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Abstract The hydrological transport of low-molecular
weight organic nitrogen (LMWON) compounds has re-
ceived little attention in the literature, particularly relative
to inorganic nitrogen (N), with less attention given to the
decoupling of the carbon (C) and N cycles following rain-
fall events. We determined the impacts of the soil biota on
the transport of N compounds in a loam soil, using 15N and
13C to trace the vertical transport of 15N13C-urea, 15N13C-
amino acids, 15NO3, and

15NH4 through the soil profile,
following simulated rainfall events. This research has dem-
onstrated that biotic assimilation leads to rapid decoupling
of the C and N cycles during leaching, with C transport
limited to the soil surface (< 2 cm), whereas N which was
stored within the soil profile during a single rainfall event
could be remobilised and leached (a further 2–6 cm) fol-
lowing an additional rainfall event.

Keywords Aminoacids .DON . Immobilisation .Leaching .

Mobilisation . Urea

Introduction

Hydrological transfer of nitrogen (N) in agricultural systems
has typically focussed on the inorganic N forms of ammo-
nium (NH4

+) and nitrate (NO3
−), due to their relevance as N

fertilisers (Lipiec et al. 2011; Peukert et al. 2014), and im-
plications for eutrophication of surface waters and aquifers
(Durand et al. 2011). Globally, however, urea (CH4N2O)
remains the commonest form of fertiliser N applied to soil
(Glibert et al. 2006), and due to its low cost and high N
content its use is predicted to increase. As urea is known to
rapidly hydrolyse in soil (forming (NH4)2CO3) and become
susceptible to N losses by volatilisation (as NH3; Chambers
and Dampney 2009), studies that examine urea cycling and
N transport often focus on NH4

+ and NO3
−. Research focus-

sing on intact urea transport is limited, although it is known
to be transferred to receiving waterbodies, where it provides
an N source to aquatic biota (Glibert et al. 2006). Similarly,
other forms of dissolved organic N (DON) can also be lost
to waterbodies, providing a bioavailable N source
(Heathwaite and Johnes 1996; Durand et al. 2011). This
focus on DON as a pathway of N losses (van Kessel et al.
2009) has meant that studies examining DON leaching have
tended to focus on N and exclude C dynamics (Zhou et al.
2006; Abaas et al. 2012). However, uptake of low molecular
weight organic N (LMWON) and its subsequent assimilation
or immobilisation can primarily be driven by the C demands
of soil microbes (Farrell et al. 2014). Thus, there is a need to
examine both C and N dynamics to better understand the
mechanisms behind mobilisation, immobilisation and
leaching of DON.

Here we examine the role of single and double simulated
rainfall events on leaching of 15N13C-urea, 15N13C-amino
acids (AA), and 15NO3

− and 15NH4
+ through soil profiles.

The importance of microbial activity for decoupling the C
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and N cycles (Knowles et al. 2010) through immobilisation/
mobilisation processes was also assessed using sterile and
non-sterile soil. A double rainfall event was simulated to ex-
amine the potential for C and N re-mobilisation following
initial biotic immobilisation.

Materials and methods

Soil collection and processing

Soil was collected from 0 to 10 cm depth at a grassland site in
the UK (Dystric Cambisol; online resource; Table S1), and
stored at 4 °C in gas permeable bags before use, with three
separate sites (2 m apart) forming the three replicates used
throughout the study. Each soil replicate was sieved to <
2 mm and allowed to equilibrate at 20 °C overnight, prior to
use in the leaching experiment, or for background characteri-
sation of the soil. The centrifugation-drainage technique
(Giesler and Lundström 1993) was used to obtain soil solution
for background characterisation. All other soil properties were
determined on the < 2 mm soil (see online Resource 1 for soil
background characterisation methods; Table S1). A subsam-
ple was autoclaved twice at 121 °C for 20 min, for use as a
sterilised control to distinguish the importance of biotic
processes.

Nitrogen and carbon transport experiment

Soil columns (9 × 235 mm; i.d. × h) were packed to a
density of 0.69 g cm−3 with either sterile or non-sterile <
2 mm soil to a height of 20 cm. Nitrogen treatments were
applied to the surface of the soil column and consisted of a
50 μl addition of 10 mM N as 15N13C-urea, 15N13C-AA
(equimolar mixture of asparagine acid, threonine, serine,
glutamine, proline, glycine, alanine, valine, methionine, iso-
leucine, leucine, tyrosine, phenylalanine, histidine, lysine,
and arginine; Sigma-Aldrich, 487910), K15NO3, or
15NH4Cl (all labelled compounds were > 98 atom%). Two
leaching scenarios were examined, the first (LS1) was a
single 30 min simulated rainfall event, started immediately
after treatment application on both the sterile and non-sterile
soils. The second (LS2) was the same as for LS1, however it
was only conducted on non-sterile soils and, after the soil
columns had been incubated at 10 °C for 7 days in the dark.
All simulated rainfall events were conducted at an equiva-
lent rainfall rate of 1.9 mm h−1 to simulate a low-intensity
rainfall event (not inclusive of the treatment addition), using
locally collected rainwater delivered via a peristaltic pump.
Following LS1, or LS2, soil columns were immediately cut
into 1 cm sections between 0 and 10 cm depth (the maxi-
mum wetting front depth observed). Individual sections were
placed in paper bags and dried at 80 °C for a minimum of

