouanin, 1991; Gaudin et 

al., 1993; Nemoto et al., 2009; Mano et al., 2010). Subsequently it has been shown 

that IAM is present in numerous plant species suggesting the IAM pathway as a 

conserved auxin biosynthesis pathway within plants as well as bacteria (Saotome et 

al., 1993; Rajagopal et al., 1994; Lemcke et al., 2000; Pollmann et al., 2002; 

Sugawara et al., 2009). Furthermore Arabidopsis and tobacco were both shown to 

possess genes (AtAMI1 or NtAMI1) that encode a cytoplasm localized indole-3-

acetamide hydrolase (Figure 1.5.) (Pollmann et al., 2003; Pollmann et al., 2006; 

Nemoto et al., 2009). There is still little evidence on how IAM is produced within 

plants. Studies into ethylene response (Stepanova et al., 2008) and shade avoidance 

(Tao et al., 2008) identified a gene (TRYPTOPHAN AMINOTRANSFERASE of 

ARABIDOPSIS 1 or TAA1) encoding a cytoplasm localized aminotransferase that 

converts Trp to indole-3-pyruvic acid (IPA) (Figure 1.5.). Mutation in the TAA1 gene 

lead to a severe reduction in plant IAA levels, additionally wild-type plants transferred 

to shade experience an increase in IAA synthesis whereas taa1 plants do not (Tao et 
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al., 2008), indicating a role for IPA in the rapid production of IAA in response to 

environmental stimuli. There are four genes closely related to TAA1, TRYPTOPHAN 

AMINOTRANSFERASE RELATED 1 to 4, whilst TRANSPORT INHIBITOR 

RESPONSE 2 has been shown to be identical to TAA1 (Stepanova et al., 2008; 

Yamada et al., 2009). TAA1-overexpressing lines show no increase in IAA levels 

indicating TAA1 is unlikely to be the rate-limiting enzyme in this pathway (Stepanova 

et al., 2008; Tao et al., 2008). 

 

Similar to IAM the IPA auxin biosynthesis pathway is also present in the bacterial 

kingdom where Azospirillum brasilense, Enterobacter cloacae, and Pseudomonas 

putida convert Trp→IPA→IAD→IAA (Koga et al., 1991; Costacurta et al., 1994; 

Patten and Glick, 2002). It is not known if IPA is converted to (indole-3-acetaldehyde 

(IAD) in plants. More recently it has been shown that IPA can be converted directly to 

IAA in plants by a family of YUCCA (YUC) proteins (Mashiguchi et al., 2011; 

Stepanova et al., 2011; Won et al., 2011). Using [
13

C11,
15

N2]-Trp it was shown that Trp 

can converted to both IPA and IAD, but TAA1ox plants showed increased levels of 

IPA and not IAD, indicating IAD may function in a different auxin biosynthesis pathway 

to IPA (Mashiguchi et al., 2011). By blocking the action of TAA1 Stepanova et al. 

(2011) showed that this removed the high IAA phenotypes of YUC1ox plants, 

suggesting YUC1 required TAA1 to function. YUC2 was shown to convert IPA to IAA 

in E. coli (Mashiguchi et al., 2011). Additionally taa mutants are deficient in IPA 

whereas yuc mutants have low IAA, but high IPA (Mashiguchi et al., 2011; Won et al., 

2011). Taken together these results indicate a pathway for IAA biosynthesis through 

the conversion of Trp to IAA via IPA by the TAA1 and YUC enzymes (Figure 1.5.).   

 

Two additional Trp-dependent IAA biosynthesis pathways have been proposed: the 

TAM and IAOX/IAD pathways. The cytosol-localized tryptophan decarboxylase is 

known to convert Trp to TAM (Di Fiore et al., 2002). In Arabidopsis, maize and tomato 

it has been reported that YUCCA proteins catalyze the conversion of TAM to N-

hydroxytryptamine (Zhao et al., 2001; LeClere et al., 2010; Exposito-Rodriguez et al., 
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2011). However, N-hydroxytryptamine has never been identified in plants bringing into 

question its role as an IAA precursor. The indole-3-acetaldoxime (IAOX)/IAD auxin 

biosynthesis pathway is specific to Brassica species (Nafisi et al., 2007). Two 

homologous cytochrome P450 enzymes, CYP79B2 and CYP79B3 can convert Trp to 

IAOX (Hull and Celenza, 2000; Hull et al., 2000; Mikkelsen et al., 2000), which in turn 

is converted to IAN by another cytochrome P450, CYP71A13 (Figure 1.5.) (Nafisi et 

al., 2007). How IAN is converted to IAA is still unclear. The Arabidopsis nitrilase genes 

AtNIT1–AtRNIT4 have been shown to hydrolyze IAN in vitro, although this reaction is 

inefficient when compared to the hydrolysis of phenylpropionitrile, allylcyanide, 

phenylthio acetonitrile, and methylthio acetonitrile by these enzymes (Vorwerk et al., 

2001). There is some evidence that the DELLA protein interactor PIF4 regulates the 

expression of some auxin biosynthesis genes, such as TAA1 (Franklin et al., 2011). 
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1.5. CHEMICALS SCREENS FOR ELEMENTS CONTROLLING 

PLANT DEVELOPMENT 

 

The basis of chemical screens is the use of small molecules to alter protein function 

and therefore biological function of the target organism. Whilst chemical screens have 

been utilised for many years (Macey and Barber, 1970) it was not until the mid-1990s 

that their true advantages over conventional genetic approaches for probing 

biochemical pathways was initially realised (Mitchison, 1994; Schreiber, 1998). A 

major advantage of chemical screens is their ability to overcome genetic redundancy. 
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Figure 1. 5. IAA biosynthesis in plants.  

Proposed synthesis of IAA from indole-3-glycerol phosphate via 

numerous trypotophan-dependent pathways. Solid black text 

represents chemical steps in pathway, italicised grey text 

represents enzyme/gene, solid grey arrows represent reaction 
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It is believed that around 65% of Arabidopsis genes are in gene families containing 

more than two members (The Arabidopsis Genome Initiative, 2000)     , and therefore 

the importance of genetic functional redundancy in research cannot be 

underestimated. There are numerous example of this within both GA signalling and 

biosynthesis. In Arabidopsis there are three GA receptors (GID1a-c) and five DELLA 

proteins (RGA, GAI, RGL-1, -2, -3) (Hedden and Thomas, 2012). Mutations in the 

individual GID1 genes have a negligible effect on plant phenotype as a result of 

redundancy (Griffiths  et al., 2006). Similarly, single loss-of-function mutations in the 

biosynthesis gene, AtGA20ox2 results in a largely wild-type phenotype due to the 

presence of the other four GA20ox genes (Rieu et al., 2008b). In chemical screens 

genetic redundancy is overcome when small molecules bind and inhibit multiple 

components of the network as a general antagonist, or act as a specific agonists by 

activating specific components (Toth and van der Hoorn, 2010). An example of a 

small molecule acting as general antagonist is bikini, which was uncovered in a 

screen of compounds aimed at identifying those which produced a constitutive BR 

response, similar to plants overexpressing the BR biosynthetic gene DWARF4 or the 

BR receptor gene BRASSINOSTEROID INSENSITIVE 1 (BRI1) (De Rybel et al., 

2009). Using BR signalling mutants it was shown that bikinin acts on BIN2, a glycogen 

synthase kinase (GSK)3-like kinase that mediates phosphorylation of the transcription 

factors bri1-EMS-SUPRESSOR 1 and BRASSINAZOLE RESISTANT 1. Bikinin was 

also shown to bind to the ATP pocket to inhibit another subset of GSKs along with the 

BIN2 and thus triggering the complete BR response. This paper demonstrates the 

potential of small molecules to overcome genetic redundancy as T-DNA insertions or 

specific GSK3 inhibitors would not have displayed a phenotype.  

 

Park et al. (2009) demonstrated the power of chemical screens to identify specific 

agonists when they identified the elusive ABA receptors and their role in ABA 

signalling using pyrabactin. Using a chemical screen to isolate ABA agonists, they 

identified pyrabactin. This compound then led to the identification, of PYRABACTIN 

RESISTANCE 1 (PYR1), using an Arabidopsis suppressor screen against pyrabactin. 
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PYR1 was then confirmed to encode an ABA receptor. PYR1 is a member of the 

START domain superfamily which also contains 13 similar genes (PYR-Like 1-13, 

Pyl1-13). In a related paper Ma et al. (2009) showed that this 14-member gene family 

are ABI1-interacting proteins, RCAR1-14 (Regulatory Components of ABA Receptor). 

Interaction studies showed that PYR1 bound to members of the PP2C subfamily in 

the presence of ABA. Using enzyme kinetics it was shown that in the presence of ABA 

and PYR1, PP2C (an ABA signalling inhibitor) and phosphatase activity was 

decreased. This study shows how chemical genetics can be used as a starting point 

to identify potentially novel aspects of a hormone signalling pathway that would 

otherwise be masked from conventional genetic screens by functional redundancy.  

 

The structures of small molecules to bind specific proteins can be extremely diverse, 

requiring specific contours, charge, hydrogen bonding, hydrophobicity, salt bridges, 

van der Walls interactions and other factors associated with protein binding pockets 

(Robert et al., 2009). The composition of the chemical library for the screen is 

therefore particularly important. In essence the formation of chemical libraries falls into 

two categories: ‘focused libraries’ and ‘diversity orientated libraries’ (Young and Ge, 

2004), each with its own advantages and disadvantages. Diversity-orientated libraries, 

due to their wide scope, are more likely to bind a new class of protein and overcome 

genetic redundancy, but produce fewer hits and the identified compound is unlikely to 

possess the potency of a compound identified by a focused library screen (Robert et 

al., 2009). Literature searches have shown around 10 million pure compounds of a 

molecular mass of around 1000 have been identified as having a biological effect as 

compared to the 10
60

 that have the potential to have an effect (Dobson, 2004). Due to 

the advent of combinatorial chemistry it has become possible for the commercial 

production of libraries containing numerous previously unknown chemicals. The 

identification of pyrabactin (discussed previously) provides a good example of the 

successful use of diversity-orientated libraries. Triazoles inhibit the activity of 

cytochrome P450s, which catalyse many reactions in the BR biosynthesis pathway 

(Kaschani and van der Hoorn, 2007). Using a small focus library of 10 synthetic 
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triazoles. Min et al. (1999) identified brassinazole as a candidate BR biosynthesis 

inhibitor in rice and Lepidium sativum. Later papers on Arabidopsis confirmed that 

brassinazole was inhibiting BR biosynthesis by binding the cytochrome P450 

monooxygenase, DWF4 (Asami et al., 2001).  

 

It is possible to combine the large amount of genetic data for model species and the 

information from chemical screens to help identify the role of the identified chemicals 

on plant processes. This form of chemical screen has been termed ‘chemical genetic 

screens’ (McCourt and Desveaux, 2010). Two genetic approaches used regularly to 

identify the target of chemicals identified in a chemical screen are transcriptome 

analysis and a mutagenesis-based suppressor screens. Once a chemical is identified 

by a chemical screen, transcriptome analysis can be utilised to identify previously 

identified chemicals that induce similar transcriptional changes; for example 

microarray analysis demonstrated that bikinin and BR had a 88% overlap in inducing 

transcriptional changes, whilst brassinazole has almost the opposite effect to BR (De 

Rybel et al., 2009; Park et al., 2009). A suppressor screen with mutants displaying 

agravitropism discovered that pgp19 displayed a positive gravitropic response when 

treated with gravacin, thus identifying this process as the target of the compound 

(Rojas-Pierce et al., 2007).  
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1.6.   AIMS AND OBJECTIVES 

 

A chemical screen was developed to identify chemicals which blocked the GA-

mediated feedback regulation of the GA20ox1 using a transgenic line containing a 

GA20ox1 promoter::GUS reporter. The screen, which was performed at the University 

of Ghent, identified 28 commercially available chemicals. Using these chemicals the 

two main aims of this project can be characterised as below: 

(1) To identify compounds which perturb GA signalling: 

 Confirmation of the effect of the compounds on GA20ox1 expression 

Initial work will focus on characterising the 28 chemicals to confirm that they block GA 

mediated downregulation of GA20ox1, determine their optimal concentration and 

analysis their effect on endogenous GA20ox1 expression. 

 Determining the effect of compounds on GA-regulated growth responses  

Alterations in GA-responsive growth may provide potential clues as to how chemicals 

are altering GA signalling, therefore hypocotyl and root elongation will be analysed.  

 Location of compound activity within the GA signalling cascade 

As a main objective of the project is to identify novel components of the GA signalling 

pathways, we will focus on chemicals which do not GA regulated DELLA degradation 

in in planta GA-mediated DELLA degradation assays. 

(2) Use chemicals to identify novel components effecting GA signalling components: 

 Chemicals effect on DELLAs binding to downstream TFs 

Yeast 2-hybrid screens carried out within our group have identified many DELLA 

interactors that have a potential role controlling Arabidopsis root development. 

Chemicals blocking these interactions will be analysed further, with genes encoding 

these interactors targeted using reverse genetics based approaches. 

 Suppressor screening 

Suppressor screens have proven a highly successful tool in the identification of 

chemical targets. A suppressor screen will be used to create and identify mutants in 

the GA20ox1::GUS reporter line that are insensitive to the action of a chemical of 

interest. Mutated genes in insensitive mutants will then be characterised further. 
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Refocusing of aims and objectives during the project 

During the course of the project two chemicals of interest were chosen for further 

study. N23 induced agravitropism indicating the chemical was acting on both GA and 

auxin. As there is limited knowledge of the interactions between these two hormones 

it was decided to analyse N23’s role in auxin signalling using auxin signalling reporter 

lines and yeast-2-hybrid interactions. Using a novel fluorescent gibberellin N16 was 

identified as blocking GA uptake. As a result N16 was tested in detail for its role in GA 

uptake, whilst a punitive GA transport and N16 target was also analysed via 

radiolabelled GA uptake assays in yeast. 
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CHAPTER 2. METHODS  

 

2.1. PLANT MATERIAL 

 

All in vivo assays in this project were carried out with the model species Arabidopsis 

thaliana in the ecotype Col-0 unless stated otherwise. All Arabidopsis lines used are 

listed in Table 2.1. The GA20ox1::GUS transgenic reporter line was produced by 

transforming Col-0 with an expression construct in which a sequence coding for the 

GUS reported protein was fused to the translational sequence (promoter and coding 

gene sequence) of the GA20ox1 gene (Desgafne-Penix et al., 2005). pRGA::GFP-

RGA (GFP-RGA) was produced by transforming Col-0 with a fusion of a green 

fluorescent protein (GFP) to the coding region of the RGA gene, flanked by 8-kb 5′ 

upstream and 5.8-kb 3′ downstream sequences around the RGA locus to represent 

the promoter (Silverstone et al., 2001).  The ga1-3 mutant allele was originally 

generated in the Landsberg erecta ecotype, but has been introgressed into the Col-0 

background (Tyler et al., 2004). Col-0, GA20ox1::GUS, ga1-3 and pRGA::GFP-RGA 

seeds were all provided by Dr S. Thomas of Rothamsted Research. The VENUS 

protein is a fast cycling YFP that has been linked to a sequence containing six 

duplicates of the ARE to create a reporter for auxin responsive genes, DR5::VENUS 

(Brunoud et al., 2012). The VENUS coding sequence has also been fused to the 

auxin-TIR1 interacting domain (DII) of  IAA28 to provide a reporter that is rapidly 

degraded in response to auxin and therefore provides an in vivo fluorescent marker 

for monitoring auxin response (DII-VENUS ; Brunoud et al., 2012). Both DII-VENUS 

and DR5::VENUS seeds were provided by Dr D. Wells of CPIB, University of 

Nottingham. 
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Table 2. 1. Summary of Arabidopsis lines used during this project. 

Line Gene Locus Publication 

Col-0 - Wild-type - 

GA20ox1::GUS GA20ox1 At4g25420 Desgagné-Penix et al., 2005 

pRGA::GFP-
RGA 

RGA-17 Atg01570 Dill et al., 2001 

ga1-3 CPS/GA1 Atg02780 Koornneff et al., 1980 

DR5::VENUS DR5 
Synthetic 
reporter 

Brunoud et al., 2012 

DII-VENUS DII 
Synthetic 
reporter 

Brunoud et al., 2013 

  

 

2.2. PLANT GROWTH CONDITIONS  

 

Unless otherwise stated seeds were sterilised by a 5 min treatment in 20% (2.48-2.52 

g mL
-1

) sodium hypochlorite (BDH Lab Supplies, Poole, U.K.)  solution with 0.1% 

Tween20 (Sigma-Aldrich Company Ltd., Dorset, UK) followed by six washes with 

sterilised deionised water (dH2O, Milli-Q purification system, Millipore Corp., MA, 

USA). Sterilised seeds were imbibed in dH20 at 4⁰C for a minimum of two days before 

sowing. To induce germination imbibed ga1-3 seeds were imbibed for 8 hours at room 

temperature in 50 µM GA4 (provided by Prof. P. Hedden, Rothamsted Research) in 

dH2O. GA4 treated seeds were washed a minimum of six times in dH2O prior to 

sowing to reduce GA4 contamination in the surrounding media during germination. 

Seeds were sown by pipette in dH2O. After sowing of seeds, plates were sealed with 

micropore tape (3M Health Care, Neuss, Germany) and incubated. All plant lines were 

incubated under 16 hour photoperiod with day/night temperatures of 23/18⁰C. Light 

levels were maintained at a minimum of 250 μmol m
2 
s

-1
.  
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2.3. PLANT GROWTH MEDIA 

 

Unless otherwise stated plants were germinated and grown on 1x concentration 

Murashige and Skoog growth media (Duchefa Biochemie, Haarlem, The Netherlands) 

with 1% sucrose (Fisher Scientific, Loughborough, U.K.) adjusted to a final pH of 6 

using 1 M potassium hydroxide (Fisher Scientific, Loughborough, U.K.). For semi-solid 

plant media 7 g L
-1

 of Agar type A (Sigma-Aldrich Company Ltd., Dorset, UK) was 

added. All media was autoclaved for sterilisation. Any addition of chemicals was 

performed when media was molten (55ºC) after autoclaving. 

 

2.4. CHEMICAL SCREEN FOR CHEMICALS THAT AFFECT GA 

SIGNALLING 

 

A commercial 10,000-chemical library (Hit2Lead, CA, USA) was screened for 

maintenance of high GA20ox1::GUS staining in the presence of GA. Chemicals were 

tested at a final concentration of 50 μM, to achieve a biological response but with the 

aim of reducing toxicity. The screen was performed at VIB, University of Ghent. Three 

to four GA20ox1::GUS seeds were sown in each well of 96 well plates (Multiscreen 

HTS MSBVS1210; Millipore, Watford, U.K.) containing 0.5x liquid MS medium. Plants 

were grown in a growth chamber under continuous light (110 μE.m
-2

s
-1

) at 22°C. After 

5 days of growth, media was replenished and paclobutrazol (PAC) added to a final 

concentration of 1 μM. PAC is an inhibitor of the GA biosynthesis enzyme KO, 

resulting in reduced bioactive GA levels and a subsequent upregulation of GA20ox1 

through the GA signalling-mediated feedback pathway. Twenty-four hours later 

chemical was added followed by the addition of GA3 to a concentration of 1 µM two 

hours later. Histochemical β-glucuronidase (GUS) staining was performed 24 hours 

later (Chapter 2.4.2.).  
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2.4.1. Confirmation of effect of identified chemicals and identification of their 

active concentration 

 

Chemicals selected based on the screen performed at VIB were re-screened at 

Rothamsted for their effect on GA20ox1::GUS, to confirm the effect/rule out false 

positives. Three to four GA20ox1::GUS seeds were sown in each well of 24 well 

plates (Corning, NY, USA) containing 1x MS liquid medium. After 5 days of growth 

media was replenished and PAC added to a final concentration of 1 μM. Twenty-four 

hours later chemical was added followed by the addition of 5 μM GA3 two hours later. 

GUS staining was performed 24 hours later. To ascertain the active concentration of 

each chemical, the GA20ox1::GUS screen was repeated using the chemicals at four 

concentrations: 1, 5, 10 and 50 µM. For each chemical concentration three biological 

repeats were performed. 

 

2.4.2. Histochemical GUS staining 

 

GUS staining was performed on whole GA20ox1::GUS seedlings. After MS media 

was removed by pipetting, histochemical GUS activity was observed by staining with 

1mL of 0.5mg/ml X-Gluc (Melford, Suffolk, U.K.) in a phosphate buffer. The 

concentration of potassium ferricyanide (an oxidation catalyst) necessary in this assay 

was determined empirically to be 0.5 μM. Chlorophyll was removed from stained 

seedlings by washing in 70% ethanol (Sigma-Aldrich Company Ltd., Dorset, UK) over 

a minimum of 48 hours. Ethanol percentage was then decreased in a stepped series 

(60%, 50%, 40%, 30%, 20%, 10%, 0%) until seedlings were stored in dH2O in 

preparation for analysis. Seedlings were mounted in dH2O and analysed using a Leica 

DFC 300FX (Leica Microsystems, Wetzlar, Germany) camera system mounted on a 

stereomicroscope and the Leica IM50 image capture software package (Leica 

Microsystems, Wetzlar, Germany).  
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GUS phosphate staining buffer:  100 mM Sodium Phosphate (pH 6.7) 

 100 mM EDTA (pH 7.0) 

 0.005% Tween 

 

 

2.5. PHENOTYPIC ANALYSIS  

 

2.5.1. Root elongation 

 

To test the effect of selected chemicals on root elongation, phenotypic analysis was 

performed on five day old seedlings over a 24 hour period. Col-0 seeds were 

germinated and grown on semi-solid 1x MS + 1% sucrose. After 5 days eight to ten 

seedlings were transferred to 1x MS + 1% sucrose containing one chemical at a 

concentration of 1, 5, 10 or 50 µM. As chemical stocks were produced by dissolving 

solid chemicals into pure dimethylsulfoxide (DMSO, Sigma-Aldrich Company Ltd., 

Dorset, UK) a DMSO treatment was applied as a control (mock). The order in which 

each treatment was applied to seedlings was randomised by randomised block design 

prior to the experiment. Seedlings were photographed at time 0 (immediately after 

transfer) and time 24 (24 hours after transfer) using a Canon G9 camera (Canon, 

Surry, U.K.). Root length of seedlings at time 0 and 24 was measured using the 

ImageJ software. Root elongation over 24 hours was obtained by subtracting root 

length at time 0 from time 24 for each seedling. 

 

2.5.2. Root agravitropism  

 

Phenotypic analysis was performed on five day old seedlings to test the effect of N23 

on root gravitropism over a 24 hour period. Col-0 seeds were germinated and grown 

on semi-solid 1x MS + 1% sucrose. After 5 days 10-15 seedlings were transferred to 

1x MS + sucrose containing either N23 (5 µM) or IAA (1 µM). A DMSO (mock) control 

was also tested. Seedlings were photographed at time 0, 5, 8, 10, 15 and 24 hours 
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after transfer using the CPIB Rhizotron (University of Nottingham). Root tip angle was 

measure using the ImageJ software (http://rsbweb.nih.gov/ij/). Root elongation at 0, 5, 

8, 10, 15, 24 hours was also analysed using the method described in Chapter 2.5.1. 

 

2.5.3. Hypocotyl length on vertical plates 

 

Phenotypic analysis was performed on five day old seedlings to test the effect of N16 

on hypocotyl length after a 48 hour period. Eight to ten Col-0 seeds were germinated 

and grown on semi-solid 1x MS + 1% sucrose containing N16 at a concentration of 1, 

5, 10 or 50 µM. A DMSO (mock) control was also tested. After 8 hours plates were 

wrapped in multiple layers on aluminium foil to simulate dark growth conditions. After 

48 hours seedlings were photographed using a Canon G9 camera (Canon, Surry, 

U.K.). Hypocotyl length of seedlings was measured using the ImageJ software.  

