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Abstract: Diseases in humans, animals and plants remain an important challenge in our society. 

Effective disease control often requires coordinated concerted action of a large group of 

stakeholders. Both epidemiological and human behavioral factors influence the outcome of a 

disease control campaign. In mathematical models, that are frequently used to guide such 

campaigns, human behavior is often ill represented, if at all.  Existing models of human, animal 

and plant disease that do incorporate participation or compliance are exclusively driven by pay-

offs or direct observations of the disease state (1, 2). It is however very well known that opinion 

is the driving factor of human decision making (3). Here we show how coupling an 

epidemiological model with an opinion dynamic model it is possible to answer the question: 

What makes or breaks a disease control campaign? We use Huanglongbing disease of citrus as 

our case study. 

One Sentence Summary: Trust in a control strategy and expert guidance are more important to 

successful disease control than initial risk perception  

Main Text:  

Huanglongbing disease (HLB), or citrus greening, is caused by a bacterial species (Candidatus 

liberibacter asiaticus [CLas]) that is transmitted between trees by an insect vector (the Asian Citrus 

Psyllid Diaphorina citri). Huanglongbing disease is an acute plant disease that threatens the 

sustainability of citrus production throughout the world (4). For example, in Florida the disease 

was first found in 2005 and has since caused more than an 80% reduction in citrus production (6, 

7). It is now considered unlikely that the Florida citrus industry will survive in its current form. In 

2012 the disease was found for the first time in California, and since that time over 600 trees have 

been confirmed to be infected.   The industry, therefore, is in desperate need for guidance on the 

development of effective control methods. Disease control campaigns in both states are developed 

around spatially organized groups of growers taking concerted action against the psyllid vector. 

This is known as area-wide control. 

 

Several models for the epidemiology of HLB have been developed and tested (7–10), and our 

model is a variant of these (full mathematical detail can be found in the supplementary materials). 

Healthy citrus trees may become infected with CLas when a psyllid carrying the bacterium feeds 

on that tree (Fig 1A). After infection, the CLas populations increase and begin to spread non-

uniformly within the tree. Post infection, the tree enters a cryptic period when the tree becomes 

infectious allowing psyllids to acquire the bacterium, become bacterialiferous, and capable of 

spreading the pathogen.  Eventually, after a latent period of a few weeks to multiple months the 



 

 

tree becomes symptomatic.  Psyllids are not adversely affected by the CLas commensal and each 

psyllid develops, reproduces and dies unaffected by its presence. Psyllids fly, driven by air 

currents, to neighboring groves (11). The citrus tree population is structured in plantings of orchard 

blocks that are arranged in a spatial pattern in the landscape (Fig 1B). We used the citrus 

distribution of a management control area in Florida for the simulations shown here, but note that 

we have done the same for other management control areas with no difference in the qualitative 

results. 

 
Fig.1. A model of HLB in the landscape. (A) A schematic showing how the grower 

participation model is linked to the epidemiological model. Growers join an area-wide control 

program if their risk perception and trust in area-wide control are high. This impacts on the 

psyllid population and so the dynamics of the disease in the landscape. Observations of infection 

increase risk perception and can erode the trust in area-wide control. Red arrows indicate where 

models interact. (B) A simulated landscape representing a typical Citrus Health Management 

Area in Florida. The area where commercial citrus is grown is indicated by green shading.  

 



 

 

Before developing the opinion dynamic model, we surveyed growers in Florida and California to 

find out what the key drivers are for a grower to decide to join an area-wide control campaign (12). 

Figure 1A shows the conceptual model developed, where the two key drivers are the risk 

perception (quantified as a grower’s perceived probability that their grove will become infected) 

and the trust in control (quantified by a grower’s perceived probability that area-wide control is 

effective). These factors accord with those reported to affect the public’s adoption of prevention 

measures for human diseases that are known to be difficult to cure (13). These opinions are 

influenced by other growers, consultants, extension workers and researchers and to a lesser extent 

by the media (12). When the perceived risk of infection as well as the trust in the control options 

are both high, a grower is inclined to join an area wide control scheme. 

