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Abstract 16 

Accurate prediction of extreme flow events is important for mitigating natural disasters such as flooding. We 17 

explore and refine two modelling approaches (both separately and in combination) that have been 18 

demonstrated to improve the prediction of daily peak flow events. These two approaches are firstly, models 19 

that aggregate fine resolution (sub-daily) simulated flow from a process-based model (PBM) to daily, and 20 

secondly, hybrid models that combine PBMs with statistical and machine learning methods. We propose the 21 

use of variography and wavelet analyses to evaluate these models across temporal scales. These exploratory 22 

methods are applied to both measured and modelled data in order to assess the performance of the latter 23 

in capturing variation, at different scales, of the former. We compare change points detected by the wavelet 24 

analysis (measured and modelled) with the extreme flow events identified in the measured data. We found 25 

that combining the two modelling approaches improves prediction at finer scales, but at coarser scales 26 

advantages are less pronounced. Although aggregating fine-scale model outputs improved the partition of 27 

wavelet variation across scales, the autocorrelation in the signal is less well represented as demonstrated by 28 

variography. We demonstrate that exploratory time-series analyses, using variograms and wavelets, provides 29 

a useful assessment of existing and newly proposed models, with respect to how they capture changes in 30 

flow variance at different scales and also how this correlates with measured flow data – all in the context of 31 

extreme flow events. 32 
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1. Introduction  37 

In many regions across the globe, changing patterns of rainfall may increase the risk of extreme water 38 

flows and associated flooding, posing unique challenges for both urban and rural environments (Bates et al., 39 

2008; Field et al., 2012; Kundzewicz et al., 2007). Whereas in urban environments, homes and businesses 40 

may be at risk of severe damage, in rural environments, agricultural production can be at risk through 41 

waterlogging (Brown et al., 2016), soils may be threatened by erosion and watercourses may become 42 

contaminated by excess nutrients as a result of fertilizer in runoff (Bouraoui et al., 2004). To manage and 43 

mitigate the impacts of extreme flow events, accurate and reliable modelling and forecasting of flow, and 44 

particularly extreme flow events, are needed. 45 

Catchment hydrology has been modelled using mechanistic or semi-empirical models (e.g. Jaiswal et 46 

al., 2020), in which known processes are described. These models tend to capture the coarse scale variation 47 

in observed flow relatively well. However, fine-scale variation is often under-predicted reducing the accuracy 48 

of forecasting the true magnitude of extreme events. Wu et al. (2020) investigated the effect of the 49 

simulation time-step on predicting extreme flow events (mm day-1) and discovered that using finer resolution 50 

input data and then aggregating the process-based model (PBM) outputs to the daily scale increased 51 

accuracy, both in the prediction of general trends and identification of peak flows. In effect, the hydrological 52 

model functions as a filter (or transform) which reduces the influence of high frequency weather variation. 53 

When input data are aggregated (e.g., from hourly to daily resolution) the variation is damped through 54 

averaging. However, the model filter may dampen the variation still further resulting in under-prediction of 55 

extreme events. Aggregation of model outputs generated from fine-resolution inputs tends to retain better 56 

the extreme peaks in the data because the dampening effect of the model is restricted to the hourly time-57 

step. 58 

An increasingly popular approach to increase the accuracy of the prediction of extreme events is to 59 

use hybrid models (Bogner et al., 2016; Papacharalampous et al., 2019). These models integrate PBM outputs 60 

and statistical data-driven methods such as those based on machine learning. For example, in the case of 61 

Curceac et al. (2020a), a conditional extreme model (CEM) (Heffernan and Tawn, 2004) and an extreme 62 
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learning machine (ELM) (Huang et al., 2006) were used to increase the accuracy of simulations of peak flow 63 

events obtained from the PBM. An essential element of a hybrid formulation is the ability of the PBM to 64 

predict the timing of extreme events. 65 

Key to the accuracy of model predictions of fine-scale extreme events is how well the model captures 66 

the underlying processes across scales. Here, we propose the use of variograms and wavelet analysis as tools 67 

to explore and assess model performance in characterising temporal patterns in the data across scales. The 68 

variogram is the principal tool of geostatistics and, as such, has been used to describe variation in spatial data 69 

(Goovaerts, 1997; Chilès and Delfiner, 2009; Gringarten and Deutsch, 2001; San Martín et al., 2018). A 70 

variogram provides a global (stationary) assessment of spatial (temporal) dependence or autocorrelation and 71 

for temporal applications is able to identify the temporal scales over which the stochastic process is 72 

autocorrelated, as well identify any periodicities in the data. Whereas variograms provide a global 73 

assessment of temporal dependence in time-series data, wavelet analyses provides a local (non-stationary) 74 

assessment across various scales or decompositions (Percival and Guttorp, 1994; Lark and Webster, 1999; 75 

Percival and Walden, 2000; Rust et al., 2014). Transforming a time-series by wavelets results in a set of 76 

wavelet coefficients, each of which describes the local variation of the signal within a certain scale interval. 77 

These coefficients can be used to determine how the variance (or correlation in the case of two time-series) 78 

is partitioned across scales. Changes in the variance of the time-series for a particular scale interval is 79 

reflected in the wavelet coefficients and, as such, it is also possible to detect significant changes in the 80 

wavelet variance or wavelet correlation for a given scale interval over time 81 

In this research, the modelling concepts described above are integrated to explore the relative 82 

increases in accuracy made possible by aggregating fine-scale model outputs and hybrid models, and a 83 

combination of the two. Specifically, hybrid models are formed using both the direct daily simulations of the 84 

conventional PBM and the aggregation-based PBM outputs. Further, we explore using soil moisture as a 85 

covariate in the ELM part of the hybrid models. Variograms are used to investigate the existence of nested 86 

scales of variation in the measured flow data and assess how (or if) this is captured in the modelled flow data. 87 

Wavelet analyses are similarly applied to both measured and modelled flow data to assess the performance 88 
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of the latter in capturing variation of the former at different scales and locations in time. Critically, we 89 

compare change points detected by the wavelet analysis (measured and modelled) with the extreme flow 90 

events suggested by the threshold selected based on stability plots of the Generalized Pareto distribution 91 

