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Abstract 31 

Greenhouse gas (GHG) fluxes from livestock grazed pasture soils are highly variable in both 32 

space and time but the quantitative importance of the factors regulating this variation remain 33 

poorly understood. Our aim was to explore this variability on contrasting extensively (low 34 

input) and intensively managed sheep-grazed ‘case-study’ pastures. We quantified (through 35 

standard and spatially-informed regressions) the statistical relationships between GHG fluxes 36 

(nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4)) and a range of soil, field and 37 

management characteristics. Fluxes of these three GHGs at two study sites were highly 38 

variable, but spatial structure (i.e. autocorrelation) was only observed in the variability of 39 

N2O fluxes across the intensive site and CO2 fluxes across the extensive site. The regression 40 

analyses identified significant GHG predictor variables for the extensive site as: NO3
- (p < 41 

0.001) and vegetation-type (p < 0.01) for N2O (R2 = 0.57; p = 0.000); NH4
+ (p < 0.05), slope 42 

(p < 0.05) and elevation (p < 0.01) for CO2 (R
2 = 0.34; p = 0.000); and NO3

- (p < 0.01), NH4
+ 43 

(p < 0.05) and soil moisture (p < 0.05) for CH4 (R
2 = 0.25; p = 0.005). Significant GHG 44 

predictor variables for the intensive site were soil moisture (p < 0.01) and bulk density (p < 45 

0.01) for N2O (R2 = 0.27; p = 0.005); soil moisture (p < 0.001) for CO2 (R
2 = 0.31; p = 46 

0.001); while none were found for CH4 (R
2 = 0.10; p = 0.655). Key factors driving GHG 47 

variation were both site- and GHG-specific, with fluxes controlled by local conditions 48 

leading to differences in limiting factors (possibly even at the within-site scale). Our 49 

statistical analyses suggest a larger range of driving variables (e.g. air and soil temperature or 50 

other soil chemical properties such as total extractable N) may be required to more fully 51 

capture the observed variability in the GHG processes considered here, and that it may also 52 



3 

be fruitful for future analyses to consider non-linear, non-stationary and interacting 53 

relationships across space- and time-scales. Adequacies of each site’s sample design also 54 

played a key interpretive role in the GHG processes, requiring further evaluation through 55 

additional sampling campaigns. 56 

 57 

Keywords: upland; lowland; grassland; nitrous oxide; carbon dioxide; methane 58 

 59 

1. Introduction 60 

Grazing land is estimated to occupy almost 25% of the Earth’s land area (Klein 61 

Goldewijk et al., 2017) and plays a substantial and important role in global biogeochemical 62 

cycling. Grazing systems are found across the temperate and tropical latitudes and in a wide 63 

variety of ecosystems, ranging from managed, irrigated pastures to unmanaged open 64 

savannahs and drylands (Asner et al., 2004). In the UK, grazing land occupies over 12 65 

million ha (Office for National Statistics, 2016), and spans extensively managed, unimproved 66 

upland grazing areas and intensively managed, improved lowland pastures. This wide range 67 

of grazing systems, under differing management intensities and environmental and climatic 68 

conditions, provides grazing livestock with differing forages and results in diverse types and 69 

degrees of environmental impact.  70 

Within a field, plant and soil characteristics vary in both space and time. Shaw et al. 71 

(2016) found that soil ammonium (NH4
+), nitrate (NO3

-) and amino acid concentrations 72 

varied most over short ranges (< 2 m), but also at larger scales (> 2 m) and was even 73 

important at the very small scale (< 1 cm). While soil moisture and temperature, for example, 74 

are of course continuously influenced by diurnal and seasonal cycles and weather conditions. 75 

Within-field variability is exacerbated by the movement of grazing animals, which results in 76 

localised soil compaction and nutrient deposition, and especially so on hill-grazed pastures 77 
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where the livestock behaviour is influenced by the heterogeneity of the field, camping for 78 

example on small areas of flatter and more sheltered land (Betteridge et al., 2010a,b). The 79 

environmental impacts of grazing systems are therefore highly variable within-field, as well 80 

as at farm (field-to-field) and landscape (farm-to-farm) scales, making it difficult to generate 81 

aggregated estimates of the effects of individual factors.  82 

Agricultural activities are estimated to have contributed 9% of total UK greenhouse 83 

gas (GHG) emissions in 2018 (Brown et al., 2020). Methane (CH4), nitrous oxide (N2O) and 84 

carbon dioxide (CO2) accounted for 62%, 35% and 3% of these emissions, respectively 85 

(Brown et al., 2020). By sector, agriculture currently represents the largest source of total UK 86 

CH4 and N2O emissions (Brown et al., 2020). The magnitudes of soil-derived N2O, CH4 and 87 

CO2 fluxes depend on interactions between a range of fixed and dynamic factors (Giles et al., 88 

2012; Imer et al., 2013; Giltrap et al., 2014; Kaiser et al., 2018). Localised fixed factors 89 

include soil texture, structure and bulk density and soil composition, as well as organic matter 90 

content, nitrogen (N), carbon (C) and phosphorous (P) availability, cation exchange capacity 91 

(CEC) and pH. Broader within field-scale fixed features include a field’s aspect, slope and 92 

elevation. Dynamic factors encompass previous and prevailing management (including 93 

grazing activities and animal behaviour, and perhaps most importantly, urine deposition) and 94 

environmental conditions (which feedback to soil characteristics, moisture and temperature). 95 

Interactions between factors occur across a range of scales and different processes can occur 96 

concurrently in adjacent microsites or predominate over larger areas (Parkin, 1993; Giltrap et 97 

al., 2014; Oertel et al., 2016). 98 

Quantifying the spatial and temporal variability of these interactions in grazing 99 

systems is critical to improve our understanding of the drivers of N2O, CO2 and CH4 fluxes, 100 

enabling better estimates of aggregated GHG emissions and associated uncertainties at the 101 

landscape scale (Imer et al., 2013; Giltrap et al., 2014; Cowan et al., 2015). Farm or field-102 
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scale estimates, particularly of N2O and CH4, can be skewed (over-estimated) by high fluxes 103 

from small areas (hot spots) and/or high fluxes for short periods (hot moments) which happen 104 

to coincide with the sampling area(s) or period(s) (McClain et al., 2003; Duncan et al., 2013). 105 

Equally, the reverse can be true, and under-estimation can occur if hot spots or hot moments 106 

are under-represented during sampling. Furthermore, improved understanding of the spatial 107 

and temporal variability of GHG fluxes from different pasture systems will assist with the 108 

development of more targeted and efficient mitigation strategies and better aggregated GHG 109 

emission estimates and uncertainties for different sites, farms and land use types and with 110 

ultimate up-scaling to the national scale. 111 

In this study, we focussed on spatial variability at one time-point. We aimed to assess 112 

how a common set of variables drive within-field spatial GHG variability at two different 113 

study sites by quantifying the statistically significant relationships between GHG fluxes and 114 

soil characteristics and key contextual factors (such as topography, vegetation-type and other 115 

nutrient inputs to pastures, e.g. farmyard manure (FYM)). Data were collected using a similar 116 

(but appropriately scaled) snapshot sampling approach at the two contrasting (extensively and 117 

intensively managed) sheep-grazed field sites. The contribution of sheep-grazed pastures to 118 

GHG emissions is less well studied than for cattle (Saggar et al., 2007), despite sheep being 119 

globally-important small ruminants which are able to graze a wide range of pastures, 120 

including less favourable areas with few alternative agricultural uses (Zervas and Tsiplakou, 121 

2012). For each site, we assess the nature of the spatial autocorrelation (or dependence) in 122 

both: (i) the GHG fluxes directly, in respect of a univariate kriging analysis and (ii) the error 123 

term of the regression analyses for potentially improved inference in the GHG relationships 124 

described. 125 

Practical constraints dictated that the adopted sampling strategies for the different 126 

sites could not be identical, and so our study hypotheses were independent and site-specific - 127 
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as follows for the two case studies, designed to assess the influence of soil and site 128 

parameters on GHG emissions: 129 

A. At the extensively-managed site (Case Study 1), spatial variability of N2O, CO2 and CH4, 130 

will each be in part driven by one or more of the following factors: (a) variation in 131 

vegetation-type, (b) variation in extractable soil NO3
-, extractable soil NH4

+, gravimetric 132 

soil moisture content, soil pH, soil percentage water filled pore space (% WFPS), soil 133 

bulk density, soil total carbon (% TC), soil total nitrogen (% TN), the TC:TN ratio, soil 134 

organic matter and site topography; and (c) spatial autocorrelation effects. 135 

B. At the intensively-managed site (Case Study 2), spatial variability of N2O, CO2 and CH4, 136 

will each be in part driven by one or more of the following factors: (a) the boundaries of 137 

where FYM was spread; and (b) that listed in (A) parts (b) and (c). 138 

We included two case studies as they represent intensive and extensive grazing management. 139 

The wide range of soil and site parameters selected include those typically measured in GHG 140 

sampling experiments and known drivers of GHG fluxes. Given the large number of 141 

sampling points, it was not possible to conduct some of the more complex or time-consuming 142 

analyses, such as soil microbial biomass extractions. Furthermore, some soil and site 143 

parameters available to this study will have a certain dependence on each other (i.e. strong 144 

correlation) where each will equally explain GHG flux variation. Such parameters were 145 

identified in the analyses. 146 

Hypotheses (A) and (B) were tested through a series of regression analyses conducted 147 

through a linear mixed model (LMM) framework, preceded by an extensive exploration of 148 

the soil, site and GHG flux data and their relationships. For each study site, the drivers of 149 

GHG within-field spatial variability were expected to differ due the contrasting 150 

characteristics of the two different grazing systems. At each site, the observed GHG 151 

variability was partly due to: (1) the known and measured drivers of N2O, CO2 or CH4 152 
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available; and (2) the unknown drivers or known drivers that were not measured or available. 153 