 

There are two sources of direct observations growers make that affect their opinions. Firstly, the 

observed state of the epidemic, for example by neighboring plantings becoming infected, increases 

the risk perception of the grower considerably. Secondly, when a grower applies the control and 

subsequently his plantings become infected, the trust in the control method decreases considerably. 

 

Using the methods developed for opinion dynamic models (14–16) we assign each grower an 

initial risk perception and an initial trust in the control method. Subsequently each grower interacts 

with other growers, consultants etc. which affects their opinions (see supplementary material). 

Also, the direct observations of disease or failure of control methods influence opinions. When 

risk perception and trust in control are above a threshold value the grower joins the area wide 

control scheme (Fig 1A). We did not consider the importance of the economics of crop production 

and disease control in our model. By not including the economics of control we were able to 

pinpoint the opinion dynamics factors that affect the success or failure of a disease control 

campaign. 

  

The epidemiological and the opinion dynamic model are coupled by (i) the direct observation 

growers make on the development of the epidemic affecting opinions on risk and trust in control, 

and (ii) growers joining or not joining the area-wide-control scheme that affects the course of the 

epidemic (Fig. 1A). Model parameters for the epidemiological model were based on published 

information on the epidemiology of HLB and from published models (7–10). For the opinion 

dynamics part of the model the situation is very different. There are no parameter values known 

quantifying the effects of interactions of growers on their opinion, no quantitative information is 

known about the effect of consultants, extension workers and researcher on grower opinion, nor is 

anything known about the level of risk and level of trust needed for a grower to join the area-wide 

control program. Before we explain how this problem was dealt with we will show the types of 

outcomes the model can produce. To this end, we parameterized the opinion dynamics model with 

plausible ranges of parameter values provided to us by experts (one of them is the second author). 
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Fig.2 (A) A simulated scenario where control of HLB fails. Grower uptake of control is not 

rapid enough to control the disease and so the disease becomes endemic and proliferates. Growers 

who have joined an area-wide control program observe that it is not working and drop out. (B) A 

simulated scenario where control of HLB is successful. The evolution of risk perception and 

trust in control is shown for each grower in the region (each growers perception is represented by 

a colored line). Risk sharply increases when growers observe disease in their orchards and then 

quickly persuade their neighbors the disease is a serious threat. 

 

 



 

 

There are broadly two types of outcome found in our simulations. Firstly (Fig. 2A) control success, 

where the number of orchard blocks infected and the density of bacterium carrying psyllids 

initially increases, which increases the risk perception of growers to such an extent that they join 

the area-wide control program. This leads to a decrease in the density of bacterium carrying 

psyllids, the number of infected orchard blocks does not further increase, and the epidemic is under 

control: Control success. The second possibility (Fig. 2B) is control failure, initially growers start 

joining the area wide control scheme, but their trust in control is compromised because even 

joining the area wide control scheme their orchards become infected. This stimulates them to drop 

out of the area-wide control program, consequently the epidemic grows rapidly and eventually 

most orchards become infected: Control failure. 

 

Surprisingly, the control success and the control failure as shown in Fig. 2 resulted from exactly 

the same set of parameter values! The only difference between the two simulations is the mean 

initial risk perception and the mean initial trust in control of the growers (‘mean’ because each 

grower has initial values for risk perception and trust in area-wide control that are drawn from a 

beta distribution with a defined mean and variance). The simulation which resulted in control 

success (open disc in Fig. 3) had a larger mean initial trust in area-wide control and a lower mean 

initial risk perception than the simulation that resulted in control failure (filled disc in Fig. 3). It 

must be said that the simulations shown were chosen from a set of runs where due to the stochastic 

nature of the model some of the runs show control success and others control failure. We did 

further simulations with this set of parameter values and calculated the probability of control 

success or control failure for a range of mean initial risk perception and main initial trust in the 

control options of the growers (Fig 3). This showed that the mean initial trust in the control options 

is an important factor in the success of the disease control campaign. The mean initial risk 

perception was of much less importance to successful control. 