(GPD) of (Curceac et al., 2020b). The exploratory analysis using variograms and wavelets presented here 92 

provides a useful assessment of existing and newly proposed models, with respect to how they capture 93 

changes in variance at different scales and also how this correlates with measured data; all in the context of 94 

extreme flow events. The approach extends that given in Rust et al. (2014), where measured and modelled 95 

data were compared using wavelets with respect to changes in land use and management. The approach 96 

provides complementary model assessments to those undertaken more routinely based on model prediction 97 

accuracy through accuracy diagnostics such as are produced by, for example, cross-validation (Smith et al., 98 

1997). Taken together, increased understanding of peak flow processes together with increased peak flow 99 

detection accuracy has the potential to provide clear management benefits, not only in flood forecasting, but 100 

also reducing nutrient losses to water in an agricultural context. 101 

2. Materials and Methods 102 

2.1. Study site and data 103 

Water flow data were measured at the North Wyke Farm Platform (NWFP), SW England (50°46'10"N, 104 

3°54'05"W). The NWFP is a farm-scale experiment that was established in 2010 to facilitate research into 105 

sustainable grassland livestock systems (Orr et al., 2016; Takahashi et al., 2018). For the period 1985-2015, 106 

the mean annual temperature at North Wyke ranges from 6.8 to 13.4 °C and the mean annual rainfall is 1033 107 

mm. The platform’s altitude ranges from 120–180 m above sea level. Soil texture consists of a slightly stony 108 

clay loam topsoil (approximately 36% clay) above a mottled stony clay (approximately 60% clay). The subsoil 109 

is impermeable to water and during rain events most of the excess water moves by surface and subsurface 110 

lateral flow towards the drainage system described below. The platform comprises 15 sub-catchments (inset 111 

in Fig. 1) all of which are hydrologically isolated through a combination of topography and a network of 112 

French drains (800 mm deep trenches). This ensures that the total runoff is channelled to instrumented 113 

flumes, measuring water discharge and water chemistry. For all sub-catchments, runoff has been measured 114 
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at a 15-minute temporal frequency since October 2012 through a combination of primary and secondary 115 

flow devices (as detailed in Orr et al., 2016; Curceac et al., 2020a). The flow is generated only from rainfall as 116 

the fields are not irrigated. Each sub-catchment also monitors precipitation and soil moisture every 15 117 

minutes at a depth of 10 cm. For this research, we used flow discharge, rainfall and soil moisture (SM) (from 118 

April 2013 to February 2016) measured at sub-catchment 6 (Fig. 2), which consists of a single field (Golden 119 

Rove). This field was chosen because, as part of the permanent pasture treatment of the NWFP, it would not 120 

have been ploughed and reseeded during the period of study (which would affect the run-off process). 121 

 122 

Fig. 1. Sub-catchment (consisting of a single field) selected from the total of 15 sub-catchments within the 123 

North Wyke Farm Platform, South-West England, UK. Precipitation and soil moisture data are collected from 124 

a site centrally-located in the sub-catchment. 125 
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 126 

Fig. 2. (a) Flow data measured at the study site, (b) precipitation used as input in the PBM and (c) soil moisture 127 

(SM) used as a covariate in the ELM component of the hybrid model. All measurements aggregated from 15 128 

minute to daily. 129 

2.2. Models for simulation and forecasting 130 

2.2.1. Process-based Model (PBM) 131 

Flow discharges for the sub-catchment over the period of interest were simulated using the 132 

‘SPACSYS’ model. SPACSYS is a process-based, field-scale model which simulates key agricultural processes 133 



 

8 
 

such as plant growth and development, soil carbon and nitrogen cycling, water dynamics and heat 134 

transformation (Wu et al., 2007). Water redistribution in a soil profile is simulated by the Richards equation 135 

for water potential. Site-specific input data include weather variables (i.e. rainfall) at a given time-step, soil 136 

properties, and crop and field management (e.g., fertiliser application rates, composition and dates, grazing 137 

and cutting dates). A detailed explanation of SPACSYS including previous simulations of water run-off, soil 138 

moisture and other agricultural processes for the same sub-catchment of the NWFP can be found in Liu et al. 139 

(2018), where a detailed explanation on the SPACSYS calibration is given. 140 

2.2.2. Daily and hourly-to-daily simulations using PBM 141 

SPACSYS has been parameterised to run at 15-minute, hourly, 6 hourly and daily time-steps, 142 

depending on the input weather variables available to run the simulations (Wu et al., 2020). For this research, 143 

we used simulated flow discharges at both daily resolution and hourly resolution aggregated to a daily form. 144 

The reason for the latter approach was that it was found to increase accuracy in predicting general trends 145 

and the identification of peak flows compared to the simulations applied on a daily time-step (Wu et al., 146 

2020). 147 

2.2.3. Hybrid PBM with statistical and machine learning models 148 

Following Curceac et al. (2020a), the simulated peak flows obtained from the PBM were post-149 

processed using the CEM and ELM models. 150 

Initially, the extreme flows were fitted by the Generalised Pareto distribution (GPD), with a 151 

cumulative distribution function (CDF): 152 

𝐺(𝑥) = Pr(𝑋 − 𝑢 < 𝑥|𝑋 > 𝑢) =

{
 
 

 
 
1 − (1 +

𝜉(𝑥 − 𝑢)

𝜎
)

−
1
𝜉

, 𝜉 ≠ 0

1 − 𝑒
(−
𝑥−𝑢
𝜎
)
, 𝜉 = 0

 153 

where 𝑥, for this research is the peak flow in mm d-1, 𝑢 is the location parameter, 𝜎 the scale parameter and 154 

𝜉 the shape parameter. The location parameter is the threshold above which flows are considered extreme. 155 

A high enough threshold reduces the bias as the GPD is a satisfactory fit to the tail of the empirical 156 
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distribution, but results in a small sample size which increases the variance. A threshold that is too low results 157 

in a large sample size but increases the bias as the empirical distribution deviates from the perfect GPD. 158 

According to Extreme Value Theory, if the GPD is a suitable model for the excesses above a high enough 159 

threshold 𝑢, then it will also be appropriate for all higher thresholds 𝑢∗ with the shape 𝜉 and modified scale 160 

𝜎1 = 𝜎𝑢∗ − 𝜉𝑢 being relatively constant (Coles, 2001; Scarrott and MacDonald, 2012). As in Curceac et al. 161 

(2020b), we fitted cubic splines to the estimated shape and modified scale parameters for a range of 162 

thresholds and calculated the minimum change range which locates the most stable part. 163 

For a continuous 𝑑-dimensional vector variable 𝑋 = (𝑋1, … , 𝑋𝑑) with unknown distribution function 164 