These were site-specific and, keeping in mind the site-specific sampling strategies, a 154 

secondary study aim was to assess likely reasons for observed differences between the 155 

different grazing systems. Finally, we also critically assessed the benefits and limitations of 156 

the approach taken to explore spatial variability in GHG emissions and suggest avenues for 157 

future work. 158 

 159 

2. Materials and Methods 160 

2.1. Site descriptions 161 

2.1.1. Extensive management site - Case Study 1 162 

The extensively managed site (‘Extensive’; 240-340 m above sea level; a.s.l.) consisted of an 163 

11.5 ha semi-improved, sheep-grazed pasture (Fig. 1; Supplementary Figs. 1, 2) at Bangor 164 

University’s Henfaes Research Station, Abergwyngregyn, North Wales (53°13’13’’N, 165 

4°0’34’’W). The field (named Middle Ffridd) has an easterly aspect and a slope of ca. 15%. It 166 

had not received inorganic fertiliser or lime, nor had it been re-seeded, in over 30 years. The 167 

field is normally stocked with up to 1 Livestock Unit (LU) ha-1, with Welsh Mountain ewes 168 

(Ovis aries; where each sheep contributes 0.15 LU; Glastir Entry Booklet 2: Technical 169 

Guidance 2015, 2013). At the time of the experiment, the stocking rate was 0.39 LU ha-1. The 170 

vegetation across the site was composed of a mosaic of 60% bracken (Pteridium aquilinum) 171 

and 38% semi-improved grassland, with minor areas of marsh/wet flush and gorse (Ulex 172 

europaeus). The grassland areas were comprised of British NVC classifications U4 (Festuca 173 

ovina – Agrostris capillaris – Galium saxatile grassland) and MG6 (Lolium perenne – 174 

Cynosurus cristatus grassland) (Rodwell, 2000). According to FAO (1981), the soil is 175 

classified as an Orthic Podzol, with greater amounts of plant litter building up beneath the 176 

bracken stands. The bracken was controlled via mechanical treatments twice per year, 177 
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ensuring stands do not become too dense or tall. In addition, the above-ground bracken fronds 178 

die back over winter months, so grazing animals have the potential to access all areas of the 179 

field. The site and its management are typical of an extensively managed hill-grazing site in 180 

this area of Wales. The contribution of such sites to GHG emissions has been less well-181 

studied than lowland/intensive pasture sites.  182 

The mean minimum and maximum annual temperatures and mean annual rainfall 183 

(1981 to 2010) recorded at the nearest Met Office station, Llanfairfechan (40 m a. s. l.), were 184 

7.6 and 13.7 °C and 1099.7 mm (Met Office). A meteorological station (Skye Instruments 185 

Ltd., Llandrindod Wells, UK) was also situated within the field, and in the week preceding 186 

sampling (November 2016), air temperatures averaged 5.5 °C (ranging from 2.4 to 10.4 °C) 187 

and the mean 10 cm soil temperature was 4.7 °C (3.2 – 6.8 °C). There was only 0.8 mm 188 

rainfall (23rd - 29th November 2016) and soil moisture contents were high but declining (ca. 189 

0.62 falling to 0.58 cm3 cm-3 at 5 cm). This corresponded to high pre-sampling % WFPS of 190 

ca. 80% at 5 cm and ca. 73% at 10 cm. At the Extensive site soil and gas sampling was 191 

conducted on 30th November 2016. On this day the air temperature was slightly cooler at 4 °C 192 

than the long-term value for November at 7 °C. No rain was recorded on the sampling day, 193 

with the long-term value for November at 5.4 mm. 194 

 195 

2.1.2. Intensive management site - Case Study 2 196 

The intensively managed site (‘Intensive’; on average 160 m a.s.l.) was a 1.78 ha sheep-197 

grazed pasture (Fig. 1; Supplementary Figs. 3, 4) located in south-west England, at the North 198 

Wyke Farm Platform (NWFP), Rothamsted Research, Okehampton, Devon (50°46’10’’N, 199 

30°54’05’’W). The NWFP is a 63 ha systems-based experimental facility divided into 15 200 

hydrologically isolated sub-catchments across three small farms, used for grazing livestock 201 

research (Orr et al., 2016; Takahashi et al., 2018). For this study, we focused on one sub-202 
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catchment which consists of a single field named Dairy North. The field has a northerly 203 

aspect, a slope of 10.9% and had been under permanent grassland since the 1990s with 204 

Lolium perenne as the dominant grass species and minor contributions from Agrostis 205 

stolonifera and Holcus lanatus. It received inorganic fertiliser in the form of ammonium 206 

nitrate (NH4NO3) at a rate of 160 kg N ha-1 as four applications of 40 kg N ha-1 per year. The 207 

field was grazed by a March-lambing flock of Suffolk x Mule ewes (crossed mainly with 208 

Texel or Charollais rams), with 34 animals present up until three days before the sampling 209 

was carried out (stocking rate of ca. 2.9 LU ha-1, where one sheep is 0.15 LU). The soil class 210 

(Harrod and Hogan, 2008) is Halstow (Gleyic Cambisol; Avery, 1980), which comprises a 211 

slightly stony clay loam topsoil (approximately 36% clay) that overlies a mottled stony clay 212 

(approximately 60% clay), derived from underlying Carboniferous Culm rocks. The NWFP is 213 

managed as a typical farm for the area, evaluating different strategies on the three farm-lets.  214 

The mean annual temperature in North Wyke is approximately 10 °C, the mean 215 

annual rainfall (1960-2000) is 1055.7 mm (Harrod and Hogan, 2008) and the climate is 216 

classed as cool temperate. In the week preceding sampling (July 2016), air temperatures 217 

averaged 15.3 °C (ranging from 10.2 to 21.1 °C) and the mean 10 cm soil temperature was 218 

18.2 °C (14.4 – 22.4 °C). There was only 4.2 mm rainfall in this week (25th - 31st July 2016), 219 

spread across approximately ten small events. At the Intensive site soil and gas sampling was 220 

conducted on 1st August 2016. On this day the mean air temperature was 14 °C, similar to the 221 

long-term value of 15 °C. Rainfall was 12 mm on the sampling day, much higher than the 222 

long-term daily value for August of 2 mm. 223 

 224 

2.2. Spatial sampling methodologies 225 

2.2.1. Sample locations 226 

At the Extensive site, 112 sampling points were established on a regular grid of 30 m × 30 m 227 
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across the 11.5 ha, together with three randomly allocated sampling points (giving a total 228 

sample size of n = 115). Locations were marked in the field using a GeoXT handheld GPS 229 

unit (Trimble Inc., Sunnyvale, CA). The chosen grid resolution was considered to provide 230 

reasonable site coverage within the available resources (operators, time and budget) and was 231 

not informed by a pilot study (for N2O, CH4 and CO2 fluxes). 232 

At the Intensive site, a 15 m × 15 m grid (78 sampling points) combined with an 233 

offset 25 m × 25 m grid (21 sampling points) was used to give a total of n = 99 sampling 234 

points across the 1.78 ha field. The overlay of two regular sampling grids loosely mimics the 235 

effect of a random stratified sampling approach with a 15 m grid and a single point allocated 236 

at random within each 15 m grid cell (via the 25 m grid). The strategy was chosen to better 237 

capture small-scale spatial variation (i.e. that below 15 m) and benefited from information 238 

provided by a pilot study, on a 25 m grid only, for soil inorganic N the previous year (July 239 

2015). Again ultimately, the grid resolutions were dictated by available resources. Locations 240 

were marked in the field by Real Time Kinematic (RTK) surveying using a Trimble® R6 241 

GNSS Receiver and Trimble® R8 base station (Trimble Inc., Sunnyvale, CA). Figure 1 242 

depicts the sampling locations at each study site. 243 

 244 

2.2.2. Soil and greenhouse gas sampling 245 

Air-tight static chambers were employed at both sites for soil headspace gas sampling (De 246 

Klein and Harvey, 2012). Smaller cylindrical chambers were used at the Extensive site than 247 

at the Intensive site, where cuboid chambers were employed (see Supplementary Information 248 

[SI] for chamber design and insertion details and gas sampling strategies). Headspace gas 249 

samples were collected immediately after chamber closure (0 min) and again after 60 min at 250 

the Extensive site, whilst at the Intensive site initial chamber headspace gas concentrations 251 

were approximated by ambient air sampling (Chadwick et al., 2014) and chambers were 252 
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sampled 40 min after closure. Two-point headspace sampling was necessary due to the large 253 

numbers of chambers to be sampled in a short window, and has been shown to be acceptable 254 

under similar site conditions (Chadwick et al., 2014; on average >90% of 1970 chamber 255 

measurements fitted a linear function) and linear (or approximately linear) increases in 256 

headspace concentrations were anticipated based on substantial work at the sites (SI). By 257 

using a team of trained researchers, gas sampling was conducted within a few hours at both 258 

sites (Extensive site: 10:40-12:40 h; Intensive site: 10:00-14:00 h), minimising sampling time 259 

of day effects. Note that the CO2 fluxes represent soil and plant respiration without 260 

photosynthesis due to the opaque nature of the chambers. 261 

After gas sampling, chamber lids were removed and hand-held temperature probes 262 

used (inserted ca. 0-5 cm depth at the Extensive site, and ca. 0-10 cm depth at the Intensive 263 

site) to record soil temperature. Chamber heights (four measurements within each chamber) 264 

were then recorded in order to calculate chamber headspace volumes. Bulk density cores 265 

(100 cm3, 0-5 cm at the Extensive site; 0-10 cm at the Intensive site) and soil samples (four 0-266 

5 cm cores (bulked) at the Extensive site; six 2.5 cm-diameter, 0-10 cm cores (bulked) at the 267 