 

2.5.4. Hypocotyl length in liquid media 

 

Phenotypic analysis was performed on five day old seedlings to test the effect of N16 

on hypocotyl length after 5 days in liquid media. Three to five Col-0 seeds were 

germinated in liquid 1x MS + 1% sucrose in six well plates. After 8 hours N16 was 

added to a concentration of 1, 5, 10 or 50 µM and plates were wrapped in multiple 

layers of aluminium foil to simulate dark growth conditions. Plates were grown at 25˚C 

in the dark for 5 days. A DMSO (mock) control was also tested. After 5 days seedlings 

were mounted on slides in dH2O and photographed using Canon G9 (Canon, Surry, 

U.K.). Hypocotyl length was measured using the ImageJ software. 
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2.6. CONFOCAL MICROSCOPY TECHNIQUES 

 

2.6.1. Monitoring of pRGA::GFP-RGA degradation in response to chemical 

treatments  

 

pRGA::GFP-RGA seeds (eight to ten) were germinated and grown on filter paper on 

semi-solid 1x MS + 1% sucrose. After 5 days filter paper and seedlings were 

transferred to 1x MS + 1% sucrose containing one chemical at a previously identified 

dose (Chapter 3.2.3.). After 6 hours seedlings were sprayed with 100 μM GA3 and left 

for 2 hours, before GFP fluorescence was visualised in 3 seedling root tips per 

treatment. Roots were mounted in water for visualisation. GFP excitation peak is 

488nm and emission peak is 507nm. Images were processed using the Carl Zeiss 

Zen 2011 (Zeiss, Cambridgeshire, U.K.) software and Adobe Photoshop (Adobe, 

Berkshire, U.K.). 

 

2.6.2. Visualisation of DR5::VENUS and DII-VENUS in the presence of N23 or 

IAA. 

 

Visualisation and quantification was performed at CPIB in the University of 

Nottingham, using the method outlined in Brunoud et al. (2012). DR5::VENUS and 

DII-VENUS seeds were germinated and grown on semi-solid 1x MS + 1% sucrose for 

5 days, before transferred to medium containing N23 at concentrations of 5, 10, 25, 

50 μM, with or without 1 μM IAA. 

 

For visualisation seedling root tips were analysed using a Nikon Eclipse Ti 2000 laser-

scanning confocal microscope (Nikon, Surry, U.K.). Roots were mounted in water and 

seedling cell walls were stained with 0.5% propidium iodide solution. VENUS 

excitation peak is 515nm and emission peak is 528nm. Images were processed using 

the Carl Zeiss Zen 2011 (Zeiss, Cambridgeshire, U.K.) software and Adobe 

Photoshop (Adobe, Berkshire, U.K.). 



 

50 | P a g e  
 

For live quantification of fluorescence the seedlings were scanned either every 5 mins 

for 60 mins (DII-VENUS) or every 30 mins for 8 hours (DR5::VENUS) immediately 

after the beginning of the treatment to follow the evolution of the VENUS signal. A 

similarly sized portion of the root, corresponding approximately to the first 200 μM 

from the root tip, was scanned. To quantify fluorescence the average fluorescence 

intensity over each portion of the root was extracted using Fiji software 

(http://fiji.sc/Fiji) and the values analyzed using Microsoft Excel. For DR5::VENUS 

quantification all levels of fluorescence were measured as relative to the final time 

point of the IAA treatment. DII::VENUS quantification represents levels of 

fluorescence of each treatment relative to the fluorescence at the initial time point of 

that treatment. 

 

2.7. WESTERN BLOT TO CONFIRM RESULTS OF PRGA::GFP-RGA 

ASSAY 

 

To confirm the effect of on GA mediated DELLA protein degradation (as observed on 

the pRGA::GFP-RGA reporter line), in vivo GA mediated RGA degradation was 

analysed using Western blot analysis. 

 

2.7.1. Protein extraction  

 

Col-0 seedlings were cultured in Gamborg B5 liquid media in 250 mL flasks for 4 

weeks in the dark to give a root culture. Three hours before harvest seedlings were 

treated with 10 µM of chemical or DMSO. One hour prior to harvest, 100 nM GA4 was 

added to the culture that already contained either the chemical or DMSO. To harvest, 

root cultures were rinsed with ice cold dH2O three times before being flash frozen in 

liquid nitrogen. For protein extractions frozen root cultures were ground in liquid 

nitrogen and crushed material was re-suspended in 8 mL of extraction buffer EB1 (0.4 

M sucrose, 10mM Tris-HCL, pH 8.0, 5 mM β-mecaptoethanol. 0.1 mM 

phenylmethanesulfonylfluoride (PMSF), 1X Sigma protease inhibitors). Suspended 
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material was filtered through a microcloth filter into a falcon tube and centrifuged at 

2800 g for 20 mins at 4ºC. The resulting pellet was resuspended in 1 mL of EB2 (0.25 

M sucrose, 10mM Tris-HCL, pH 8.0, 10 mM MgCl2, 1% Triton X-100, 5 mM βm-ME. 

0.1 mM PMSF, 1X Sigma protease inhibitors) and centrifuged at 12000 g for 10 mins 

at 4ºC. Pellet was resuspended in 500 µL EB3 (1.7 M sucrose, 10mM Tris-HCL, pH 

8.0, 2 mM MgCl2, 0.15% Triton X-100, 5 mM βm-ME. 0.1 mM PMSF, 1X Sigma 

protease inhibitors) and transferred to a fresh Eppendorf before 500 µL more EB3 was 

added and centrifuged at 16000 g for 30 mins at 4ºC. Pellet was resuspended in 50 

µL of 6X SDS sample buffer and boiled at 95ºC for 10 mins. 

 

2.7.2. SDS-PAGE 

 

Sample in SDS buffer (20 µL) and 5 µL PageRuler Prestained Ladder (Thermo, 

Northumberland, U.K.)  were run on a Bio-Rad 4-20% precast gel. Gel was run at 170 

V for 40 mins. 

 

2.7.3. Western blot 

 

SDS-PAGE gel was rinsed with dH2O and shaken for 15 min in blotting buffer. Prior to 

transfer, a PVDF membrane was briefly soaked in methanol, while six sheets of filter 

paper were soaked in blotting buffer (500 mL, 48 mM Tris, 39 mM glycine, 20% 

methanol). Gel and membrane were sandwiched between two stacks of three sheets 

of filter paper, then run for 15 V for 1 hour. Following transfer, membrane was soaked 

in methanol for 2 mins before shaking in blocking buffer (48 mM Tris, 39 mM glycine, 

20% methanol, dehydrated milk) for 1 hour. Blocking buffer was replenished with 5 mL 

of fresh blocking buffer was added to membrane with 10 µL of anti-RGA. Membrane 

was shaken overnight in buffer plus anti-RGA antibody at 4ºC followed by three rinses 

in TBS-T0.05 (0.5 M sodium chloride). The second antibody was added to membrane in 

5 mL and shaken for 1 hour, followed by rinses in TBS-T0.05 (0.5 M sodium chloride). 

Femto (3 mL; 300 µL peroxide, 300 µL luminol, 2.4 mL dH2O) was applied to 
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membrane by constant pipetting for 1 min. Membrane was placed between x-ray film 

and two sheets of clear film and placed in developing cassette for 30 secs. X-ray film 

was developed in developer solution then fixed in fixer solution. 

 

2.8. EFFECT OF CHEMICAL N16 ON GA UPTAKE 

 

2.8.1. Fluorescent tagged GA3 (Fl-GA3) uptake assay 

 

Seven chemicals were sent to the University of San Diego for analysis of their effect 

on GA uptake using the Fl-GA3 method described in Shani et al. (2012). Six to eight 

day old Col seedlings were transferred to agar media containing the Fl-GA3 (5 µM) 

and the chemical (at active concentration defined in Chapter 3.2.2.) for two to three 

hours. Prior to imaging, roots were washed in dH2O and stained with propidium 

iodide.  Images were obtained using a Zeiss LSM 710 confocal microscope, with 

argon laser set at 488 nm for excitation, 566-617 nm filter for propidium iodide 

emission, and 493-543 nm filter for Fl derivative emission. Images were processed 

using Zeiss Zen 2011 software. 

 

2.8.2. Radiolabelled GA4 uptake assay 

 

To confirm effects of N16 on GA uptake, radiolabelled GA4 ([
3
H]GA4) uptake was 

analysed in plants exposed to the chemical. Col-0 and ga1-3 seeds were germinated 

and grown on agar (0.7%) 1x MS+ 1% sucrose for 6 days. 15-20 seedlings were 

transferred to 3 cm petri dishes with water containing 30 µM N16 or DMSO (mock) 

and 1 µM GA4 and ≈10 kBq [
3
H]GA4 (provided by P. Hedden). Following 24 hours in 

water, roots of seedlings were harvested into 1.5 mL Eppendorfs and frozen in liquid 

nitrogen before grinding with a micropestle. [
3
H]GA4 was extracted by adding 330 µL 

of methanol (Sigma-Aldrich Company Ltd., Dorset, UK) to ground material, before 

samples were vortexed and pelleted using a centrifuge (3 mins, 10,000 rpm). 

Methanol was removed to a scintillation vial. A second methanol extraction was then 
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performed. A final methanol extraction transferred remaining methanol and tissue to a 

scintillation tube. Two mL of scintillation fluid (Ultima Gold, Perkin Elmer, MA, USA) 

was added to 1 mL of methanol extract before samples were analysed using a Tri-

Carb 2100 TR scintillation counter (Perkin Elmer, Ma, USA) giving results in 

degradations per min (DPM). 1000 Becquerels (Bq) of radioactivity in root was viewed 

as 60,000 DPMs. 

 

2.9. ANALYSIS OF GENE ACTIVITY USING QRT-PCR 

 

The effect of chemicals on GA20ox1 expression was analysed using quantitative real 

time PCR (qRT-PCR) analysis. RNA was extracted from whole seedling tissue using 

the QIAgen RNeasy plant RNA extraction kit (QIAgen), following the manufacturers 

protocol. Purified RNA was DNase-treated using Ambion Turbo DNase (Invitrogen) 

and quantified using a Nanodrop
TM

 ND-1000 spectrophotometer (LabTech 

international Ltd.). cDNA was synthesised from RNA using the Invitrogen Superscript 

III First Strand cDNA synthesis kit (Oligo[dt] method), according to the manufacturers 

protocol. 

 

All qRT-PCR reactions were performed using Sigma SYBR Green Jumpstart
TM

 Taq 

Readymix (Sigma-Aldrich): 

 

cDNA (diluted 1/10 using dH2O) 3.6 µL 

Forward primer (10 µM) 0.4 µL 

Reverse Primer (10 µM) 0.4 µL 

2x Sybr Green (+ ROX dye, 2 µL per 1 mL) 10 µL 

MgCl2 (25 mM) 5.6 µL 

Final Volume 20 µL 
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qRT-PCR reactions were run on an Applied Biosystem 7500 Real-Time PCR system 

(Life Technologies Corporation). The qRT-PCR reaction was as follows: 

 

Initial denaturation 95ºC 2 mins 

 

Thermocycling 95ºC 15 secs 

 60ºC 1 min 

 X 40 cycles 

 

Dissociation analysis 95 ºC 15 secs 

 60 ºC 1 min 

 95 ºC 15 secs 

 60 ºC 15 min 

 

All experiments comprised of 4 biological and two technical replicates run on 96-well 

plates with water controls. For each experiment three reference genes were used, 

YLS8, UBQT and PP2A which have been shown to be stable under hormone 

treatment (Czechowski et al., 2005; Rieu et al., 2008a) (Table 2.2.). qRT-PCR data 

was analysed using method outlined by Pfaffl (2001). 

 

 

 

 

 

 

 

 

 

 



 

55 | P a g e  
 

 

Table 2. 2. Primers used in GA20ox1 expression analysis. 

Primer name Sequence Target From 

GA20ox1 F GATCCATCCTCCACTTTAGA GA20ox1 
Reiu et al. 

2008a 

GA20ox1 R GTGTATTCATGAGCGTCTGA GA20ox1 
Reiu et al. 

2008a 

AT5G08290 qF TTACTGTTTCGGTTGTTCTCCATTT YLS8 
Czechowski 
et al. 2005 

AT5G08290 qR CACTGAATCATGTTCGAAGCAAGT YLS8 
Czechowski 
et al. 2005 

AT1G13320 qF TAACGTGGCCAAAATGATGC PP2A 
Czechowski 
et al. 2005 

AT1G13320 qR GTTCTCCACAACCGCTTGGT PP2A 
Czechowski 
et al. 2005 

AT3G53090 qF TTCAAATACTTGCAGCCAACCTT UBQT 
Czechowski 
et al. 2005 

AT3G53090 qR CCCAAAGAGAGGTATCACAAGAGACT UBQT 
Czechowski 
et al. 2005 

 

 

2.10. YEAST-2-HYBRID  

 

Yeast-2-hybrid was used in this project to identify the effect of the 28 identified 

chemicals on the interaction between a DELLA protein, GAI, and known interactors, 

SLY, gar (a version of SLY), and GID1. 

 

2.10.1. Growth conditions 

 

Unless otherwise stated yeast colonies were grown on either semi-solid (10 g L
-1

 

Bacto agar
TM

, Becton, Dickinson and Company, Oxford, U.K.) YPD (Yeast Extract 
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Peptone Dextrose, Formedium, Hunstanton, U.K.)  prior to transformation or semi-

solid DOB (Drop-out bases, MP Biochemicals, OH, USA)  media lacking tryptophan 

and leucine (Sigma-Aldrich Company Ltd., Dorset, UK) post transformation. Plates 

were incubated in the dark at 30ºC for 2-3 days to yield colonies.  

 

2.10.2. Yeast transformation  

 

Yeast transformation was performed using an adaptation of the lithium acetate 

method (Becker et al., 1993). Overnight liquid culture (100ml YPD, 30°C, 210 rpm)  of 

yeast strain MaV203 (Lifetechnologies, Paisley, UK) or L40 (provided by S. Thomas) 

was diluted to an OD600 of 0.2 and returned to incubator until OD600 reached 0.8. Cells 

were harvested (3000 rpm, 3 mins) and washed with dH2O. Cells were re-suspended 

in 10 mL 0.1 M lithium acetate at 30°C, 190 rpm for 1 hour. Each plasmid (1 μg) was 

incubated at 30°C with 150 μL of cells in lithium acetate and 350 μL polyethylene 

glycerol 3350 (Sigma-Aldrich Company Ltd., Dorset, UK) for 1 hour. Cells were then 

subjected to heat shock at 42°C for 5 min before a 3 min recovery period on ice. Each 

transformation (200 µL) was plated on minimal media lacking leucine and tryptophan. 

Transformations were incubated at 30°C for 2-3 days to give colonies.  

 

2.10.3. Yeast-2-hybrid of DELLA degradation machinery. 

 

To determine the strength of the interaction between the bait and prey plasmids the 

HIS3 (Invitrogen, 2005)  L40 yeast strain containing: pACT2 vs pLEXA; pACT2-GAI vs 

pLEXA; pACT2-GAI vs pLEXA-SLY; pACT2-GAI vs pLEXA-gar; pACT2-GAI vs 

pLEXA-GID1b; and pACT2-GAI vs pLEXA-GID1c, were plated on media lacking 

leucine, trpyptophan and histidine (Sigma-Aldrich Company Ltd., Dorset, UK)  and 

containing one chemical at 50 µM, and 0 or 20 mM 3AT (Bio 101 Systems, UK). A 

DMSO (mock) control and 0 or 20 mM 3AT only were also tested. Each yeast strain 

colony was diluted in 100 µL dH2O. Each colony dilution (5 µL) was spotted on each 
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plate. Five colonies per interaction were spotted on each plate. After 72 hours yeast 

growth indicated an interaction in the presence of the chemical. 

 

2.10.4. Yeast-2-hybrid of IAA-ARF interactions. 

 

MaV203 yeast strain containing: pDEST22-IAA14 vs pDEST32-ARF19 dD3; 

pDEST22-IAA14 vs pDEST32-ARF19 dQR; pDEST22-IAA14 vs pDEST32-ARF19 2-

15; pDEST22-IAA14 vs pDEST32-ARF19 FL; and pDEST22-IAA14 vs pDEST32, 

were plated on media lacking leucine, trpyptophan and histidine and containing N23 at 

50 µM, and also containing either 0, 20, 50, or 100 mM 3AT. A DMSO (mock) control 

and 0 or 20 mM 3AT only were also tested. Each yeast strain colony was diluted in 

100 µl dH2O. Each colony dilution (5 µL) was spotted on each plate. Five colonies per 

interaction were spotted on each plate. After 72 hours yeast growth indicated an 

interaction in the presence of the chemical. 

 

2.10.5. OPT6 yeast GA transport assay. 

 

To analyse oligopeptide 6 (OPT6) role as a GA transporter a yeast uptake assay was 

performed based on the method by (Kanno et al., 2012). OPT6 was initially amplified 

from seven day old whole seedling cDNA with forward 

(TAGGATCCACGATGGGAGAGATAGCAAC) and reverse 

(TAGAATTCCTAGAAGACGGGACAGCCTT) primers, which inserted BamH1 

(GGATCC) and EcoR1 (GAATTC) sites, respectively, into the 5’- and 3’- ends of the 

amplified sequence. Following confirmation by sequencing that the amplified fragment 

had the correct sequence (primers: T3, T7, AGAGCTCACTGTACCCAAG) the OPT6 

clone was ligated into the pSCB vector and amplified in DH5α. After excision of OPT6 

from pSCB with BamH1 and EcoR1, it was ligated into the pPH3 vector. The pPH3-

OPT6 plasmid was cloned into the YMM-ABC8 yeast strain for [
3
H]GA4 uptake 

analysis (Benton et al., 1994; Schuetzer-Muehlbauer et al., 2003). It was therefore 

decided to use pPH3-AIT3 in the same YMM-ABC8 yeast system (produced by Steve 
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Thomas) as a positive control for the OPT6 [
3
H]GA4 uptake assay, with pPH3 being 

the negative control. The YMM-ABC8 yeast strain containing pPH3, pPH3-OPT6 or 

pPH3-AIT3 was grown in liquid culture (DOB lacking tryptophan and uracil) to an 

OD600 of 0.7 to 1.0 before being concentrated to an OD600 of 6.0 by centrifugation and 

dilution with DOB lacking tryptophan and uracil. Yeast was cultured at this 

concentration for 60 and 180 minutes before [
3
H]GA4 uptake was quantified by 

centrifuging yeast cells and suspending in 1 mL 100% methanol. 2 mL of scintillation 

fluid (Ultima Gold, Perkin Elmer, MA, USA) was added to 1 mL of methanol extract 

before samples were analysed using a Tri-Carb 2100 TR scintillation counter (Perkin 

Elmer, Ma, USA) giving results in degradations per min (DPM). 1000 Becquerels (Bq) 

of radioactivity in root was viewed as 60,000 DPMs. 

 

PCR reactions for OPT6 amplification from cDNA was performed using: 

 

cDNA  4 µL 

dNTP (10 mM) 0.5 µL 

Forward primer (10 µM) 1.25 µL 

Reverse Primer (10 µM) 1.25 µL 

5x Phusion buffer 5 µL 

Phusion Taq Polymerase (5 U/µL) 1 µL 

dH2O to a final Volume 25 µL 
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PCR reactions were run on a C100 Thermal Cycler (BioRad, Hertfordshire, U.K.). The 

PCR reaction was as follows: 

 

Initial denaturation 98ºC 30 secs 

Thermocycling 98ºC 10 secs 

 55ºC 30 sec 

 72ºC 1 min 

 X 25 cycles 

Final extension 72 ºC 5 mins
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CHAPTER 3: A CHEMICAL SCREEN TO IDENTIFY 

COMPOUNDS WHICH PERTURB GA SIGNALLING 

 

3.1. INTRODUCTION 

 

The advent of reverse genetics-based tools such as T-DNA insertion lines (Parinov et 

al., 1999; Sessions et al., 2002; Alonso, 2003; Rosso et al., 2003; Kuromori et al., 

2004), RNA interference (Mello and Conte, 2004) and transgenic overexpression lines 

(Holtorf et al., 1995) has allowed for a greater understanding of the role of candidate 

genes in controlling growth and development in model plants such as Arabidopsis. 

Despite these tools and resources, genetic redundancy can often hamper the 

characterisation of novel genes (McCourt and Desveaux, 2010). For example in 

Arabidopsis around 65% of the identified genes belong to gene families containing 

more than two members (Arabidopsis genome initiative, 2000). This is clearly 

highlighted through recent studies of the GA signalling pathway in Arabidopsis, where 

there are three and five genes encoding GA receptors and DELLA proteins, 

respectively (Ueguchi-Tanaka et al., 2005; Zentella et al., 2007). Loss-of-function 

mutations in the individual GID1 genes have very little effect on plant phenotype due 

to functional redundancy, whereas the gid1 triple mutant is a severe GA-insensitive 

dwarf (Griffiths et al., 2006b).  To date no components of the GA signalling pathway 

that are downstream of DELLAs have been identified by forward genetic-based 

approaches. One plausible explanation for this lack of success is the possibility of 

genetic redundancy within these components. A potential strategy to overcome 

genetic redundancy is a chemical screen which has the potential to alter the activity of 

whole gene families. 

 

Chemical screens provide an alternative approach to classical genetic techniques, 

instead using small organic molecules to target protein activity as opposed to altering 

a DNA sequence as in classical genetics (McCourt and Desveaux, 2010). Typical 

chemical screens utilise large libraries of organic chemicals (>10,000) to test their 
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effect on a given pathway in either a cell line or a whole organism (McCourt and 

Desveaux, 2010). The libraries utilised can vary dramatically. Initial screens utilised 

libraries biased towards target-related activity, for example the use of auxin and TIR1 

has led to the discovery of auxin agonists and antagonists (Hayashi et al., 2008). As 

the technology developed it was possible to utilised libraries with diverse chemical 

structures potentially identifying core chemical structures that perturb a plant process 

causing a phenotype (McCourt and Desveaux, 2010). Arabidopsis seedlings provide 

an ideal system for performing chemical screens due to its small size which allows 

high-throughput screening. There are numerous examples of chemical screens that 

have been used successfully to identify novel components of hormone signalling 

cascades, most notably one which recently led to the identification of the ABA 

receptor (De Rybel et al., 2009; Park et al., 2009). Using a chemical screen Park et al. 

(2009) isolated an ABA agonist pyrabactin. Microarray data confirmed a highly 

correlated transcriptional response to either pyrabactin or ABA in seeds and 

seedlings, further confirming pyrabactin’s role as an ABA agonist. A subsequent 

Arabidopsis suppressor screen using pyrabactin led to the identification of PYR1, a 

cyclase subfamily of the START domain superfamily which possess hydrophobic 

ligand–binding pocket. Further analysis using the pyr/pyl mutants confirmed PYR1 as 

a receptor for ABA. In the same study it was also discovered, using yeast-2-hybrid, 

that the downstream elements of the PYRs/PYLs are the PP2Cs and a model for ABA 

reception was proposed whereby ABA receptors functioning at the apex of a negative 

regulatory pathway that controls ABA signaling by inhibiting PP2Cs. 

 

The application of exogenous GA to Arabidopsis results in a rapid reduction in the 

expression of some members of the GA20ox and GA3ox gene families indicating a 

feedback regulatory response mediated by GA signalling (Chiang et al., 1995; Phillips 

et al., 1995; Mitchum et al., 2006; Rieu et al., 2008b). This transcriptional response 

mediated by the GA signalling pathway acts to maintain GA homeostasis, essentially 

ensuring that GA levels are optimal for controlling plant growth and development.  