48 h to minimise microbial activity and remove soil mois-
ture. Following drying, the 1 cm subsections were ball-
milled to a fine powder, and subsamples weighed and sealed
into 8 × 5 mm tin capsules prior to analysis.

Laboratory and data analyses

Soil 15N and 13C, and total N and total C weremeasured in soil
column subsections using a Carlo Erba NA 2000 linked to a
Sercon 20/22 isotope ratio mass spectrometer (Sercon, Crewe,
UK; Carlo Erba, CE Instruments, Wigan, UK). The % recov-
ery of applied 15N and 13C was determined as:

%recovery ¼ 100 15N13CSpl–
15N13CBgd

� �
=15N13CAp

h i
ð1Þ

where 15N13CSpl is μg g
−1 15N13C in the enriched soil subsec-

tion, 15N13CBgd is the background μg g−1 15N13C in the soil
(prior to enrichment) and 15N13CAp is the μg g

−1 15N13C of the
applied compounds. Analysis of variance test was used to
examine differences between leaching scenarios, sterile and
non-sterile soils, and N treatments were examined with each
column treated as a main plot. Where depth was examined it
was included as a split-plot. Multiple comparisons were made
using either Tukey’s test or Fisher’s LSD test, and all analyses
were performed in Genstat (v. 16; VSN International) and
differences reported as significant where p < 0.05.

Results and discussion

Compound recovery

Across all treatments and transport scenarios, over the 0–
10 cm depth sampled, mean 15N recoveries were 92 ± 3%.
In contrast, mean 13C recovery was 69 ± 5%, with 13C recov-
ery in the non-sterile soils much reduced at 62 and 48% for
15N13C-AA, and 6.2 and 5.9% for 15N13C-urea under LS1 and
LS2, respectively. The lower recovery of 13C in the non-sterile
soils can be related to C losses via microbial assimilation and
respiration processes. We were unable to detect any culturable
organisms following the culturing of sterile soil (data present-
ed in Carswell et al. (2016)), nonetheless this method does not
account for the presence of viable but non-culturable organ-
isms (Kell et al. 1998). However, reduced 13C recoveries of 73
and 65% were also observed in the sterilised soils for 15N13C-
AA and 15N13C-urea, respectively. Wessel and Tietema
(1992) suggest reduced recoveries can be caused by low 13C
application amounts and subsequent dilution into the natural
abundance 13C pool. Here, the compounds used were > 98
atom% labelled, so any further addition would have required
increasing the concentration of applied compounds beyond
that which could reasonably be justified. It is also possible
that during sterilisation microbial cells were lysed,
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increasing extracellular organic C and consequently diluting
the labelled 13C pool within the sterile soils.

Biotic processes influence N transport

Following LS1 significant differences were observed in 15N
leaching between the sterile and non-sterile soils, and between
N compounds (p < 0.01; Fig. 1), indicating that biotic process-
es play an important role in N leaching, and this is dependent
on the N compounds being examined. Under the 15N13C-AA
treatment, leaching was limited to the top 2 cm of the non-
sterile soil columns, whereas leaching continued to 8 cm depth
within the sterile soil columns. This indicates that microbial
uptake, and subsequent assimilation and immobilisation is a
key control on AA transport. Similarly, 15NH4

+ leaching was
mostly limited to the top 2 cm of the soil columns (Fig. 1), for
both the non-sterile and sterile soil columns, indicating that
15NH4

+ transport was limited by abiotic processes, such as
adsorption to clay surfaces (Wang and Alva 2000).
However, recovery was greatest at 0–1 cm in the non-sterile
soil which is likely due to the additional impact of microbial
15NH4

+ uptake (Jackson et al. 1989). Both 15N–urea and
15NO3

− were more mobile and leached deeper than 15N–AA

and 15NH4
+, following LS1, with 15N reaching 6 and 8 cm for

the 15 N–urea and 15NO3
− treatments, respectively. This great-

er mobility of NO3
− was also observed by Zhou et al. (2006)

who found NO3
− leached twice as deep as NH4

+ in their
sandy-loam soil. No significant differences were observed be-
tween the non-sterile and sterile soils for 15N recovery under
the 15N13C-urea treatment. However, significantly greater 13C
recoveries (of 8–15%) were observed in the sterile soil col-
umns at individual depths between 0 and 4 cm relative to the
non-sterile soils (in which maximum 13C recovery of 1.6%
occurred at 0–1 cm).