Intensive site) were taken from within the chamber areas. Bulk density cores and soil samples 268 

were stored in polythene bags in refrigerators (at 4 °C) prior to analysis. 269 

 270 

2.3. Determination of soil and greenhouse gas parameters 271 

Extensive site soil extractions and pH measurements were conducted within 24 h of sample 272 

collection, while analyses for Intensive site samples were completed within 5 days. For each 273 

site, the determination of bulk density (termed BD in the statistical summaries, graphics etc.), 274 

soil % WFPS (WFPS), extractable soil NO3
--N and NH4

+-N (NO3
-N and NH4

+N), soil pH 275 

(pH), gravimetric soil moisture content (SM), soil organic matter (SOM), soil % TC and % 276 

TN contents (TC and TN) are given in detail in SI. Soil headspace GHG concentrations (N2O, 277 
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CO2 and CH4, termed N2O, CO2 and CH4, respectively) were determined using the same 278 

Perkin Elmer Clarus 580 Gas Chromatograph fitted with an electron capture detector for N2O 279 

measurement and a flame ionisation detector for CO2 and CH4 determination for both sites 280 

(see SI for further details). 281 

 282 

2.4. Topography, vegetation and manure spread data 283 

For each site, elevation (ELEV), aspect (not used) and slope (SLOP) data were calculated 284 

utilising 1 m LiDAR grids (see SI for details). The compound topographic index (CTI; Moore 285 

et al., 1991; Sørensen et al., 2006; Evans et al., 2014) was also derived from the LiDAR data. 286 

For the Extensive site only, a vegetation-type variable (VT) was created consisting of the four 287 

vegetation classes: bracken, gorse (but not sampled on), grassland and marsh (only one 288 

sample location). Gorse was not sampled as it represented a very small proportion (< 1%) of 289 

the site and VT was reduced to three classes. For the Intensive site only, organic FYM was 290 

not spread within 2 m of the field boundary (i.e. the hedge or fence), or within 10 m of a 291 

watercourse (including French drains); a binary variable (termed OS for “organic spread”) 292 

was therefore created indicating whether a sample site fell within or outside of the FYM 293 

boundary (OS = 1 inside; OS = 0 outside). 294 

 295 

2.5. Statistical methods 296 

In this study, the following regressions in both non-spatial and spatial forms were fitted, for 297 

the Extensive and Intensive sites, respectively: 298 

 299 

𝑁2𝑂
𝐶𝑂2
𝐶𝐻4

} = 𝑓(𝑁𝑂3
−𝑁 + 𝑁𝐻4

+𝑁 + 𝑝𝐻 + 𝑆𝑀 +𝑊𝐹𝑃𝑆 + 𝐵𝐷 + 𝑇𝐶 + 𝑇𝑁 + 𝐶𝑁𝑅 + 𝑆𝑂𝑀300 

+ 𝑆𝐿𝑂𝑃 + 𝐸𝐿𝐸𝑉 + 𝐶𝑇𝐼 + 𝑉𝑇) 301 
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Equation 1 302 

𝑁2𝑂
𝐶𝑂2
𝐶𝐻4

} = 𝑓(𝑁𝑂3
−𝑁 + 𝑁𝐻4

+𝑁 + 𝑝𝐻 + 𝑆𝑀 +𝑊𝐹𝑃𝑆 + 𝐵𝐷 + 𝑇𝐶 + 𝑇𝑁 + 𝐶𝑁𝑅 + 𝑆𝑂𝑀303 

+ 𝑆𝐿𝑂𝑃 + 𝐸𝐿𝐸𝑉 + 𝐶𝑇𝐼 + 𝑂𝑆) 304 

Equation 2 305 

 306 

where CNR is the TC:TN ratio. Thus, in total, twelve regressions (the non-spatial and spatial 307 

forms, for the three GHGs, at the two sites) were considered where the GHG response 308 

variables of N2O, CO2 and CH4 fluxes were related to predictor variables measuring soil 309 

properties (NO3
-N, NH4

+N, pH, SM, WFPS, BD, TC, TN, CNR and SOM), topography 310 

(SLOP, ELEV and CTI) and site-specific pasture characteristics (VT or OS). The predictors 311 

were treated as fixed effects. Although available, soil temperature data was not included as a 312 

predictor variable as data were very similar across each site due to the ‘snapshot’ nature of 313 

the study. Aspect was not included because a preliminary analysis indicated very weak 314 

correlations with the GHGs. Interaction terms (predictors) were not considered (e.g. such as 315 

NO3
-N x SM for the N2O regression). The regressions were fitted through an LMM 316 

framework, preceded by a series of exploratory analyses for a richer understanding of the 317 

GHG processes. 318 

 319 

2.5.1. Exploratory analyses 320 

In the first instance, basic descriptive statistics (mean, standard error of the mean and 321 

standard deviation), robust (outlier-resistant) descriptive statistics (median, Qn-scale 322 

estimator) and histograms, were used to explore the Extensive and Intensive site data, for 323 

each soil, topographic and gas parameter in turn. Secondly, a spatial autocorrelation analysis 324 

was undertaken through the calculation of variograms to determine the strength of spatial 325 
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dependence in the N2O, CO2 and CH4 fluxes. The valid observation of spatial autocorrelation 326 

effects is dependent on: (a) whether or not they actually exist in the data and (b) whether or 327 

not the two sample designs are sufficient for these effects to be reliably captured. Important 328 

scales of spatial autocorrelation can go un-noticed through poor sample design (e.g. Webster 329 

and Lark, 2012). Thirdly, the N2O, CO2 and CH4 fluxes were each investigated over the 330 

Extensive and Intensive sites, through six independent (univariate only) geostatistical 331 

prediction analyses to a grid. Specifically, the Empirical Maximum Likelihood Kriging 332 

(EMLK) algorithm of Pardo-Igúzquiza and Dowd (2005a; 2005b) was used, whose 333 

variogram parameters were estimated by Restricted Maximum Likelihood (REML; Ribeiro 334 

and Diggle, 2001), to normal scores transformed data. Details of EMLK are given in SI. 335 

Fourthly, and to complete the exploratory analyses, an assessment of data relationships was 336 

undertaken through scatterplots and linear correlation coefficients (for relating the GHGs to 337 

the continuous data – i.e. soils and topography) and conditional boxplots (for relating the 338 

GHGs to the categorical/indicator data – i.e. vegetation-type and OS). Unlike SLOP, ELEV, 339 

CTI, VT and OS, which are all exhaustive and available throughout the pasture, the sampled 340 

nature of the soil-based predictors (NO3
-N, NH4

+N, pH, SM, WFPS, BD, TC, TN, CNR, 341 

SOM) prevents their use for the GHG prediction surfaces (i.e. extending EMLK to a 342 

multivariate form (Hengl et al., 2003) to produce prediction grids or ‘heatmaps’), unless the 343 

soil-based predictors are exhaustively sampled. 344 

 345 

2.5.2. Non-spatial and spatial multivariate regression analyses 346 

Study multivariate regressions (Eq. 1 and Eq. 2) were constructed in six non-spatial and six 347 

spatial forms, where the parameters of the former were estimated through ordinary least 348 

squares (OLS), while the parameters of the latter were estimated through REML, to 349 

unbiasedly account for a spatially-autocorrelated error term (as modelled by a residual 350 
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variogram). As in the EMLK analyses, initial starting parameters for the variogram 351 

component of the (iterative) REML fits were found using (biased) parameters from a 352 

weighted least squares (WLS) variogram model fit to the corresponding empirical variogram. 353 

The OLS- and REML-estimated regressions were conducted using LMM functions in the R 354 

nlme package (Pinheiro et al., 2018). Again, as in the EMLK analyses, only isotropic 355 

exponential variogram models were considered, but now to characterise spatial dependence in 356 

residual data. To promote linearity in regression relationships, Box-Cox transforms (Box and 357 

Cox, 1964) were used to transform both the response (gases) and predictor (soils, topography, 358 

class) variables, where appropriate. Regression outcomes were reported through model 359 

parameter significance tests together with R2, Akaike Information Criterion (AIC) and 360 

Bayesian Information Criterion (BIC) model fit summaries. AIC and BIC account for model 361 

complexity and model prediction accuracy, whereas R2 values only reflect the latter1. 362 

For interpretation of the regressions, note that WFPS is a function of soil moisture and 363 

bulk density, CTI is a function of slope and elevation (and also aspect), and soil TC and TN 364 

are represented in addition to their ratio (as recommended by Kronmal, 1993). Such 365 

dependencies in the predictor variable data sets may create unwanted collinearity effects, in 366 

addition to likely collinearities between say, TC and SOM, and therefore may mask important 367 

drivers of GHG variability. In this respect, variance inflation factors (VIFs) for each predictor 368 

in the regressions were calculated and predictors with a VIF > 10 were removed (following 369 

guidelines given in Belsley et al., 1980; O’Brien, 2007) and the regression re-fitted. An 370 

alternative to improve statistical inferences in the presence of collinearity can be found in a 371 

penalised regression (e.g. Zou and Hastie 2005) but was not considered in this instance. 372 

 
1 Reporting of an R2 value for REML regressions should be viewed cautiously as R2 is designed for an OLS fit 

and as such, does not account for error variation due to residual spatial autocorrelation. Thus, p-values for R2 

significance are only reported for OLS regressions. However, all such tests of significance themselves can only 

be viewed as indicative when the assumptions of data independence are not met (as is common with spatial data). 