Feedback regulation of GA signalling revolves around the DELLA protein. The 
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presence of bioactive GA results in the degradation of the DELLA protein which in turn 

removes their transcriptional regulation of the GA biosynthetic genes thus reducing 

bioactive levels of GA. In the cases of GA20ox1 and GA20ox2, the transcriptional 

changes are observed within 15 minutes resulting in a 10-20 fold decrease in 

expression (Zentella et al., 2007). In contrast to the feedback regulation of the 

biosynthesis genes expression of the GA2ox genes, which encode enzymes that 

inactivate bioactive GA and their precursors, are up-regulated by GA (Thomas et al., 

1999; Rieu et al., 2008a; Weston et al., 2008). The study of GA signalling mutants has 

demonstrated that a functional GA signal transduction cascade is necessary for the 

feedback regulation of GA biosynthesis (Silverstone et al., 1998; Ueguchi-Tanaka et 

al., 2005; Griffiths et al., 2006b; Chandler et al., 2008). For example, in DELLA loss-

of-function mutants the transcription of these feedback-regulated genes, including 

GA20ox1 is reduced and is not sensitive to changes in the levels of bioactive GAs (Dill 

et al., 2001; Dill and Sun, 2001; King et al., 2001a; Silverstone et al., 2001; Weston et 

al., 2008). This demonstrates that DELLAs are required for this transcriptional control 

(Figure 3.1.), although the mechanisms are not fully understood. In recent years, 

multiple classes of transcription factors have been found to interact with the DELLA 

proteins (review in Chapter 1.3.3.4.), including SCL3, which has been shown to 

directly affect the transcription of GA biosynthetic genes and DELLA genes (Zhang et 

al., 2011). The homeostatic regulation of GA metabolism by the GA signalling 

pathway presents an ideal target for a chemical screen aimed at identifying novel 

components of GA signalling.  
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3.1.1. The potential of chemical screens to identify novel components of the 

GA signalling pathway 

 

Screening a diverse chemical library represents an alternative strategy to identify 

novel components of GA signalling, potentially those which are acting downstream of 

DELLA proteins. As mentioned previously few elements downstream of the DELLA 

proteins have been identified, possibly as a result of genetic redundancy. Global 

transcriptomic studies of GA signalling mutants have identified numerous genes that 

are regulated by DELLAs and which control GA-responsive growth and development 

(Ogawa et al., 2004; Cao et al., 2006; Zentella et al., 2007; Hou et al., 2010). Early 

GA-responsive genes provide the opportunity to develop potential reporter gene 

constructs which can be used to screen for chemicals that perturb GA signalling. For 

example, chemicals which perturb the interaction of DELLA proteins with transcription 

factors would be expected to affect the expression of downstream GA-responsive 

genes. The primary aim of this project is to use a chemical screen to identify 

Arabidopsis GA signalling components, potentially novel transcription factors, which 

GA
12

 GA
9

 GA
4

 GA
34

 

GID1 

DELLA 

GA20ox GA3ox GA2ox 

Figure 3. 1. Summary of GA homeostasis 

DELLAs increase expression of GA biosynthesis genes leading to 

an increase in GA-mediated DELLA degradation. Grey arrows 

indicate enzyme-mediated reactions. Black arrows indicate 

transcriptional control. (Adapted from Hedden and Thomas (2012)) 
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are involved in the homeostatic transcriptional regulation of GA biosynthetic genes, 

although other interesting targets are also likely to be identified. The basis for this 

chemical screen is the feedback-regulated GA biosynthesis gene, GA20ox1. Whilst 

DELLA proteins are known to up-regulate the expression of GA20ox1 the 

mechanisms by which they do this are currently unknown (Figure 3.2.). However, 

there is evidence that DELLAs do not bind directly to the GA20ox1 promoter (Zentella 

et al., 2007). Our group has generated a transgenic GA20ox1::GUS reporter line in 

the Arabidopsis Col-0 ecotype (Hay et al., 2002; Clark, 2005) (Figure 3.3.). This line 

has been demonstrated to provide an effective reporter for GA-mediated 

downregulation of GA20ox1 expression by monitoring GUS activity. Furthermore, it 

highlights the distinct temporal and spatial expression patterns of GA20ox1, which 

include expression within the meristem and elongation zones of the root (Figure 3.3.). 

Interestingly, the spatial expression pattern within the root elongation zone is found 

exclusively within the cortical cells (Clark, 2005). Using the GA20ox1::GUS reporter 

line a high throughput chemical screen was established to identify compounds which 

block the GA-mediated down-regulation of GUS activity in Arabidopsis roots. In 

addition to identifying compounds that affect transcriptional feedback regulation of 

GA20ox1, the screen may also lead to the identification of components that control 

GA-responsive root growth. For the chemical screen only the roots were observed as 

Ubeda-Tomas et al. (2008) had demonstrated the integral role of GA in root 

elongation, showing roots provide an ideal tissue for studying GA signalling. Roots, as 

opposed to whole seedlings, also allowed for a higher throughput screen as 

Arabidopsis GA20ox1::GUS root staining can be visually analysed after 8 hours 

staining with X-gluc whereas hypocotyls require clearing with ethanol.   
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This chapter describes an extensive characterisation of the chemicals identified in the 

initial screen, focussing specifically on their effects on GA signalling and root 

elongation. A preliminary characterisation of the compounds demonstrated that all of 

the available 28 chemicals resulted in an increase in GUS activity in the roots of the 

GA20ox1::GUS line when treated with GA3 compared to the mock treatment. 

Subsequent dose-response experiments were used to establish the effective 

concentrations at which the chemicals actively blocked GA-mediated suppression of 

GA20ox1::GUS expression in the reporter line. To establish whether the compounds 

have a physiological effect on root development, root elongation assays were 

Figure 3. 2. Potential sites of actions of chemicals identified by 

GA20ox1::GUS assay carried out at VIB. 

1. Chemicals could be affecting aspects of other hormone signalling 

pathways known to regulate GA20ox1 (e.g. auxin). 2. Chemicals could be 

affecting unknown transcription factors which regulate GA20ox1. 3. 

Chemicals could be affecting DELLA regulation of putative transcription 

factors. 4. Chemicals could be preventing DELLA degradation by affecting 

interactions between components of the DELLA degradation machinery. 5. 

Chemicals could be blocking the transport of GA to required sites in the 

root. 
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performed. These assays demonstrated that some of the compounds acted to inhibit 

root elongation. However, in some cases this effect was caused by toxicity to the root 

cells. As an approach to narrow down where the chemicals are acting within the GA 

signalling cascade, their effects on GA-mediated DELLA degradation was monitored 

using the pRGA::GFP-RGA reporter line. Of the 28 chemicals 11 were demonstrated 

to block GFP-RGA degradation, suggesting that they act upstream of DELLA 

degradation. In contrast, 11 chemicals did not block GFP-RGA degradation 

suggesting that they may act downstream of DELLAs within the GA signalling 

cascade. In an attempt to establish if the chemicals acting upstream of DELLA 

degradation are affecting protein-protein interactions that control this process, yeast-

2-hybrid assays were performed in which GID1-DELLA and SLY1-DELLA interactions 

were assessed in the presence of the compounds. Only one of the compounds, N11 

appeared to have any effect on the DELLA interactions. In this case it appeared to 

block the interaction of DELLA with both the GID1 and SLY1 proteins.  
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3.2. RESULTS AND DISCUSSION 

 

3.2.1. Chemical screen to identify compounds which inhibit GA-mediated 

transcriptional regulation of a GA20ox1::GUS reporter 

 

From the 28 chemicals selected from the screen it was possible to identify common 

core structural features such that the chemicals could be divided into four structural 

groups: Group 1 (secondary amides), Group 2 (coumarins), Group 3 (sulphonamides) 

and Group 4 (compounds that do not fit into the three main groups) (structures shown 

in Figure 3.4.). Each chemical was coded N1 to N28 (Table 3.1.) and will be referred 

to as such for the remainder of the thesis. An amide is a chemical with a core 

Figure 3. 3. Initial chemical screen performed at Ghent. Screen aimed to 

find chemicals that blocked GA-mediated down-regulation of GUS 

activity in roots of the GA20ox1::GUS seedlings. 

Top panel shows GA20ox1::GUS seedlings after treatment with, DMSO 

(mock), PAC (positive control), PAC/GA (negative control) and PAC/GA + N10 

(one of positive compounds tested) in the cells of a 96-well plate. Bottom 

panel shows root tips from seedlings in the 96-well plate at a higher 

magnification (x20). GA20ox1::GUS seeds grown for 5 days in liquid culture 

are treated with 1 µM PAC. After 24 hours the library of chemicals (10,000) 

are added to the media to a concentration of 50 µM followed two hours later 

by a GA application of 1 µM. 24 hours after GA application seedlings are GUS 

stained. (Screen performed at University of Gent by Bert De Rybel, Dominique 

Audenaert, Tom Beeckman) 

DMSO PAC/GA PAC PAC/GA + N10 
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functional group of RnE(O)xNR’R’’ where R, R’ and R’’ represent either a hydrogen or 

an organic group whilst E can be one of many elements including, carbon (C), 

phosphorous (P) or sulphur (S). All the chemicals within Group 1 are “organic 

amides”, termed as such because of the presence of a C in the E position of the 

amide forming an acyl group (RCONHR’). Another common structural component of 

all chemicals belonging to Group 1 is the presence of H at the R’’ position, such that 

they are secondary amides. Coumarins belong to the benzopyrone class of 

chemicals. As the name suggests, benzopyrones consist of a benzene ring fused to a 

pyrone. In the case of coumarins the pyrone takes a 2-pyrone form with the ketone 

group being in position two of the unsaturated six membered ring containing one 

oxygen atom. The structure can therefore be represented as RC9H6O2R’. Additionally 

all chemicals in Group 2 possess a methyl group at position 4 on the pyrone ring and 

an acetic or propanoic acid group (R’) at position 3. An ether function (R) is attached 

at position 2 of the benzene ring. Coumarins and their derivatives are naturally 

produced in many plants but tonka bean, vanilla grass, sweet woodruff, mullein, sweet 

grass, cassia cinnamon, sweet-clover, and deertongue are known to have particularly 

high levels of these chemicals. Sulphonamides are in essence amides where E = S 

and Ox = O2 (RSO2NHR’). The chemical library used for the GA20ox1::GUS assay 

performed in Ghent consisted of novel synthetic chemicals constructed from chemical 

building blocks (e.g. simple acids and amides), and in most cases the chemicals 

identified from the screen have to date no known biological function.  

 

Whilst the core structure of any chemical identified is integral to its shape and 

conformation and will therefore decide the domain, motif or fold of a protein the 

chemical can interact with, it is the outlying functional groups of the structure that will 

determine if a chemical can bind the protein. For example the presence of a pyridine 

instead of a benzene is integral for pyrabactin’s activity as an ABA transport and seed 

germination inhibitor (Park et al., 2009). Additionally the location of the N in the 

pyridine ring is important for activity, while the presence of additional bromine or 

methyl groups can also decrease the efficacy of the molecule. It is therefore possible 
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that any of the functional groups on the chemical structures of the 28 identified 

chemicals could be necessary biological activity. Group 1 consists of nine 

compounds. For N3 E is a carbon and R is a phenoxy group. In the R’ position N3 

possesses a methylbenzene coupled at the 2-position to a benzothiazol moiety. R’ in 

N4 is a thiazolyl moiety linked to a dichlorophenol whilst at the R position there is a 

bicycloheptane with a carboxylic acid. The R’ position of N5 is a bicycloheptene 

carboxylic acid, which is similar in structure to the R’ of N4. A 

methyltetrahydrobenzothienyl with an ethoxycarbonyl on the C3 is in the R position of 

N5. N6 is a relatively simple amide with a chlorobenzene in the R position and a 

benzoic acid in the R’ position. N8 also has a benzoic acid in the R’ position but the R 

position is filled by a furan with methyl and isobutyl at the C2 and C5 positions, 

respectively. A dichlorobenzene fills the R position of N14 with a dimethoxybenzoic 

acid in the R’ position. N18 has a biphenylcarboxylic acid at the R position and 

trifluoromethoxy benzene group in the R’ position. At the R’ position of N19 is a 

chlorobenzoic acid with an ethoxybenzene in the R position. N24 is also a relatively 

simple amide with 3-chlorophenol in the R position and toluene in the R’ position.  

 

The constituent groups decorating the core coumarin molecules in Group 2 are 

simpler structures than most those linked to the amides, potentially as the coumarins 

are larger, more complex core structures than the amides. N20 has a fluorobenzyloxy 

group at the R position with propanoic acid at the R’. N22, N23 and N26 all have 

acetic acid at the R’ position, but have phenylpropenyloxy, 2-bromobenzyloxy and 4-

bromo-2-fluorobenzyloxy, respectively, at the R position. N27 has propanoic acid at 

the R’ position and a butoxy chain at the R position. Despite also being derived from 

amides, the sulphonamides identified in the initial GA20ox1::GUS screen also have 

simpler R and R’ groups than the amides that were identified. N2 has a benzene ring 

at the R position and a pentafluorophenol at the R’ position. Both N10 and N11 have a 

nitrophenol in the R’ position. N10 has 3-chloro-4-fluorobenzene at the R position 

whilst N11 has a bromothiophene. N12 is the most complex sulphonamide in Group 3. 

In the R position it has a simple bromothiophene and at R’ there is benzyl-2-
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benzamide. N16 differs from the other sulphonamides in Group 3 as both positions on 

N are substituted by cyclohexyl and acetic acid moieties. In the R position there is 

trimethylbenzene.  Of the 28 identified chemicals seven did not have a core structure 

in common with any of the other identified chemicals. N1 is a tetrafluorobenzene para 

substituted with a trifluoromethyl and phenoxypyrrolidinedione groups. The core 

structure of N7 is 5-methylthiotetrazole, substituted at the 1-position with benzoic acid 

and with 2,4,6-trimethylbenzene on the methyl group. N9 is a 2-keto-3-hydroxy-2,5-

dehydro pyrrole substituted at the 1 position with 2-methylpyridine, on C-4 with 2-

formylthiophene and at C-5 with 4-isopropylbenzene. N13 also contains a 5-

methylthiotetrazole, substituted on N-1 with benzene and on the S-methyl group with 

5-keto-1-benzylpyrazole. N17 has a 2,3-dihydropyrazole moiety at its core, to which is 

substituted 4-oxobutyric acid on N-1, 5-bromophenyl on C-3 and phenylvinyl on C-5. 

N21 is a thiourea derivative, substituted with 3,4-dichlorobenzyl and 4-nitrophenyl 

groups. N25 is similar to N21 with cyclohexene linked to the thiourea via an ethyl 

group in place of the dichlorobenzyl group.  
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Figure 3. 4. Structures of 28 chemicals identified by the initial 

chemical screen. 

Chemicals are divided into four groups by their core chemical structure 

(represented by the highlighted colour): Group 1 are the amides (red); 

Group 2 are coumarins (blue); Group 3  are sulphonamides (green); 

Group 4 are chemicals that have no common core structure. 
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Table 3. 1. Searchable chemical IDs and important information. 

 Information provided includes searchable Chemspider ID (CS ID, 

http://www.chemspider.com/Chemical-Structure), chemical ID used for this 

project, formula weight, chemical formula, chemical name and logP.  

 

Group 1

 

Group 2 
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Group 3 

 

Group 4 

 

 

3.2.2. Confirmation of effect of the 28 chemicals identified by chemical screen 

on GA20ox1::GUS reporter line 

 

To rule out the possibility of false positives from the initial chemical screen, fresh 

batches of the identified chemicals were purchased (Chembridge, San Francisco) and 

the GA20ox1::GUS screen was repeated. Identical growth conditions and chemical 

treatments were used with the exception that 5 μM GA3 was added as opposed to 1 

µM which was used in the initial screen. A higher concentration of GA3 was used as it 

was found to be more effective in reducing GUS activity in the GA20ox1::GUS line. 
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All 28 chemicals induced increased staining in the root tips of nine GA20ox1::GUS 

seedlings when compared to the control, suggesting that they are blocking feedback 

regulation of GA20ox1 by GA signalling (Figures 3.5.). Under control conditions 

(DMSO, Figure 3.5) the GA20ox1::GUS line exhibits strong GUS activity at the root tip 

with a reduction in staining towards the basal end of the root elongation zone. Clark 

(2005) showed from the staining of GA20ox1::GUS seedlings that in the root tip the 

activity of GA20ox1 is predominantly localised to the meristem whilst in the elongation 

zone it can be observed in the cortical cells. When GA3 is applied a dramatic 

reduction in GUS activity is observed, such that the staining is barely detectable in the 

root (GA, Figure 3.5.) (Clark, 2005). Nine of the chemicals (N4, N5, N12, N14, N15, 

N19, N20, N21, N28) identified by the initial screen maintained the level of staining 

observed in GA20ox1::GUS control seedlings even in the presence of GA suggesting 

a complete block in GA signalling. The remaining 19 chemicals resulted in loss of 

GUS activity in the elongation zone but with some remaining in the root tip. The two 

remaining chemicals (N10 and N16) displaying low levels of GUS activity throughout 

the root. GA20ox1::GUS staining in the presence of GA was maintained by all 

chemicals when applied at a concentration of 50 µM, which may be well in excess of 

their active concentration in some cases.  
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DMSO GA N1 N2 

N3 N4 N5 N6 

N7 N9 N8 N10 

N11 N12 N13 N14 

N15 N16 N17 N18 

N19 N20 N22 N21 

N23 N24 N26 N25 

N26 N27 N28 

Figure 3. 5. Chemical inhibition of GA-mediated down-regulation of 

GA20ox1::GUS expression. 

Effect of each chemical (N1 to N28) on GA20ox1::GUS staining was 

compared to the mock and GA-treated controls.1 µM PAC was applied 

at day 5, 50 µM of each chemical was applied at day 6 and 5 µM GA 

was applied 2 hours after the chemical application. Seedlings were 

analysed for GUS activity at 7 days old. Similar staining was observed in 

all nine seedlings analysed. Scale bar = 1 mm. 
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Published chemical screens for compounds which have biological activity 

demonstrate that the active concentration of the identified compounds can vary 

between approximately 50 μM to 200 nM (Armstrong et al., 2004; Rojas-Pierce et al., 

2007). To determine the concentrations at which these compounds inhibit GA-

mediated GA20ox1::GUS down-regulation, a dose response study was performed. 

The assay was performed using all chemicals at 50, 10, 5 and 1 μM (summarised in 

Figure 3.6.). None of the chemicals tested produced increased staining at 1 μM when 

compared to the GA3 treated control. Chemicals N7, N9, N10, N11, and N20 

maintained staining at 5 µM. N2, N3, N4, N5, N6, N8, N13, N16, N17, N18, N21, N22, 

N23, N24, N25, N26, N27 and N28 were active at 10 μM and N1, N14, N15, N19 were 

active only at 50 μM (Figure 3.6.) (summarised in Table 3.2.). 
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Group 1 
 

Group 2 
 

Group 3 
 

Group 4 

Chemical 
Active 

conc. (µM)  
Chemical 

Active 
conc. (µM)  

Chemical 
Active 

conc. (µM)  
Chemical 

Active 
conc. (µM) 

N3 10 
 

N20 5 
 

N2 10 
 

N1 50 

N4 10 
 

N22 10 
 

N10 5 
 

N7 5 

N5 10 
 

N23 10 
 

N11 5 
 

N9 5 

N6 10 
 

N24 10 
 

N16 10 
 

N13 10 

N8 10 
 

N26 10 
    

N17 10 

N14 50 
 

N27 10 
    

N21 10 

N15 50 
 

N28 10 
    

N25 10 

N18 10 
         

N19 50 
          

 

The GA20ox1::GUS reporter line used in the initial screen and experiments described 

above contains a GA20ox1 translational fusion to the GUS reporter gene (Plackett, 

2011). This raises the possibility that the effects of the chemicals leading to increased 

GUS activity in the presence of GA may not be caused by effects on the transcription 

from the GA20ox1 promoter. For example, they may also be the result of increased 

GA20ox1 protein stability. Therefore to establish whether the chemicals are acting at 

the level of transcription, qRT-PCR analysis was performed to analyse changes in the 

expression of the endogenous GA20ox1 gene. Plant growth and chemical treatments 

were carried out as described previously for the GA20ox1::GUS assays, using the 

active concentrations established from the GA20ox1::GUS dose-response experiment 

(Table 3.2.). Due to problems associated with isolating RNA from roots, the assays 

were performed on whole Col-0 seedlings. A representative sample of nine chemicals 

(N2, N3, N6, N10, N11, N13, N14, N16, N23) as used. qRT-PCR analysis was 

performed using the GA20ox1 forward and reverse primers described in Rieu et al. 

Table 3. 2. Minimum concentration at which chemicals prevent GA 

mediated reduction of GA20ox1::GUS staining in the root tip, 

grouped by chemical class. 

PAC (1 μM) was applied to 5-day old Col-0 seedlings grown in liquid 

MS, followed 24 hours later by the chemical at 1, 5, 10 or 50 µM. GA3 (5 

μM) was applied 2 hours after the chemical application and 24 hours 

prior to GUS staining. (a) Group 1; (b) Group 2; (c) Group 3; (d) Group 4 
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(2008b) and primers for YLS8 (At5g08290), PP2A (At1g13320) and UBQT 

(At4g33380) as control genes (Czechowski et al., 2005). As the screen was for 

chemicals that prevented GA20ox1 down-regulation, transcript levels were calculated 

relative to those from the PAC/GA control treatment (e.g. treatment divided by 

[PAC/GA]) 

 

Plants that were not treated with GA (DMSO mock treatment) exhibited around nine-

fold higher GA20ox1 expression than those treated with GA (PAC/GA, Figure 3.7.). 

Five of the chemicals (N3, N6, N13, N14, N16) increased expression of GA20ox1, 

whereas two chemicals (N2 and N23) had no effect compared to the PAC/GA control 

treatment. Treatment with N10 (95% of PAC/GA treatment) and N11 (68%). produced 

a slight decrease in expression when compared to the PAC/GA control. Only two 

chemicals (N13 and N16) produced higher expression than the DMSO control. Two 

(N6 and N14) of the three (N2) Group 1 chemicals tested induced a significant 

increase in GA20ox1 expression compared to PAC/GA, whilst N2 produced a small, 

but non-significant increase (Figure 3.7.). Group 1 chemicals are therefore likely 

acting on signalling elements that induce a change in transcription. Four of the nine 

chemicals tested belonged to Group 3 (N2, N10, N11 and N16). Interestingly all 

Group 3 chemicals apart from N16 induced a similar response, with no significant 

change in GA20ox1 expression (Figure 3.7.). N16 induced a large change in 

expression (Figure 3.7.). Only one chemical from Group 2 (N23) and Group 4 (N13) 

was tested. It is important to note that the GA20ox1::GUS used in the initial screen is 

a translational fusion whereas the qRT-PCR assay analyses transcription. It is 

therefore possible that those chemicals showing no increase in GA20ox1 transcription 

could still be perturbing GA signalling by affecting the stability of the GA20ox1 

proteins. There is some evidence that GA regulates the stability of the GA20ox1 

enzymes, as GA application results in the loss of fluorescence in the Arabidopsis 

ga20ox1,2,3:SCR::YFP::AtGA20ox1 line (Barker, 2011). As the SCR (scarecrow) 

promoter is not GA regulated it is possible that GA is affecting the enzyme stability in 

an as yet unidentified manner as part of the feedback mechanism. Additionally 
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ethylene  has been shown to alter the stability of its biosynthetic enzyme, 1-

aminocyclopropane-1-carboxylic acid synthase (Chae et al., 2003). It is therefore 

possible that the chemicals that do not alter GA20ox1 expression but maintain 

GA20ox1::GUS staining in the presence of GA could present a useful tool for the 

study of the control of hormone biosynthetic enzymes by plant hormones. Alternatively 

the differences in phenotypes induced by the same chemicals in the GA20ox1 qRT-

PCR and GUS assays could be contributed to the differences in time scale for 

response to GA Application of exogenous GA to plants results in the GA signalling 

feedback loop reducing GA20ox expression within 60 minutes (Middleton et al., 2012). 

One of the main limitations of a GUS assays is the high stability of the GUS-fusion 

proteins meaning intensities of GUS staining can increase over time even if 

expression levels are relatively low (Mantis and Tague, 2000). In contrast qRT-PCR 

data shows the exact expression of the gene at the time of harvest. It is therefore 

possible that the 24 hour GA treatment in both the GUS and qRT-PCR assays was 

long enough to reduce GA20ox1 expression in the presence of some chemicals but 

GUS staining remained high as a result of the increased stability of the GUS-fusion 

protein.  
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Figure 3. 7. Expression analysis of GA20ox1 in Col-0 seedlings 

treated with nine chemicals. 

Relative expression of GA20ox1 in Arabidopsis seedlings treated with 

nine chemicals and a DMSO negative control relative to PAC/GA 

treatment. Six-day old Col-0 seedlings treated with each chemical at 

their previously identified effective concentrations (N2, 10 µM; N3, 50 

µM; N6, 10 µM; N10, 10 µM; N11, 5 µM; N13, 10 µM; N14, 50 µM; N16, 

50 µM; N23, 10 µM) and 1 µM PAC for 24 hours were treated with GA
3
 

(1 µM) for a further 24 hours before GA20ox1 expression was analysed 

by qRT-PCR. YSL, UBQT and PP2A were used as control genes. Error 

bars represent standard errors, n = 4.   
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3.2.3. Effect of chemicals on Arabidopsis root elongation  

 

Gibberellins have been demonstrated to have an important role in controlling root 

elongation in many plants including Arabidopsis (Tanimoto, 1987; Fu and Harberd, 

2003; Ubeda-Tomas et al., 2008; Ubeda-Tomas et al., 2009). Based on the finding 

that compounds were identified that blocked GA-mediated down-regulation of 

GA20ox1 expression and therefore potentially GA signalling, their effect on root 

elongation was investigated. The physiological effect of blocking feedback regulation 

of GA20ox1 expression is not predictable as the chemicals could be regulating 

numerous aspects of the GA-signalling pathway. For example, it could indicate a 

block in the GA signalling cascade resulting in an accumulation of DELLAs which act 

to increase the expression of GA20ox1, but also inhibit root elongation. Alternatively 

chemicals could be up-regulating GA20ox1 expression resulting in increased levels of 

bioactive GA and thus increased root elongation. Therefore, to test the effect of these 

compounds on root elongation, five-day old Col-0 seedlings were transferred to 

medium containing a compound at four concentrations (1, 5, 10 and 50 μM) and the 

increase in root elongation was measured after a 24 hour period. All 28 chemicals 

were tested. Five-day old seedlings were used as their root length was unlikely to 

exceed the size of the petri dish (10 cm) after a further 24 hours of growth even if the 

chemicals promoted root elongation. No GA control application was used for this 

experiment as it has previously been shown that GA induces a minimal increase in the 

root elongation of Arabidopsis roots (Griffiths, 2007). 

