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ABSTRACT 

The Ieverrier algorithm as modified by Faddeev gives the characteristic equation 
of a matrix A, its inverse, and the eigenvector corresponding to a simple eigenvalue h 
of A. These results are extended (1) to give a generalized inverse when A is not of full 
rank and (2) to examine the modification required when X is a multiple eigenvalue. 

1. INTRODUCTION 

Suppose A is a square matrix of order n, with characteristic polynomial 

p(A)=X”+plX”-‘+p2h”-2+~~~ +p,, (1) 

where P(h) = 0 has roots 4 (i = 1,2 , . . . , n). Leverrier’s method [l] for comput- 
ing P(X) is to calculate s, = X1= lh: = Tr(A’) and use Newton’s formulae: 

s1 = -Pl, 

32 + p,s, = -2p,, 

s3 + PlS2 + p2s1= - 3P3, 
. . . . . . . . . . . . . . . . . . . . . . . . . 

s,+pls,_l+pzs,-2+*.* +pn_lsl= -np, 

to derive the coefficients pi. D. K. Faddeev [2, p. 2601 modified Leverrier’s 
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method by considering the sequence 

Y,=A, 

Y, = AY, + p,A, where pl = - WY,), 

Yz = AY, + pzA, p2= - dTr(Y,), 

Y3 = AY, + p,A, p, = - iTr(Y,), 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

(3) 

Y,=AY,_,+p,,A, p,= - tTr(Y,,). 

The coefficients pi obtained in (3) satisfy Newton’s formulae (2) and there- 

fore are precisely those of p(A). Further Y, =O, so that the sequence (3) 
terminates naturally at the nth step, if not before, and provided A is 

nonsingular, A - ’ = -(l/p,,)(Y,_,+p,_rI). Faddeev and Faddeeva [2] state 
(without proof) that when the roots 4 are distinct, then for any root h 

n-1 

y= x hn-i--lyi (4 
i=O 

is a nonnull matrix all of whose columns satisfy the eigenvector relationship 
AY =AY. It follows that since the eigenvalues of A are distinct, then 

rank(Y) = 1 and every nonnull column of Y is a multiple of the unique right 
eigenvector corresponding to A. Because Y is a polynomial in A we have 

AY = YA, so that every row of Y is a multiple of the unique left eigenvector 
corresponding to h. This duality relationship is not further discussed, but 

carries through in all the following, where the term eigenvector is to be 
understood as referring to a right eigenvector. 
The algorithm (3) requires O(n”) multiplications to obtain an inverse and is 

subject to unacceptable rounding errors. There are many superior numerical 

eigenvector algorithms. The Lever&+Faddeev algorithm is inefficient and 
inaccurate and is clearly unsuitable for numerical work. However, the 

sequence (3) does have algebraic interest, for (4) exhibits the eigenvectors of 
A in an explicit polynomial form. When A is patterned or has some regular 
structure that generates matrices Yj that also exhibits structure, then (4) may 
have an especially simple form. For example, Gower [3] discusses the 
simplifications that occur when A is skew-symmetric and further simplifica- 
tions when A is a special type of skew-symmetric matrix. The study of 
patterned matrices interests statisticians concerned with the possibility of 
approximating observed matrices with irregular structure by theoretically 
derived matrices with regular structure. Patterned matrices tend to have 
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some, at least, of their eigenvalues occurring more than once. When A is 
skew-symmetric, A2 is symmetric with eigenvalues occurring in equal pairs. 
Thus before (4) can be used with patterned matrices it is essential to analyze 
what modifications are required when eigenvalues are not distinct. This 
paper shows that repeated eigenvalues can usually, but not always, be 
accommodated in a modification of the matrix Y. Fortunately the exceptions 
occur only in well-defined pathological cases that are unlikely to be of 
practical importance. The modified algorithm is developed in Sec. 3, inciden- 
tally providing a proof of Faddeev’s statement concerning distinct eigenval- 
ues, but first an isolated result on generalized inverses of A is established. 

2. GENERALIZED INVERSE 

THEOREM 1. IfAisofrankrandp,#O, then 

A- = - L 
P, 

y,_,- hy,_, 
Pr 

is a rejlexive generalized inverse of A. 

Proof. The characteristic equation becomes 

p(h) =P’(A’+ p$‘-‘+ * . * + p,), 

where each pi can be zero, and the special form taken by the Cayley-Hamil- 
ton theorem is 

A’+‘+P~A’+~&-~+. . . +p~=o. 