This is similarly true for reporting the significance for r values. 
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 373 

2.5.3. Data truncation for outlying CH4 values 374 

For the Extensive site data, one relatively high CH4 flux consistently stood out as outlying in 375 

a univariate (via the histogram), bivariate (via scatterplots) and ‘distance-paired’ (via the 376 

variogram) sense. It was decided, therefore, to truncate this flux to the next flux in the 377 

ordered data set, plus 20% of that next flux. Thus, a CH4 flux of 253.81 μg CH4-C m-2 h-1 was 378 

truncated to 25.15 μg CH4-C m-2 h-1. Similarly, for the Intensive site data, two CH4 fluxes 379 

stood out as outlying and were truncated; one relatively low at -82.29 μg CH4-C m-2 h-1 380 

(truncated to -52.14 μg CH4-C m-2 h-1) the other relatively high at 662.71 μg CH4-C m-2 h-1 381 

(truncated to 275.85 μg CH4-C m-2 h-1). Data truncation decisions are common to many 382 

statistical studies (e.g. Costa, 2014) and provide a pragmatic solution to the use of a more 383 

involved robust, non-linear statistical analysis (e.g. through the use of copulas, following 384 

Kazianka and Pilz, 2010), when only a few observations are outlying. A sensitivity analysis 385 

(not shown) to the three data truncations resulted in no obvious adverse consequences to the 386 

resultant statistical interpretations of the Extensive and Intensive site CH4 spatial processes. 387 

The locations of the three data truncations are shown in the CH4 maps of Figure 2 (one of 388 

which is near the field entrance of the Intensive site). 389 

 390 

3. Results and Discussion 391 

3.1. Soil properties and site topography  392 

To provide an understanding of the conditions under which the GHGs were produced, 393 

descriptive statistics for the soil variables recorded on one sampling date for each site and 394 

each site’s topography are shown in Table 1. The Extensive site soil and topographic 395 

parameters measured were consistent with other site characteristics described in section 2.1.1. 396 

In accordance with the organic matter inputs to the upper soil layers at the Extensive site and 397 
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the podzolic soil type (Harrison & Bocock, 1981), soil bulk density was low at some 398 

sampling points (minimum of 0.34 g cm-3) and below typical values for mineral soils on 399 

average (median 0.55 g cm-3 cf. ca. 1.3 g cm-3; USDA, 2008). Similarly, SOM was high 400 

(median 19%; Ball, 1964) and the soil at the Extensive site was acidic (median pH 4.93), 401 

potentially slowing organic matter degradation and inhibiting nitrification (USDA, 2011).  402 

The Intensive site had high extractable soil NO3
- concentrations at some sampling 403 

points (up to 237 mg NO3
--N kg-1), consistent with the regular fertilisation and high livestock 404 

stocking rate (Genever and Buckingham, 2016; Baron et al., 2001). Extractable soil NH4
+ 405 

concentrations were also high at some sampling points (maximum 146 mg NH4
+-N kg-1), 406 

commonly at the same sampling points at which soil NO3
- concentrations were particularly 407 

high. However, extractable soil NO3
- and NH4

+ concentrations were non-normal with a 408 

positive skew with the mean concentrations > median concentrations (Table 1). 409 

 410 

3.2. Context and spatial variability of the GHG data 411 

3.2.1. GHG distributions 412 

Emissions of all three GHGs assessed on the sampling date at the Extensive site (Table 2) 413 

were comparable to those previously reported at the same site in a year-long automated 414 

chamber study by Marsden et al. (2018). Extensive site median N2O emissions during the 415 

growing season from extensively managed pastures at 200 m a.s.l. in Scotland and at 450 m 416 

a.s.l. in Switzerland were also similar (4.5 μg N2O-N m-2 h-1 here, cf. ca. 6 μg N2O-N m-2 h-1 417 

and 1.2 μg N2O-N m-2 h-1, respectively; Flechard et al., 2007). However, for our spatial 418 

investigation, greater ranges in N2O and CH4 emissions were measured than in Marsden et al. 419 

(2018), suggesting that spatial variability exceeds temporal variability at the site, which has 420 

also been observed elsewhere (McDaniel et al., 2017). Extensive site N2O and CO2 emissions 421 

were positively skewed (Fig. 2A) likely due to grazing hotspots (Velthof et al., 1996; 422 
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Chadwick et al., 2014; Giltrap et al., 2014; Cowan et al., 2015) and the small chance of 423 

directly sampling a recent urine patch. For CH4, equivalent weak sink behaviour has been 424 

previously reported at extensive upland pastures (Imer et al., 2013; Kaiser et al., 2018). 425 

The range of emissions of all three GHGs on the sampling date at the Intensive site 426 

was relatively large (Table 2), as observed elsewhere (Turner et al., 2008; Parkin and 427 

Venterea, 2010; Jones et al., 2011; Imer et al., 2013; Kaiser et al., 2018). Daily N2O 428 

emissions from a field nearby the lowland site were up to ca. 75 μg N2O-N m-2 h-1 in summer 429 

(Cardenas et al., 2016), considerably lower than the maximum N2O emissions observed in 430 

this study (216 μg N2O-N m-2 h-1; Table 2). This could be explained by the larger rainfall 431 

experienced in our study compared with the long-term value as reported in section 2.2.2. 432 

However, a comparable spatial snapshot study (Cowan et al., 2015) conducted on an 433 

intensively managed grassland in Scotland in summer (but with grazing sheep remaining in 434 

the field during gas measurements) recorded N2O fluxes with a very similar range (2 to 435 

227 μg N2O-N m-2 h-1) and similar arithmetic and geometric means (25 and 13 μg N2O-N m-
436 

2 h-1), as were observed in this study. These high maximal N2O fluxes likely result from 437 

directly sampling of a recent urine patch (sheep were only removed 3 days prior to the 438 

experiment at the Intensive site). Correspondingly, Intensive site N2O and CH4 fluxes also 439 

exhibited positive skew (Fig. 2B), likely again due to antecedent urine patches (Velthof et al., 440 

1996; Chadwick et al., 2014; Giltrap et al., 2014; Cowan et al., 2015). Intensive site CH4 441 

emissions were consistent with the mixture of sink and source behaviour reported by 442 

Cardenas et al. (2016) and Saggar et al. (2007), but slightly weaker maximum sink 443 

behaviours were observed in these older studies (ca. -20 and -17 μg CH4-C m-2 h-1, 444 

respectively, in summer). 445 

Average GHG fluxes captured in these spatial studies were representative compared 446 

with the published literature. However, greater ranges in fluxes were found at both sites than 447 
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previously recorded in: i) temporally focused emission factor studies at the same sites and; ii) 448 

in spatial studies at other sites. For the first point, this likely relates partly to the larger 449 

number of independent chambers used, the commonly larger variability of spatial fluxes 450 

compared with temporal (McDaniel et al., 2017), and temporal studies may not capture the 451 

range of GHG fluxes. The second comparison is likely caused partly by differences in 452 

whether, or for how long, grazing livestock are excluded from sites prior to sampling (which 453 

in turn influences spatial variability, i.e. point i), and is not consistently handled/reported in 454 

the literature). Greater consideration of the impact of antecedent grazing effects is 455 

recommended in Charteris et al. (2020) and would aid comparison between studies. 456 

 457 

3.2.2. GHG spatial dependencies 458 

The normal score variograms (empirical, WLS model and REML model) for 459 

Extensive site N2O, CO2 and CH4 data (Table 3; Fig. 3A) on the sampling date all indicated 460 

some degree of spatial dependence. However, the Extensive site CH4 variogram was 461 

essentially flat with a relatively high nugget variance, indicating a tendency to random 462 

behaviour (as given by the CH4 sample variance). A relatively high nugget variance was also 463 

observed for the Extensive site N2O variogram, but where a spatial correlation range of 240.0 464 

m suggested overall spatial structure. High nugget variances reflect either a true variation in 465 

GHG fluxes over short distances or could indicate that the sample design was inadequate to 466 

capture small-scale variation. Previous studies have similarly observed limited, or no spatial 467 

dependence in N2O fluxes dependent given the scale of observation (Giltrap et al., 2014). 468 

Extensive site CO2 fluxes displayed clearer spatial structure with a range of 205.2 m, coupled 469 

with a smaller nugget than structural variance. 470 

Normal score variograms for the GHG data from the Intensive site (Table 3; Fig. 3B) 471 

on the sampling date indicated spatial structure was strongest for N2O, which had a range of 472 
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spatial dependence of 82.5 m. Turner et al. (2008) reported N2O spatial dependence ranges of 473 

up to 73 m and 51 m at a dairy grassland in Australia in summer and autumn, while no spatial 474 

structure in N2O fluxes was found in the comparable study at an intensively managed Scottish 475 

sheep pasture in summer (Cowan et al., 2015), with a similar mean and range in N2O fluxes 476 

already compared with our Intensive site. The Intensive site CO2 and CH4 variograms had 477 

relatively high nugget variances, coupled with spatial dependencies of 80.2 m and 84.7 m, 478 

respectively. Similar limited spatial dependency has also been reported for CO2 at a similar 479 

site – during 22 sampling events over the course of a year, Kreba et al. (2013) found spatial 480 

dependence ranges of between 3.2 m and 70.4 m for a mown, fertilised grassland (at 300 m 481 

a.s.l.). 482 

 483 

3.2.3. GHG spatial surfaces 484 

The EMLK surfaces for the Extensive and Intensive site GHG predictions on the 485 

respective sampling dates, the corresponding 95% prediction credible intervals (PCIs), and 486 

the corresponding risk of exceeding a pre-specified threshold (taken as the 80th percentile of 487 

the actual, sampled GHG data2) are given in Figures 4 and 5. The spatial characteristics of 488 

each EMLK surface directly reflect the characteristics of the GHG data as mapped in Figure 489 

2 and the characteristics of the normal scores REML variograms, as given in Table 3 and 490 

Figures 3A and 3B. The surfaces also, in part, reflect the kriging neighbourhood 491 

specification, where all EMLK runs were specified with at least 33% of nearby data within a 492 

minimum distance of 80% of the maximum distance possible, for each grid point GHG 493 

prediction (where the prediction grid is approximately at a 0.5 m x 0.5 m resolution). 494 