These results are indicative of rapid decoupling of the C
and N cycle within the non-sterile soil columns under the
15N13C-urea treatment. The loss of 13C from the non-sterile
soils under the 13C15N–urea treatment and to a lesser extent
from the 13C15N–AA treatment (see Fig. 1, total 13C recovery
of 6.2, and 62%, respectively) is likely due to rapid N
mineralisation (Knowles et al. 2010). This can occur via biotic
uptake, which was observed in the same soil for 14C–urea and
14C–L-arginine (Carswell et al. 2016), or via extracellular en-
zymes, like urease which can rapidly mineralise urea
(Tabatabai 1994), with both processes leading to CO2 losses.
Following mineralisation of 13C15N–urea or 13C15N–AA, the

Fig. 1 Percentage recoveries of
15N and 13C from the soil column
1 cm sections, for the treatments
13C15N–amino acids, 13C15N–
urea 15NO3

− and 15NH4
+ under

leaching scenario 1 (LS1; a single
simulated rainfall event
performed on non-sterile and
sterile soils), or leaching scenario
2 (LS2; single simulated rainfall
event, followed by a 7-day 10 °C
incubation and an additional
repeat rainfall event performed on
non-sterile soil only). Data points
are mean ± SEM (n = 3)
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C and N cycle are decoupled (Knowles et al. 2010; see Fig. 1),
the C is removed from the soil in a gaseous phase and the N
remains in the soil matrix where it may be recycled and trans-
formed into other N compounds.

Repeated rainfall event remobilises and transfers N
further down the soil column

After a 7-day incubation and a repeat simulated rainfall event
(LS2), which was conducted on the non-sterile soil only, 13C
recoveries of 5.9 and 48%, for 13C15N–urea and 13C15N–AA,
respectively were observed. Mineralisation of AA, both indi-
vidual and mixtures, have been observed to have a bi-phasic
profile, where initially AA mineralisation is rapid, and is then
followed by a slower secondary phase (Jones et al. 2009). In
this study, the reduction in 13C recoveries after a 7-day incu-
bation may be due to the extended duration of a slower sec-
ondary mineralisation phase. In the secondary mineralisation
phase 13C losses are caused by turnover of the soil microbes,
which had previously assimilated the 15N13C-AA (Boddy
et al. 2007).

In contrast, under LS2, re-mobilisation of 15N and subse-
quent leaching occurred under all treatments, with 15N
reaching 8, 8, 10, and 10 cm depth after LS2, increases of 6,
5, 4, and 2 cm from LS1, for 15NH4

+, 13C15N–AA, 13C15N–
urea, and 15NO3

−, respectively. This suggests that 15N was
released back into the soil solution by soil microbes, although
not for 15NO3

− which was not immobilised under LS1 and
was transported with the wetting front. Once in the soil solu-
tion the 15N compounds would have been available for N
cycling processes, including re-uptake by soil microbes.
Consequently, 15N13C-AA uptake and earlier immobilisation
bymicrobial activity following LS1 was almost certainly driv-
en by C rather than N demand, as the 13C was depleted and the
remaining 15N was re-mobilised in LS2, suggesting an imbal-
ance of microbial resource stoichiometry (Zhou et al. 2017).
The addition of exogenous N and C to the soil in this study
would have a priming effect on soil organic matter (SOM)
decomposition (Chen et al. 2014). We suggest that, due to
the high soil N supply in this agricultural soil, SOM decom-
position would follow the stoichiometric decomposition the-
ory of Craine et al. (2007) rather than the microbial N mining
theory. Our findings are also in agreement with that of Farrell
et al. (2014) who concluded that amino acid uptake by soil
microbes was due to a requirement for C rather than N.

Conclusions

To the knowledge of the authors, this dataset is the first to
report the impact of two different leaching scenarios (simulat-
ed rainfall events) on the transfer of dual isotopically-labelled
LMWON compounds in soil. The results support the theory

that biotic uptake of LMWON is largely driven by microbial
demand for C rather than N, particularly in soils with high N
supply, with large 13C losses via mineralisation and other met-
abolic processes, and the release and subsequent re-
mobilisation of 15N into the soil solution. Transport of inor-
ganic N compounds was also shown to be affected by biotic
processes, although to a lesser extent than that of LMWON
compounds. This work has shown that LMWON compounds
are immobilised and transported in compound specific ways,
which should be considered when modelling N pools and
dynamics.
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