Thus in (3) Y, =0, so that the sequence now stops at the rth step, with the 
final two relationships 

Y,=O=AY,_,+p,.A. 
(5) 

It follows that when p,#O, then AA-A-A. 
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From (5) 
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r-2 

(6) 

Now 

Y,_,=A’-‘+p,A’-2+p,A’-3+... +p,_,A, 

Y r-l =A’+plA’-‘+psA’-2+ . . . +pr_,A, 

Y,=A’+‘+plA’+p2A’-‘+... +p,.A=O, 

so that Y,_,Y,_ r = - p,Y,_, and q_ r = - prYI_ 1 and (6) becomes 

A-AA- =A-. n 

Decell [4] expresses A+, the Moore-Penrose inverse of rectangular A, in 
terms of the characteristic polynomial of AA*, where A* is the conjugate 
transpose of A. The above gives a reflexive inverse of square A in terms of 
the characteristic polynomial of A. Decell[4] does not require p,#O, but this 
restriction seems essential here for any generalized inverse that is a linear 
combination of the powers of A, as is indicated by the following example: 

Let 

1 1 0 
A=0 0 1, 

! I 0 0 0 

which has characteristic polynomial X2@- 1). Thus A has rank 2, and p,=O. 

We have 

and Y,=O. 

Now the middle element of the last row of every generalized inverse of A has 
A3y2= 1, so A- cannot be expressed as any linear combination of Y,, Y,, and 

y2. 



LJWEEWER-FADDEEV ALGORITHM 65 

3. REPEATED EIGENVALUES 

For Y given by (4) to give nonnull eigenvectors, Faddeev and Faddeeva 
[2, p. 2641 require all eigenvalues to be distinct. Certainly without this 

condition Y may be null, as happens for example with A = I, but it is shown 
below that the condition is not a necessary one. In this section a modified 

procedure is described giving a matrix X of eigenvectors which is never null 
and whose rank, under suitable conditions, is equal to the multiplicity of the 

corresponding eigenvalue. The minimal rather than characteristic polynomial 
is the basis of the modifications. Let 

q(A)=Xm+qlhm-l+*** +qm (7) 

be the minimal polynomial of A, and consider the sequence 

X,=AX,+qA 

x,=fi,+ qy% 
. . . . . . . . . . . . 
X,=AX,_,+q,,,A. 

(8) 

Let 

m-l 

x2x m--i-lXi 
i=O 

when A#0 

x=x,_,+ %_,I when h=O. 

In this sequence the coefficients qi are assumed known. I know of no 
modification, similar to that of Faddeev for the characteristic polynomial, 

that allows these coefficients to be found sequentially. Let k be the number 
of separate Jordan blocks corresponding to the root X, and let 1, be the 
number of these blocks that have maximum size. 

THEOREM 2. 

(9 X, =Q 
(ii) AX= Ax, where X is not null, 
(iii) rank(X) = I,,. 
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Proof. The first part follows immediately from X, =A,(A) =O, and, 
leaving aside for a while the case h = 0, (ii) is a simple consequence of (7) and 
the definition of X. This shows that the columns of X, provided they are 
nonnull, are all eigenvectors of A corresponding to the root A. Next we show 
that X is nonnull. Expanding X in terms of A gives 

X=X”-‘A+Xm-2(A2+91A)+Am-3(A3+91A2+92A)+. . . 

which is a polynomial in A of degree m, and so can only vanish if it coincides 
with the (unique) minimal polynomial. This requires 

I- 9l+x - 9~+~91+~~ 9m_1+h9,_2+*** +A”-’ =... = 
, 

91 92 9m-1 
(9) 

9m -0. 

When X#O (9) is impossible, so X is not null. When X = 0 is a root, Q,,, = 0 
[from (7)] and hence (9) is valid and X, defined as for AZO, is null. In this 
case we have 

X,,_,=A”‘+qlAm-‘+... +q,,_,A=-q,,,I=O, 

so that the sequence terminates one step earlier than usual to give 

showing that X,_, + 9m_ ,I has columns corresponding to the zero root. But 
X, _ 2 + 9,,, _ ,I is a polynomial in A of degree m - 1, and therefore cannot 
vanish. Thus whether or not h is zero, X is not null and satisfies AX==, 
completing the proof of part (ii) of the theorem. 