 

When applied at a concentration of 1 µM none of the compounds inhibited root 

elongation. All chemicals except N3 and N16 produces a severe inhibition of root 

elongation at 50 µM and in some cases complete growth arrest was observed (Figure 

3.8. and 3.11.). To establish whether the compounds were causing growth inhibition 

due to toxicity, cell viability was assessed using propidium iodide staining. In dead or 

dying cells propidium iodide would stain the cytoplasm which is indicative of cell 

death, as propidium iodide is membrane impermeable and thus cannot enter viable 
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cells. Using similar growth conditions, five-day old Col-0 seedlings grown in liquid MS 

media were treated with the compounds for 24 hours followed by staining with 

propidium iodide and visualisation using a confocal microscopy. One chemical that 

blocked root elongation at a concentration of 50 M was selected from each of four 

groups (N6, N10, N23 N25) for this experiment. The effect of these four compounds 

on cell viability at the RAM was assessed. In all cases treatment with the chemicals 

resulted in propidium iodide staining of the cytoplasm (Figure 3.12). In contrast, 

treatment with N16, which did not inhibit root elongation at 50 µM, did not cause 

propidium staining of the cytoplasm (Figure 3.12.). This suggests that inhibition of root 

elongation observed when using higher concentrations of the chemicals is due to 

toxicity. Interestingly the initial screen was performed by treatment with the chemicals 

at a concentration of 50 µM which led to increased GUS activity in the GA20ox1::GUS 

line when compared to the GA treated control. This is somewhat surprising given their 

apparent toxicity. However, it has been demonstrated that GA20ox1 expression is 

increased in Col-0 plants exposed to cold stress (Achard et al., 2008b), suggesting 

that this induction in expression level could be caused by toxicity-induced stress.  

 

Four chemicals (N3 [Figure 3.8.], N9 [Figure 3.11.], N16 [Figure 3.10.], N27 [Figure 

3.9.]) did not reduce root elongation when compared to control even at 50 µM (Figures 

3.8. to 3.11.).  The remaining 15 chemicals all showed a dose dependent inhibition of 

root elongation over 24 hours. Of the 15, five (N2, N11, N13, N22, N26) inhibited root 

elongation at the relatively low concentration of 5 µM and eight (N1, N7, N10, N12, 

N17, N21, N23, N25) reduced elongation at 10 µM (Figures 3.8. to 3.11.). Two 

chemicals (N4, N24) decreased root elongation severely at 50 µM, but also produced 

a small, but not significant decrease in root elongation compared to the control when 

applied at 1 µM to 10 µM (Figure 3.8., Figure 3.9.). Interestingly one chemical (N23) 

induced agravitropism in this assay (discussed further in Chapter 4) which is a 

processes more readily associated with auxin signalling. 
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Figure 3. 8. Effect of Group 1 chemicals on root elongation at 

1, 5, 10 and 50 µM.  

Eight to ten five-day old seedlings were transferred to MS-medium 

containing the chemical (N3, N4, N5, N6, N8, N14, N15, N18, N19) 

at varying concentrations (1 (black bars), 5 (dark grey bars), 10 

(medium grey bars) and 50 (light grey bars) µM). Root elongation 

was measured over 24 hours using ImageJ software. Error bars 

represent S.E.  

Figure 3. 9. Effect of Group 2 chemicals on root elongation at 1, 5, 

10 and 50 µM. 

Eight to ten five-day old seedlings were transferred to MS-medium 

containing the chemical (N20, N22, N23, N24, N26, N27, N28) at 

varying concentrations (1 (black bars), 5 (dark grey bars), 10 (medium 

grey bars) and 50 (light grey bars) µM).. Root elongation was 

measured over 24 hours using ImageJ software. Error bars represent 

S.E. 
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Figure 3. 10. Effect of Group 3 chemicals on root elongation.  

Eight to ten five-day old seedlings were transferred to MS-medium 

containing the chemical (N2, N10, N11, N12 and N16) at varying 

concentrations (1 (black bars), 5 (dark grey bars), 10 (medium 

grey bars) and 50 (light grey bars) µM). . Root elongation was 

measured over 24 hours using ImageJ software. Error bars 

represent S.E. 

Figure 3. 11. Effect of other chemicals on root elongation.  

Eight to ten five-day old seedlings were transferred to MS-medium 

containing the chemical (N1, N7, N9, N13, N17, N21 and N25) at 

varying concentrations (1 (black bars), 5 (dark grey bars), 10 

(medium grey bars) and 50 (light grey bars) µM). . Root elongation 

was measured over 24 hours using ImageJ software. Error bars 

represent S.E. 
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3.2.3.1. Statistical modelling of root elongation data to establish the active 

concentration of chemicals  

 

From the raw root elongation data it was possible to provide a basic model for the 

effective dose on root phenotype (50% reduction in root elongation). Here we use 

either a logistic dose response curve or an exponential decay curve to model the root 

elongation (cm) data and predict the effective dose value for chemicals actually 

inducing a response with increasing concentration (Table 3.3.). The trends observed 

in the root elongation data over all the chemicals could be summarised in two possible 

ways. Some chemicals provided a sigmoidal trend, with slow decrease in root 

elongation with increasing concentration initially and at high concentration, and with a 

more linear decrease in the middle concentration range. The others gave a more 

rapid, instantaneous decreasing trend with increasing concentration. Two models, the 

logistic for the sigmoidal trend and the exponential for the rapid decrease, were 

therefore chosen as appropriate empirical representations to describe the trends seen 

in the data in a biologically sensible manner. Moreover, these models contain 

parameters that can be used to draw conclusions about the process being modelled, 

Figure 3. 12. Viability of Arabidopsis roots in the presence ofN6 and 

N25. 

N6 (b) and N25 (c) treatment resulted in loss of cell viability in the root 

tip. DMSO treatment shows regular propidium iodide training. Four-day 

old Col-0 seedlings were transferred to dH2O containing (a) 0.33 % v/v 

DMSO (mock), (b) N6 (50 µM) or (c) N25 (50 µM) for 24 hours before 

staining with propidium iodide and imaging with a confocal microscope. 

n = 3 

a b c 
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reducing a large amount of data to a small set of parameters without loss of 

information (Bates and Watts, 1988). 

 

The logistic model is: 

 

y = A/(1 + exp(B(log(Concentration)-M)) 

 

where y is root elongation (increase in root length over a 24 hour period), A is the 

control response, B is the measure of increasing response caused by the increasing 

concentration (i.e. the 'slope' of the curve), M is the log(Concentration) which reduces 

y by 50%, i.e. the log (LC50), which we back-transform to the raw scale. 

 

The exponential decay model is: 

 

y = Aexp(-B(Concentration)) 

 

where y is root elongation, A is the control response and B is the exponential rate of 

decrease. Parameter B is used to calculate the effective concentration (EC50) as 

log(2)/B. 

 

These models were fitted using the method of nonlinear least squares, as 

implemented in the GenStat (2011, 14th edition, (c) VSN International Ltd, Hemel 

Hempstead, UK) FITNONLINEAR routine, which also allows output of the functions of 

the parameters from the exponential decay model, i.e. estimated LC50 values with 

standard errors. 

 

The majority of the chemicals modelled (N1, N2, N4, N5, N7, N11, N12, N13, N17, 

N20, N21, N22, N23, N24, N25, N26) had an LC50 or EC50 of under 10 µM. Six 

chemicals (N5, N6, N8, N14, N15, N28) have EC50s or LC50s of between 10 and 20 

µM. Only N18 and N19 had an LC50 of over 20 µM. The models suggest that four 
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chemicals (N3, N9, N16 and N27) had no effect on root elongation. N11 has a 

particularly low EC50s of 0.55 µM. Such a low EC50 demonstrates the limitation of the 

statistical model which should not yield a EC50 below the lowest concentration tested 

(1 µM). The major drawback of the model is the limited number of data points (4 

different concentrations; 1, 5, 10 and 50 µM) which prevents the statistical software 

from accurately differentiating between a poor straight exponential plot and a noisy 

sigmoidal plot. Whilst only four concentrations were analysed to allow comparisons to 

be drawn with other experiments in this chapter a larger number of data points (e.g. 

10 concentrations between 1 and 50 µM) would have provided better plots to define a 

model. With a higher number of data points it is more likely that more sigmoidal 

models would have been apparent for the chemicals tested. 

 

When compared to the active concentration determined from the GA20ox1::GUS 

assay the modelled results show high similarity (when standard errors were taken into 

account) (Table 3.3.). Chemicals that produced no effect on root elongation (N3, N9, 

N16, N27) had the maximum active concentration of 50 µM in the GA20ox1::GUS 

assay. Chemicals with an EC50 or LC50 higher than 10 µM had an active 

concentration of 50 µM as no concentrations between 10 and 50 µM were tested. N4 

was an exception as its active concentration in the GA20ox1::GUS assay (10 µM) was 

lower than its LC50 for inhibition of root elongation (17.7 µM). Chemicals with an LC50 

of 5 to 10 µM and 0 to 5 µM had active concentrations of 10 µM and 5 µM, 

respectively. N20 was the only chemical with an LC50 (6.56 µM) that greatly differed 

from its active concentrations (50 µM). 
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Chemical Model 
Parameters 

LC50 
or  
EC50 
μM 

s
2
 

R
2
 

(%) 

A B M 

1 Logistic 
1.021 
(0.107) 

5.04 
(5.26) 

1.609 
(0.093) 

5 
(0.465) 

0.0228 89.2 

2 Exponential 
1.304 
(0.245) 

0.44 
(0.14) 

- 
1.58 
(0.52) 

0.0143 89.7 

3* - - - - - - - 

4 Logistic 
1.055 
(0.368) 

13.50 
(80.90) 

1.637 
(0.298) 

5.14 
(1.58) 

0.1781 47.3 

5 Logistic 
1.172 
(0.080) 

4.13 
(4.84) 

2.480 
(0.202) 

11.94 
(2.41) 

0.0134 95.4 

6 Logistic 
1.259 
(0.102) 

4.00 
(5.88) 

2.776 
(0.691) 

16.10 
(11.10) 

0.035 89.8 

7 Logistic 
1.106 
(0.208) 

1.99 
(1.52) 

2.058 
(0.336) 

7.83 
(2.64) 

0.0605 72.5 

8 Exponential 
1.151 
(0.148) 

0.04 
(0.02) 

- 
16.49 
(7.26) 

0.0502 77.7 

9* - - - - - - - 

10 Exponential 
1.131 
(0.177) 

0.17 
(0.05) 

- 
4.03 
(1.21) 

0.0299 82.5 

11 Exponential 
3.730 
(8.030) 

1.26 
(2.12) 

- 
0.55 
(0.98) 

0.0152 93.9 

12 Exponential 
1.122 
(0.278) 

0.15 
(0.07) 

- 
4.62 
(2.29) 

0.0811 65.5 

13 Exponential 
1.058 
(0.291) 

0.20 
(0.10) 

- 
3.48 
(1.79) 

0.0725 62.5 

14 Logistic 
1.019 
(0.119) 

4.20 
(7.51) 

2.870 
(1.040) 

17.70 
(18.50) 

0.0509 79.1 

Table 3. 3. Prediction of the EC50 or LC50 values for inhibition of 

root elongation by the 28 chemicals and active concentrations 

identified from the GA20ox1::GUS assay.  

Either an exponential or logistic model was used to determine the dose 

at which each chemical reduced root elongation to 50% of control. 

Figure in parenthesis represent SE. LC50 relates to logistic model. 

EC50 relates to exponential model. 
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15 Exponential 
1.214 
(0.156) 

0.04 
(0.02) 

- 
17.80 
(7.92) 

0.0594 77.8 

16* - - - - - - - 

17 Logistic 
1.17 
(0.672) 

1.26 
(0.16) 

1.989 
(0.084) 

7.31 
(0.61) 

0.0045 97.5 

18 Logistic 
1.095 
(0.195) 

4.68 
(5.48) 

3.195 
(0.880) 

24.40 
(21.50) 

0.0434 84 

19 Logistic 
1.054 
(0.053) 

3.80 
(1.80) 

3.191 
(0.361) 

24.32 
(8.78) 

0.0099 95.3 

20 Exponential 
1.224 
(0.105) 

0.11 
(0.02) 

- 
6.56 
(1.29) 

0.0138 92.2 

21 Exponential 
1.602 
(0.162) 

0.30 
(0.06) 

- 
2.30 
(0.42) 

0.014 94.6 

22 Exponential 
1.670 
(0.120) 

0.36 
(0.05) 

- 
1.94 
(0.25) 

0.0057 97.9 

23 Exponential 
1.233 
(0.201) 

0.11 
(0.04) 

- 
6.27 
(2.30) 

0.0495 78.1 

24 Logistic 
1.099 
(0.211) 

2.23 
(2.02) 

2.256 
(0.344) 

9.55 
(3.29) 

0.0757 68.4 

25 Logistic 
1.113 
(0.042) 

6.32 
(2.84) 

1.685 
(0.043) 

5.392 
(0.233) 

0.0036 98.6 

26 Exponential 
1.420 
(0.207) 

0.20 
(0.05) 

- 
3.45 
(0.94) 

0.0364 85.4 

27* Exponential - - - - - - 

28 Exponential 
1.103 
(0.129) 

0.06 
(0.02) 

- 
12.37 
(4.60) 

0.0297 84.9 

* No discernible dose-response relationship. 

 

There are obvious correlations between the EC50 or LC50 of chemicals with similar 

core structures (Table 3.3.). With the exception of N28 in Group 2 all the chemicals 

that induced an effect on root elongation with an EC50 or LC50 of greater than 10 µM 

belong to Group 1 (Table 3.3.). As mentioned previously, N28 (12.37 µM) of Group 2 

had a EC50 of over 10 µM, while all other members of Group 2 have a EC50 or LC50 

of between 1.94 and 6.56 µM, apart from N27 which had no effect on root elongation 

(Table 3.3.). The lack of effect of N27 when compared to an EC50 of 1.94 µM for N22 

demonstrates how small changes in chemical structure can have large effects on 

biological effect, as the only difference in structure of the two chemicals is the 
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presence of a methyl group in the C9 position of the coumarin in N27 (Table 3.3.). 

With the exception of N16, all Group 3 chemicals had EC50 or LC50 values of less 

than 5 µM. Interestingly N16 is the only member of Group 3 that does not have a H 

atom at one of the R’ positions of the sulphonamide, instead possessing a carboxylic 

acid group. Additionally N16 is the only chemicals identified by the initial 

GA20ox1::GUS screen that induces an agravitropic response in roots. 

 

Taken together the results for all four groups of chemicals shows that the core 

chemical structure has a major influence on the biological activity of the molecule, 

likely as a result of the tertiary structure of the molecule deciding the potential binding 

pocket of the target protein. The outlying chemical groups are more likely to determine 

the binding of the molecule to the amino acid residues within the target protein and 

would therefore cause the variation in efficacy observed here. Additionally the data 

also indicate at the concentration at the chemicals may be affecting GA signalling to 

an extent that they will inhibit a GA regulated developmental process.  

 

3.2.4. Eleven chemicals prevent GA-mediated degradation of a GFP-RGA 

reporter 

 

DELLA proteins represent a central step of the GA signalling pathway. Whereas they 

act downstream of GA biosynthesis and perception (Silverstone et al., 2001; Griffiths 

et al., 2006a), they are upstream of transcription factors that control GA-responsive 

growth and development (de Lucas et al., 2008; Feng et al., 2008). Based on the fact 

that DELLA proteins are degraded in response to GAs, it is therefore possible to 

broadly narrow down where the chemicals are acting within the GA signalling 

cascade. For example, those which are acting to interfere with DELLA-transcription 

factor interactions that control GA20ox1 expression would not be expected to perturb 

DELLA protein stability. In contrast, those compounds which affect GA perception by 

GID1 or DELLA binding to GID1/SLY1 would be expected to block GA-mediated 

DELLA protein degradation. Additionally chemicals could also be increasing 
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endogenous levels of the DELLA proteins under normal GA conditions, potentially by 

increasing transcription of the DELLA genes. To establish the effect of the 28 

chemicals on DELLA protein levels and GA-mediated DELLA protein degradation a 

RGAp::GFP-RGA transgenic reporter line was utilised (Silverstone et al., 2001). 

Fluorescent proteins, such as GFP, provide a qualitative means by which to visualise 

genetically encoded proteins in living cells in real time (Dundr et al., 2002). The 

RGAp::GFP-RGA line provides a convenient reporter for monitoring GA-induced 

degradation of DELLA proteins in planta. It has been shown to be functional in the GA 

signalling pathway through the demonstration that the GFP-RGA transgene is capable 

of complementing the rga/ga1-3 mutant (Silverstone et al., 2001). The GFP-RGA 

protein has been demonstrated to be nuclear localised and is degraded in the 

presence of GA within in two hours of treatment, visualised by a loss of fluorescence.  

 

There are three potential scenarios for the effect of the chemicals on the RGAp::GFP-

RGA reporter line: firstly chemicals that act upstream of the DELLA proteins in GA 

signalling (e.g. binding of GA to GID1) would prevent DELLA protein degradation and 

result in constitutive GFP-RGA fluorescence in the presence of GA; alternatively 

chemicals acting downstream of DELLA proteins would not be expected to affect GA-

mediated DELLA protein degradation which would result in the loss of GFP-RGA 

fluorescence in the presence of GA. Additionally chemicals could be increasing 

endogenous levels of DELLA proteins in the absence of GA. To establish the effect of 

the chemicals on GFP-RGA fluorescence in the presence or absence of GA, five-day 

old RGAp::GFP-RGA seedlings were transferred to semi-solid medium containing the 

chemical for 6 hours, after which the seedlings were treated with either dH2O (as a 

mock treatment) or GA3. Two hours later GFP fluorescence was analysed in the root 

tips using a confocal microscope (Figures 3.13. to 3.16.). Chemicals were applied to 

the media at the lowest active concentration identified from the GA20ox1::GUS assay 

(Chapter 3.2.2.). 
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In contrast to the root elongation assays, there was no consistency in the 

disappearance of GFP-RGA in response to GA within most of the chemical classes, 

with the exception of Group 3. In this case, all compounds, with the exception of N11 

which was toxic to roots at 5 µM, blocked RGA degradation in the presence of GA 

(Figure 3.15., Table 3.4.). Within Group 1, four chemicals (N3, N5, N6, N19) blocked 

GFP-RGA degradation, whereas five (N4, N8, N14, N15, N18) had no effect on 

degradation (Figure 3.13., Table 3.4.). Toxicity was observed in the roots treated with 

several of the Group 1 and Group 2 chemicals (N20, N24, N26, N28), based on 

propidium iodide staining observed within the cytoplasm. In these cases, the toxicity 

prevented visualisation of nuclear expressed GFP-RGA and characterisation of its 

response to GA. The three remaining Group 2 chemicals (N22, N23, N27) had no 

effect on degradation (Figure 3.14., Table 3.4.). Four chemicals belonging to Group 4 

(N9, N13, N17, N25) had no effect on GFP-RGA degradation whereas two from this 

group (N7, N21) partially blocked degradation (Figure 3.16., Table 3.4.). N1 was found 

to be toxic to the roots. Some chemicals appeared to increase (N5, N7, N23, N27) or 

decrease (N4, N13, N25) the basal level of GFP-RGA fluorescence. Whilst this may 

be due to the chemicals affecting of GFP-RGA abundance, it is also conceivably due 

to an artefact of the confocal microscopy and cannot be quantified as GFP 

fluorescence provides qualitative information (Dundr et al., 2002).  

 

In total 11 of the chemicals had no effect on GA-mediated GFP-RGA degradation. It is 

conceivable that these compounds block the action of transcription factors acting 

downstream of DELLA proteins that are involved in the homeostatic regulation of 

GA20ox1. Several transcription factors which act downstream of the DELLA proteins 

have been identified and therefore it is possible that these chemicals could be 

affecting any number of putative DELLA protein interactions. For example, the 

interaction of DELLA proteins with SCL3 may also present a potential target for these 

chemicals as this transcription factor is involved in GA homeostasis (Zhang et al., 

2011).  
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Based on the DELLA protein degradation studies, the other class of compounds (11 

chemicals) are those that block GA-mediated degradation of GFP-RGA. The process 

of DELLA protein degradation in response to GA signalling is now well understood: 

when  bioactive GAs are produced in the plant they bind to GID1 causing a 

conformational change which allows binding of DELLA protein to form a DELLA-GID1-

GA complex, which, in Arabidopsis, is recognised by the F-Box subunit SLY1,  of an 

SCF
SLY1

 E3 ubiquitin ligase allowing ubiquitination and subsequent  degradation by 

the 26S proteasome (Silverstone et al., 2001; Griffiths et al., 2006b; Harberd et al., 

2009). These chemicals could be blocking any of these interactions. However GID1 

receptors that either cannot perceive GA or bind to the DELLA protein also lead to the 

stabilisation of DELLA proteins (Hirano et al., 2010). Additionally plants with mutations 

in the SLY1 gene (sly1) that prevent the SLY1 F-box protein binding to the DELLA 

proteins and mutations in the DELLA gene that prevent the protein forming a complex 

with GID1 result in a similar DELLA protein accumulation (Dill et al., 2001; Silverstone 

et al., 2001; Fleck and Harberd, 2002; Itoh et al., 2002; Dill et al., 2004).  It is therefore 

possible that the chemicals that prevent DELLA protein degradation in the presence of 

GA could be perturbing any of the GA-mediated DELLA interactions. The DELLA 

protein degradation assay described is focussed on RGA, which is only one of the five 

Arabidopsis DELLA paralogues and. it is therefore possible that other chemicals could 

affect the stability on one or more of the other four DELLA proteins. 
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Figure 3. 13. Effect of Group 1 chemicals on the fluorescence in the 

roots of transgenic plants expressing the GFP-RGA in the presence and 

absence of GA3.  

Five-day old GFP-RGA seedlings were transferred to MS-medium containing 

the chemical (N3, N4, N5, N6, N8, N14, N15, N18, N19) at its active 

concentration (shown in Figure 3.2). After 6 hours seedlings were treated with 

dH2O (mock) or 100 µM GA3 (GA) for 2 hours and and then fluorescence in 

root tips was visualized by confocal laser microscopy under an identical 

setting for all images. n=4. 
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Figure 3. 14. Effect of Group 2 chemicals on the fluorescence in the 

roots of transgenic plants expressing the GFP-RGA in the presence and 

absence of GA3.  

Five-day old GFP-RGA seedlings were transferred to MS-medium containing 

the chemical (N20, N22, N23, N24, N26, N27, N28) at its active concentration 

(shown in Figure 3.2). After 6 hours seedlings were treated with dH2O (mock) 

or 100 µM GA3 (GA) for 2 hours and and then fluorescence in root tips was 

visualized by confocal laser microscopy under an identical setting for all 

images. n = 4. 
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Figure 3. 15. Effect of Group 3 chemicals on the fluorescence in the 

roots of transgenic plants expressing the GFP-RGA in the presence and 

absence of GA3.  

Five-day old GFP-RGA seedlings were transferred to MS-medium containing 

the chemical (N2, N10, N11, N12 and N16) at its active concentration (shown 

in Figure 3.2). After 6 hours seedlings were treated with dH2O (mock) or 100 

µM GA3 (GA) for 2 hours and and then fluorescence in root tips was visualized 

by confocal laser microscopy under an identical setting for all images. n = 4. 
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Figure 3. 16. Effect of Group 1 chemicals on the fluorescence in the 

roots of transgenic plants expressing the GFP-RGA in the presence and 

absence of GA3.  

Five-day old GFP-RGA seedlings were transferred to MS-medium containing 

the chemical (N1, N7, N9, N13, N17, N21 and N25) at its active concentration 

(shown in Figure 3.2). After 6 hours seedlings were treated with dH2O (mock) 

or 100 µM GA3 (GA) for 2 hours and and then fluorescence in root tips was 

visualized by confocal laser microscopy under an identical setting for all 

images. n = 4.  
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Table 3. 4. Summary of the effect of the chemicals on GFP 

fluorescence in the RGAp::GFP-RGA reporter line. 

Summary of effect of chemical on RGA degradation in the presence or 

absence of GA. Chemicals were divided into their defined groups. 