Given the observed spatial structures and kriging specifications, above, all prediction 495 

surfaces resulted in the GHG data being highly smoothed. Uncertainty in the predictions via 496 

 
2 The use of the 80th percentile of the sample GHG data is arbitrary and is used for demonstration purposes only. 

If a recognised widely-approved threshold exists for a given GHG, then it should be used instead. 
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the 95% PCIs, directly relay the variability reflected in the respective variograms, where 497 

relatively high nugget variances and high nugget effects (Table 3) were observed. The 498 

uncertainty measures via the 95% PCIs were too wide to be of any practical use. Unusually 499 

high or low fluxes (hot or cold spots, Figs. 2, 4, 5) did not particularly match any identifiable 500 

features in either case study field. Tentatively, it appears that fluxes at the Extensive site 501 

tended to be higher around the edge of the field. A tenuous link could be made to sheep using 502 

the field boundaries for shelter (i.e. causing nutrient enrichment etc. in these areas - a similar 503 

tentative visual spatial pattern was observed in the soil N data, not shown), but only the 504 

eastern field boundary had a solid wall that could provide shelter (depending also on the 505 

prevailing wind direction), all other field boundaries were wire fences. Intensive site GHG 506 

fluxes tended to be higher in an East-West band across the middle of the field, aligning with 507 

the field’s topography (which is more formally assessed, below). Interestingly, the Intensive 508 

site CO2 surfaces (Fig. 5B) depicted areas of high prediction uncertainty that corresponded to 509 

areas of low predicted fluxes, and vice-versa. This was contrary to the other five GHG 510 

surfaces, and contrary to what is commonly found in the environmental sciences, where the 511 

mean commonly scales proportionally with the variance (Chilès and Delfiner, 1999). The 512 

spatial characteristics of the risk of exceedance surfaces reflect chosen thresholds, together 513 

with the corresponding prediction/PCI surfaces. 514 

 515 

3.3. Soil, topography and other parameters as predictors of GHG fluxes 516 

3.3.1 Correlation analysis 517 

As further exploration prior to this study’s regression fits, the paired relationships 518 

(correlations) between the Extensive and Intensive site N2O, CO2 and CH4 fluxes on the 519 

relevant sampling date with the pasture soils and topography are presented in Figure 6. The 520 

GHG relationships with vegetation-type and OS are given in Figure 7. In the Extensive site 521 
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case, N2O, CO2, soil NO3
-, soil NH4

+ and soil moisture were each transformed to 522 

(approximate) normality using the Box-Cox transform. In the Intensive site case, N2O, CH4, 523 

soil NO3
-, soil NH4

+ and soil moisture were Box-Cox transformed. Relationships worth 524 

highlighting are described as follows, where all highlighted correlations were significant at 525 

the 95% level. 526 

Extensive site N2O fluxes were found to be positively correlated with soil NO3
- (r = 527 

0.58), and vegetation-type could, in part, discriminate across the Extensive site N2O fluxes. 528 

For CO2 fluxes at the same site, weak positive correlations were present with soil NO3
- (r = 529 

0.26) and with soil NH4
+ (r = 0.32), while a weak negative correlation existed with TC:TN (r 530 

= -0.32). For CH4 fluxes, no relationships were strong enough to warrant highlighting.  531 

Intensive site N2O displayed a weak positive correlation with soil moisture (r = 0.28), 532 

a weak negative correlation with elevation (r = -0.30), and OS could have influenced these 533 

fluxes. For Intensive site CO2 fluxes, a moderate positive correlation was present with soil 534 

moisture (r = 0.47), a weak positive correlation was present with % WFPS (r = 0.29) and a 535 

weak negative correlation was present with elevation (r = -0.28). There were no clear 536 

relationships with Intensive site CH4 fluxes. 537 

For correlations between predictor variables, % TC was strongly correlated with % 538 

TN for both sites (r = 0.94 and r = 0.95, respectively) and as such, % TC was removed to 539 

avoid detrimental collinearity effects before subsequent regressions (i.e. avoid inaccurate 540 

coefficient estimation and associated uncertainties). Furthermore, on investigation of the 541 

VIFs from initial OLS regressions, it was found that the removal of WFPS (for both sites) 542 

ensured all VIFs < 10 (specifically, all VIFs < 2 and < 6 for the extensive and intensive sites, 543 

respectively). Thus, detrimental collinearity effects due to the inclusion of WFPS in the 544 

regressions were also addressed. 545 

 546 
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3.3.2 Regression analysis 547 

The non-spatial (OLS) and spatial (REML) regression fit summaries for the relevant 548 

sampling dates are given in Table 4 (Extensive site) and Table 5 (Intensive site), together 549 

with the corresponding (empirical, WLS model and REML model) residual variograms (Figs. 550 

3C, D). As is often the case in a multivariate spatial analysis, structure found in the response 551 

variable variograms (as effectively given in Figs. 3A, B) reduces when variance in the 552 

response is usefully informed by a set of predictors (in this instance, the soil data, topography 553 

etc.). This effect was evident in Figures 3C and 3D, where four of the six residual variograms 554 

displayed a random (regression) error structure. Thus, the regressions for Extensive site N2O 555 

and CH4, and Intensive site CO2 and CH4, did not warrant a spatially-autocorrelated error 556 

term. 557 

Here, the significant predictors (at least at the 95% level) for Extensive site N2O 558 

regression (R2 = 0.57; p = 0.000) were soil NO3
- and grassland and marsh vegetation-type, 559 

while the significant predictors for Extensive site CH4 regression (R2 = 0.25; p = 0.005) were 560 

soil NO3
-, soil NH4

+ and soil moisture. The significant predictors for Extensive site N2O 561 

regression concur with those recorded as significant in other studies on intensively managed 562 

pastures (soil moisture content, NO3
- and NH4

+ – Velthof et al., 1996; NO3
-, NH4

+ and Olsen-563 

phosphorus – Turner et al., 2008; NO3
-, pH and % WFPS – Cowan et al., 2015). That NO3

- 564 

was a significant predictor of N2O emissions across these studies accords well with its 565 

substrate role in N2O production via denitrification and potential limitation due to extensive 566 

management and lack of fertilisation at the Extensive site. For CH4, other studies have found 567 

the key predictors of CH4 to be soil moisture (which commonly leads to relationships with 568 

topography; Imer et al., 2013; Kaiser et al., 2018) and % TC content (McDaniel et al., 2017). 569 

Methanogenesis is an anaerobic process (increased soil moisture can reduce O2 availability) 570 

which can use small C-containing compounds, as well as CO2, as substrates which likely 571 
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explains these relationships. The observed driving effects of soil NO3
-, soil NH4

+ on 572 

Extensive site CH4 fluxes are unexplained, but it is important to note that the fit of the 573 

Extensive site CH4 regression was relatively weak, so this should not be over-interpreted. The 574 

significant predictor for Intensive site CO2 regression (R2 = 0.31; p = 0.001) was soil 575 

moisture only (intercept aside), while no significant predictors were found for Intensive CH4 576 

regression (R2 = 0.10; p = 0.655). Soil moisture (important for microbial activity) is a known 577 

controlling factor of CO2 (Kreba et al., 2013), which aligns with its significance in the 578 

Intensive site CO2 regression. 579 

Structure in the residual variogram for Extensive site CO2 was present, but tenuous 580 

(Fig. 3C) and this was reflected by only a small decrease in AIC from the non-spatial to the 581 

spatial regression (315.7 to 313.6; Table 4) coupled with a slight increase in BIC (357.5 to 582 

358.0; Table 4). Unsurprisingly, the non-spatial and spatial regression results for Extensive 583 

site CO2 were broadly similar and the significant predictors were (the intercept), soil NH4
+, 584 

slope and elevation in both cases (noting that the significance of all predictors reduced when 585 

spatial effects were included). The R2 of both the non-spatial and spatial regressions was 0.34 586 

(with p = 0.000 for the OLS fit). In the literature, CO2 relationships to soil factors have been 587 

various (Kreba et al., 2013) and there are no clear explanations for the significant predictors 588 

of Extensive site CO2. 589 

Thus, a REML-based, spatial regression fit was only fully warranted for Intensive site 590 

N2O production (i.e. clear residual variogram structure was evident (Fig. 3D), coupled with 591 

sufficient reduction in AIC (360.4 to 354.2 in Table 5) from the non-spatial, OLS-based fit). 592 

Here, the significant predictors in the non-spatial regression were soil moisture, soil NO3
- and 593 

elevation, the latter two of which when mapped (the soil NO3
- map is not shown, but the 594 

elevation map is given in Fig. 1B) displayed a clear spatial trend south to north. However, the 595 

same two N2O predictors became insignificant when spatial effects were implicitly catered 596 
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for in the regression (via the error term), where now (the intercept), soil moisture (with 597 

increased significance) and bulk density were significant predictors of N2O instead. This 598 

critical observation ably demonstrates the importance of accounting for spatial effects for 599 

data and processes that are inherently spatial, else incorrect scientific inferences can result 600 

(e.g. Harris, 2019). Here correlation should not be confused with causation, but although soil 601 

NO3
- may be considered a driver of N2O, its weak correlation with N2O (r = -0.02 from Fig. 602 

6B) suggests the non-spatial regression provides spurious outputs. The R2 values for these 603 

regressions were relatively weak at 0.27 (with p = 0.005 for the OLS fit). 604 

Our hypotheses that one or more of the factors tested drove spatial variability in 605 

emissions (and were site-specific) were correct for all GHGs, except Intensive CH4. 606 

However, the fit of the final six regressions ranged from moderately strong to very weak with 607 

R2 values of 0.57, 0.34 and 0.25 for Extensive and 0.27, 0.31 and 0.10 for the Intensive site 608 