𝐹(𝑥), the CEM describes the conditional distribution of 𝑋−𝑖|𝑋𝑖 > 𝑢𝑋𝑖, where 𝑋−𝑖 is the vector variable 𝑋 165 

excluding the component 𝑋𝑖. The marginal distribution of each 𝑋𝑖, 𝑖 = 1,… , 𝑑 is estimated by the GPD model 166 

as described above. This can provide different distributions depending on the shape parameters of the GPD. 167 

Therefore, all the components are transformed to the Laplace distribution for them to follow the same 168 

margins. The initial vector variable 𝑋 is, therefore, transformed as: 169 

𝑓(𝑥) = {
log{2𝐹𝑋𝑖(𝑋𝑖)} , 𝑋𝑖 < 𝐹𝑋𝑖

−1(0.5)

− log{2[1 − 2𝐹𝑋𝑖(𝑋𝑖)]} , 𝑋𝑖 ≥ 𝐹𝑋𝑖
−1(0.5)

 170 

Where 𝐹𝑋𝑖
−1 is the inverse cumulative distribution function of 𝑋𝑖. The resulting vector variable 𝑌 = (𝑌1, … , 𝑌𝑑), 171 

therefore, has Laplace margins with: 172 

Pr(𝑌𝑖 ≤𝑦) = 𝐹𝑌𝑖(𝑦) = {

1

2
exp (𝑦), 𝑦 < 0

1 −
1

2
exp(−𝑦) , 𝑦 ≥ 0

 173 

The dependence model considers the asymptotics of the conditional distribution Pr (𝑌−𝑖 ≤ 𝑦−𝑖|𝑌𝑖 = 𝑦𝑖 174 

where for 𝑦𝑖 → ∞ the increase of 𝑦−𝑖 must result in non-degenerate margins. For this, assume the 175 

normalizing functions a|𝑖(𝑦𝑖) and 𝑏|𝑖(𝑦𝑖) that have the same dimension as 𝑌−𝑖 and for which: 176 

lim
𝑦𝑖→∞

[Pr {
𝑌−𝑖 − a|𝑖(𝑦𝑖)

𝑏|𝑖(𝑦𝑖)
≤ 𝑧|𝑖|𝑌𝑖 = 𝑦𝑖} ] = 𝐺|𝑖(𝑧|𝑖) 177 
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where the limit distribution 𝐺|𝑖  has non-degenerate marginals 𝐺𝑗|𝑖 for all 𝑗 ≠ 𝑖. The extremes dependence is 178 

the described by the semi-parametric regression model as: 179 

𝒀−𝒊 = 𝛂|𝒊𝒚𝒊 + 𝒚𝒊
𝜷|𝒊𝒁|𝒊  for  𝒀𝒊 = 𝒚𝒊 > 𝒖𝒀𝒊 , 𝒊 = 𝟏,… , 𝒅 180 

where 𝑎|𝑖(𝑦𝑖) = 𝛼|𝑖𝑦𝑖  is the location function and 𝑏|𝑖(𝑦𝑖) = 𝑦𝑖
𝛽|𝑖  the scale function, with the vectors 181 

constants defined as α𝑗|𝑖 ∈ [−1,1] and 𝛽𝑗|𝑖 ∈ (−∞, 1) for all 𝑗 ≠ 𝑖. Detailed descriptions for the CEM can be 182 

found in Heffernan and Tawn (2004) and Keef et al. (2013).  183 

The second method used to post-process the PBM simulated flow is an ELM. It is a machine learning 184 

technique developed by Huang et al. (2006) which has been applied to streamflow modelling and forecasting 185 

(e.g. Deo and Şahin, 2016; Yaseen et al., 2016). It has a simple form of one input, one hidden and one output 186 

layer and can be defined as: 187 

∑𝐵𝑖ℎ𝑖(𝑚𝑖 ∙ 𝑥𝑡 + 𝑛𝑖) = 𝑧𝑡

Λ

𝑖=1

 188 

where Λ is the total number of nodes, 𝐵 are the estimated weights between the nodes of the hidden and 189 

output layers, and ℎ(𝑚, 𝑛, 𝑥) is the activation function with weights 𝑚𝑖 ∈ ℜ
𝑑, biases 𝑛𝑖 ∈ ℜ and the 190 

explanatory variable of the training dataset 𝑥𝑡 ∈ ℜ
𝑑. Here, 𝑖 and 𝑑 denote the index of a specific hidden 191 

neuron (HN) and the number of input neurons, respectively, and 𝑍 is the model output.  192 

The input weights and hidden layer biases are chosen randomly initially and the output weights are estimated 193 

iteratively via least squares. Once the model has been trained, forecasts are obtained by introducing the 194 

testing dataset described later. The number of HN in the hidden layer presents a classic problem of over-195 

fitting and under-fitting and is commonly defined empirically (Sun et al., 2008).  196 

Both the CEM and ELM models were applied using a jackknife procedure (Miller, 1964). Initially, a 197 

peak flow (measured and simulated) was left out of the dataset to be used for testing, while the remainder 198 

were used for training. From the fitted CEM to the training dataset, 50,000 stochastic simulations were 199 

obtained. The realisations of the conditioning variable 𝑋𝑖  (pseudo-PBM simulated) that were closer (<0.1) to 200 

the maximum PBM simulated peak of the testing data were retrieved. Then, the corresponding 𝑋𝑗 (pseudo-201 
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observations) were considered and by calculating their median value, a forecast of the maximum peak was 202 

obtained. The ELM was trained using PBM simulated data and in experimentation, soil moisture as well. Using 203 

the data that were left out for testing purposes (except for the maximum), forecasts were obtained. 204 

Peaks smaller than the cluster maxima were forecasted by the ELM and the CEM was used only to forecast 205 

maximum flows. The CEM and ELM were both applied to the PBM simulated daily flow data while only the 206 

ELM was used to post-process the hourly-aggregated-to-daily (H2D) PBM simulations. The reason for 207 

omitting the CEM was that the H2D simulations showed an increased accuracy in simulating the maximum 208 

peaks, sometimes over-estimating them and, thus, the CEM was unnecessary. It should also be noted that 209 

SM was used only as a covariate in the ELM model. The resulting six study models are consequently referred 210 

to as Modelled Daily, Hybrid Daily, Hybrid Daily with SM, Modelled H2D, Hybrid H2D and Hybrid H2D with 211 