Results show if the chemical prevents GA-mediated RGA degradation 

(Stabilised), has no effect on RGA degradation (Degraded), or is toxic to 

the root tip (Toxic). Tables also show if chemical increases (Increased), 

decreases (Decreased) or has no effect (None) on the basal level of RGA 

abundance. GFP-RGA was used to represent RGA degradation. Five-

day old seedlings were treated with the chemical for 6 hours followed by 

GA treatment for 2 hours. 
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Transcript analysis by qRT-PCR would identify if chemicals were increasing or 

decreasing transcription of the DELLA genes which could potentially explain the 

differences in protein level. Western blots could be used to identify changes in protein 

levels and confirm the effect of the chemicals on the stability of the endogenous RGA 

protein. Therefore, western blots were performed on root extracts using polyclonal α-

RGA antibodies. Col-0 seeds were grown in liquid culture for four weeks to produce 

root cultures, which were then treated with either DMSO (mock), N6, N16 or N25 at 50 

µM for 24 hours before application of 10 µM GA4. N6 was shown to prevent GA-

mediated GFP-RGA degradation (Figure 3.13.), N25 had no effect on its degradation 

(Figure 3.17.) while N16 treatment resulted in only a minor decrease in GFP-RGA 

levels following GA treatment (Figure 3.15).  In order to assess the effects of these 

chemicals on native RGA levels, protein was extracted from root cultures using the 

method outlined in Bolwer et al. (2004) and a western blot was performed. Figure 

3.17. shows that in the DMSO (mock) control native RGA accumulated to high levels, 

but following GA application the levels were undetectable. This demonstrates that GA-

mediated RGA degradation occurs in root cultures as has been demonstrated in many 

other Arabidopsis tissues (Dill et al., 2001; Dill et al., 2004). The presence of N6 was 

found to block GA-mediated degradation of RGA whereas N25 had no effect (Figure 

3.17.). These observations support the findings of the GFP-RGA confocal assays 

using the same compounds. Somewhat surprisingly, in the presence of N16 a slight 

increase in the levels of RGA was observed following GA treatment, which is in 

contrast to the GFP-RGA assays.  However, these results largely confirm the effects 

of these compounds on DELLA protein degradation established from the GFP-RGA 

assays. Interestingly, the basal level of RGA in the control root cultures was much 

higher than in those treated with N6, N16 or N25 (Figure 3.17.). This reduction was 

not observed when monitoring GFP-RGA accumulation in the presence of N16 or 

N25. However, N6 did appear to reduce the basal levels of GFP-RGA (Figure 3.13.). 

The reasons for these differences are not currently clear. 
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3.2.5. Effect of the chemicals on DELLA protein interactions with SLY and 

GID1 in a yeast-2-hybrid system 

 

To establish whether the chemicals are blocking the interaction of DELLA proteins 

with SLY1 (F-box protein) and/or GID1 (GA receptor), yeast-2-hybrid assays were 

performed (Dill et al., 2004). These assays have been previously used to demonstrate 

that DELLA proteins interact with GID1 and SLY1 as part of the evidence to establish 

the role of these proteins in GA signalling (Dill et al., 2004; Griffiths et al., 2006a; 

Willige et al., 2007; Hirano et al., 2010). To identify the effect of the compounds on the 

DELLA-SLY1 interaction, a yeast-2-hybrid assay was performed in which SLY1 (or 

sly1-d) was expressed as a LexA DNA binding domain fusion (DB) protein and GAI as 

a GAL4 activation domain (AD) fusion. GAI was used as the representative DELLA 

protein because an established yeast-2-hybrid system containing thisDELLA protein 

already existed and had been optimised. As GA signalling results in the degradation 

 

DMSO N6 N16 N25 

EtOH GA EtOH GA EtOH GA EtOH GA 
Marker 
(kDa) 

70 

55 

 
Figure 3. 17. The effect of three chemicals on GA mediated RGA 

degradation in a western blot using anti-RGA antibodies.   

Preliminary data (n=2) showing levels of RGA in plants treated with 

chemical and GA or ethanol (EtOH, mock GA treatment, ).The blot 

contained 25 ug of total protein extracted from four-week old root cultures 

in liquid Gamborg B5 treated with either DMSO (-ve control), N6, N16 or 

N25 at 50 µM for 24 hours before application of ethanol (EtOH, 0.0033 % 

v/v) or 10 μM GA
4
 10 µM. A rabbit anti-RGA antiserum and a goat anti-

rabbit IgG were used as primary and secondary antibodies, respectively. 

Protein marker shows bands at 70 and 55 kDa and arrow displays 

expected position of RGA protein band (64 kDa). Coomassie blue was 

used as loading dye. For clarity, only RGA bands and section of marker 

have been shown. Both original western blots are shown in Appendix 1. 
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of both RGA and GAI through the same mechanism it is highly likely that chemicals 

blocking RGA degradation will also have the same effect on GAI.sly1-d is a gain-of-

function mutation which results in a predicted Glu-to-Lys substitution at amino acid 

138 near the C terminus of SLY1 protein (Dill et al., 2004). This mutation has the 

effect of  greatly enhancing the interaction with DELLA proteins, thereby causing 

increased degradation and enhanced GA-responsiveness (Dill et al., 2004). In 

addition, to investigate the effect of the compounds on the GID1-DELLA interaction, 

GID1B was expressed in these assays as LexA DB fusions and their interaction with a 

GAI GAL4 AD fusion analysed in the presence or absence of GA. All yeast strains 

harboured the HIS3 reporter gene, expression of which is induced when AD and DB 

fusion proteins interact, allowing growth on histidine drop-out media. Interaction of AD 

and DB fusion proteins was assessed in yeast strains by visualising growth on SD 

medium lacking leucine, tryptophan and histidine and supplemented with 20 mM 3-

amino-1,2,4-triazole (3AT) and a chemical (N1-N28) at 50 µM or DMSO (mock). GA3 

(10 µM) was also added to the media to promote the interaction of GAI-GID1B. 3AT is 

a competitive inhibitor of the HIS3 enzyme and therefore functions as an indicator of 

the strength of interaction between the DB and AD protein fusions (Durfee et al., 

1993). 

 

Initial experiments analysing the growth of the yeast in the presence of the chemicals 

on basic medium with no selection pressure showed that three chemicals N21, N24, 

N25 prevented growth of GAI-pLEXA, GAI-GID1, GAI-SLY1, GAI-gar (sly1-d) yeast 

(Figure 3.18.), suggesting that these chemicals are toxic to the L40 yeast strain 

containing the interactors at 50 µM. The pLEXA-pACTII negative control L40 strain 

showed growth on N21, N24, N25, although these colonies showed more growth than 

the GAI containing colonies on all chemical treatments, suggesting yeast transformed 

with pLEXA-pACTII has less of a growth cost than yeast transformed with plasmids 

containing GAI. 
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It has been demonstrated previously in yeast-2-hybrid studies using the same LexA-

based system that the interaction between GAI and both sly1-d and GID1 allows 

growth at a maximum 3-AT concentration of 60 mM 3AT (Griffiths et al., 2006a). In 

contrast, the interaction between GAI and SLY1 in these assays is weaker, allowing 

growth at only 30 mM 3-AT (Dill et al., 2004; Griffiths et al., 2006b). Pilot tests for the 

current experiment showed that SLY-GAI and GID1-GAI would both interact and allow 

growth of yeast at 20 mM 3AT and growth would start to be inhibited above this 

concentration (data not shown); therefore 3AT was added to the plates at 20 mM.  

Numerous chemicals (N6, N8, N11 and N20) inhibit the interaction between GAI and 

both SLY1 and GID1 as illustrated by the lack of growth at 20 mM 3AT 

concentrations, whereas growth is observed on minimal media containing histidine, 

whilst N7 appears to inhibit only the GAI-GID1a interaction (Figure 3.18.). N6 (Figure 

3.13.) and N7 (Figure 3.16.) block GA mediated GFP-RGA degradation but not N8 

(Figure 3.13.).  N11 is a sulphonamide, of which all the other chemicals belonging to 

this class block GA-mediated DELLA protein degradation. N20 was toxic to the root 

tips of the GFP-RGA at 50 µM and therefore its effect on GA mediated degradation 

could not be analysed (Figure 3.14.). It is possible that N6 and N11 are also blocking 

the degradation of RGA by blocking DELLA protein interactions with SLY1 and/or 

GID1, whilst N7 is directly blocking the GAI-GID1a interaction. sly mutants in 

Arabidopsis do not respond to exogenous GA because DELLA protein degradation is 

blocked leading to constitutive repression of GA responses (Strader et al., 2004). 

There is also evidence to suggest that solely SLY1 is affecting all DELLA proteins (Dill 

et al., 2004; Tyler et al., 2004). If these chemicals are blocking the DELLA-SLY1 or 

DELLA-GID1 interactions this would result in higher endogenous levels of DELLA 

protein which would cause up-regulation of GA20ox1 expression. For the chemicals to 

block these interactions they would need to bind a specific protein. A similar chemical 

screen for the ABA receptor identified the location of chemical binding to a protein 

complex by performing analysis of the tertiary crystalline structure (Melcher et al., 

2010). In the GFP-RGA degradation assay N11 was the only chemical of its class that 

was toxic to the seedlings. It is therefore possible that it could potentially be blocking 
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yeast growth, which is only apparent when the strains are grown on minimal medium 

lacking histidine 

 

Chemicals which did not block either the GAI-SLY or GAI-GID1 interaction are 

potentially affecting other interactions within the GA signalling pathway. For example, 

they could be affecting the three-way formation of the DELLA-GID1-SLY1 complex, 

the binding of GA to the GID1 receptor or the interaction of the ubiquitinated DELLA 

proteins with the 26S-proteasome. To affect the interactions described above the 

chemical would either have to interact directly with the binding regions of the SLY1, 

GID1 or DELLA proteins or cause a conformational change in the protein. The use of 

pyrabactin to identify the ABA receptor was enabled by the chemical binding directly 

to the ABA binding site (Cutler et al., 2009). 

 

SUMOylation and DELLA transactivation are two other DELLA related processes that 

could be altered by the chemicals resulting in changes in DELLA protein activity or 

degradation. Hirano et al. (2012) demonstrated that suppression of stem elongation 

by the rice DELLA protein SLR1 is dependent on its transactivation activity, in which 

the TVHYNP motif plays a major role. Furthermore, the GID1 receptor inhibits SLR1 

transactivation activity by directly binding to the TVHYNP motif. Potentially these 

chemicals could alter DELLA transactivation directly by influencing the TVHYNP motif, 

a process that would be independent of DELLA protein degradation. Small ubiquitin-

related modifiers (SUMOs) are ubiquitin like polypeptides that conjugate covalently to 

cellular proteins similar to ubiquitination (Johnson, 2004). SUMOylation of proteins 

has numerous functions: such as nuclear-cystolic transport (Matunis et al., 1996) or 

transcriptional activity (Gill, 2005). SUMOs can also be deconjugated from proteins 

(Hay, 2007; Mukhopadhyay and Dasso, 2007). It has been reported that one major 

target for SUMOs in plants are the DELLA proteins (Woodcock et al., 2012). RGA and 

GAI overexpressing Arabidopsis mutants lacking the site of SUMOylation are not 

dwarfed, indicating that SUMOylation is required for DELLA transcriptional control, 

although it is not clear as to why DELLA proteins lacking SUMO have little effect in 
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reducing plant height (Woodcock, 2012). It is therefore possible that chemicals that do 

not block GA-mediated DELLA protein degradation could be facilitating de-

SUMOylation of DELLA proteins.  
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pACT2 v pLEXA 

GAI v pLEXA 
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N3 
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Cont. 0 mM 20 mM Cont. 0 mM 20 mM Cont. 0 mM 20 mM 

N15 N16 N17 

pACT2 v pLEXA 

GAI v pLEXA 

GAI v gar 

GAI v GID1 

GAI v SLY 

Cont. 0 mM 20 mM Cont. 0 mM 20 mM Cont. 0 mM 20 mM 

N18 N19 N20 

pACT2 v pLEXA 

GAI v pLEXA 
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GAI v GID1 

GAI v SLY 
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Figure 3. 18. Yeast-2-hybrid assays assessing effects of the 

chemicals on interactions between GAI and SLY1 or GID1. 

All chemicals were tested for GAI vs GID1 interactions (pACT-GAI vs 

pLEXA-GID1c) and DELLA vs SLY1 interactions (pATC-GAI vs pLEXA-

gar, pATC-GAI vs pLEXA-SLY). All chemicals apart from N26 were 

tested at 50 μM and compared to the negative (DMSO) control. 

Interactions were compared in control -leu-trp medium (Cont.) to show 

the effect of the chemicals on yeast growth and on in the presence of 

interaction inhibitor 3AT in –leu-trp-his media (0 mM, 20 mM) to 

demonstrate their effect on protein interactions. All media contained 10 

µM GA3 to facilitate the DELLA-GID interaction. n = 3, all repeats 

shown. 
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3.2.6. Other potential sites of action of chemicals identified by the 

GA20ox1::GUS screen 

 

The higher level of GUS staining of GA20ox1::GUS in the presence of GA and the 

chemicals as compared to GA alone could be caused by other factors than those 

discussed above. GA crosstalk with other hormone signalling pathways, GA transport 

and GA metabolism may all influence GA20ox1 expression. GA regulates numerous 

developmental processes alongside other plant hormones. ABA and GA play a key 

antagonistic role in germination (Koornneef et al., 1982), although Ross et al. (2011) 

show no interaction between the hormone metabolism pathways in pea stems. There 

is direct interaction between the auxin and GA biosynthesis pathways. Evidence has 

shown that auxin positively affects GA biosynthesis and conversely limiting auxin 

results in lower GA levels in some tissues (Ross, 1998).  Furthermore, GA and auxin 

crosstalk has been shown to be integral to lateral root formation in Poplus (Gou et al., 

2010), distribution of PIN proteins for gravitropism in Arabidopsis (Willige et al., 2011) 

and fruit set in tomato and peas (Ross et al., 2000; Serrani et al., 2008). How one of 

the chemicals (N23) affects crosstalk between GA and auxin is explored further in 

Chapter 4. To date the mode of GA transport and the forms of GA that are being 

transported is not well understood. Indeed numerous forms of GA and precursors 

have been implicated in transport, including CDP, ent-kaurene, GA1, GA3, GA4, GA5, 

GA6, GA15, GA19, GA20 and GA24 (Drake and Carr, 1979; Kazama and Katsumi, 1983; 

Proebsting et al., 1992; King et al., 2001b; Yamaguchi et al., 2001; King et al., 2003; 

Eriksson et al., 2006; King et al., 2006; Kramer, 2006).  

 

3.3. CONCLUSIONS 

 

The aim of this project was to identify and characterise chemicals that perturb GA 

signalling, with a view to identifying novel components of this pathway. The screen for 

potential chemicals involved the use of a GA20ox1::GUS reporter line in a chemical 

screen which aimed to identify compounds which blocked the GA-mediated 
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downregulation of GA20ox1 expression. Twenty eight chemicals, from a non-biased 

library of 10,000 compounds, were identified in the screen. Further analysis using the 

GA20ox1::GUS reporter line identified the active concentration of the chemicals as 

being between 5 and 50 µM (Figure 3.6.). It was demonstrated that seven out of nine 

compounds tested also partially blocked the GA-mediated down-regulation of the 

endogenous GA20ox1 genes, supporting their roles in perturbing the GA signalling 

pathway. The other two chemicals which were tested by qRT-PCR study had no effect 

on GA20ox1 expression. In these two cases it is conceivable that the compounds are 

affecting post-transcriptional regulation of GA20ox1::GUS activity.  It was possible to 

divide the 28 identified chemicals into four groups based on a core structural motif 

(Figure 3.4.). However, while no clear relationship between these classes and their 

effects on GA signalling could be clearly established, it was possible to group some of 

the compounds based on their effects on DELLA proteins degradation, with one group 

acting to block this process and others having no effect. The former group therefore 

potentially act to perturb GA signalling by affecting components that are upstream of 

DELLA proteins within this pathway. Yeast 2-hybrid assays suggest that one member 

of this group (N11) may block GA-mediated degradation of DELLA proteins by 

inhibiting their interactions with SLY1 and GID1. Interestingly one chemical (N23) 

identified as altering GA signalling was shown to induce agravitropism in the roots of 

Col-0 seedlings. As the detailed mechanism of crosstalk between the GA and auxin 

signalling pathways has not yet been identified it is possible this chemical could be 

used as a tool for dissecting this process. 
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CHAPTER 4. N23 – A CHEMICAL AFFECTING GA AND 

IAA     

 

4.1. INTRODUCTION 

 

There is considerable evidence demonstrating that crosstalk between the GA and 

auxin has an important a role in controlling many physiological processes including 

stem and root elongation (Ross et al., 2000; Wolbang and Ross, 2001; Fu and 

Harberd, 2003; Ross et al., 2010; Willige et al., 2011). As yet the molecular 

mechanism mediating this hormonal crosstalk has yet to be elucidated. This chapter 

describes the characterisation of a chemical, N23 which affects both GA and auxin 

signalling, potentially providing a novel tool for dissecting the mechanism of crosstalk 

between the two hormones. In a recent study Saini et al. (2013) provided evidence 

that auxin-GA cross talk is partially mediated by the effect of GA on the localisation of 

the PIN proteins. This results in a higher abundance of PIN proteins at the plasma 

membrane which allows an influx of auxin into a cell, resulting in the degradation of 

the AUX/IAAs and activation of auxin responses. Saini et al. (2013) proposed that this 

frees the ARF7 transcription factors to activate expression of GA biosynthesis genes, 

which ultimately promote GA-responsive development and produces asymmetric 

growth during gravitropic stimulation. Willige et al., (2011) demonstrated that GA 

controlled auxin-regulated gravitropism through increasing levels of PIN proteins in 

the plasma membranes of cells, resulting in the efflux of auxin into surrounding cells 

and thus an asymmetric auxin gradient. Willige et al., (2011) suggested that GA does 

not directly control auxin mediated gravitropism, but merely indirectly modifies it. As 

N23 was identified by a screen for chemicals affecting GA signaling it is possible that 

it produces an agravitropic phenotype through fine tuning the auxin response. 

 

This chapter shows how one chemical (N23) that was identified in the screen for 

chemicals that alter GA-mediated expression of GA20ox1::GUS induces 
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agravitropism when applied to growing roots, indicating an additional auxin related 

role. Evidence from experiments using the DR5::VENUS and the DII-VENUS reporter 

lines indicates that N23 does not enhances the expression of auxin response genes 

or  AUX/IAA degradation. Yeast-2-hybrid assays suggest that N23 does not alter 

auxin signalling by affecting the binding of AUX/IAAs to ARFs, suggesting that N23 is 

not acting on auxin signalling at all. A more likely scenarios is that N23’s target protein 

exists within the auxin transport mechanism which ultimately leads to an effect on GA 

signalling. 

 

4.2. RESULTS AND DISCUSSION 

 

4.2.1. N23 induces root agravitropism 

 

Whilst performing the root elongation assays described in Chapter 3.2.3., it was 

noticed that the chemical N23, at concentrations between 1 and 10 µM, induced 

agravitropism in the roots of seedlings. As this chemical was identified from a screen 

for chemicals affecting GA signalling this was unexpected as the phytohormone more 

commonly associated with control of gravitropism is IAA (Went, 1928; Mirza and 

Maher, 1987). Until recently it was not thought that GA had a role in gravitropism. In 

the past decade our understanding of how auxin controls gravitropism has increased 

dramatically. Three recent studies have demonstrated that root columella cell 

asymmetrically release auxin in response to a gravity stimulus, resulting in an auxin 

gradient which inhibits elongation of cells on the lower side of the root, leading to 

curvature of the root towards the gravitropic stimulus (Rashotte et al., 2001; 

Boonsirichai et al., 2003; Ottenschlager et al., 2003). While auxin is the major player 

in controlling gravitropic responses, there is recent evidence for the involvement of 

GAs. It has been shown that GA is asymmetrically distributed in the leaf pulvini during 

the gravitropic response (Wolbang et al., 2007). Further studies have highlighted a 

role for GA in auxin controlled root gravitrospim (Lofke et al., 2013). Gallego-

Bartolomé et al., (2010) demonstrated that GA-insensitive mutants showed enhanced 
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root gravitropic reorientation. They subsequently identified IAA19/MSG2 as a potential 

transcriptional target of GA signalling that mediates this response.  

 

To confirm the effect of N23 on the root gravitropic response a root bending assay 

was performed following the method described by Marchant et al. (1999). Five-day old 

Col-0 seedlings grown on vertical standing agar plates were transferred to medium 

containing 1 µM N23 (the lowest concentration at which agravitropism was observed 

in the elongation assay, Chapter 3.2.2.). Plates were turned so roots were growing 

horizontally and then they were imaged 5, 8, 10, 15 and 20 hours later (Figure 4.1.a.). 

As auxin treatment has been demonstrated to block root gravitropic reorientation 

(Ottenschlager et al., 2003), the effect of IAA (1 µM) was also analysed. In the 

absence of IAA or N23 treatment, curvature of the root tips was observed within 5 

hours and complete gravitropic reorientation was achieved (a reorientation of 90º 

±10º) within 15 hours (Figure 4.1.c.). When the seedlings were treated with N23 or 

IAA no reorientation was observed within the first 10 hours (Figure 4.1.a.). Between 

10 to 20 hours after turning of the plates there was some curvature (≈10%) observed 

in the roots treated with either N23 or IAA (Figure 4.1.a.). To confirm that this lack of 

gravitropic reorientation in the presence of N23 is not simply due to inhibition of root 

elongation, the growth of the roots was also measured. During the course of the root 

bending experiment, the root lengths of seedlings treated with DMSO, N23 and IAA 

were measured after 5, 8,10, 15 and 20 hours (Figure 4.1.b.). Treatment with N23 did 

not appear to inhibit root elongation when compared to the DMSO (mock) control, 

whereas 1 µM IAA produced severe growth inhibition as has been previously 

demonstrated (Rahman et al., 2007). This experiment confirms that N23 is blocking 

root gravitropic reorientation and raises the possibility that it is acting by perturbing 

auxin signalling or altering auxin transport. However, the lack of effect of N23 on root 

elongation suggests that it is not acting simply as an auxin agonist. aux1 mutants 

(lacking auxin influx carriers) exhibit a similar phenotype to that induced by N23 

(Maher and Martindale, 1980). Previously other small molecules 1-NOA, 2-NOA and 

CHPAA have also been shown to phenocopy aux1 (Parry et al., 2001). It was later 
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confirmed that 2-NOA and CHPAA blocked auxin influx whilst 1-NOA blocked both 

auxin influx and efflux (Lankova et al., 2010). It is therefore possible that N23, like 2-

NOA and CHPAA, is affecting auxin transport and thus inducing the aux1 like 

phenotype observed in Figure 4.1. 

 

 

 

 

 

 

 

Figure 4. 1. Effect of N23 on root gravitropism.  

(a) N23 and IAA prevent gravitropic response in five-day old Col-0 roots 

turned through 90º and grown for 24 hours, (b) N23 has no effect on root 

elongation of seedlings whilst IAA inhibits root elongation. [DMSO (mock), 

N23 (1 µM) or IAA (1 µM)], (c) Col-0 seedlings, with the original site of 

measurement indicated (white arrow), grown on medium containing DMSO 

(mock), N23 (1 µM) or IAA (1 µM) and photographed at 5 and 25 hours 

after reorientation. Black arrows show direction of root growth. Grey arrow 

shows direction of gravity (g). For (a) and (b) ≈20 roots were measured. 

Error bars represent standard error. 

 

(a) (b) 

(c) 

g 
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4.2.2. N23 does not induce auxin responsive genes. 