N2O, CO2 and CH4 fluxes, respectively. Thus, in each instance, as also hypothesised, there 609 

are likely missing predictors of N2O, CO2 or CH4, not assessed in this work. These missing 610 

predictors could include soil microbial biomass and community composition (for all three 611 

GHGs), air temperature, soil temperature (especially for CO2, see Imer et al., 2013; Kreba et 612 

al., 2013), soil electrical conductivity (especially for CH4, see McDaniel et al., 2017), 613 

volumetric water content, porosity, total dissolved N, total extractable N, total dissolved 614 

organic carbon, soil hydroxylamine (especially for N2O, see Liu et al., 2016), distance-based 615 

predictors (such as distance from sample site to fence, gate or water trough), un-observed 616 

management effects, together with predictors that reflect underlying plant (e.g. root and shoot 617 

biomass, likely affecting CO2 emissions) and livestock emissions (e.g. average sheep 618 

movement patterns, spatial intensities of urination). In addition, as already noted in Section 619 

3.2.2., insufficient resolution of spatial sampling could affect the applicability of spatial 620 

analyses.  621 
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 622 

3.4. Comparison of case studies 623 

There are clearly some differences between the two case studies presented in this work that 624 

obfuscate their direct comparison (season and weather conditions; site size and management 625 

strategies; necessary scaling of sampling resolution between sites; slightly different static 626 

chamber designs). In particular, the 10 °C difference in temperature (Extensive: ca. 5 °C vs. 627 

Intensive: ca. 15 °C) between the sites is likely to have increased emissions at the Intensive 628 

site compared with the Extensive. However, as with the discussion of the results from each 629 

site in the context of other published studies in the literature, some cursory comparison is of 630 

value. Consistent with the site management (Extensive vs. Intensive), season (autumn vs. 631 

summer), lower median extractable soil NO3
- concentrations (2.0 cf. 6.8 mg NO3

--N kg-1) and 632 

lower median soil pH (4.93 cf. 5.72; Table 1), as well as the lower temperatures, median N2O 633 

fluxes at the Extensive site were lower than those at the Intensive site (4.5 cf. 19.2 μg N2O-634 

N m-2 h-1; Table 2; Flechard et al., 2007; Imer et al., 2013; Marsden et al., 2018; Marsden et 635 

al., 2019). Soil moisture content, elevation and NO3
- concentrations were the significant 636 

predictors of N2O at the Intensive site, while when the appropriate spatially informed 637 

regression was used for the Intensive site, NO3
-, which displayed a clear spatial trend from 638 

south to north, was no longer a significant predictor of N2O (instead these were soil moisture 639 

and bulk density only, as elevation also became insignificant). Extractable soil NO3
- 640 

concentrations could also have been less important at the Intensive site as soil concentrations 641 

were higher and NO3
- may not have been a limiting factor in denitrification at this site. 642 

Higher extractable soil NO3
- concentrations at the Intensive site (Table 1) were likely due to 643 

considerably higher reactive N inputs per ha – relatively high stocking density (2.9 LU ha-1) 644 

leading to higher grazing returns, FYM inputs and regular NH4NO3 applications. Lower 645 

extractable soil NH4
+ concentrations despite these inputs (median 3.1 cf. 11.4 mg NH4

+-N kg-
646 
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1 at the Extensive site), may have been due to higher crop uptake and/or nitrification rates in 647 

the Intensive site soil (Booth et al., 2005) and/or because extractable NH4
+ was protected 648 

from nitrification by organic matter in the Extensive site soil (Cardenas et al., 2013). In 649 

addition, nitrification rates at the Extensive site could have been inhibited by the lower soil 650 

pH (Table 1; Marsden et al., 2019).  651 

Median CO2 fluxes were similarly lower at the Extensive site (29.4 cf. 200.5 mg CO2-652 

C m-2 h-1; Table 2), most likely due to the lower temperatures during sampling at this site 653 

(Fang and Moncrieff, 2001). A link could be made between the topographic predictor 654 

variables of Extensive site CO2 fluxes (slope and elevation) and the soil moisture predictor at 655 

the Intensive site, as topographic parameters can affect soil moisture distributions. However, 656 

soil moisture at the Extensive site did not correlate with slope or elevation (Fig. 6), so in this 657 

case, significant topographical factors have not acted as surrogates to soil moisture.  658 

Interestingly, at the time of sampling, the Extensive site was on average a CH4 sink, 659 

while the Intensive site was a small source (median: -28.0 cf. 0.3 μg CH4-C m-2 h-1; Table 2). 660 

This is despite similar % WFPS values between the sites (52 cf. 57%; Table 1), which, via O2 661 

availability, is one of the most important controls determining the balance of CH4 (and N2O) 662 

production and uptake (Imer et al., 2013; Oertel et al., 2016). Imer et al. (2013) found a 663 

similar increased likelihood of CH4 sink behaviour with altitude but hypothesised that this 664 

was because the long winter period could not be sampled at the highest altitude site of their 665 

study, which would not apply here. 666 

 667 

3.5. Limitations and extensions 668 

Clearly, the characterization of GHG spatial processes for sheep-grazed ecosystems are a 669 

challenge. GHG-generating soil processes vary at the intra-aggregate, microsite scale, 670 

upwards to local soil conditions, vegetation type, and topography (centimetre-to-metre scale) 671 
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and further to soil and ecosystem type (kilometre scale) and beyond (Butterbach-Bahl et al., 672 

2013; Giltrap et al., 2014; Shaw et al., 2016). Adequately capturing such scales of variation is 673 

difficult and this was not the direct intention of this study’s sample design, where the focus 674 

was on estimating spatial dependence effects with respect to assessing key drivers of GHG 675 

variability (i.e. the regression models). However, better capturing spatial variability (as for 676 

the pilot-informed Intensive site sampling) does improve ability to determine spatial 677 

dependence. Sources of GHGs also include GHG-generating plant processes and those 678 

associated with the sheep themselves (requiring their movement/behaviour to be captured, see 679 

Decandia et al., 2018), neither of which were directly studied here. Furthermore, the 680 

influence of the soils, the plants and the livestock on fluxes will differ and interact in a 681 

specific manner for each GHG (N2O, CO2 and CH4). 682 

We focused on one sampling day for each site as our focus was the within-field 683 

spatial variation, not the temporal variation. A single spatial study can only provide a 684 

snapshot of GHG variability in time but complements studies that have focused on temporal 685 

GHG variation. Notable differences in N2O outputs between studies can result from 686 

differences in the duration of sheep exclusion from the study pasture prior to commencement 687 

of the sampling (grazing legacy effects). Given the relative complexity of the factors driving 688 

GHG fluxes spatially, spatial GHG variability tends to be larger than temporal GHG 689 

variability (McDaniel et al., 2017). Understanding temporal GHG variation is equally 690 

important as understanding spatial GHG variation, where for example, the sink/source 691 

behaviour of CO2 is dependent on seasonal weather conditions (Soussana et al., 2007; Mudge 692 

et al., 2011; Rutledge et al., 2015; Gourlez de la Motte et al., 2016). Ultimately, it is the 693 

characterisation of the full spatio-temporal GHG process that is the research goal. Spatial-694 

only and temporal-only studies are always limited in this respect. A key challenge is 695 

advancing sensor technology to measure the GHGs concurrently in space and time, where the 696 
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act of measurement itself does not compromise the grazing behaviour of the sheep. Placing 697 

chambers in the field compromises grazing behaviour, while eddy covariance cannot capture 698 

the spatial detail given it provides an area measurement (i.e. a footprint) and is not well suited 699 

to use on hill slopes. Eddy covariance data modelling to characterise spatio-temporal GHG 700 

processes from grazing is also inherently involved, requiring suitable expertise to develop, 701 

calibrate and interpret. 702 

Some steps towards this goal have been reported. Lush et al. (2018) used tri-axial 703 

accelerometers and random forest modelling to identify urination events by grazing sheep, 704 

which, when combined with high-resolution GPS movement data, could be used to provide 705 

the spatio-temporal distribution of urine patches for the improved estimation of pasture GHG 706 

emissions. A combination of eddy covariance and short periods of animal confinement within 707 

specific small areas has been used to assess the contribution of cattle to intensive pasture CO2 708 

and CH4 emissions (Jérôme et al., 2014; Dumortier et al., 2017). Various new techniques 709 

have been developed in recent years to identify urine patches, for example: LiDAR, via grass 710 

growth/increased height (Roten et al., 2017); remotely piloted aircraft systems (RPAS) and 711 

visible and near infra-red (NIR) imaging, via colour differences (Maire et al., 2018); and 712 

Spikey-R technology which measures on soil electrical conductivity (Jolly et al., 2019). 713 

Further work is needed, however, to assess the dynamics between patch emission and grass 714 

growth to understand the utility of the approach for investigating urine patch-derived GHG 715 

hotspots/moments (i.e. growth could be identified one week after urine application, but by 716 

this time N2O emissions may have peaked and diminished). In addition, emission factor trials 717 

at UK upland extensively managed sites (Marsden et al., 2018; Marsden et al., 2019) indicate 718 

that urine patches do not always act as strong GHG sources, in which case patch 719 

identification does not guarantee a GHG hotspot. 720 

 721 
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3.6 Implications for field-level emission estimation 722 

Current practice entails that field-level (model-based) and indeed country-level emission 723 

estimates are based on uniform treatments (e.g. N amendments) to specific areas (e.g. Wu et 724 

al., 2015; Marsden et al., 2018). This assumes a perfect N distribution and the same response 725 

across the rest of the field. However, most GHG source processes are biogenic and highly 726 

spatially variable, and this inherent within-field variability in the fluxes is not captured in 727 

emission estimates based on fluxes made using chambers. As a result, model-based emissions 728 

may be under- or over-estimated. Further, given the underlying flux variability is unknown, 729 

any associated uncertainty or confidence in these estimates are similarly poorly constructed 730 