 

Is this result caused by the particular set of parameter values used or is it a more general 

phenomenon? Since we do not have estimates of the parameters in the opinion dynamics model 

we did a sensitivity analysis to establish which factors in our model were most important for 

control success. We assigned to each of the parameters in the opinion dynamic model a set of 

values that according to our experts spanned realistic ranges. Similarly, we assigned sets of values 

to the parameters that described the efficacy of the insecticide and the number of insecticide 

applications that were undertaken each year under area-wide control. The parameter values of the 

epidemiological model remained at the default settings as these parameter values are, as explained, 

relatively well known. Next a large series or simulations was done using all combinations of 

parameter values. We used analysis of variance to identify the factors (our model parameters) that 

best explained the variation in the area of citrus infected with HLB at the end of a 30-year 

simulation (see SI 2). 

 

The statistical sensitivity analysis showed that the following factors increased the probability of a 

successful control campaign, in order of highest to lowest importance (Fig 4). 

1. Number of insecticide applications per season 

2. Efficacy of the insecticide (mortality rate) 

3. Frequency that information is disseminated by extension agents 

4. Mean initial trust in the area-wide control 

5. Range of opinions listened to 



 

 

6. The variance in the initial trust in area-wide control 

7. Mean initial risk perception 

8. The effectiveness of extension agent communication 

 

 

Fig.3 The probability of control failure for given means across the grower population for initial 

risk perceptions and a trust in area-wide control.  The open disc relates to the simulation shown in 

Fig. 2A and the solid disc the simulation shown in Fig 2B.  

 

 

Clearly, and intuitively, the efficacy of the control program, insecticide kill rate and number of 

applications, is the most important factor in the success of a HLB control campaign. Of the opinion 

dynamic parameters, the frequency of information dissemination is of great importance. If contact 

between extension services and growers becomes infrequent then important scientific messages 

can become forgotten or diluted.  The initial trust in the control options is of key importance, just 

as in the simulations shown Figs 2 and 3. The most surprising finding is that the initial risk 

perception plays a relatively unimportant role in determining the success of a HLB control 

campaign. Further analysis of this phenomenon showed that the reason for this is found in the 

effect of the direct disease observations on the risk perception. When the epidemic starts to infect 

more and more orchards, growers form opinions from ‘direct’ observation concerning the chances 

that their orchards will also become infected. These direct observations start to override risk 

perception dynamics due to the ‘indirect’ opinions derived from other growers. This increased risk 



 

 

perception does not apply to the trust in the control option. The social dynamics with advisors 

increasing the trust in control is still strongly, but negatively, affected when growers see the control 

failing.  

 

 
Fig. 4.  Tornado graph showing the correlation between each variable and the proportion of 

cells infected. 

 

Opinions are the driving force behind human decision making. We have shown that coupling an 

epidemiological model with an opinion dynamic model can give insight in the question ‘What 

makes or breaks a disease control campaign?’ In many information programs aimed at informing 

and preparing the public, or a professional group, of a possible infectious disease there often is 

much emphasis on the risks the disease poses. Our research calls into question whether that is a 

necessary approach, especially in the light of the potential loss of trust with the public when in the 

end the epidemic does not actually take place, as was the case for the official swine flu warning in 

2009 (13). For HLB we have shown that aiming to inform growers about the effectiveness of the 

regionally coordinated control actions and the efficacy of the insecticide program may be of much 

greater importance. It, of course, remains to be investigated whether this holds more generally or 
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that it should be decide on a case by cases basis what the emphasis of information campaigns 

should be about. 
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Supplementary Materials: 

Materials and Methods: 

 

 

The Epidemiological Model 

 

We developed a model of the spread of HLB in citrus orchards across an area typical of a Citrus 

Health Management Area (CHMA) in Florida. The modelled CHMAs were based on USDA 

statistics which describe the locations of citrus orchard blocks and their areas.  We modelled each 

CHMA with a grid of cells, with each cell representing 1 ha of land. We approximated each block 

area to the nearest ha and located the associated number of cells around the centroid for this area. 