 

Surpin et al (2005) used a chemical screen to identify gravicin as an inhibitor of 

Arabidopsis hypocotyl gravitropism. This screen of a ChemBridge library of 10,000 

chemicals (a library from the same supplier as the screen in this project) initially 

identified 219 chemicals which affected gravitropism in the Arabidopsis hypocotyl. Of 

these 219 chemicals, 199 inhibited gravitropism whereas 20 appeared to enhance the 

gravitropic response. Some of the chemicals identified had structures similar to that of 

synthetic auxins and could therefore, in theory, be metabolised in planta to produce 

bioactive auxin. Following a repeat of the first screen, 34 chemicals were identified as 

being active (Table 4.1.). Further analysis showed that these 34 chemicals were 

affecting root gravitropism as well as hypocotyl gravitropism, altering also vacuole 

morphology and acting on either auxin signalling or transport or independently of 

auxin. None of the chemicals identified by Surpin et al. (2005) had any structural 

relation to N23 (Table 4.1.). No further details on the effect of this compound are 

currently available. A detailed characterisation of gravacin coupled with a genetic 

suppressor screen identified the ABC transporter P-GLYCOPROTEIN19 (PGP19) as 

a potential target of this compound (Rojas-Pierce et al., 2007). To assess whether 

these chemicals altered the gravitropic response by perturbing auxin signalling, Surpin 

and colleagues (2005), investigated their effect on the auxin-responsive gene reporter 

line, DR5::GUS. DR5 is a synthetic promoter that contains auxin-responsive cis-

elements. In response to auxin signalling an increase in GUS expression is observed, 

which can then be detected by histochemical staining (Ulmasov et al., 1997b). To 

establish whether N23 is affecting auxin signalling, a similar assay was performed 

using the auxin-responsive DR5::VENUS transcriptional reporter system which has 

recently been developed (Brunoud et al., 2012). Similar to other auxin-responsive 

genes (GH3, AUX/IAA), DR5 contains eight copies of the GAGACA 6 nucleotide ARE 

motif that is bound by ARF1 (Abel et al., 1996). The VENUS reporter is a fast 

maturing YFP which allows for the auxin response to be monitored in real-time instead 

of at the end point, as is the case for the GUS reporter (Heisler et al., 2005). A recent 
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study by Band et al. (2012) demonstrated how it was possible to visualise and 

quantify the real-time spatial localisation of these fluorescent proteins during root 

gravitropism using confocal microscopy. 

 

Table 4. 1. Chemspider identification numbers of N23 and chemicals that 

affected the gravitropic response in Arabidopsis seedlings. 

Table shows chemical ID number, whether the chemical is auxin- or non-

auxin-like (unique), or shares structural similarities to the synthetic auxin 2,4-

dichlorophenoxy acetate. Information reproduced from Surpin et al., 2005. 

 

 

7800579 N23 -

5135414 unique enhancer

5271050 unique inhibitor

5320396 auxin inhibitor

5363833 unique inhibitor

5403629 auxin inhibitor

5549214 unique inhibitor

5694085 unique inhibitor

5850247 unique inhibitor

5900360 unique inhibitor

P
O

O

O

CH
3

N

N

N

N

O

O

Cl

Cl

N

O O

O

O Cl

CH
3

N
+

N

O O

O

O

Cl

N
N

N O

O

CH
3

CH
3

Cl

Cl

S

N

N
N

O

O

S

Br

CH
3

O O

Cl

Cl

OH

O

O

F

O O O

O HO

B r

C H 3

5929549 unique inhibitor

5940365 auxin inhibitor

6054314 unique inhibitor

6067962 unique inhibitor

6097727 unique inhibitor

6099904 unique inhibitor

6100411 unique inhibitor

6110182 unique inhibitor

6123583 auxin inhibitor

6124497 unique enhancer

O

N

O

CH
3

CH
3

CH
3

N O

O

CH
3

CH
3

CH
3

N

N

O

CH
3

CH
3

N

N

N

N
N

CH
3

CH
3

CH
3

N
N

O

CH
3

Cl

Cl

N

N S
O

O

CH
3

CH
3

N

N
+

N

S

O

OO

CH
3

NN

O

O

O

CH
3

CH
3

CH
3

CH
3

N

N

N

O

O

O

CH
3

CH
3

CH
3

N

N

N

O

Cl

Chemical Category Effect Structure Chemical Category Effect Structure



 

115 | P a g e  
 

 

 

To obtain quantitative data on DR5::VENUS induction by N23 and IAA treatments, 5-

day old DR5::VENUS seedlings were transferred to media containing either N23 (5 

µM), IAA (1 µM) or DMSO (mock) and total fluorescence was measured by confocal 

imaging over a 390-minute period and quantified as described by Brunoud et al. 

(2012). N23 was used at a concentration of 5 µM as this was the lowest concentration 

at which root inhibition was observed previously (Figure 3.8.). Fluorescence was then 

measured using Fiji software. Over a 390-minute period DMSO had no statistical 

effect on DR5::VENUS fluorescence levels (Figure 4.2.). Despite imaging numerous 

DMSO treated roots (5) only two were viable for analysis and as a result of this small 

sample size (n= 2) large error bars were observed. The high degree of variability 

which was observed may also have been due to movement of the Arabidopsis roots 

whilst being imaged. As the root moves the confocal microscope will image slightly 

different layers at each time point and at low fluorescence (as is observed in DMSO 

treatments) these changes in layers lead to relatively large changes in fluorescence 

observed. In contrast to the control treatment, IAA induced a large increase in 

DR5::VENUS fluorescence. Due to the large error bars observed in the DMSO 

treatment it is difficult to judge the exact time at which IAA starts inducing an effect 
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although the fluorescence starts to increase around 150 minutes which is similar to 

the findings of Brunoud et al. (2012).  

 

 

 

In the previous chapter it was shown that N23 inhibited GA-mediated down-regulation 

of GUS activity in the GA20ox1::GUS line (Chapter 3.2.2.), but had no effect on the 

transcriptional down-regulation of the endogenous GA20ox1 gene expression by GA. 

In addition, N23 was found to prevent the GA-mediated degradation of RGA (Figure 

3.14.), indicating that it acts upstream of DELLA degradation within the GA signalling 

cascade. Fu and Harberd (2003) provided a potential mechanism for the crosstalk 

between auxin and GA that was responsible for the regulation of Arabidopsis root 

growth and which involved regulation of DELLA stability by auxin signalling. They 

demonstrated that the removal of the shoot apex of Arabidopsis seedlings resulted in 
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Figure 4. 2. Induction kinetics of absolute YFP fluorescence by N23 in 

the DR5::VENUS reporter line.  

DR5::VENUS fluorescence in response to DMSO, IAA or N23 treatment 

was quantified. Five-day-old seedlings were transferred to medium 

containing IAA (1 µM, n=4), N23 (5 µM, n=5) or DMSO (mock, n=2) and 

imaged over 6.5 hours using a confocal microscope. Fluorescence was 

quantified using Fiji software as described in Brunoud et al. (2012). All 

fluorescence values shown are of absolute fluorescence. Error bars 

represent SE. 
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the restriction of the primary root growth. This inhibition was overcome by the 

application of IAA to the site of the shoot apex, indicating that shoot apex-derived 

auxin promotes root growth by enabling the response of root cells to GA. Based on 

the study of a transgenic line expressing a GFP-RGA reporter, Fu and Harberd (2003) 

provided evidence that this control of root growth is mediated by the polar transport of 

auxin to the roots where it promotes GA-mediated DELLA protein degradation, thus 

relieving  inhibition of root growth by DELLA. However, a recent study has shown that 

whilst IAA needs to be transported to the root to allow proper root growth, GA is also 

required for the vacuolar trafficking of the auxin efflux transporters (PINs), indicating 

another mechanism of crosstalk between these two phytohormones (Willige et al., 

2011). Root gravitropism involves the establishment of an auxin gradient. When 

Arabidopsis seedlings are turned through 90
0
, an  auxin gradient forms, increasing 

from the bottom to top of the root, causing differential cells growth that results in  

downward bending of the root (Boonsirichai et al., 2002; Morita, 2010; Band et al., 

2012). The auxin is transported to the desired location by the efflux carriers, the PIN 

proteins (PINs). PIN3 and PIN7 form on the lower side of the vascular root cells to 

allow auxin flux into the root tip (Friml et al., 2002a; Harrison and Masson, 2008; 

Kleine-Vehn et al., 2010). PIN2 then transports the auxin towards the elongation zone 

where an auxin gradient can be formed. The cycling of these PINs between the 

membrane and the vacuole allow for the formation of an auxin gradient (Friml et al., 

2002a; Kleine-Vehn et al., 2010; Rakusova et al., 2011; Ding et al., 2012). This 

localization of PIN2 is regulated by auxin and GA (Baster et al., 2012). From the 

results observed in Figure 4.2., where N23 has no obvious effect on the auxin 

responsive genes, together with the information available regarding GAs role in 

modulating the localization of the IAA transport proteins (Baster et al., 2012) it is 

conceivable that N23 is affecting the transport of auxin.  

 

In pea it has been shown that auxin signalling induces GA biosynthesis and reduces 

expression of GA deactivation enzyme GA2ox (Ross et al., 2000). In Arabidopsis and 

tobacco the GA-biosynthesis gene GA20ox1 is up-regulated in the presence of auxin 
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(O'Neill and Ross, 2002). N23 has no effect on GA20ox1 expression, but does 

maintain GA20ox1::GUS activity after GA application (Figure 3.6. and 3.7.). These 

results are consistent with N23 altering GA signalling through an inhibition of 

GA20ox1 enzyme turnover, which could be investigated by Western blotting with 

antibodies raised against AtGA20ox1. Although such antibodies are currently not 

available, it may be possible to screen the reporter line with antibodies for the GUS 

protein. GA20ox1::GUS, GFP-RGA and GA20ox1 expression results also indicate that 

whilst the N23 mimic’s auxin’s control DELLA protein degradation it does not directly 

control transcription of the GA biosynthesis genes as auxin does but rather acts post-

transcriptionally.  

 

4.2.3. N23 acts downstream of AUX/IAA degradation in auxin signalling  

 

The effect N23 on the DR5::VENUS reporter line provides evidence that this 

compound is not activating the expression of auxin-responsive genes. However, it is 

not clear where N23 is acting within the auxin-signalling pathway. The auxin signalling 

pathway is now well understood and is defined by several key steps (Figure 4.3.). The 

primary transcriptional output of this pathway, which leads to auxin-responsive growth, 

is directly regulated by the ARF transcription factors. In the absence of auxin 

signalling, the AUX/IAAs bind to and inhibit the activity of the ARFs. Binding of auxin 

to the auxin receptor leads to targeted degradation of the AUX/IAAs which frees the 

ARFs to activate downstream response genes. An important reporter has recently 

been developed which allows the monitoring of AUX/IAA degradation in response to 

auxin signalling (Brunoud et al., 2012). This reporter line, DII-VENUS provides an 

important tool to narrow down where N23 is acting within this pathway. The DII-

VENUS line consists of a VENUS (YFP) reporter protein fused to the domain-II (DII) of 

an AUX/IAA protein, expression of which is under the control of a constitutive 35S 

promoter. The DII region of the AUX/IAAs is a highly conserved region that binds, 

along with auxin, to the auxin receptor allowing ubiquitination and subsequent 26S 

proteasome-mediated degradation of the DII-YFP fusion protein (Tan et al., 2007). 
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This auxin-mediated degradation of the reporter protein allows convenient real-time 

monitoring of auxin signalling status in vivo. For the construction of DII::VENUS the 

domain I of IAA28 starting from the conserved lysine up to the end of domain II (28–

61), which has a basal half-lives of between 15 and 20 minutes (Brunoud et al., 2012) 

was used.  The recent study by Brunoud et al., (2012) demonstrated the power of 

DII::VENUS in the mapping of the spatio-temporal response of Arabidopsis roots to 

auxin. If N23 does remove DII::VENUS fluorescence in the root it would therefore be 

acting upstream of AUX/IAA degradation, possibly as an auxin agonist. However, if it 

has no effect then it will indicate that it is acting downstream, potentially through the 

regulation of the ARFs.  

 

 

 

 

Figure 4. 3. DR5::VENUS and DII::VENUS are reporters of auxin signalling. 

Auxin binds to its receptor TIR1 which results in the degradation of AUX/IAA by 

the 26S-proteasome pathway. In the absence of auxin, AUX/IAAs bind to ARFs 

preventing their activation of auxin-responsive genes. Auxin-induced 

degradation of AUX/IAAs relieves their expression of ARFs allowing the up-

regulation of the auxin-responsive genes. DII and DR5 report on AUX/IAA 

degradation and auxin responsive genes, respectively.  Adapted from Band et 

al. (2012). 
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To analyse the effects of N23 on DII-VENUS fluorescence, 5-day old seedlings were 

transferred to MS containing N23 (5 µM), IAA (1 µM) or DMSO and YFP fluorescence 

within the root was detected using a confocal microscope over a 1 hour time period. 

Treatment with 1 µM IAA caused a rapid decrease in fluorescence of DII:VENUS 

(Figure 4.4.). Within 15 minutes IAA had reduced fluorescence by 50% and within 30 

minutes the fluorescence had almost disappeared. This loss of fluorescence is slightly 

quicker than that reported by Brunoud et al. (2012) where fluorescence was reduced 

by 50% within 30 minutes and absent in under one hour. In contrast, N23 (5 µM) had 

no observed effect on DII-VENUS levels (Figure 4.4.). This suggests that N23 is not 

promoting AUX/IAA degradation and is therefore acting downstream of this process in 

the auxin-signalling cascade (Figure 4.4.). These results, in addition to those from the 

DR5 assays, indicate that N23 is unlikely to be affecting auxin signalling. Therefore, it 

is feasible that N23 is instead affecting IAA transport.  
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4.2.4. Does N23 block AUX/IAA interactions with ARF? 

 

Characterisation of the DR5::VENUS and DII-VENUS transgenic reporter lines has 

demonstrated that N23 has no effect on the expression of auxin-responsive genes or 

AUX/IAA degradation. Based on a knowledge of the auxin signalling cascade (Figure 

4.5.), there are a number of possible scenarios in which N23 could potentially be 

altering this pathway and causing agravitropsim. Studies using the DR5::GUS reporter 

a 

b 

DMSO IAA N23 

Figure 4. 4. N23 does not induce DII:VENUS degradation.  

(a) DII::VENUS fluorescence in the root tip 60 mins after treatment with 

DMSO (mock), IAA (1 µM) and N23 (5 µM). (b) Quantification of 

DII::VENUS fluorescence following treatment with DMSO, IAA or N23. Five-

day old seedlings were transferred to media containing IAA, N23 or mock 

(DMSO) and imaged over 1 hour using a confocal microscope. 

Fluorescence was quantified using Fiji software. As described in Brunoud 

et al. (2012). Values are the average of 3 replicates (±SE). 



 

122 | P a g e  
 

line have demonstrated that some ARFs are repressors (ARF1, -2, -3, -4, and -9) 

whereas others are activators (ARF5, -6, -7, and -8) (Tiwari et al., 2003). As N23 does 

not induces an increase in DR5::VENUS fluorescence it is possible that the chemical 

is either promoting the ARF repression or blocking ARF transcriptional activation. 

Tiwari et al.  (2003) suggested that nuclear proteins could be increasing the stability of 

ARFs whilst bound to ARE in vivo. It is conceivable that N23 could also be decreasing 

ARF stability, which would result in decreased activation of auxin-responsive genes, 

such as DR5. Another potential mode of action for N23 is that it blocks the binding of 

AUX/IAA proteins with the repressor ARFs. This would prevent the inhibition of ARFs 

by the AUX/IAA proteins leading to constitutive deactivation of auxin-responsive gene 

expression (Figure 4.5.c.). An additional component of AUX/IAA-ARF binding is the 

protein TOPLESS (TPL) which has been shown to be required for IAA12/BDL 

repression of ARF5/MONOPTEROS (Szemenyei et al., 2008). TPL is known to bind 

both IAA12/BDL and ARF5/MONOPTEROS. If N23 was blocking ARF-AUX/IAA 

interaction it would also explain why it does not mimic IAA and lead to increased 

AUX/IAA degradation. As chemicals identified by previous chemical screens were 

predominantly found to be blocking protein-protein interactions (Armstrong et al., 

2004; Kim et al., 2011), it was therefore decided to analyse the effect of N23 on ARF-

AUX/IAA interactions.  

 

Yeast-2-hybrid assays provide a convenient heterologous system for monitoring ARF 

and AUX/IAA interactions (Tiwari et al., 2003). Previous studies of ARF7 and ARF19 

have demonstrated that they are involved in positive transcriptional regulation of the 

auxin responsive genes through their interaction with the ARE, including DR5 (Tiwari 

et al., 2003; Wang et al., 2005b). They have also been demonstrated to have a role in 

regulating root gravitropism (Okushima et al., 2005). The AUX/IAA gene IAA14 also 

has an important role in controlling gravitropism, and has been demonstrated to 

interact with ARF7 and ARF19 in yeast 2-hybrid assays (Fukaki et al., 2002). These 

findings suggest that IAA14 may act to block ARF7 and ARF19 activity in planta to 

regulate gravitropism in response to auxin signalling (Fukaki et al., 2002). Given that 
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N23 blocks gravitropism it was decided to analyse whether it perturbs the interaction 

between ARF19 and IAA14 in yeast-2-hybrid assays. 

 

Numerous other ARF-IAA interactions including ARF1 and IAA12 and -13 have been 

identified using the yeast-2-hybrid system (Ulmasov et al., 1997b), IAA14 with ARF7 

and -19 (Fukaki et al., 2005) and more recently to test >1200 possible interactions 

among ARFs and Aux/IAA proteins (Vernoux et al., 2011). To test the interaction of 

ARF19 and IAA14 in the presence of N23 the Invitrogen ProQuest© yeast-2-hybrid 

system was used. This consists of the MaV203 yeast strain with the pDEST32 bait 

vector and the pDEST22 prey vector. In the case of this experiment the IAA14 was 

tested as a GAL4DB fusion and ARF19 as a GAL4AD fusion. This was because 

ARF19 self-activates expression of the reporter genes when it is expressed as a 

GAL4DB fusion protein due to its intrinsic transcriptional activation activity. Two 

ARF19 clones were used in these assays: a full length ARF19 (ARF19 FL) clone and 

one containing an N-terminally truncated clone, but which contained AUX/IAA 

interaction domains (ARF19 2-15). The reporter gene for the yeast-2-hybrid assays is 

HIS3, which allows the yeast strain to grow on plates lacking histidine. The 

competitive inhibitor of HIS3, 3AT is included in the assays as it provides some idea 

about the strength of the interactions based on the level of HIS3 expression. 
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Yeast strains containing the IAA14 bait and both ARF19 prey constructs 

demonstrated growth on media lacking histidine with 50-100 mM 3AT, whereas the 

control strain (IAA14 bait and empty prey vector) only grew on those containing 10 

mM 3AT (Figure 4.6.). This confirmed the previously report demonstrating an 

interaction between IAA14 and ARF19 in yeast-2-hybrid assays (Fukaki et al., 2005). 

Auxin responsive genes 

ARF ARF 

AUX/IAA 

Auxin 

SCF
TIR1

 

AUX/IAA 
degradation 

26S- 
proteasome 

D 

C 

E 

A 

B 

Figure 4. 5. Auxin signalling with possible sites of action of N23 

highlighted in red.  

The auxin responsive genes are up-regulated by the ARF which in turn 

are inhibited by binding to the AUX/IAAs. This inhibition can be 

overcome by the degradation of the AUX/IAA by the 26S-proteasome. 

Degradation is mediated by auxin binding to the F-box component 

(TIR1) of SCF
TIR1

 which forms a complex with the AUX/IAAs. Possible 

modes of action of N23 are: (A) N23 increases the interaction of ARF 

with the responsive genes, (B) N23 stabilises ARFs leading to increased 

auxin responsive gene expression, (C) N23 blocks interaction of ARFs 

with AUX/IAAs allowing ARFs to up-regulate DR5 expression without 

affecting AUX/IAA degradation, (D) N23 up-regulates auxin responsive 

genes (DR5), (E) N23 does not affect AUX/IAA degradation. 

 



 

125 | P a g e  
 

When the assays were repeated in the presence of 50 µM N23 all of the strains 

continued to demonstrate growth at the same concentrations of 3AT (Figure 4.6). This 

indicates that N23 is not affecting the interaction between IAA14 and ARF19 in these 

assays. Whilst this assay implies N23 has no effect on IAA14-ARF19 interaction, the 

possibility that this chemical may be perturbing specific AUX/IAA-ARF interactions 

cannot be discounted. For example, IAA14 has also been demonstrated to interact 

with ARF7 which has been implicated in gravitropism (Fukaki et al., 2002; Fukaki et 

al., 2005). Taken together the results from the DR5::VENUS, DII-VENUS and ARF-

IAA yeast screen rule out the likelihood of N23 acting primarily on components of the 

auxin signalling pathway. 

 

 

 

Figure 4. 6. Yeast-2-hybrid assay showing N23 does not block 

IAA14-ARF19 interaction 

Yeast two-hybrid study on the interaction between IAA14 and ARF19 

FL and ARF19 2-15. Yeast colonies diluted in dH
2
O were grown on 

plates containing growth inhibitor 3AT ± N23 (1 µM). On control 

medium IAA14 interacts with both full length ARF19 (FL) and ARF19 

(2-15), which only contains coding regions. 
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4.2.5. Potential sites of action of the chemical N23 

 

Whilst the site of action of N23 was not identified there are still numerous potential 

target sites. Auxin is transported around the plant and root in a polar manner by the 

PIN proteins and the AUX1 protein (Muller et al., 1998; Marchant et al., 1999). 

GA20ox1 expression was found to be increased in Arabidopsis mutants with reduced 

auxin transport or plants treated with the auxin transport inhibitor NPA (Desgagne-

Penix et al., 2005; Desgagne-Penix and Sponsel, 2008). It is therefore possible that 

N23 is increasing GA20ox1::GUS activity in the presence of GA by blocking auxin 

transport. Interestingly the expression pattern of DR5 in the presence of N23 was 

localised to the epidermis of the root (Figure 4.2.) in a region associated with 

acropetal auxin transport (Mitchell and Davies, 1975; Tsurumi and Ohwaki, 1978). 

N23 did not induce expression of DR5::VENUS down the central axis of the root, a 

region more associated with transport of auxin from the aerial parts of the plant 

(basipetal transport) (Lewis et al., 2007). N23 could conceivably be blocking this 

acropetal transport. Additionally, application of N23 to DR5::VENUS plants removed 

fluorescence in the RAM where an auxin maxima is usually created as a result of 

auxin transport. This further suggests a role of N23 in transport.  

 

Another potential scenario is that N23 could be affecting elements downstream of 

the AUX/IAAs. AUX/IAAs function as transcriptional activators mostly through 

their interaction with the transcriptional repressor TOPLESS and ARFs (Long 

et al., 2006; Szemenyei et al., 2008). As auxin application increases GA20ox1 

expression and TOPLESS is a transcriptional repressor it is unlikely that TOPLESS 

binds directly to the GA20ox1 promoter. A more likely scenario is that TOPLESS 

represses another downstream gene that is necessary for the repression of GA20ox1. 

N23 could be promoting this by either increasing AUX/IAA binding to TOPLESS or by 

increasing TOPLESS binding to the promoter.  
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Villalobos et al. (2012) showed that the AUX/IAAs also form a complex with TIR1 that 

is essential for the perception of IAA. The combination of any of the 6 TIR1/AFB auxin 

receptors with any of the 29 AUX/IAA is integral to the affinity of the complex to auxin. 

Another potential scenario for N23 enhancement of auxin signalling is that it may 

increase the affinity of the TIR1/AFB-AUX/IAA complex for auxin binding leading to 

increased AUX/IAA degradation. However, this scenario is not supported by the effect 

of N23 on DII-VENUS degradation, which would be expected to be increased. 

 

4.3. CONCLUSION 

 

When the 28 chemicals were tested for their effect on root elongation one chemical, 

N23, induced an agravitropic response commonly associated with auxin mutants 

(Figure 4.1.). Upon further study N23 was shown to not to affect expression of the 

auxin responsive gene reporter DR5, AUX/IAA degradation or AUX/IAA-ARF 

interactions, indicating that N23 is unlikely to be acting on a component of auxin 

signalling. Results from the previous chapter, where N23 blocks GA mediated 

degradation of RGA, further confirm the auxin-like effect of N23, which also inhibits 

DELLA protein degradation (Fu and Harberd, 2003). It has been suggested that GA 

fine-tunes the control of gravitropism by auxin (Willige et al., 2011) and it is possible 

that N23 induces agravitropism by altering GA signalling as a result of its effect on the 

auxin. Figure 4.7. shows a model indicating where of where N23 may be acting in the 

auxin transport and GA signalling pathways N23 based on the findings of Chapters 3 

and 4. 

  

As N23 has been shown to interact with both auxin and GA signalling pathway, but 

not exactly mimic either hormone it presents a potentially useful tool for identifying 

possible novel components regulating the crosstalk between these two important 

hormones. A useful method for narrowing down the site of action of the chemical 

would be a microarray to identify transcriptional changes brought about by the 

chemical; such results can be compared to publically available data to identify which 
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mutation-induced transcriptional changes are mimicked by treatment with chemical. 