(e.g. as found by Shurpali et al. (2016) when diurnal variations are excluded). 731 

Our study provides insight into within-field GHG variability (via the kriging analyses, 732 

section 3.2.3) and how soil, topographical and vegetation factors may drive this (via the 733 

regression analyses, section 3.3.2) for contrasting extensively and intensively managed 734 

pastures. Crucially, this insight is robust through the application of explicitly spatial methods 735 

that capture key spatial dependencies in the GHG processes (via the variogram analyses, 736 

section 3.2.2), without which false interpretations may result (section 3.3.2). Ultimately, 737 

information gained through this and subsequent within-field spatial studies, for all pasture 738 

types across all agro-ecological regions should enable the implementation of locally adjusted 739 

field-level emission estimates that implicitly acknowledge likely within-field GHG 740 

variability, together with associated measures of confidence. Challenges remain in the 741 

implementation of such studies and ensuring sufficient sample resolution so that key spatial 742 

effects in the GHG processes are captured and how often such studies should be repeated (i.e. 743 

ensuring sufficient temporal resolution) to ensure key temporal effects are captured also. 744 

Micrometeorological approaches such as eddy covariance can be used alongside chambers to 745 

provide better estimates of integrated N2O emissions for comparison (e.g. Jones et al., 2011). 746 
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 747 

4. Conclusions 748 

The within-field variability of all three GHGs (N2O, CO2, CH4) at both study sites was high, 749 

as expected. The pilot-informed sample design at the Intensive site appeared better able to 750 

capture the spatial dependence of fluxes than that found at the Extensive site, highlighting the 751 

importance of pilot studies. A REML-based spatial regression was only worth applying to 752 

Intensive site N2O fluxes, which had the strongest spatial dependence of all the gases 753 

measured, across both study sites. Importantly, this regression produced a different set of 754 

significant predictor variables to that found with an OLS-based regression (from soil 755 

moisture, soil NO3
- and elevation, to soil moisture and bulk density), demonstrating clear 756 

value in accounting for spatial effects.  757 

Overall, the significant predictors of the GHG fluxes only exerted a weak consistent 758 

influence and were site-specific, suggesting that other factors not recorded in this study may 759 

be more important, or relationships were more complex than were captured in the chosen 760 

statistical models (e.g. non-linear relationships, models with interacting terms). The strongest 761 

regression fit was for Extensive site N2O with an R2 = 0.57, whose significant predictors, soil 762 

NO3
-, and grassland and marsh vegetation-type could be explained by known N2O controlling 763 

factors and accorded well with the literature. Given the complex balance of factors required 764 

to induce emissions of N2O and CH4, it is perhaps unsurprising that fluxes are strongly 765 

determined by local conditions leading to differences in limiting factors. Changes in the 766 

balance of GHG emission-contributors could even change across or within a field leading to 767 

more complex relationships between predictors and fluxes, than considered here. In this 768 

respect, on-going work is investigating the use of more sophisticated multiscale, GHG spatial 769 

regressions that account for non-linear and non-stationary relationships, each operating at 770 

their own spatial scale (Murakami et al., 2019). 771 
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Figure Captions 1180 

Figure 1. (A) Extensive (11.5 ha) and (B) Intensive (1.78 ha) sites with sampling locations, 1181 

both given with field topography. 1182 

Figure 2. N2O, CO2 and CH4 histograms and maps for (A) Extensive and (B) Intensive sites. 1183 

Locations of truncated CH4 data are shown with “O”. Units: μg N2O-N m-2 h-1, mg CO2-C m-2 1184 

h-1 and μg CH4-C m-2 h-1, respectively. 1185 

Figure 3. EMLK variograms for N2O, CO2 and CH4 at (A) Extensive and (B) Intensive sites 1186 

(all data in normal scores transformed (*) form). LMM residual variograms for N2O, CO2 and 1187 

CH4 at (C) Extensive and (D) Intensive sites (data in either raw or Box-Cox transformed (*) 1188 

form). Red points denote empirical variogram, red dashed line denotes WLS variogram model 1189 

fit to empirical variogram and blue line denotes REML (unbiased) variogram model fit for use 1190 

in EMLK or the LMM fits, respectively. Residual empirical variograms are found from an OLS 1191 

regression fit and are biased, as are the WLS variogram model fits. 1192 

Figure 4. Extensive site EMLK results for prediction, 95% prediction credible interval (PCI) 1193 

and risk of exceedance surfaces, for (A) N2O, (B) CO2 and (C) CH4, respectively. Legend class 1194 

breaks in deciles. Units: μg N2O-N m-2 h-1, mg CO2-C m-2 h-1 and μg CH4-C m-2 h-1, 1195 

respectively. 1196 

Figure 5. Intensive site EMLK results for prediction, 95% prediction credible interval (PCI) 1197 

and risk of exceedance surfaces, for (A) N2O, (B) CO2 and (C) CH4, respectively. Legend class 1198 

breaks in deciles. Units: μg N2O-N m-2 h-1, mg CO2-C m-2 h-1 and μg CH4-C m-2 h-1, 1199 

respectively. 1200 

Figure 6. Scatterplot and correlation coefficient matrices at (A) Extensive and (B) Intensive 1201 

sites. Data in either raw or Box-Cox transformed (*) form. 1202 

Figure 7. Conditional boxplots for N2O, CO2 and CH4 with (A) vegetation-type (VT - for 1203 

Extensive site) and (B) organic spread (OS - for Intensive site). Data in either raw or Box-Cox 1204 
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transformed (*) form. 1205 
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Tables 1230 

Table 1: Descriptive statistics of soil parameters and topographical data, expressed on a dry weight basis where 1231 

applicable (Extensive site n=115; Intensive site n=99). 1232 

 Extensive site Intensive site 

 
Bulk density 

(g cm-3) 
% WFPS (%) 

SM θg (dry 
basis; %) 

Bulk density (g 
cm-3) 

% WFPS (%) 
SM θg (dry 
basis; %) 

Minimum 0.34 14.9 17.6 0.77 37.9 32.5 

Maximum 0.98 103.0 461.5 1.09 111.5 84.6 

Mean 0.58 54.5 78.0 0.90 58.8 42.9 

Median 0.55 52.2 73.4 0.90 57.1 42.9 

Standard error of the mean 0.01 1.6 3.9 0.00 1.0 0.6 

Standard Deviation 0.12 16.8 42.0 0.07 10.0 6.1 

Qn Scale Estimator 0.09 15.0 19.4 0.06 8.4 4.5 

 
NO3

--N (mg 

kg-1) 

NH4
+-N (mg 

kg-1) 
pH 

NO3
--N (mg 

kg-1) 

NH4
+-N (mg 

kg-1) 
pH 

Minimum 0.2 3.5 3.92 1.6 1.6 5.15 

Maximum 44.6 102.5 6.07 237.2 146.1 6.18 

Mean 5.3 16.2 4.93 14.3 9.7 5.70 

Median 2.0 11.4 4.93 6.8 3.1 5.72 

Standard error of the mean 0.7 1.3 0.04 2.8 2.3 0.02 

Standard Deviation 7.3 13.8 0.44 27.6 22.8 0.18 

Qn Scale Estimator 2.0 5.9 0.46 4.5 1.4 0.15 

 SOM (%) % TC % TN SOM (%) % TC % TN 

Minimum 8.7 5.34 0.41 9.8 4.14 0.46 

Maximum 36.4 17.40 1.14 14.7 7.24 0.76 

Mean 19.2 10.65 0.73 12.8 6.02 0.64 

Median 18.7 10.50 0.71 12.9 6.08 0.65 

Standard error of the mean 0.5 0.24 0.01 0.1 0.05 0.00 

Standard Deviation 4.9 2.60 0.16 1.0 0.53 0.05 

Qn Scale Estimator 4.5 2.58 0.16 0.9 0.50 0.05 

 
Slope 

(degrees) 

Elevation (m 

asl) 
CTI 

Slope 

(degrees) 

Elevation (m 

asl) 
CTI 

Minimum 8.2 252.3 2.5 3.5 152.8 2.0 

Maximum 22.8 342.0 12.1 8.7 167.9 9.7 

Mean 15.2 295.5 6.5 6.2 160.1 4.9 

Median 15.1 294.8 6.3 6.2 160.0 4.6 

Standard error of the mean 0.2 2.2 0.2 0.1 0.4 0.2 

Standard Deviation 2.5 23.1 1.9 1.1 3.8 2.1 

Qn Scale Estimator 2.2 22.2 1.9 1.1 4.0 2.1 

Descriptive statistics for TC:TN were as follows: 12.12, 19.26, 14.50, 14.46, 0.11, 1.23 and 1.24 (Extensive) and 8.44, 9.93, 9.33, 9.30, 0.02, 1233 
0.26 and 0.23 (Intensive) for the minimum, maximum, mean, median, standard error of the mean, standard deviation and Qn scale estimator, 1234 
respectively. 1235 
 1236 

 1237 

 1238 

 1239 

 1240 

 1241 

 1242 

 1243 

 1244 

 1245 

 1246 
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Table 2: Descriptive statistics of GHG fluxes (Extensive site n=115; Intensive site n=99). 1247 
 Extensive site Intensive site 

 N2O CO2 CH4 N2O CO2 CH4 

Minimum -9.43 6.19 -101.57 -3.12 4.97 -52.14 

Maximum 264.80 94.81 25.16 216.42 326.83 275.85 

Mean 19.53 31.24 -29.64 27.18 186.49 10.32 

Median 4.50 29.42 -28.03 19.17 200.54 0.31 

Standard error of the mean 4.10 1.04 2.50 2.84 5.45 4.50 

Standard Deviation 43.95 11.22 26.83 28.33 54.24 44.81 

Qn Scale Estimator 8.55 8.67 27.54 17.02 47.15 19.42 

Units were μg N2O-N m-2 h-1, mg CO2-C m-2 h-1 and μg CH4-C m-2 h-1, respectively.  1248 