SM.  212 

2.3. Model analysis 213 

2.3.1. Error and agreement indices 214 

The models were evaluated initially by calculating the Pearson correlation coefficient, the mean absolute 215 

error (MAE) and the Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) indices between the measured 216 

and simulated flow. The optimal value of MAE is zero, and the smaller the value, the more accurate are the 217 

simulations. The NSE takes values from minus infinity to one, where one corresponds to a perfect match 218 

between simulated and measured values, zero indicates that model simulations are as accurate as the mean 219 

of the measured values and a negative value indicates that the mean of the measured values is a more 220 

accurate predictor than the model simulations. The indices were calculated using the following:  221 

𝐌𝐀𝐄 =
𝟏

𝑵
∑|�̂�𝒊 −

𝑵

𝒊=𝟏

𝒛𝒊| 222 

𝐍𝐒𝐄 = 𝟏 −
∑ (�̂�𝒊 − 𝒛𝒊)

𝟐𝑵
𝒊=𝟏

∑ (𝒛𝒊 − �̅�𝒊)𝟐
𝑵
𝒊=𝟏

 223 

where �̂�𝑖  are the simulated values, 𝑧𝑖  are the measured values and 𝑧�̅�  is the mean of the measured values. 224 
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2.3.2. Variograms 225 

The temporal dependence of the measured and modelled flow was characterised by means of 226 

variograms. The variogram is a function that relates semi-variance to separation in time ℎ (or space for spatial 227 

variables). For any particular ℎ (in the context of spatial data, ℎ, which is known as the lag, is a vector 228 

describing distance and direction but for temporal data it is a scalar variable), the empirical variogram is given 229 

by: 230 

𝛾(ℎ) =
1

2
E[{𝑍(𝑡) − 𝑍(𝑡 + ℎ)}2], 231 

where 𝑍(𝑡) and 𝑍(𝑡 +  ℎ) are the values of the random function 𝑍 at time points 𝑡 and 𝑡 +  ℎ. 232 

We estimated the values of 𝛾(ℎ) by the method of moments (e.g. Webster and Oliver, 2007), which is given 233 

by: 234 

𝛾(ℎ) =
1

2𝑚
∑[𝑍(𝑡 + ℎ) − 𝑍(𝑡𝑖)]

2

𝑚

𝑖=1

 235 

where 𝑍(𝑡𝑖) and 𝑍(𝑡𝑖  +  ℎ) are the observed values at times 𝑡𝑖 and 𝑡𝑖 + ℎ separated by ℎ, and of which there 236 

are 𝑚(ℎ) paired comparisons at that lag. As observations of the process become further apart (quantified by 237 

ℎ) they typically become less correlated, and often there exists a lag beyond which there is no correlation. 238 

We fitted plausible models to the empirical variograms using the directive FITNONLINEAR in GenStat (v. 18) 239 

(Payne et al., 2008). Authorised variogram models have simple shapes, but can be combined additively to 240 

represent more complex shapes (Webster and Oliver, 2007). The base variogram models that we considered 241 

were spherical, circular and exponential (see S1 for details).  242 

In this research, we computed empirical and modelled variograms for measured flow, measured 243 

precipitation and measured SM together with the simulated flow data from each of the six models described 244 

above. For measured and modelled flow and precipitation, data were log transformed before variograms 245 

were fitted because of the skew in the data (i.e., transforms were used to facilitate authorised variogram 246 

model fits). The use of transformed data will have a clear bearing on the interpretation of the variograms 247 
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compared to variograms constructed from untransformed data. This data pre-processing decision (for the 248 

variography only) is reviewed in the discussion. 249 

2.3.3. Wavelet analysis 250 

We used the maximum overlap discrete wavelet transform (MODWT) (Percival and Walden, 2000) 251 

to analyse the performance of each model in representing scale-dependant variation in the measured flow 252 

time-series. The wavelet transform comprises a set of basis functions which can be convolved with a series 253 

of data to produce wavelet coefficients. Each basis function has, what is known as compact support, which 254 

means that it is non-zero for only a finite period. This property means that convolution with a wavelet basis 255 

function picks up localised features in the data, unlike a Fourier transform which extracts information on a 256 

frequency component across the whole series. The set of basis functions are all dilations and translations of 257 

a basic wavelet function known as the mother wavelet. For the MODWT the function is translated by unit 258 

steps across the series, and dilated by a scale parameter, 𝑎𝑗, which increases in a dyadic sequence 𝑎𝑗 =259 

2𝑗𝑡 (𝑗 = 1,2,… 𝐽) and where 𝑡 is the sample interval of the time-series. The maximum dilation 𝐽 must satisfy 260 

𝑛 ≥ 2𝐽, where n is the length of the time-series.  261 

The wavelet coefficients calculated using a basis function with dilation 𝑎𝑗 are nominally associated 262 

with the scale interval [2𝑗, 2𝑗+1] (Percival and Walden, 2000), and their locations relate to the location of the 263 

non-zero part of the basis function. A scaling function associated with the mother wavelet function completes 264 

the set of basis functions. When the time-series is convolved with the scaling function a set of approximation 265 

coefficients (or scaling coefficients) are produced. These are related to the mean of the time-series. 266 

The wavelet transform is invertible, that is to say, that a complete set of wavelet and approximation 267 

coefficients can be used to reconstruct the original signal. If all the coefficients are set to zero except those 268 

from a particular scale and these are then back transformed the result is the component of the original time-269 

series that is associated with that scale. In this way, a set of components, one for each of the scale intervals 270 

defined and one associated with the approximation coefficients, can be obtained. This is known as a multi-271 

resolution analysis (MRA). The original time-series is given by the sum of the components. 272 
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As well as decomposing the signal into scale components, the wavelet coefficients can be used to 273 

calculate scale-specific components of the variance in the signal, known as wavelet variances. The wavelet 274 

variance for the scale 2jx is computed by 275 

𝜎𝑢,𝑗
2 = 

1

2𝑗𝑛𝑗
∑{𝑑𝑗,𝑘

𝑢 }2

𝑛𝑗

𝑘=1

, 276 

where 𝑑𝑗,𝑘
𝑢 is the kth MODWT coefficient of time-series variable u at scale 2jx (Percival and Walden, 2000), 277 

and 𝑛𝑗 is the number of wavelet coefficients calculated at the 𝑗th scale (for details see Milne et al., 2009).  278 

Similarly, given two signals, 𝑢 and 𝑣, a wavelet correlation for each scale interval can be computed. This is 279 

given by 280 

𝜌𝑢,𝑣,𝑗 = 
𝐶𝑢,𝑣,𝑗

𝜎𝑢,𝑗𝜎𝑣,𝑗
. 281 

where 𝐶𝑢,𝑣,𝑗  is the wavelet covariance between the two variables and is given by 282 

𝐶𝑢,𝑣,𝑗 = 
1

2𝑗𝑛𝑗
∑𝑑𝑗,𝑘

𝑢 𝑑𝑗,𝑘
𝑣 .