This resulted in realistic distributions of citrus across our modelled CHMAs (see Fig. S1-1). For 

one CHMA (Indian River County) we had data on the ownership of the orchard blocks (for 

anonymity purposes each owner was replaced by a numeric reference number). This allowed us to 

identify blocks that were assumed to be managed by the same grower/decision maker. For other 

CHMAs we used the distribution of blocks per grower from Indian River, as this is the only CHMA 

for which we have such data, to stochastically assign block sizes to growers.  

 

Fig. S1-1. A simulated CHMA The area planted with citrus is shown in green.  

We made the simplifying assumption that the Asian Citrus Psyllid (Diaphorina citri) populations 

only develop in grid cells with citrus. In each of these cells we use an abundance-based population 

model to describe the population dynamics of Asian Citrus Psyllid (ACP). Our model does not 

account for seasonal variation. The expected lifespan of the ACP is between 30 – 50 days on 

average. Therefore, we assumed that a generation of ACP live for a month and in this time they 

may become infected (bacteriliferous) by acquiring CLas from infected trees during feeding and 

pass that infection on to the healthy trees that they subsequently feed on. We assume that there is 

no vertical transmission of infection in the population, based on van den Berg et al. and Pelz-

Stelinski et al.(17, 18) who found little to no vertical transovarial transmission of the bacteria from 

psyllid parent to child.  At the start of month 𝑡, the total number of ACP in cell 𝑖 are given by  
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where )(tI i  and )(tSi  are the numbers of infectious and susceptible trees in cell i in month t 
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where )(tEi  is the proportion of infected trees in cell i in month t, is the probability that trees in a 

cell become infected given that an infected psyllid has fed from them. Over time, the infected 

trees become infectious )(tI i  is according to  

)()1()()1( tItEtI iii    

 

where 1/γ is the mean time that trees are infected but infected host tree cells are rare and 

insignificant epidemiologically before passing to the infectious state, and eventually the infectious 

trees become symptomatic )(tSi according to  

)()()1( tItStS iii  . 

Where /1 is the mean time that trees are cryptically infectious before passing to the 

symptomatic state.  

We modelled the dispersal of ACP with an exponential dispersal kernel. This function is 

commonly used in insect dispersal models (8, 19, 20). The function defines the probability ijp  of 

ACP starting in cell i and landing in cell j. Starting with the cell south of the cell i and working 

around and outwards, we determined how many ACP landed in each cell by sampling from a 



 

 

binomial function with parameters defined by ijp  and the number ACP dispersing (i.e. 

)),(
~

(~)(
~

ijjjij ptNBtND ).  After determining how many ACP land in a particular cell the 

remaining probabilities are adjusted to sum to one and the number of ACP dispersing ( )(
~

tN j ) is 

adjusted by subtracting the number that have already been assigned cells from the original number 

dispersing.  The model parameter values (based on 7–10) are shown in Table S1-1 along with their 

source. 