Additionally a suppressor screen of mutants could also identify a potential target for 

N23.This approach was used to determine the target of gravicin, identified in a 

chemical screen of compounds altering the gravitropic response (Rojas-Pierce et al., 

2007). From the screen of 220,000 M2 mutagenised plants gravacin was shown to be 

inhibiting an ABCB transporter of auxin, PGP19. Similarly to identify the binding 

partner of N23 a mutaganised population could be screened for mutants that are 

resistant to the gravitropic phenotype induced by N23 treatment. 

 

From the experiments detailed in this chapter it can be concluded that the chemical 

N23 represents a tool for the study of crosstalk between the auxin and GA. 

 

 

Figure 4. 7. Scheme showing potential sites of action of N23 in 

crosstalk between GA and auxin signalling pathways. 

The model is based on information from the literature and results 

described in Chapters 3 and 4. N23 may act on the auxin transport. The 

effect of N23 on auxin signalling results in inhibition of GA-mediated 

DELLA protein degradation. 
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CHAPTER 5. N16: A POTENTIAL INHIBITOR OF GA 

TRANSPORT 

 

5.1. INTRODUCTION 

 

There is considerable evidence in the literature suggesting that transport of GAs is 

important for controlling specific plant growth processes. In general, the highest levels 

of bioactive GA are found in the actively growing organs which contain high levels of 

GA biosynthetic gene expression, indicating that GA is synthesised at and not 

transported to the required site (Smith et al., 1992; Kaneko et al., 2003; Jin et al., 

2011). However there are numerous examples of developmental processes requiring 

the transport of GAs between neighbouring or even distant tissues. The expression of 

CPS in the provasculature of germinating Arabidopsis seeds whilst KO and GA3ox 

were expressed in the cortex and endodermis suggest that a GA intermediate is being 

transported between the tissues (Yamaguchi et al., 2001). In cereal seeds bioactive 

GA is required to be transported from the scutellum to the non-GA-producing aleurone 

to induce the synthesis of hydrolytic enzymes during germination (Fath et al., 2001). 

While the role of GA transport is well known, to date, the mechanism of GA transport 

is poorly understood. This lack of knowledge stems largely from the absence of 

identified molecular components that are involved in this process and the assumption 

that GAs move by diffusion and thus do not require transport. With the recent 

identification of an ABA transporter in Arabidopsis by a chemical screen (Park et al., 

2009), there is renewed interest in identifying GA transport components and 

investigating the mechanisms involved in this process. This knowledge will be 

essential in establishing a better understanding of how GAs control plant growth and 

development. 

 

There have been some conflicting suggestions as to the forms of GA transported. The 

GA3ox and GA20ox genes are expressed in the dividing cells of tobacco and 
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elongating cells of rice, indicating that bioactive GAs are produced at the sites at 

which they are required (Itoh et al., 1999; Kaneko et al., 2003). The physical 

separation of steps of the GA biosynthesis pathway in the developing embryo, where 

CPS is expressed in the provasculature and KO is expressed in the cortex, has 

suggested that an intermediate of the biosynthesis pathway must be transported, 

possibly CDP or ent-kaurene (Yamaguchi et al., 2001). Interestingly, in Arabidopsis 

over-expressing CPS/KS and thus ent-kaurene,  ent-kaurene is emitted and converted 

to bioactive GA by the surrounding plants (Otsuka et al., 2004) suggesting a role for 

GA in signalling between plants, although this is unlikely as ent-kaurene is not usually 

a rate limiting intermediate. One argument against ent-kaurene being transported is 

the localization of the enzyme KO, that uses ent-kaurene as a substrate, to the plastid 

envelope (Olszewski et al., 2002) suggesting the formation and oxidation occur in the 

same cell. Numerous precursors of bioactive GA have been postulated as the 

transported forms. Reid et al. (1983) showed that when shoots of pea mutants 

blocking the early steps in GA biosynthesis were grafted to WT stocks then elongation 

in the mutant stems occurred, while mutant shoots lacking later steps in the 

biosynthetic pathway were not rescued by grafting to WT stocks, suggesting that 

precursors, but not the active GAs were mobile from roots to shoots. Proebsting et al. 

(1992) used grafting experiments to identify inactive GA20 as being the major form of 

GA transported in pea lines. The same study also identified GA19 as an unlikely 

candidate for transport.  

 

Ross et al.  (2006) suggested that there may be a difference in GA transport between 

monocots and dicots, with monocots transporting bioactive GA and its precursors 

whilst dicots only transport the precursors. This was based on findings by Katsumi et 

al. (1983) in maize that showed that grafting of dwarf-1 stems, which lack GA 3β-

hydroxylation, the final step in the pathway, to WT stocks lead to the elongation of the 

mutants stems, indicating that the bioactive GA is transported. When deuterium-

labelled GA4, another bioactive GA, is applied to the leaves of the dicot Arabidopsis it 

has been detected in the shoot apex, suggesting this form may also be a transported 
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(Eriksson et al., 2006), which is not consistent with the theory that dicots only 

transport precursors. As the mechanism (e.g. phloem, xylem, cell-cell) for the 

transport of the deuterium-labelled GA4 is not known, although it is likely to be phloem 

transport, it is possible that Ross et al. (2006) theory may still hold true. There are 

numerous claims that GAs are one of the transported florigens (King et al., 2001b). 

GA5 and GA6, were shown to move from the leaf to the shoot apex of Lolium 

temulentum where they are involved in floral initiation (King et al., 2001b; King et al., 

2003; King et al., 2006). King et al. (2001) showed that after floral induction 

radiolabelled GA5 (a bioactive form in Lolium temulentum) is transported from the leaf 

to the apex at a speed of 1-2 cm h
-1

, over a distance of 10 to 12 cm. This is similar to 

IAA transport, which is active transport, in Arabidopsis which occurs at a speed of 0.5 

to 2 cm h
-1

 (Lomax et al., 1995). Eriksson et al. (2006) also showed that bioactive GA4 

in Arabidopsis is transported from the rosette to the shoot apex to initiate flowering. 

Further studies of this subject have been difficult to perform due to the challenges of 

isolating specific vascular tissue and measuring potentially small changes in GAs 

(King and Evans, 2010). Without knowing the form of GA transported it is difficult to 

identify the method of transport within the plant. Two possible modes of transport for 

GA are through the xylem and phloem (Sponsel., 1986; Arteca, 1996).  Kramer (2006) 

suggested that GA15 and GA24 could diffuse out of the cell but these GAs could not re-

enter the cells without specific transporters. A study by Drake and Carr (1979) in oat 

coleoptiles showed that azides reduced longitudinal transport of GA1 and GA3. This 

result indicated to the authors that GA is transported symplastically, possibly via the 

plasmodesmata. A recent study by Shani et al. (2013) has shown that fluorescent 

labelled GA3 (Fl-GA3) accumulates in the endodermis of Arabidopsis roots and the 

authors postulate that the bioactive GA is actively transported from the meristem, 

cortical cells and epidermal cells to the endodermis where it induces root elongation 

by reducing DELLA protein levels. 

 

This chapter presents evidence to suggest that one chemical identified in the initial 

chemical screen (Chapter 3.2.1), N16, may block GA transport. Root and hypocotyl 
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growth assays in the presence of N16 and 1 µM GA3 show that Col-0 plants are 

saturated for GA and that N16 is blocking the GA response in roots whilst having no 

effect on hypocotyls. N16 was shown to reduce the uptake of tritiated GA4 [
3
H]GA4 by 

the root of Col-0 and ga1-3 seedlings. Furthermore, the uptake of the Fl-GA3 molecule 

developed by Shani et al. (2013) into the root endodermis was blocked by N16. 

Microarray data have identified OPT6 as a transporter rapidly down-regulated in the 

presence of GA, and a potential candidate for a GA transporter. However, [
3
H]GA4 

uptake assays in yeast expressing the transporter could not confirm a role for OPT6 in 

GA transport. 

 

5.2. RESULTS AND DISCUSSION 

 

5.2.1. The chemical N16 blocks the uptake of Fl-GA3 

 

Recently, Shani et al. (2013) demonstrated that Col-0 seedlings grown on media 

containing Fl-GA3 accumulated fluorescence in the endodermis, indicating the uptake 

and movement of the Fl-GA3 from outside the root specifically into this tissue. Further 

studies using un-tagged GA3 as a competitor and comparison of plants cultured at 4ºC 

and 22ºC in the presence of Fl-GA3 indicated that the molecule was actively taken up 

by the plant and transported to the epidermis. If the compounds alter GA transport 

then this may be apparent by blocking the accumulation of Fl-GA3 in the endodermis. 

To test this hypothesis, seven chemicals that blocked GA-mediated DELLA 

degradation were analysed at the University of San Diego by Dr. E. Shani for their 

effect on the uptake of Fl-GA3 at their active concentrations previously determined in 

the GA20ox1::GUS assay in Chapter 3.2.2. (N3: 50 µM, N4: 5 µM, N6: 50 µM, N10: 

10 µM, N16: 50 µM, N21: 10 µM). To investigate the effect of the compounds on the 

uptake of GA3-Fl, six to eight day old Arabidopsis seedlings were transferred to agar 

plates containing the Fl-GA3 with the seven chemicals (at active concentrations 

determined in Chapter 3.2.2.) and allowed to grow for 2-3 hours. Seedlings were then 

stained with propidium iodide, to highlight cell walls, and imaged using a confocal 
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microscope. Three of the chemicals were toxic to the roots at the concentration tested 

(N4, N10, N21). Chemicals N3, N6 and N25 had no effect on Fl-GA3 fluorescence in 

the endodermis. As there is conflicting evidence on which forms of GA are transported 

and that only GA3 was tested here, these three chemicals cannot be ruled out from 

blocking GA transport. Based on the lack of fluorescence observed, one of the 

chemicals (N16) appeared to block the accumulation of the Fl-GA3 in the endodermal 

cells of the elongation zone (Figure 5.1.). This observation raises the possibility that 

N16 is blocking GA uptake and possibly transport to the endodermis. Further studies 

by Shani et al. (2013) showed that Fl-GA3 accumulation in the endodermal cells was a 

result of active uptake. It is therefore possible that N16 prevents Fl-GA3 accumulation 

by inhibiting this active transport. This compound could therefore provide an important 

tool for investigating the process of GA transport within plants. 
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5.2.2. N16 reduces root elongation over a 5-day period 

 

GA is known to drive root elongation through the elongation of cells in the elongation 

zone and cell division in the root apical meristem (Ubeda-Tomas et al., 2008; Ubeda-

Tomas et al., 2009). It is difficult to predict what effect inhibition of GA transport in the 

root is likely to have on elongation growth as it is uncertain if the elongating cells in 

the root endodermis synthesise GA or require GA from other sources. When five day 

old Col-0 seedlings were transferred to media containing 1, 5, 10 or 50 µM N16 for 24 

hours there was no reduction in root elongation observed over this period (see Figure 

Figure 5. 1. N16 blocks uptake of Fl-GA3 in root elongation zone. 

Seedling roots treated with N16 and Fl-GA3 show no sign of 

fluorescence in the endodermis, which is observed in the mock control. 

Seven day-old seedlings exposed to GA
3
-FL and either mock (DMSO) or 

N16 (50 µM) for 3 hours. Roots were stained with propidium iodide and 

analysed using a confocal microscope. Experiment carried out by Dr. E. 

Shani (University of San Diego) using method outlined in Shani et al., 

2013. 
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3.14. in Chapter 3.6.). It is conceivable that effects on GA transport may only have a 

subtle effect on growth in these assays. It was therefore decided to analyse root 

growth over a longer period. Four day-old Col-0 seedlings were transferred to media 

containing N16 at 10, 20 or 30 µM and grown for a further 5 days. The final root 

lengths of the seedlings were then measured using ImageJ software. Roots grown on 

20 µM N16 were on average 96% the length of the mock treatment (t=2.16, p=0.036) 

whilst at 30 µM roots were 86% the length of mock treated roots (t=7.68, p=<0.001) 

showing N16 inhibited root growth over this period (Figure 5.2.). This inhibition of root 

elongation is consistent with reduced GA transport, if GA action is separate from the 

site of synthesis; it is however possible that N16 may inhibit other processes. 

Reduced root elongation is also observed when GA biosynthesis inhibitors are applied 

to Col-0 seedlings, although this effect is usually more severe, with roots of Col-0 

seedlings grown on media containing 0.05 µM PAC reduced to ≈57% the length of 

seedlings grown on media lacking PAC (Griffiths, 2007), and rapid [within 6 hours 

(Koizumi et al., 2012)]. The length of time required for N16 treatment to reduce root 

elongation in Col-0 may be a result of slow chemical uptake by the plant, although 

effects on GA20ox1::GUS staining were observed in just eight hours after N16 was 

applied at 50 µM in the presence of GA (Chapter 3.2.1.). 
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The GA20ox1::GUS screen with N16 showed enhanced staining after eight hours in 

the presence of GA. Given the evidence suggesting that N16 blocks GA uptake it was 

decided to assess the effect of N16 on root elongation in the presence of applied GA. 

Four-day-old Col-0 seedlings were transferred to semi-solid medium containing either 

DMSO (mock), N16 (30 µM), DMSO + GA3 (1 µM) or N16 (30 µM) + GA3 (1 µM). After 

5 days root length was measure using ImageJ software. Roots of seedlings grown in 

the presence of N16 and GA were shorter compared to DMSO and DMSO + GA 

treatments and similar to those after treatment with N16 alone, suggesting that N16 is 

blocking uptake and possible transport of GA (Figure 5.3). As for treatment with N16 

in the absence of applied GA (Figure 5.2), the effect on root elongation was observed 

only after 5 days (Figure 5.3.). There is little information on the rate of GA transport in 

the literature. King et al. (2001b) showed that a bioactive GA is transported from the 

leaf at a speed of 1-2 cm h
-1

 over a distance of 10-12 cm in Lolium temulentum. 

Additionally exogenous application of Fl-GA3 results in accumulation in the 
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Figure 5. 2. Inhibition of root growth by N16.  

N16 inhibits root growth at 20 and 30 µM but not 10 µM. Four day-old 

Col-0 seedlings transferred to mock, 10, 20 or 30 µM N16 for five days 

and roots measured using ImageJ software. 22 to 27 roots analysed per 

treatment. The vertical axis starts at 4 cm as no root was shorter than 4 

cm. Error bars represent standard error. 
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endodermis within 15 mins (Shani et al., 2012). If GA was travelling this quickly in 

Arabidopsis you would expect to see a more pronounced effect if N16 was blocking 

GA transport, suggesting the store of GA within root cells is high enough to allow 

normal root growth for 4 days before being depleted. It is unlikely that there is a 

prolonged period of time before N16 reaches an active concentration within the root 

as N16 was shown to block Fl-GA3 uptake into the root endodermis within 3 hours 

(Figure 5.1.). The lack of growth in roots treated with GA alongside N16 (Figure 5.3.) 

rules out the possibility that N16 is functioning as an anti-GA in the same way that 

PAC does, by inhibiting GA production. Were N16 acting in a similar way to PAC GA 

application would rescue root growth. As N16 prevents the GA mediated degradation 

of RGA (Figure 3.15.) it is possible that N16 is functioning as an anti-GA by blocking 

the binding of GA with GID1. To test this hypothesis a similar assay to that initially 

used to characterise the binding of GA to GID1 could be performed (Ueguchi-Tanaka 

et al., 2005). In these assays, the effect of N16 on the binding of radiolabelled-GA to 

recombinant GST–GID1 could be assessed. If N16 acts as an anti-GA it would 

prevent the binding of GA with the GST-GID1. However, the demonstration that N16 

prevents FL-GA3 uptake (Figure 5.1.) indicates that it is more likely to affect GA 

transport. 
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There is some evidence for GA saturation in the Col-0 root. Griffiths et al. (2006) 

showed that Col-0 roots are 90% saturated for GA3 at 1 µM. As we used GA3 at 1 µM 

it is possible that an effect of N16 is only observed on Col-0 after 5 days as there is 

already sufficient bioactive GA at the sites required for root growth. ga1-3 is a 

gibberellin biosynthesis mutant with reduced levels of bioactive GA (Koornneef et al., 

1983). Application of GA3 to ga1-3 resulted in an increase in root elongation over 24 

hours (Figure 5.4.). As Col-0 roots grow at between 0.7 and 0.95 cm a (Ubeda-Tomas 

et al., 2009), application of GA3 to ga1-3 plants (which increased root elongation to 

0.55 cm a day) did not completely recover wild-type root growth. This effect of GA on 

promoting root elongation was clearly visible following a 24 hour treatment; therefore it 

was decided to observe the effect of N16 over a similar time period. When seedlings 

Figure 5. 3. Root length of Col-0 seedlings cultured with GA, N16 

and N16 + GA.  

GA marginally increase seedling root length compared to DMSO 

treatment. N16 treatment inhibits natural root growth and GA induced 

root growth. Five-day-old Col-0 seedlings transferred to medium 

containing DMSO: DMSO (N16 mock) + EtOH (GA mock), GA: 10 µM 

GA3 + DMSO, N16: 30 µM GA3 + EtOH (mock) or N16 (30 µM) + GA (10 

µM). Root length was measured after 5 days using ImageJ. Error bars 

show standard error. 
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were treated with GA and N16 there was no increase in root elongation (Figure 5.4.), 

suggesting N16 is blocking uptake of GA and indicating the delayed effect of N16 on 

Col-0 root elongation is a result of GA saturation in the root, rather than the slow 

uptake rate of N16.  

 

 

GA signalling is also known to be a driver of hypocotyl elongation through cell 

elongation, in which it plays an integral role in mediating the plants phototropic 

response (Cowling and Harberd, 1999; de Lucas et al., 2008). To further analyse the 

effects on growth of N16, a hypocotyl elongation assay was performed in dark grown 

seedlings. GA signalling has an important role in controlling Arabidopsis hypocotyl 

elongation in the dark (Alabadi et al., 2004) and therefore alterations in transport are 

Figure 5. 4. Root elongation of ga1-3 seedlings cultured with GA, 

N16 and N16 + GA. 

GA treatment quickly increases root elongation when compared to the 

DMSO mock treatment. N16 treatment inhibits natural root growth and 

GA induced root growth.  Five-day-old ga1-3 seedlings were transferred 

to medium containing DMSO: DMSO (N16 mock) + EtOH (GA mock), 

GA: 10 µM GA3 + DMSO, N16: 30 µM GA3 + EtOH (mock) or N16 (30 

µM) + GA (10 µM). Root length was measured at 0 and 24 hours using 

ImageJ and elongation calculated. Error bars show standard error. 
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likely to have a pronounced effect if transport is required for normal hypocotyl 

elongation. Arabidopsis seeds were spotted onto agar plates containing N16 at 0, 1, 

5, 10 and 50 µM. Seeds were allowed to germinate in light for 24 hours before plates 

were sealed in aluminium foil and hypocotyl elongation was measured after 5 days. 

No differences in hypocotyl elongation were observed between any of the N16 

treatments and controls (Figure 5.5.). As it has been reported that exogenous GA 

application does greatly affect dark-grown hypocotyl length a GA control was not used 

in this experiment (Cowling and Harberd, 1999). 

 

 

 

One possible explanation as to why N16 did not affect hypocotyl elongation is that 

N16 is not transported to the hypocotyl to inhibit GA transport. In an attempt to 

circumvent this problem, the hypocotyl elongation assay was repeated growing the 

seedlings submerged in liquid media. Seedlings were germinated in liquid medium in 

the light for 8 hours, then N16 was applied at concentrations of 0, 1, 5, 10 or 50 µM 

Figure 5. 5. N16 has no effect on hypocotyl elongation when grown 

on semi-solid agar media.  

Col-0 seeds were germinated on medium containing N16 at 1, 5, 10 or 

50 µM and grown in the dark for 5 days. Hypocotyl elongation was 

measured using ImageJ software. 10 to 15 hypocotyls were measured 

per treatment. Error bars represent standard error. 
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and plates were sealed in aluminium foil. After 5 days of growth in the dark hypocotyl 

length was measured. As found previously, no difference in hypocotyl elongation was 

observed between the N16 treatments and the controls. Interestingly N16 had no 

effect on hypocotyl length over 5 days on semi-solid media containing N16 at 50 µM 

whereas under the same conditions but with a lower concentration of N16 (30 µM) 

root elongation was reduced, indicating that the lack of effect on hypocotyl elongation 

by N16 is not due to GA saturation or slow uptake of N16. As GA is known to promote 

hypocotyl elongation (Cowling and Harberd, 1999; de Lucas et al., 2008), inhibition of 

GA transport by N16, as was indicated by the Fl-GA3 results (Figure 5.1), should 

result in a reduction of hypocotyl elongation. Indeed grafting of stems lacking in GA to 

WT root stocks induces stem elongation showing GA is transported from the roots to 

the stems in pea (Proebsting et al., 1992). In wheat GA20ox1 was shown to be 

expressed in the intercalary meristem whereas GA3ox1 was expressed in the 

internodes. This distribution of GA biosynthetic activity suggests that at the very least 

there must be transport of a GA precursor around the stem. In Arabidopsis it has been 

reported that CPS, KS and GA3ox1 are expressed in virtually all tissues whilst 

GA20ox1::GUS show staining in the hypocotyl (Mitchum et al., 2006; Plackett, 2011), 

indicating that GA can be synthesised at the site of hypocotyl cell elongation and does 

not require transport. The transport of GA and its precursors within the hypocotyl 

cannot be ruled out, but the synthesis of bioactive GA in the hypocotyl is a possible 

reason for N16 having no effect on hypocotyl elongation. Taken together the 

differential effect of N16 on hypocotyl and root growth may indicate that the transport 

of bioactive GA is only relevant to root growth.  
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5.2.3. N16 reduces uptake of [
3
H]GA4 

 

Numerous papers have shown that various forms of GA are taken up into plants (King 

et al., 2001b; Eriksson et al., 2006; Shani et al., 2013). At present there is little data on 

the rate at which exogenous sources of GA are taken up. To determine the rate of 

uptake of GA, four-day old Col-0 seedlings were cultured in dH2O containing [
3
H]GA4 

for 6, 12 and 24 hours and uptake into the roots quantified by scintillation counting. 

After preliminary tests no difference in either GA uptake or plant health was observed 

between plants cultured in MS or dH2O, therefore dH2O was chosen as the media for 

all GA uptake experiments. Figure 5.7. shows that longer treatment with [
3
H]GA4 

results in higher uptake. The results also show that the rate of uptake does not vary 

Figure 5. 6. N16 has no effect on hypocotyl length when grown in 

liquid media.  

N16 added at 1, 5, 10 or 50 µM to liquid medium containing two day-old 

Col-0 seedlings. After 3 days seedlings were imaged and hypocotyl 

length measured using ImageJ software. 10 to 15 hypocotyls measured 

per treatment. Error bars represent standard error. 
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over time, suggesting equilibrium between exogenous and endogenous GA4 is not 

reached within 24 hours.  

 

 

N16 has previously been shown to block the uptake of the Fl-GA3 produced by Shani 

et al. (2013). To confirm this effect with a GA endogenous to Arabidopsis, four day-old 

Col-0 and ga1-3 seedlings were grown for 24 hours in dH2O containing [
3
H]GA4 with 

and without 30 µM N16 before flash freezing in liquid N2 and grinding. [
3
H]GA4 was 

extracted from ground tissue in 1 mL of 100% ethanol before transfer to a 5 mL plastic 

vial with 2 mL of scintillation fluid and measuring the amount of radioactivity taken up 

by the roots by scintillation counting. In both Col-0 and ga1-3 N16 reduced GA uptake 

(Figure 5.8.). ga1-3 plants are deficient in the production of bioactive GA, lacking the 

enzyme CPS (Figure 5.8.). In the ga1-3 mutants treated with N16 GA uptake is similar 
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Figure 5. 7. [3H]GA4 uptake by Col-0 roots over a 24 hour period.  

Col-0 roots continue to take up GA over a 24 hour period. Four day old 

Col-0 seedlings were cultured in dH
2
O with 10 kBq of [3H]GA4 (equating 

to 1 e-11 M of GA) for 6, 12 and 24 hours. Roots harvested and uptake 

characterised by scintillation counting (kBq). 15 roots measured per 

treatment. Error bars represent standard error. Background reading 

counts were 0.002 kBq.  
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to that of the N16-treated Col-0 plants (Figure 5.8.). This suggests that if GA is being 

actively taken up into the plant and N16 is blocking this uptake then there may be still 

a base level of diffusion of GA into the roots. N16 appears to be blocking the uptake of 

at least two forms of bioactive GA, Fl-GA3 into the root endodermis and [
3
H]GA4 into 

the roots cultured with the radiolabelled GA4 (Figure 5.1. and 5.8.) suggesting there 

may be a generic transporter for all four bioactive forms of GA (GA1, GA3, GA4, GA7). 