𝑛𝑗

𝑘=1

 283 

These formulae give the wavelet correlation and wavelet variance over the entire time-series. Unlike 284 

the variogram, however, a key feature of the wavelet transform, is that it captures local variation. It is 285 

possible therefore possible to test for significant changes in the wavelet variance and correlation at each 286 

scale (Lark and Webster, 2001). 287 

 In this research, we used Daubechies’s extremal phase wavelet (Daubechies, 1988) with two 288 

vanishing moments, since this has a very compact support, and a maximum dilation of eight to investigate 289 

model performance across scales. We first computed the wavelet variance for modelled flow data using time-290 

series from each of the six models described above. We then compared the partition of variation across the 291 

scales to see which of our models captured the behaviour observed in the measured data. Similarly, we 292 

computed the wavelet correlation between modelled and measured data to determine which scales 293 

performed best.  294 
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2.3.4. Change point detection with wavelets 295 

To determine how the models performed over time and to see if there were significant changes in 296 

performance, we conducted an MRA of the residuals between the modelled and measured flows and 297 

determined the significant change points. 298 

Finally, and of key interest here, is the concept of identifying extreme events from model predictions. 299 

Therefore, we also explored variance change point detection for the Modelled Daily and the Modelled H2D 300 

outputs to evaluate whether the onset of extreme events observed in the measured flow data was reflected 301 

in the model-based analysis. We note that we did not do this for the hybrid models because part of their 302 

construction is based on defining when extreme events occur. 303 

3. Results 304 

3.1 Time-series and model predictive performance 305 

All six models captured well the general pattern and the peaks of the measured flow (Figs 3 and 4). 306 

Scatterplots of measured flow against simulated flow, and the associated correlations, are presented in Fig. 307 

5 which, coupled with the calculated indices (Fig. 6), provide a detailed evaluation on the performance of 308 

each model. The Modelled H2D and the two Hybrid H2D models produced the largest correlation with 309 

measured flow, followed by the Modelled Daily and the Hybrid Daily models. Adding SM as a covariate does 310 

not increase model accuracy, as the correlation of Hybrid Daily drops to 0.75 from 0.81 and the correlation 311 

of Hybrid H2D drops to 0.84 from 0.91. The scatterplots also indicate that all the H2D-based models are more 312 

accurate in terms of high flows as they are closer to the 1-1 line compared to all the Daily-based models. This 313 

is confirmed with larger correlations. Surprisingly, the smallest correlations exist between the Hybrid Daily 314 

with SM and all the H2D-based models. These results are confirmed by the calculated error and agreement 315 

indices. The Modelled H2D and the Hybrid H2D exhibit the smallest error and the greatest agreement with 316 

the measured data. Addition of SM as a covariate increases the error and decreases the agreement for both 317 

the daily and H2D based models. 318 
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 319 

Fig. 3. (a) PBM simulated flow at daily resolution (Modelled Daily) and (b) at hourly resolution aggregated to 320 

daily (Modelled H2D). 321 
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 322 

Fig. 4. Hybrid models a) with CEM applied to the maximum daily PBM simulated flow within a peak event and 323 

ELM to all other points in the peak event, b) as in (a) but with soil moisture (SM) as a covariate in the ELM 324 

model, c) with ELM only applied to the hourly PBM simulated and aggregated to daily flow, d) as in (c) but 325 

with SM as a covariate. 326 
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 327 

Fig. 5. (Bottom left) scatterplots and (top right) correlations between measured and simulated flow and 328 

between flow simulations from the models only. 329 

 330 
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 331 

Fig. 6. (top) Mean absolute error (MAE) and (bottom) Nash-Sutcliffe efficiency (NSE) between measured 332 

and modelled flow. 333 

 334 

3.2 Variograms 335 

Empirical variograms were computed for the three measured variables (flow, precipitation and SM) 336 

and six simulated flow variables. Only the SM variable remained in un-transformed space, while the rest were 337 

log-transformed to facilitate the identification of clear structures in the respective autocorrelated processes 338 

(the un-transformed empirical variograms are provided in Appendix A). Authorised variogram models could 339 

be fitted to all empirical variograms except for measured flow and SM (Fig. 7). This was due to a concave 340 

upwards behaviour at certain lag ranges in the respective empirical variograms. In all cases, a double 341 

spherical model fitted the best indicating a clear nested structure with two scales of temporal variation. A 342 

nested characteristic was also broadly apparent in the un-modelled empirical variograms of measured flow 343 

and SM.  344 

Variograms depicted in Fig 6. d, e and f, have similar characteristics and this is driven by the fact that 345 

they are based on the same underlying model output (Modelled Daily). The Hybrid Daily data show a small 346 

decrease in the overall sill and the addition of SM makes negligible difference to the variogram. The 347 
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application of the hybrid model with the H2D has a more significant impact than on the Daily Modelled data, 348 

which is confirmed by the change in the parameter estimates (S1). Furthermore, SM significantly changes the 349 

variance of the H2D Modelled data, which becomes similar to all the Daily Modelled.  350 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

 

Fig. 7. Empirical variograms of measured (a) log flow, (b) log precipitation and (c) soil moisture. The black line 351 

shows the variogram model fitted to the measured data (for precipitation only). Subplots (d-i) show the 352 

empirical variograms for log modelled flow variables (red disks) with their respective fitted variogram models 353 

(red line) and the empirical variograms of measured log flow for comparison (black disks). 354 
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3.3 Wavelet Analysis 355 

3.3.1 Wavelet variance 356 

The wavelet variance results are given in Figs. 8 and 9. The partition of wavelet variance in the 357 

measured data shows that the largest component exists at the finest scale (2-4 days). The variance then falls 358 

sharply, with a small peak at the 32-to-64 day scale. It then increases with scale, with the coarsest scale 359 

relating to annual variation (Fig. 8a). Comparing the wavelet variance of the measured data with the PBM 360 

simulations (Fig. 8b) shows that Modelled H2D overestimates the fine-scale wavelet variance and Modelled 361 