 

Table S1-1: The parameters for the population dynamics model and the disease model 

Name Symbol Value 

Carrying capacity of ACP in 

a cell 

K  150000 (Based on 300 ACP per tree 

and 500 trees ha-1) 

Number of surviving 

offspring at low density 

  12 

Probability infection is 

passed from tree to ACP 

  0.0033* 

Probability infection is 

passed from ACP to tree  

  0.0033 

Average time (months) for 

tree to  pass from an infected 

to an infectious state 

/1  1 

Average time (months) for 

tree to  pass from an 

infectious to a  symptomatic 

state 

/1  6 

Dispersal parameter   0.00035 

(Based on data about the rate of 

spread of disease. See Fig S1-2) 

*We assumed 𝛼 = 𝛽  and fitted to data on the rate that the number of infected trees increases in a 

block 

  



 

 

 

Fig. S1-2. The modelling the dispersal of the ACP. (A) The shortest distances observed between 

each disease observations in Florida in 2007 and those observed in 2008. This gives some 

indication of the extent of the spread of the ACP in Florida in a year.  (B) The simulated dispersal 

of 1000 agents from point (0,0) following exponential dispersal (λ=0.00035) with weekly time 

steps over a year. The extent of the spread is similar to the data. The solid circle shows the 50km 

radius from the center and the dotted circle the 100km radius.  

 

Modelling the decision process 

 

In the model, growers face the decision of whether to join an area-wide-control program or not. 

Their decision is based on their perception of the risk of infection of their orchard by HLB 

(quantified as, rx  the perceived probability that their orchard will become infected) and their 

perception of the effectiveness of area-wide control (quantified by, cx the perceived probability 

that area-wide control is effective). We quantified these factors for each grower as a value between 

zero and one, where 0rx   represents a perception that there is no risk from HLB and 0cx

that they have no faith in area-wide control, and 1rx  represents a perception that their orchard 

will certainly become infected and  1cx that they are convinced that area-wide control is 

effective.  We modelled the evolution of cx  and rx over time using opinion dynamics modelling 

methods (16). Models of opinion dynamics allow us to simulate opinion formation within a group 

of interacting individuals. The opinion ),( tix  of an individual i changes from one time step t to 

the next by incorporating the opinions of others with their own 
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jw . The weights can 

depend on several factors such as the probability individuals meet (which may depend on 

geographic closeness or some communication network) or the closeness of opinion (individuals 



 

 

with quite different opinions may never be influenced by one another). In our model, an individual 

i interacts with n other individuals who are chosen at random with probability proportional to exp
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where O  is the opinion range, and there is a parameter to weight an 

individual’s own opinion to allow growers to be less willing to change opinion ( GW ). We also 

included the influence of extension agents on the opinions of the growers. In the model, extension 

agents disseminate information on HLB control at a frequency of fE times per year, and so 

increase the growers’ perceptions of the risk of becoming infected by HLB (
rx ) and belief that 

area-wide control is effective ( cx ) by a given amount 
IE .  If a grower observes more than 0.2% 

of trees in a cell with infection (which equates to a whole tree) then 
rx  becomes one. Similarly, if 

a grower joined an area-wide control program at least mh  months ago but still observes an average 

increase in disease greater than 1% across his groves then cx reduces by a factor of  . 

 

In the model growers join the area-wide-control program if cx and 
rx exceed given thresholds ( 

6.0rx  and 4.0cx ). An insecticide spray is applied a fixed number of times per year to all 

orchards managed by individuals who have joined the area-wide-control program. The opinion 

dynamics model parameters and the control parameters are listed in Table S1-2 with the sets of 

values that we used in our simulations. 

 

Table S1-2: The parameters for the grower-decision and the control models, with the values used 

in our analysis. The numbers in bold were used in the simulations except for when otherwise stated.  