As the effect of N16 on non-bioactive forms has not been tested it is impossible to say 

if the chemical is blocking the transport of all GAs. LAX3 (an auxin transporter from 

the same family as AUX1) has been shown to perform a similar role in auxin transport 

by transporting two forms of auxin (IAA and IBA) in Xenopous oocytes (Swarup et al., 

2008). 

 

 

Figure 5. 8. [3H]GA4 uptake in Col-0 and ga1-3 in the absence or 

presence of N16.Figure 5.8.  

N16 inhibits GA uptake to the same extent in roots of both Col-0 and 

ga1-3 seedlings. Four-day-old Col-0 or ga1-3 seedlings were cultured in 

dH2O containing 10 kBq of [3H]GA4 (equating to 1 e-11 M of GA) and 

DMSO (mock) or N16 (30 µM) for 24 hours. Roots were harvested and 

the uptake of [3H]GA4 was characterised by scintillation counting. 15 

roots were measured per treatment. Error bars represent standard error. 

Background reading counts were 0.002 kBq.  
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As described in the introduction there is little agreement on the form of GA 

transported, potentially the mechanism of transport varies depending on the route of 

transport and plant type. The chemical N6 blocked DELLA degradation (Chapter 

3.2.3.) but, unlike N16, had no effect on Fl-GA3 uptake (Section 5.2.1.). To asses the 

validity of the Fl-GA3 assay the [
3
H]GA4 assay was performed with 10 µM N6, which 

was the active concentration identified in the GA20ox1::GUS assay (Section 3.2.2.). 

When four-day-old Col-0 seedlings were cultured with [
3
H]GA4 for 24 hours GA uptake 

was reduced in the presence of N6 (Figure 5.9.) suggesting Fl-GA3 uptake is not a 

totally reliable assay for GA transport. It is possible that N6 is specifically acting on 

GA4 transport. Such specificity is uncommon in chemical screens although it was 

observed by Park et al. (2009) with their discovery of the ABA transporter. As most of 

the forms of C19-GA stipulated to be transported have a similar core structure you 

would expect there to be a generic transporter for all forms, as observed in auxin 

transport, with LAX3 transporting both IBA and IAA (Xu et al., 1997; Galweiler et al., 

1998), although some auxin transporters display structural specificity. In pin2 mutants 

(plants lacking an IAA efflux transporter) basipetal transport of IBA is unaffected and 

mammalian cells expressing PIN2 and PIN7 do not transport IBA (Poupart and 

Waddell, 2000; Zolman et al., 2000; Ruzicka et al., 2010). Similarly IBA does not 

competitively inhibit deuterium
-
labelled IAA uptake in Xenopous cells expressing 

AUX1 (Xu et al., 1997), again suggesting distinct carriers for the two auxins. It is 

therefore possible that there are multiple transporters of GA; with N16 inhibiting a 

transporter showing limited specificity, while N6 inhibits a more specific transporter. 

Furthermore in auxin transport the efflux carriers display more specificity in the forms 

of auxin transported than the influx proteins. It is possible that in GA transport also 

there are separate transporters for import and export. If this is the case N16 and N6 

could be blocking different types of transporters.  

 

Any further test on the effect of N6 on GA transport would first require a more in depth 

analysis of the chemicals bioactivity. It has previously been shown that over a 24 hour 
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period that 1 µM to 10 µM N6 had a negligible effect on root elongation whilst 50 µM 

completely stopped root elongation (Figure 3.8). Additionally, N6 at 50 µM prevented 

GA mediated DELLA degradation (Figure 3.13.). Both these results indicate that N6 is 

bioactive at a concentration between 10 and 50 µM. To identify the exact 

concentration of bioactivity a germination assay could be performed at varying 

concentrations. 

 

 

 

5.2.4. OPT6 a potential GA transporter 

 

Microarray data for Arabidopsis roots treated with GA identified At4g22730 as being 

downregulated (S. Thomas, unpublished data). At4g22730 encodes an oligopeptide 

transporter (OPT6) which is thought to be expressed at high levels throughout the 

plant during its lifecycle (http://bar.utoronto.ca). OPT6 was first identified as part of a 

Figure 5. 9. [3H]GA4 uptake in Col-0 roots cultured with N16 and N6. 

Both N16 and N6 inhibit uptake of GA into roots. Four-day-old Col-0 

seedlings were transferred to dH
2
O with 10 kBq of [3H]GA4 (equating to 1 

e-11 M of GA)  containing DMSO: DMSO (N16 mock), N16 (30 µM) or N6 

(10 µM). GA
4
 uptake was measured by scintillation counting. Error bars 

show standard errors. Background reading counts were 0.002 kBq.  
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9-membered oligopeptide transporter gene family (OPT1-9) by screening the 

GenBank database for genes with sequence similarity to Candida albicans OPT1 

(Koh et al., 2002). This study also showed that OPT6 was predominantly expressed in 

the floral tissue and possessed the ability to transport the peptide KLLLG.  Further 

expression analysis in Arabidopsis identified OPT6 expression in the embryonic 

cotyledons prior to root radicle emergence, the post-germinated seedling and the 

ovules (Stacey et al., 2006), all tissues that require GA for development. Transport 

analysis in Xenopus laevis oocytes demonstrated OPT6 has the ability to transport 

peptides up to ten amino acids in length, including many tetra- and pentapeptides 

(Pike et al., 2009). The specificity of OPT6 was also demonstrated from its ability to 

transport reduced glutathione but not the oxidized form. With OPT6’s role in the early 

stages of plant development (Stacey et al., 2006) and its up-regulation in response to 

GA treatment it was considered as a potential putative GA transporter. As GA is a 

diterpenoid acid and OPT6 has to date only been shown to transport peptides, GA 

could potentially be transported by OPT6 using a carrier peptide. 

 

In the absence of readily available opt6 mutant is Arabidopsis the role of OPT6 as a 

GA transporter was investigated using yeast-based GA uptake assay, similar to the 

approach used by Kanno et al., (2012) and Kang et al. (2010) or the characterisation 

of the ABA transporter. The OPT6 gene was cloned into a yeast vector, which was 

incubated with [
3
H]GA4. Initially this required the amplification of the OPT6 gene from 

the cDNA of seven-day old whole seedlings using forward 

(TAGGATCCACGATGGGAGAGATAGCAAC) and reverse 

(TAGAATTCCTAGAAGACGGGACAGCCTT) primers, which inserted BamH1 and 

EcoR1 sites, respectively, into the 5’- and 3’- ends of the amplified sequence. The 

OPT6 clone was ligated into the pPH3 vector, The pPH3-OPT6 plasmid was then 

transformed into the YMM-ABC8 yeast strain for [
3
H]GA4 uptake analysis (Benton et 

al., 1994; Schuetzer-Muehlbauer et al., 2003). Kanno et al. (2012) reported that the 

ABA transporter ABA-IMPORTING TRANSPORTER 3 (AIT3) can also transport GA3 

in a yeast-based assay. It was therefore decided to use pPH3-AIT3 in the same YMM-
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ABC8 yeast system (produced by Steve Thomas) as a positive control for [
3
H]GA4 

uptake, with pPH3 empty vector being the negative control. 

 

The [
3
H]GA4 uptake assay was based on similar assays performed by Kanno et al., 

(2012) and Kang et al. (2010) for analysis of the ABA transporter. The YMM-ABC8 

yeast strain containing pPH3, pPH3-OPT6 or pPH3-AIT3 was grown in liquid culture 

to an OD600 of 0.7 to 1.0 before being concentrated to an OD600 of 6.0 by 

centrifugation and dilution with DOB lacking tryptophan and uracil. The yeast was 

cultured at this concentration for 60 and 180 minutes before [
3
H]GA4 uptake was 

quantified by centrifuging yeast cells and suspending in 100% methanol before 

scintillation counting as with the Col-0/ga1-3 root uptake assays. pPH3-AIT3 and 

pPH3 showed similar levels of GA uptake after both 60 and 180 minutes indicating 

(Figure 5.10.), in this experiment at least, that AIT3 is not transporting GA into the cell. 

Yeast expressing OPT6 showed slightly reduced levels of GA uptake when compared 

to both pPH3 and pPH3-AIT3 (Figure 5.10.) suggesting it may function as an efflux 

transporter of GA. One potential approach to establish if OPT6 acts as a GA exporter 

would be by loading yeast cells (expressing OPT6) with [
3
H]GA4 and then analysing 

its export into the media. Generating an OPT6 inducible expression construct would 

allow greater control in monitoring the export activity from the yeast strains loaded 

with [
3
H]GA4. However, if the rapid down-regulation of OPT6 after GA application 

observed in the microarray data is part of the GA homeostasis mechanism, this would 

be inconsistent with its function as an efflux transporter, as cells with high levels of GA 

would be expected to export excess hormone to maintain GA levels.  
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Due to the anion trapping of GA by cells it is possible that over a 60 min period the 

yeast cells in these assays become saturated for GA by purely diffusion alone. O’Neill 

et al. (1986) have shown that cowpea vesicles become saturated for GA after one 

hour. This result means that any experiment assessing GA uptake is time critical. 

Additionally Kang et al. (2010) established that uptake of ABA by the PDR 

transporters was rapid (within 15 seconds). To ascertain if this was the case for GA 

uptake we measured [
3
H]GA4 uptake after 1, 30 and 60 minutes with pPH3 and pPH3-

AIT3 (Figure 5.11). The results showed no difference between pPH3 and pPH3-AIT3 

at any of the time points (Figure 5.11). Additionally cells were not shown to be 

saturated for GA within 60 mins suggesting an anion trap did not exist in Figure 5.10. 

The failure to obtain enhanced uptake by yeast expressing pPH3-AIT3 may indicate 

that the assay conditions are not optimal and require improvement. Firstly as the 

yeast strains grow at different rates the final number of cells at the end of the 

Figure 5. 10. GA uptake by yeast strains expressing the putative GA 

transporter OPT6.  

Yeast stain YMM-ABC8 expressing the putative GA transporter pPH3-

OPT6, pPH3-AIT3 (positive control) and pPH3 (negative control) 

cultured in S.D. –ura –trp containing 5 kBq of [3H]GA4 (0.5e-11 M of GA4). 

Yeast was cultured for 1 (black) and 3 (grey) hours before GA uptake 

was assessed by liquid scintillation counting. Error bars show standard 

error from three replicate incubations. Background reading counts were 

0.002 kBq.  
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experiment may vary (Bergman, 2001). Kanno et al. (2012) overcame this problem by 

dividing the amount of ABA taken up by the final OD of the culture. Secondly due to 

time constraints the concentration of GA4 (1 µM) used in the assay was not optimised. 

For yeast-2-hybrid assay comparing the interaction of GID1 with RGA in the presence 

of GA3 100 µM of GA4 is applied, which is around 100 times more than is required to 

produce a phenotype in Col-0 roots (Griffiths et al., 2006a; Griffiths, 2007), suggesting 

that higher levels of GA may be required to produce a response by the OPT6 

transporter. Additionally the high starting OD600 of the yeast culture results in the 

precipitation out of the yeast during the assay resulting in some yeast cells not being 

constantly in contact with the [
3
H]GA4 solution.  

 

 

 

Figure 5. 11. GA uptake over time by yeast transformed with pPH3 

and pPH3-AIT3. 

The yeast stains, pPH3-AIT3 expressing a known GA importer (positive 

control) and the empty vector pPH3 (negative control), were cultured in 

S.D. –ura –trp containing 5 kBq of [
3

H]GA
4
 (0.5e-11 M of GA4) for 1, 30, 

60, 120 and 180 mins before GA uptake was assessed by liquid 

scintillation counting. Medium was conditioned prior to experiment. Error 

bars show standard error of three replicates. Background reading counts 

were 0.002 kBq.  
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5.3. CONCLUSIONS 

 

The results of the [
3
H]GA4 assays with Col-0 and ga1-3 seedlings presented in this 

chapter indicate that the chemical N16 reduces the uptake of GA by the roots. This 

confirms the result of an assay carried out at the University of San Diego showing that 

N16 blocked the uptake and transport of Fl-GA3 into the endodermis of Col-0 roots. 

Analysis of root and hypocotyl growth suggested that by blocking GA transport N16 

inhibits root elongation but has no effect on hypocotyl growth. Interestingly N16 only 

induced a reduction of root elongation in Col-0 after 5 days but reduced root 

elongation in ga1-3 after 24 hours, indicating that it may take 4 to 5 days for the pool 

of GA in Col-0 root cells to be depleted when GA transport is blocked. Another 

chemical identified in the chemical screen, N6, was shown to have no effect on Fl-GA3 

uptake but appeared to block uptake of [
3
H]GA4 indicating that there may be separate 

transporter for different forms of GA. 

 

Despite microarray data indicating that OPT6 was rapidly down-regulated by GA and 

Kanno et al. (2012) showing that the ABA transporter AIT3 can also transport GA 

there was no difference in [
3
H]GA4 taken up by yeast strains expressing these 

transporters from the negative control. Ideally this assay needs to be optimised in 

order to replicate the data observed by Kanno et al. (2012), unless the results 

described in this paper are not reproducible. Before the potential function of OPT6 as 

a GA transporter can be properly tested or to identify potential targets for N16 suitable 

controls need to be identified. 
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CHAPTER 6. GENERAL DISCUSSION. 

 

Using a chemical screen of GA signalling this project managed to generate novel 

insight into the GA signalling pathway’s homeostatic feedback regulation of GA 

biosynthesis, auxin transport and potentially identified a novel GA transporter (results 

are summarised in Table 6.1.). 

Table 6. 1. Summary of results. 

Summary of results obtained during thesis. Information shown: chemical ID 

(Chem), Effect of chemical on GA-mediated down regulation of GA20ox1 (all 

chemicals blocked this), Concentration at which chemical blocked GA 

mediated down regulation of GA20ox1 (Active conc.), if chemical inhibited root 

elongation over a 24 hour period (Effect on root elongation), other information 

obtained on action of chemical (Other information), likely site of action of the 

chemical. 

Chem 

Effect on GA 
mediated 

downreg of 
GA20ox1 

Active 
conc. 
(µM) 

Effect on 
root 

elongation 

Effect on GA-
mediated 
DELLA 

degradation 

Other 
information 

Likely site 
of action 

N1 Blocks 50 Inhibited NA     

N2 Blocks 10 Inhibited Stabilised   
Upstream of 

DELLA 
protein 

N3 Blocks 10 None Stabilised   
Upstream of 

DELLA 
protein 

N4 Blocks 10 Inhibited Degraded   
Downstream 

of DELLA 
protein 

N5 Blocks 10 Inhibited Stabilised   
Upstream of 

DELLA 
protein 

N6 Blocks 10 Inhibited Stabilised   
Upstream of 

DELLA 
protein 

N7 Blocks 5 Inhibited Stabilised   
Upstream of 

DELLA 
protein 

N8 Blocks 10 Inhibited Degraded   
Downstream 

of DELLA 
protein 

N9 Blocks 5 None Degraded   
Downstream 

of DELLA 
protein 

N10 Blocks 5 Inhibited Stabilised   
Upstream of 

DELLA 
protein 

N11 Blocks 5 Inhibited Stabilised   
Upstream of 

DELLA 
protein 

N12 Blocks 10 Inhibited Stabilised   
Upstream of 

DELLA 
protein 
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N13 Blocks 10 Inhibited Degraded   
Downstream 

of DELLA 
protein 

N14 Blocks 50 Inhibited Degraded   
Downstream 

of DELLA 
protein 

N15 Blocks 50 Inhibited Degraded   
Downstream 

of DELLA 
protein 

N16 Blocks 10 None Stabilised 
Blocks GA 

uptake 
GA transport 

N17 Blocks 10 Inhibited Degraded   
Downstream 

of DELLA 
protein 

N18 Blocks 10 Inhibited Degraded   
Upstream of 

DELLA 
protein 

N19 Blocks 50 Inhibited Stabilised   
Upstream of 

DELLA 
protein 

N20 Blocks 5 Inhibited Stabilised   
Upstream of 

DELLA 
protein 

N21 Blocks 10 Inhibited NA     

N22 Blocks 10 Inhibited Stabilised   
Upstream of 

DELLA 
protein 

N23 Blocks 10 Inhibited Degraded 
induces 
aux1 like 

phenotype 

auxin 
transport 

N24 Blocks 10 Inhibited Stabilised   
Upstream of 

DELLA 
protein 

N25 Blocks 10 Inhibited NA     

N26 Blocks 10 Inhibited Degraded   
Downstream 

of DELLA 
protein 

N27 Blocks 10 None NA     

N28 Blocks 10 Inhibited Degraded   
Downstream 

of DELLA 
protein 

 

 

Using the GA20ox1::GUS reporter line an initial screen at VIB in Ghent identified 28 

commercially available chemicals were identified as preventing the GA-mediated 

downregulation of GUS activity (Figure 3.4.). The research in this project confirmed 

the effect of these chemicals on GA20ox1::GUS. Whilst the limited time frame of the 

project did not allow for the target identification of all the 28 chemicals they do present 

useful tools for identifying novel molecular components that are regulating GA 

biosynthesis. Performing a genetic suppressor screen is one potential approach to 

identify the targets of these chemicals. Such a screen would involve screening a 

mutagenized population for mutants which rescue growth defects under the chemical 

treatment. Clearly, for such a screen it is necessary that the chemical treatment 
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produces a phenotype. From the 28 chemicals identified in the initial screen 15 

inhibited root elongation, a GA controlled developmental process (Figure 3.8.-3.11.). 

Therefore a potential screen would involve the identification of mutants that showed 

enhanced root growth in the presence of the compound. From this starting point the 

mutant gene could be cloned and functional studies performed to identify the function 

of the chemical. 

 

When the effect of nine chemicals on the expression of the endogenous GA20ox1 

gene were analysed, four of the compounds did not inhibit the GA-mediated 

transcriptional downregulation (Figure 3.7.). This observation raises the intriguing 

possibility that these four chemicals are not maintaining GA20ox1::GUS staining in the 

presence of GA by altering GA20ox1 gene expression but are instead enhancing the 

stability of the GA20ox1 enzyme. Such a result would indicate a novel process 

whereby GA regulates GA metabolism by directly targeting the enzymes of the 

pathway for degradation. Previous work by our group has shown that GA         

application results in the loss of fluorescence in the Arabidopsis 

ga20ox1,2,3:SCR::YFP::AtGA20ox1 line, further suggesting that there is some GA 

mediated regulation of GA20ox1 (Barker, 2011)  To confirm the effect of these four 

compounds it will be necessary to directly analyse the effect of GA signalling on 

GA20ox1 protein levels using western blotting. Initially, the stability of the GA20ox1-

GUS fusion protein could be monitored in the GA20ox1::GUS line using commercially 

available GUS antibodies. However, it will also be necessary to confirm this effect on 

the endogenous GA20ox1 enzyme, which will require specific antibodies to be raised 

against this protein. Rice mutants lacking the GA20ox gene (sd-1) have been 

instrumental in increasing crop yields since the 1960s (Harberd et al., 1999). This has 

been achieved through their effects on reducing stem height which prevents lodging of 

the crop and allows the application of higher levels of nitrogen fertiliser (Harberd et al., 

1999). If these chemicals do affect novel components that target the degradation of 

GA biosynthetic enzymes, they represent a new chemical target for commercially fine 

tuning the stem height of agricultural plants to maximise yields. A recent study 
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demonstrated that DELLA proteins regulate the direction of microtubule orientation via 

their interaction with a protein (prefoldin), a process that does not involve the control 

of gene expression (Locascio et al., 2013). It is therefore possible that DELLA proteins 

have a non-transcriptional role in the GA control of GA biosynthesis enzymes stability. 

To establish the role of DELLA proteins in this process, western blots of the GA20ox1 

protein and qRT-PCR analysis of GA20ox1 could be performed in Arabidopsis 

mutants lacking DELLA proteins (rga-24 and gai-t6 mutants which lack RGA and GAI) 

and GA-insensitive lines with high DELLA protein content (gai-1, gain of function GAI 

mutant). Such research may provide insight into how the chemicals maintaining 

GA20ox1::GUS staining but not blocking GA mediated DELLA protein degradation are 

working. 

 

The Rht-1 wheat mutants, along with the sd-1 mutants, were a major component of 

the massive yield increases obtained during the green revolution (Harberd et al., 

1999). Later studies identified the Rht-1 mutants as lacking a degradable DELLA 

protein (Peng et al., 1999; Ashikari et al., 2002; Sun and Gubler, 2004; Pearce et al., 

2011). For nearly two decades it has been known that DELLA proteins mediate the 

transcriptional feedback control of GA biosynthesis and are therefore essential to 

GA’s control of plant development. This project identified 11 chemicals were shown to 

block GA-mediated RGA degradation (Figure 3.13.-3.16.). Five (N6, N7, N8, N11 and 

N20) of these compounds are potentially achieving this by blocking interaction of the 

DELLAs with GID1 or SLY1 and thus conceivably blocking SCF
SLY1

-mediated 

ubiquitination (Figure 3.18.). Such chemicals maintaining DELLA protein levels in the 

presence of GA again present potential tools for agriculture in controlling stem height, 

and other developmental processes. Another 11 chemicals identified in this project 

had no effect on DELLA degradation indicating they are affecting potentially novel 

proteins acting downstream of the DELLA proteins degradation (Figure 3.13.-3.16.). 

These protein targets potentially present novel breeding targets for plant breeder to 

control aspects of development. These 11 chemicals also have the possibility to 

function as plant growth regulators targeting specific GA regulated processes as 
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opposed to chemicals blocking DELLA degradation which would have a more global 

effect on the plant. Whilst most these chemicals do have potential uses in agriculture 

as either chemical treatments or discovery of breeding targets considerable work is 

required to identify the protein targets of each chemical. To develop these chemicals a 

plant growth regulators would require the identification of their active site, their effect 

on commercial crops, toxicity and production method. 

 

The chemical screen used in this project not only identified numerous chemical with 

potential commercial agricultural use but also identified chemicals which could be 

used as tools in fundamental plant research. During the assessment of the chemicals 

effect on root elongation it was noticed that one chemical treatment (N23) induced 

root agravitropism. Further studies identified that this chemical was potentially acting 

on auxin transport but was unlikely to be acting on auxin signalling. Interestingly, this 

chemical did not affect the transcriptional regulation of the endogenous GA20ox1 

gene (Figure 3.7.), suggesting that it may alter protein stability instead. This provides 

a potentially novel mechanism by which auxin interacts with the GA signalling 

pathway. Such a chemical represents an ideal tool for the study of the mechanism of 

GA-auxin crosstalk, a poorly understood process. 

 

Another chemical (N16), which blocked RGA degradation but had no effect on GAI’s 

interaction with SLY1 or GID1, was identified as blocking the uptake of both Fl-GA3 

and [
3
H]GA4 into Col-0 roots (Figure 5.1. and 5.8.). Microarray data identified OPT6 as 

a putative GA transporter with GA uptake assays in yeast expressing OPT6 

suggesting OPT6 functions as a GA exporter (Figure 5.10.). It is therefore possible 

that N16 could be used for the study of this novel GA transporter and AIT3, the other 

reported GA transporting protein, or alternatively N16 could be a tool for identifying 

new novel GA transporters. As AIT3 transports both GA and ABA it is conceivable the 

N16 could be used to identify novel transport proteins of numerous other hormones. 
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In summary, this project characterising and analysing 28 chemicals identified in a 

chemical screen of GA signalling has identified numerous chemicals that alter DELLA 

protein degradation and therefore have potential as agricultural chemical regulators of 

stem height. In addition two chemicals could provide useful tools in the study of two 

poorly understood processes; GA and auxin crosstalk (N23), and GA transport (N16). 
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CHAPTER 8. APPENDIX. 

 

 

DMSO N6 N16 N25 

EtOH GA EtOH GA EtOH GA EtOH GA 
Marker 
(kDa) 

70 
55 

DMSO N6 N16 N25 

EtOH GA EtOH GA EtOH GA EtOH GA 
Marker 
(kDa) 

70 
55 

Appendix 1. The effect of three chemicals on GA mediated RGA 
degradation in a western blot using anti-RGA antibodies – full 
western blots used to make Figure 3.17. 
Preliminary data (n=2) showing levels of RGA in plants treated with 
chemical and GA or ethanol (EtOH, mock GA treatment). Both western 
blots shown.The blot contained 25 ug of total protein extracted from four-
week old root cultures in liquid Gamborg B5 treated with either DMSO (-
ve control), N6, N16 or N25 at 50 µM for 24 hours before application of 
ethanol (EtOH) or 10 μM GA

4
 10 µM. A rabbit anti-RGA antiserum and a 

goat anti-rabbit IgG were used as primary and secondary antibodies, 
respectively. Protein marker shows bands at 70 and 55 kDa and arrow 
displays expected position of RGA protein band.  