Daily underestimates it. At coarser scales, the variance of Modelled H2D becomes similar to the measured 362 

one while the Modelled Daily deviates, suggesting that coarse scale variation is overestimated. Similar to the 363 

measured flow and Modelled H2D, precipitation shows the greatest variation at the fine scale. Conversely, 364 

the wavelet variance for SM increases broadly with scale, which reflects the fact that the processes 365 

controlling it dampen the fine-scale variation relative to the coarse scale. The Hybrid H2D model captures 366 

best the measured wavelet variance at scales finer than 32 days (Fig. 9). At coarser scales the Hybrid H2D 367 

with SM performs best in this respect (Fig. 9). Using SM as a covariate in the Hybrid Daily model does not 368 

increase the accuracy of the predicted variation at coarser scales, however (Fig. 9). 369 
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 370 

Fig. 8. The wavelet variance for measured (plots a, e, f for flow, SM and precipitation, respectively) and 371 

modelled (c and d for Daily and N2D, respectively) data. The wavelet variance is given by the solid discs which 372 

mark the lower bound of the scale interval that each wavelet variance is associated with. The open discs 373 

show the 95% confidence intervals. The lines are given to aid the eye. Plot (b) compares measured with 374 

modelled flow on the same plot.  375 
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 376 

 377 

Fig. 9. The wavelet variance for flow simulated with each of the hybrid models. The wavelet variance is given 378 

by the solid discs which mark the lower bound of the scale interval that each wavelet variance is associated 379 

with. The open discs show the 95% confidence intervals. The lines are given to aid the eye. The bottom plot 380 

shows the wavelet variance for all of the hybrid models plotted together with the wavelet variance for the 381 

measured data. The scale is presented on the log scale (base 10) to aid inspection of the finer scale variances. 382 

 383 
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3.3.2 MRA of residuals 384 

The MRAs of the residuals for each of the six models are shown in Fig. 10. The significant changes in 385 

model performance (as indicated by the red vertical lines) show that the model residuals are greatest around 386 

the three large bursts of flow activity (we note that for clarity we omitted change points on the two fine-387 

scale components where changes were numerous). All of the models capture the coarse scale variation well 388 

(as demonstrated by the near flat variation in the top three variance components). Over the whole time 389 

period, residual variation is smallest for the Hybrid H2D at the finer scales and for Hybrid models with SM at 390 

the coarsest scales (Table 1).  391 

 392 

Fig. 10. The MRA for the residuals of each model considered shown as stacked plots. The approximation 393 

component is shown at the top of each subplot with variance components plotted below from coarsest at 394 
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the top to finest at the bottom. The solid grey bar indicates a 10-unit scale which is common across all 395 

subplots. The wavelet variances of each component are given in Table 1. We note that because the top 396 

component is the approximation component it does not have an associated wavelet variance. Significant 397 

change points in the residual variance are shown by the red vertical lines. These are only shown for scales 398 

above 8 days. 399 

 400 

Table 1 401 
The wavelet variances of the residuals for each model.  402 

 
 

Modelled 
daily 

Hybrid daily Hybrid daily 
with SM 

Modelled 
H2D 

Hybrid H2D Hybrid H2D 
with SM 

Scale 256 - 
512 

0.064 0.035 0.033 0.058 0.134 0.049 

Scale 128 - 
256 

0.094 0.050 0.069 0.067 0.112 0.048 

Scale 64 - 
128 

0.071 0.047 0.061 0.057 0.061 0.049 

Scale 32 - 64 0.095 0.079 0.138 0.104 0.112 0.157 

Scale 16 - 32 0.112 0.153 0.325 0.173 0.142 0.300 

Scale 8 - 16 0.210 0.323 0.623 0.211 0.156 0.328 

Scale 4 - 8 0.500 0.685 1.109 0.428 0.266 0.657 

Scale 2 - 4  1.533 1.778 2.390 0.915 0.489 1.541 

 403 

3.3.3. Wavelet correlations 404 

Across the scales, the models derived from PBM flow simulations at the hourly resolution (Modelled 405 

H2D, Hybrid H2D and Hybrid H2D with SM) produce a large wavelet correlation with measured flow (>0.7) 406 

whereas those based on simulated flow at the daily resolution are less correlated at finer scales (Fig. 11). 407 

Hybrid H2D is the best performing model at finer scales (<32 days), while at coarser scales (32> days) all 408 

models produce a large correlation with the measured data. Surprisingly, the Hybrid Daily model has a smaller 409 

fine-scale correlation with the measured data than the Modelled Daily model. Using the SM covariate 410 

increases the coarse scale correlations only marginally.  411 
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Significant changes in correlation were detected in the finer scales for the hybrid daily models and 412 

the Hybrid H2D with SM, and at scales below 32 days for the Modelled H2D and hybrid H2D (Fig. 12). Broadly 413 

speaking, these show that the modelled flow is better correlated with measured during the wet winter 414 

periods when high water fluxes are observed. Modelled H2D and Hybrid H2D exhibit a greatest number of 415 

changes in the correlation with the measured flow and at the finest scale (2 – 4 day) capture the low flows 416 

during dry periods better than the Hybrid Daily models, which show weak correlation with the measured 417 

data as during these periods the daily simulations predict no flow. At fine scale, the Hybrid H2D with SM 418 

shows a stable correlation of 0.74 for most of the studied period, which increases towards the end of the 419 

time series when the SM covariate becomes almost constant.  420 
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 421 

Fig. 11. The wavelet correlation between simulated and measured flow data. The wavelet correlation is given 422 

by the solid discs which mark the lower bound of the scale interval to which each wavelet correlation is 423 

associated. The open discs show the 95% confidence intervals. The lines are given to aid the eye. The bottom 424 

plot shows the wavelet correlation for all models plotted together. The scale is presented on the log scale 425 

(base 10) to aid inspection of the finer scale correlations. 426 
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 427 
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Fig. 12. Measured flow (top) and significant changes detected in the wavelet correlation between measured 428 

and modelled data at scales where changes were detected. The solid lines indicate that the correlation is 429 

significantly different from zero and the dotted that it was not. The Daily Modelled is not depicted as no 430 

changes in the wavelet correlation were detected. 431 

 432 

3.4 Wavelet Analysis for detection of extreme events 433 

The MRA and wavelet variance change point detection shows that broadly, the two PBM simulation 434 

models (Modelled Daily and Modelled H2D) capture the significant changes in variance at each scale. This is 435 

demonstrated by the similarity in the location of change detection points between modelled and measured 436 

flow (Figs. 13a–c). There is a small burst of activity at just after 800 days which is detected in the 8-to-16 day 437 

scale component of the measured data that is not captured in Modelled Daily but is overestimated by the 438 