Name Symbol Parameter values explored 

Number of individuals that communicate 
cn  10, 60, 120 

The range parameter determining the 

probability two growers communicate 

(km)  

D  1, 3, 12 

The range parameter determining the 

weighting of opinions based on closeness 

of opinion  

O  0.05, 0.2, 0.5 

Frequency that information is 

disseminated by extension agents (number 

of times per year) 

fE  0, 3, 6, 12 

Impact of information from extension 

agents 
IE  0.2, 0.4, 0.6 

History of control (months) 
mh  2, 6 

Reduction in belief if infection is observed 

despite control being applied  

  0.4 



 

 

Mean initial belief in control across the 

population of growers 
c  0.2, 0.5, 0.8 

Variance of initial belief in control across 

the population of growers 

2

c  0.01, 0.05, 0.1 

Mean initial risk perception across the 

population of growers 
r  0.2, 0.5, 0.8 

Variance of initial risk perception across 

the population of growers 

2

r  0.01, 0.05, 0.1 

Frequency of control 
fC  6, 12 

Kill rate   0.7, 0.94 

 

 

Supplementary material 2 

 

Analysis of Simulation Results  

 

The opinion dynamics model parameters and the control parameters are listed in Table S1-2 with 

the sets of values that we used in our simulations. We ran the model with the different combinations 

of these parameters for a simulated period of 36 months and recorded the proportion of cells with 

infection at the end of this period.  

 

We used ANOVA with up to three-way interactions to identify most important factors for 

controlling the epidemic (measured as the proportion of cells infected at the end of 36 months). 

We could not treat all 11 parameters as factors because we had no replication. Therefore, we used 

combinations of eight parameters at a time as factors and compared the percentage variance 

accounted to determine which factors best explained the proportion of infected cells. Then we used 

the F-probability to order the importance of the six factors used in the selected model.   

 

In total 209952 simulations were needed to explore all combinations of the parameters. The model 

that accounted for the most variation in the response variable (the proportion of cells infected) was  

  fcrcIFO CEE 2
 

All of the F-probabilities for these factors and many of their combinations were highly significant 

<0.001, which largely resulted from the large size of the data set. The ANOVA table including 

main effects only is shown in Table S2-1. The variance ratios show that of the eight factors, the 

most important in determining the success of control are: the frequency that information is 

disseminated by extension agents ( FE ), the initial mean belief in control ( c ) , the spray efficacy 

( ) and the frequency of spraying ( fC )  (Figs S2-1– S2-3). 

 

  



 

 

Table S2-1: Analysis of variance  

Source of variation Degrees 

of 

freedom 

Sum of 

squares 

Mean squares Variance 

ratio 

F pr. 

Opinion range ( O )  
2 43.77 21.89 450.45 <.001 

Extension information 

freq. (
FE ) 

3 3158 1053 21664.67 <.001 

Extension information 

effect (𝐸I) 
2 7.345 3.673 75.59 <.001 

Mean initial risk 

perception across the 

population of growers  

(
r ) 

2 8.083 4.041 83.18 <.001 

Mean initial belief in 

control across the 

population of growers  

( c ) 

2 1309 654.7 13475.39 <.001 

Variance in belief ( 2

c ) 
2 13.02 6.512 134.03 <.001 

Freq. of spray ( fC  )  1 9166 9166 188600 <.001 

Spray efficacy ( ) 1 7854 7854 161700 <.001 

Residual 209936 10200 0.04859     

 Total 209951 

 

31760 

 

      

 

  



 

 

 
 Fig. S2-1:  The results of the simulations. The proportion of cells (1 ha areas) infected at the 

end of the simulation is plotted against the frequency at which information is disseminated by 

extension agents for each combination of spray efficacy ( ) and spray frequency ( fC ). 

  



 

 

 
Fig. S2-2:  The results of the simulations. The proportion of cells (1 ha areas) infected at the end 

of the simulation is plotted against the initial belief in the control method for each combination of 

spray efficacy ( ) and spray frequency ( fC ).on all simulations the frequency information was 

disseminated was set to zero ( )0FE . 

  



 

 

 
Fig. S2-3:  The results of the simulations. The proportion of cells (1 ha areas) infected at the end 

of the simulation is plotted against the initial risk perception about HLB for each combination of 

spray efficacy ( ) and spray frequency ( fC ) on all simulations the frequency information was 

disseminated was set to zero ( )0FE . 

 

 

 

 

 

 