To establish the rank of X, let TAT-’ = J be the Jordan form of A; then 

JZ = hZ, 

where Z=TX, and because T is nonsingular, rank (Z) =rank(X). Consider a 
Jordan block, say Jo, corresponding to a root p. Suppose J is of order t, and 
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let Z* be the t rows of Z that are multiplied by Jo. We have 

CCL 1 

P **. 

*. 
z* = AZ*, 

* 1 

P, 

so that 

. . . . . . . . . . . . . . . . 

pz,_~+z,=h,-,9 

pq = AZ,, 

where zl, q, . . . , 2, are the rows of Z*. 

When hfp, (10) shows that z1=z2= -a* =zt=O. When h-p, zz=z3 
=... = zt = 0. Hence Z can have nonzero rows only for the first row of each 
Jordan block in J with the root A. 

Now X is a polynomial in A of degree d = m, unless X = 0, in which case 
the polynomial has degree d = m - 1. Therefore 

X= 5 yiAi, 
i=o 

where 

YO’Q AZ0 

=%I-1 A=O. 

We have 

z=m= ‘$ y,(TA’T-‘)T= (11) 
i=o 
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It was shown above that the only possible nonzero rows of Z are those that 
correspond to the first row of each of the kA Jordan blocks with eigenvalue A. 
Assume these blocks Ji, Ja, . . . , J4 are labeled in order of decreasing size 
k,>k,>-+- > kkA; then it is easily seen that K = Zf,,y,Ji is made up of k, 
blocks with form 

a, a2 a, *. . ak 
a, a2 **. ah--- 1 

K,= a, .** ari-2 

where 

ui+l= *&( f)w. 

The largest such matrix is K,; subsequent smaller matrices in the series will 
omit the final rows and columns of K,. Only the first row of Z* correspond- 
ing to K, can be nonzero. Hence from (11) 

G Zl 
t2 0 

K, . = . , 

% .o, 

where t, is the ith row of T that is multiplied by K,, and so 

a,t, + . . . ++&=o, 
* . . . . . . . . . . . . . . . 

a,tkl = 0. 

Since T is nonsingular, no row of T is null. In particular tk, #O and hence 

a,=a2=. * * = akl_, =O. If in addition a,, =O, then z1 =O, as are the first 
rows of each Z* corresponding to the other Jordan blocks. This implies Z=O, 
which contradicts the previous result; hence a,, # 0. It follows that Ki = 0 
except for K, and any blocks of the same size, which each have one nonzero 
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element equal to a, 1. By definition there are Zh blocks of the same size as K,, 

SO 

rank(K) = rank(X) = Z*, n 

It is instructive to examine the circumstances under which the proof of 
Theorem 2 breaks down when we work with Y derived from the characteris- 

tic polynomial rather than with X derived from the minimal polynomial. 

Firstly, when the characteristic polynomial differs from the minimal poly- 
nomial, (9) is invalid, so it does not follow that Y given by (4) is necessarily 
nonnull. This in turn admits the possibility that a,, may be zero. In these 
circumstances ukl must be examined in more detail. Writing s for k, - 1, we 
have 

where now yi is the coefficient of A’ in the expression for Y. Thus 

n-i 

Yi= x p”_i_ihi 
i=O 

and 

When A is an eigenvalue of greater multiplicity than k, = s+ 1, we can 
differentiate Ap(X) s + 1 times, showing that (12) is zero and Y is null. 
However when the multiplicity of X is k,, differentiating s + 1 times does not 
yield a zero polynomial in h and (12) is not zero. Thus if an eigenvalue h 
occurs in more than one Jordan block, Y is null. If A occurs in a single Jordan 
block, Y has rank 1 and its columns are representations of the single 
eigenvector associated with h. 
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Theorem 2 has shown that X derived via the minimal polynomial, unlike 
Y derived from the characteristic polynomial, is never null. However even X 
may not span the space of all independent eigenvectors corresponding to an 
eigenvalue A; eigenvectors arising from submaximal Jordan blocks associated 
with A will not be generated. When the eigenvalues are distinct, minimal and 
characteristic polynomials coincide and 2, = 1; therefore X = Y with rank 1, 
which is Faddeev’s result. When J is diagonal, X has rank equal to the 
multiplicity of the root A, and so gives all the vectors; in particular this 

includes the cases where A is symmetric, Hermitian, or skew-symmetric. 
However, when J is diagonal, Y is null for any multiple eigenvalue. Cower 

[3] applies these results to obtain explicit singular value decompositions of 

certain skew-symmetric matrices. 
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