Modelled H2D. The magnitude of the estimated local wavelet variance is related to the likely number of 439 

extreme (peak flow) events and how soon an extreme event is likely to occur (Figs. 13d–e) (see 440 

supplementary information for Modelled H2D). 441 

 442 

 443 



 

30 
 

 444 

Fig. 13. The MRAs of (a) measured flow, (b) Modelled Daily flow and (c) Modelled H2D flow shown in stacked 445 

plots. The approximation component is shown at the top of each subplot with variance components plotted 446 

below from coarsest at the top to finest at the bottom. The solid grey scale bar indicates 10 units. Significant 447 

change points in the residual variance are shown by the red vertical lines. These are not shown for scales 448 
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above 4 days. The yellow dots indicate the extremes (peak flows) as detected by the peaks over threshold 449 

method for the measured data (Curceac et al. 2020a; 2020b). Plot (d) shows the relationship between the 450 

number of days after a change point that an extreme value is detected and the local wavelet variance and 451 

(e) the frequency of extremes and the local wavelet variance.  452 

4. Discussion 453 

Accurate modelling and forecasting of water runoff from agricultural land is important for 454 

management of nutrient losses and water pollution. In the context of grassland agriculture, water flow is 455 

most commonly modelled using process-based models. However, recent advances suggest that a hybrid 456 

modelling approach combining statistical distributions and machine learning can increase predictive power. 457 

In this research, we presented and evaluated six alternative models for predicting flow data, all variations on 458 

the same PBM (SPACSYS); three were based on daily resolution simulations (Modelled Daily, Modelled H2D, 459 

Hybrid Daily), while the others were based on aggregated hourly resolution simulations (Hybrid Daily with 460 

SM, Hybrid H2D, Hybrid H2D with SM). The models were evaluated using a jackknife procedure, where a peak 461 

was left out of the training dataset at each iteration. As the whole procedure was based on peak flow events, 462 

a split sample could not be applied as an alternative evaluation process. 463 

We explored using diagnostics that are able to reveal how well each model captures the scale 464 

dependence in the observed behaviour (wavelet analysis) and how well structural auto-correlation is 465 

preserved (variography). This combined approach may be regarded as complementary to assessments 466 

undertaken more routinely based on model prediction accuracy provided through various accuracy metrics 467 

(Smith et al., 1997), which can similarly be transferred to a detailed, local form (Harris et al., 2013; Comber 468 

et al., 2017; Tsutsumida et al., 2019). 469 

A simple correlation analysis and the calculated indices (Figs 5 and 6) indicated that Modelled H2D 470 

and Hybrid H2D were the most accurate predictors of water flow. Both models yielded correlations of r = 471 

0.91, the smallest MAE and the largest NSE. Surprisingly, the inclusion of SM provided no additional predictive 472 

information. The wavelet analysis reveals more information about this showing that the SM covariate 473 

negatively impacts the correlation at finer scales in particular. The wavelet correlation change detection 474 
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reinforces the fact that the fine scale predictions suffer from inclusion of the SM covariate showing the largest 475 

correlation between Hybrid H2D with SM and measured when the SM covariate is almost flat and so offering 476 

negligible predictive power (Figs 2 and 12). The fact that SM has no positive effect on the models’ 477 

performance could have several explanations. Measuring SM is known to be more difficult compared, for 478 

example, to measuring precipitation. Therefore, a greater uncertainty in the SM measurements is likely (see 479 

below). Moreover, the flow is representative over the whole sub-catchment gathered at the flume whereas 480 

SM (and precipitation) is measured at only one point and so may not be as representative of catchment-scale 481 

SM. The relatively poor model performance may also result from overfitting to the training dataset.  482 

It is clear from the scatterplots of Fig. 5 that there are issues of under-prediction of peak flows 483 

associated with models derived from the Daily PBM simulation. This is reflected in the wavelet variance 484 

where it is evident that the fine-scale wavelet variance is underestimated (Fig. 8b). The hybrid approach 485 

mitigates this effect to some extent, but variation is still smaller than it should be at the fine scale (bottom 486 

plot in Fig. 9). In all three Daily-based models, the relatively small fine-scale wavelet variation is 487 

overcompensated for at mid-to-coarse scales. Conversely, the H2D-based models tend to overestimate fine-488 

scale variation (Figs. 8b and 9) with the most extreme effects seen in Modelled H2D (Fig. 8b). The hybrid 489 

models dampen this overestimation in the H2D-based models with Hybrid H2D capturing the fine-scale 490 

variation the best out of all six models. Hybrid H2D also shows the overall best wavelet correlation at finer 491 

scales (<32 days), while at coarser scales (32> days) all models produce a large wavelet correlation with the 492 

measured data (Fig. 11). Thus, for Hybrid H2D, this complements the high performance of its standard 493 

correlation with the measured data. 494 

The variography offers more evidence about the effect of over predicting the fine-scale variation. 495 

First we note that for variography we chose to log transform the measured and modelled flow data. 496 

Asymmetry or skewness in data generally has little effect on variogram estimation for large samples, and so 497 

predictions may usually safely be done with the raw data (Webster and Oliver, 2007). However, in our case 498 

we found that a “hole effect” in the empirical variogram meant it was not possible to fit a valid variogram 499 

model (known as an authorised model in geostatistical literature) without transformation. Transformation 500 

does, however, dampen the extremes in the data. Therefore, for variography we compared only the 501 
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variogram models between measured and modelled variants. Comparing the variograms of the modelled and 502 

measured flow data (Fig. 7) it is evident that the temporal autocorrelation at shorter lag times (approximately 503 

less than 70 days) is not captured well by Modelled H2D and Hybrid H2D (our best predictive models from 504 

above). This relates to a tendency to over-predict fine-scale variation in flow. Good correspondence with 505 

measured flow was found for the Modelled Daily, Hybrid Daily, Hybrid Daily with SM and Hybrid H2D with 506 

SM model outputs. Thus, simulations from only four of the six models broadly captured the observed 507 

autocorrelation in the measured flow data. It is notable that the otherwise poorly fitting H2D-based model 508 

was improved in this respect by the use of SM as a covariate. This is likely to be due to the smoothing effect 509 

of this covariate, which notably has its largest component of variation at course scale (Fig. 8) 510 

Across the variograms for measured and simulated flow there was a consistent short-range 511 

component with range parameter of approximately 12 days and a longer-range component of around 185 512 

days (see S1 for the variogram model parameters). In each case, the double spherical model was found to be 513 

the best fitting model supporting further that there are two substantial sources of variation in the data. All 514 

modelled variograms could capture the short- (≈12-days) and the long-range processes (≈185 days) 515 

observed in the measured flow data. The former accords with the short-range process observed in the 516 

measured precipitation data, a time-scale at which the Madden-Julian Oscillation (MJO) influences the North 517 

Atlantic weather regimes (10-12 days, Met Office, UK). The long-term process, which is approximately half a 518 

year, is likely to relate to seasonal variation. For SM, the short- and long-range components were 519 

approximately 20 and 175 days.  520 

A key advantage of wavelets is their ability to capture local behaviour. In terms of model behaviour, 521 

we used the approach proposed by Rust et al. (2014) and inspected the model residuals using a MRA (Fig. 522 

10). Rust et al., showed that change detection methods were able to identify significant effects of land use 523 

change. We have no similar effect here as the catchment was managed in a consistent way across the 524 

timeseries, however we do see significant changes at finer scales that relate to periods of increased flow. It 525 

is evident from the residuals and wavelet correlation that the model performance is not consistent across 526 

time and that, in particular, the Daily-based models perform less well over the last major burst of activity 527 

(900 days onward). This corresponds with a period where the soil is quite saturated according to the 528 
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measured data and so suggests that this local measurement of soil moisture and the daily modelled 529 

predictions do not capture the more complex soil-water dynamics that operate across the sub-catchment 530 

and in this case, dampen flow.  531 

The extreme events identified using the automated threshold stability method (as given in Curceac 532 

et al., 2020a; 2020b) did somewhat accord with the wavelet change point detection analysis (Fig. 13). The 533 

local wavelet variance of the model predictions (i.e., only those from the Modelled Daily and Modelled H2D) 534 

was correlated with the number of extreme events and a large wavelet variance suggested that extreme 535 

events were imminent. The wavelet-based method was less efficient for predicting extremes, than simply 536 

applying the automated threshold stability method to the model prediction. However, it serves well in an 537 

exploratory and complementary context. 538 

5. Conclusions 539 

In this research, we demonstrated how the dual use of a variogram and wavelet analysis could 540 

provide a useful exploratory assessment of existing and newly proposed hydrological models, with respect 541 

to how they captured changes in flow variance at different scales and how this correlated with measured 542 

flow; all in the context of capturing extreme flow events. Variograms provided a broad, global assessment, 543 

while wavelets provided a detailed, local assessment, both of which would complement standard 544 

assessments based only on prediction accuracy. In doing so, a more complete understanding of model 545 

behaviour and model performance was elucidated. 546 

Such detailed assessments are particularly important for hybrid models which not only depend on 547 

the parameterisation of the underlying process-based model component (and its data requirements), but 548 

also the accurate estimation of the parameters of the statistical data-driven component(s) (in this case for 549 

the characterisation of extreme flows). Although study models benefitted from fine-resolution measured 550 

data from an agricultural research platform, such data are increasingly becoming routine in water monitoring, 551 

entailing our complex hybrids and our involved methods of assessment should increasingly become the norm 552 

given a hybrid model should increase the accuracy of simulating peak flows over a process-based model 553 

alone. This is to be welcomed given the drivers of climate change and changing patterns of rainfall are 554 
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complex and so evaluating the risk of extreme water flows and associated flooding will continue to require 555 

complex solutions. 556 
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 683 

Supplementary 1 684 

The base models considered for variogram models were 685 

Spherical: 686 

𝛾(ℎ) = 𝑐
0
+ 𝑐 {

3ℎ

2𝑎
−
1

2
(
ℎ

𝑎
)
3

}   for ℎ ≤ 𝑎

  = 𝑐0 + 𝑐 for ℎ > 𝑎

  = 0 for ℎ = 0,

 687 

where h is a scalar in temporal distance only. Its parameters are c0 which is the nugget variance, c is the 688 

correlated variance and a is the distance parameter (the range) of the model. Parameter a is the limiting 689 

distance of temporal dependence or correlation. The parameter c is the variance of the correlated structure, 690 

so that c0 + c is the total variance of the underlying random process, of which the data are a realization. 691 

 692 

Circular: 693 

𝛾(ℎ) = 𝑐
0
+ 𝑐{1 −

2

𝜋
cos−1 (
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𝑎
) +
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√1 −
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𝑎2
}   for ℎ ≤ 𝑎

  = 𝑐0 + 𝑐 for ℎ > 𝑎

  = 0 for ℎ = 0,

 694 

in which the parameters c0, c and a are defined in the same way as for the spherical model.  695 

 696 

Exponential model: 697 

𝛾(ℎ) = 𝑐
0
+ 𝑐 {1 − exp (−

ℎ

𝑟
)} 698 
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in which the parameters c0 and c are defined as above but r is the distance parameter which is approximately 699 

a third of the effective range (see Webster and Oliver, 2007).  700 

For each of our variables the double spherical proved the best model. This is given by: 701 

𝛾(ℎ) = 𝑐
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}   for 𝑎1 < ℎ ≤ 𝑎2

= 𝑐0 + 𝑐1 + 𝑐2  for ℎ > 𝑎2

 702 

  = 0 for ℎ = 0, 703 

 The parameters for each model are given in the table below: 704 

 Distance parameters Sill parameters Nugget 

 𝑎1 𝑎2 𝑐1 𝑐1 𝑐0 

Modelled daily 11.89 176.68 2.67 21.88 0.46 

Hybrid daily 11.81 176.95 2.59 21.36 0.48 

Hybrid daily with SM 11.73 176.32 2.65 21.26 0.47 

Modelled H2D 10.88 204.9 4.79 8.91 5.83 

Hybrid H2D 11.62 198.87 6.11 11.01 4.12 

Hybrid H2D with SM 11.86 183.65 3.55 20.22 1.12 

Precipitation 11.31 211 4.17 2.77 8.97 

 705 

  706 
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Appendix A 707 
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 708 

Fig. A.1. Empirical variograms of measured (a) flow, (b) precipitation, (c) soil moisture and (d-i) modelled flow 709 

variable. 710 