 1249 
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Table 3: REML variogram parameters for N2O, CO2 and CH4, for input into EMLK.  1274 
 Extensive site Intensive site 

GHG/variogram 

parameter 

Nugget 
variance  

Structural 
variance 

Nugget 
effect 

Practical 
range(m) 

Nugget 
variance 

Structural 
variance 

Nugget 
effect 

Practical 
range(m) 

N2O * 0.825 0.220 0.79 240.0 0.494 0.576 0.46 82.5 

CO2 * 0.451 0.676 0.40 205.2 0.725 0.309 0.70 80.2 

CH4 * 0.882 0.117 0.88 63.8 0.744 0.305 0.71 84.7 

Data in normal scores transformed (*) form. The nugget effect is defined as c0/c0 + c1, where c0 is the nugget variance, and c1 is the structural 1275 
variance. Ideally, the nugget effect should be as small as possible for a good characterisation of spatial dependence. This table relates to 1276 
variograms plotted in Figs. 3A, B only. 1277 
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Table 4: Extensive site non-spatial (OLS) and (if applicable) spatial regression (REML) fits. 1298 
Response N2O * CO2 * CH4 

Estimator OLS REML OLS REML OLS REML 

Coefficients:       

Intercept 1.9245 - 12.81+++ 13.24+++ -191.6 - 

NO3
-N * 0.2860+++ - -0.02533 0.02883 9.732++ - 

NH4
+N * 0.02430 - 1.144++ 0.8687+ -26.42+ - 

SM * 0.3560 - 0.3670 -0.07761 46.71+ - 

pH -0.1256 - -0.3194 -0.2437 9.792 - 

BD -0.4593 - -0.2503 -0.6876 -21.00 - 

TN -0.4305 - 0.7161 0.6120 -15.51 - 

CNR 0.05336 - -0.1315 -0.1104 0.5481 - 

SOM -0.006213 - -0.02185 -0.01055 -1.401 - 

SLOP -0.03934 - -0.1145++ -0.08945+ 1.941 - 

ELEV 0.0007564 - -0.01569+++ -0.01443++ 0.08796 - 

CTI 0.01443 - -0.04843 -0.04758 -1.058 - 

VT (Grassland) -0.2676++ - 0.3220 0.3000 2.017 - 

VT (Marsh) -2.603+++ - -0.9276 -0.9824 51.80 - 

Variogram parameters:       

Nugget variance - - - 0.204^ - - 

Structural variance - - - 0.400^ - - 

Practical range (m) - - - 71.6^ - - 

OLS/REML fit statistics:     -  

R2 0.57 - 0.34 0.34 0.25 - 

AIC - - 315.7 313.6 - - 

BIC - - 357.5 358.0 - - 
+++, ++ and + indicate coefficient significantly different to zero at p = 0.001, 0.01 and 0.05 levels, respectively. (*) denotes Box-Cox transformed 1299 
data. All coefficient estimates given to four significant figures. ^ Variogram parameters were not assessed for significance. 1300 
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Table 5: Intensive site non-spatial (OLS) and (if applicable) spatial regression (REML) fits. 1319 
Response N2O * CO2 CH4 * 

Estimator OLS REML OLS REML OLS REML 

Coefficients:       

Intercept -324.0 -433.8+ -25660+++ - 125.8 - 

NO3
-N * 1.652+ 1.016 3.265 - 0.9244 - 

NH4
+N * 0.3541 1.396 83.77 - -1.094 - 

SM * 454.4+ 597.6++ 34160+++ - -169.8 - 

pH 0.3193 0.4253 25.68 - -0.0005752 - 

BD 4.729 6.728++ 69.59 - -1.232 - 

TN 4.492 4.373 345.4 - 1.719 - 

CNR 0.6829 0.5488 22.08 - 1.088 - 

SOM 0.08168 -0.0338 -9.172 - -0.1882 - 

SLOP 0.2538 0.0431 8.243 - 0.3578 - 

ELEV -0.2075++ -0.1812 -2.590 - -0.01139 - 

CTI -0.02571 -0.0711 -1.516 - -0.06848 - 

OS (1 = inside) 0.5122 0.6069 -5.548 - 0.5891 - 

Variogram parameters:       

Nugget variance - 1.16^ - - - - 

Structural variance - 1.55^ - - - - 

Practical range (m) - 97.7^ - - - - 

OLS/REML fit statistics:      - 

R2 0.27 0.27 0.31 - 0.10 - 

AIC 360.4 354.2 - - - - 

BIC 397.2 396.0 - - - - 
+++, ++ and + indicate coefficient significantly different to zero at p = 0.001, 0.01 and 0.05 levels, respectively. (*) denotes Box-Cox transformed 1320 
data. All coefficient estimates given to four significant figures. ^ Variogram parameters were not assessed for significance. 1321 
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Supplementary Information 1322 

 1323 

Photographs of the sites: 1324 

 1325 

Supplementary Figure 1. Photograph of the Extensive site taken from the opposite hillside. 1326 

The darker areas are the bracken stands.  1327 

 1328 
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 1329 

Supplementary Figure 2. Photograph of sheep grazing on the Extensive site.  1330 
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 1331 

Supplementary Figure 3. Arial photograph of the Intensive site. Dairy North is the rectangular 1332 

field in the centre of the image. (Downloaded from the NWFP map site).  1333 

 1334 

 1335 

Supplementary Figure 4. Photograph of the Intensive site with static chambers in position.  1336 

 1337 
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Static chamber designs: 1338 

The static chambers used at the Extensive site were made from polyvinyl chloride (PVC) pipe 1339 

sections (15 cm internal diameter; 25 cm height). Chamber lids (end caps) were manufactured 1340 

to fit the PVC pipe diameter and modified to include a silicone rubber septum (Suba-Seal®; 1341 

Sigma, Gillingham, UK) to allow for gas sampling. The end caps pushed into the PVC pipe 1342 

section forming a seal with gasket foam tape around the upper edge. Cuboid static chambers 1343 

(40 cm × 40 cm × 25 cm height) were employed at the Intensive site (Cardenas et al., 2016). 1344 

Chambers (without their lids) were inserted ca. 5 cm depth into the soil at each sampling point 1345 

7-9 days prior to gas sampling at the Extensive site and to a depth of ca. 5 cm or greater (i.e. 1346 

sufficient to produce an adequate seal) with the aid of a turf-cutter on the day before sampling 1347 

at the Intensive site. 1348 

 1349 

Gas sampling strategies: 1350 

In order to sample the fields rapidly, minimising time differences between sampling points, 1351 

sampling was conducted by teams of trained researchers (Extensive site, a team of five, 1352 

sampling 22-24 points each; Intensive site, a team of four, sampling 24-25 points each) 1353 

following pre-planned sampling routes and standardised sampling protocols. 1354 

At the Extensive site, the team started by walking their individual assigned routes and placing 1355 

chamber lids and gas sample vials next to each chamber. Upon all returning to their starting 1356 

sample points, GHG sampling commenced (taking place between the hours of 10:40 am and 1357 

12:40 pm). Chamber headspaces were mixed by three syringe pumps prior to withdrawing a 1358 

sample (25 ml) at 0 min and 60 min after chamber lid closure. Supplementary Figure 5 shows 1359 

an example of a linear increase in headspace N2O concentrations measured at the Extensive 1360 

site in autumn 2016. Samples were injected into pre-evacuated 20 ml glass vials. Vials were 1361 

over-pressurised as a quality control measure, to ensure sample vials had held their seal, (i.e. 1362 

vials were returned to atmospheric pressure prior to analysis by inserting a syringe and needle, 1363 

if the syringe plunger pushed back 5 ml it indicated that the vial had held its seal). 1364 

At the Intensive site, samples (20 – 22 ml) were withdrawn from the chambers 40 min after lid 1365 

closure and injected into pre-evacuated 20 ml glass vials. Chamber baseline (0 min) 1366 

concentrations were approximated by background measurements (n = 10, five before chamber 1367 

sampling and five after) taken by manually sampling the atmosphere 1 m above the ground 1368 

around the field (Chadwick et al., 2014). Supplementary Figure 6 shows a few examples of 1369 
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linear increases in headspace N2O concentrations measured on different days at the Intensive 1370 

site in summer 2013. 1371 

 1372 

Supplementary Figure 5. Example of linear increase in headspace N2O concentrations 1373 

measured at the Extensive site in autumn 2016.  1374 

 1375 

 1376 

Supplementary Figure 6. Examples of linear increases in headspace N2O concentrations 1377 

measured on different days at the Intensive site in summer 2013.  1378 

 1379 

Determination of soil parameters: 1380 

Bulk Density and Soil % WFPS 1381 

y = 1.7851x + 337.36
R² = 0.995
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Bulk densities were determined by weighing oven-dried (105 °C; 24 h) and sieved (< 2 mm) 1382 

soils and accounting for stone and vegetation weight (Extensive site) or volume (Intensive site). 1383 

Soil % WFPS was calculated by dividing the volumetric water content by the soil porosity. 1384 

Soil porosity is a function of particle density, which at the Extensive site was determined as a 1385 

weighted average of the fractions of organic and mineral material, with assumed particle 1386 

densities of 1.4 g cm-3 and 2.65 g cm-3, respectively (Rowell, 1994) due to the higher SOM 1387 

contents at this site. At the Intensive site a particle density of 2.65 g cm-3 was assumed.  1388 

 1389 

Soil extractions and extractable nitrate and ammonium analyses 1390 

Soil samples for other analyses were homogenised by hand and large roots and stones removed. 1391 

Extensive site soil samples were extracted with 0.5 M K2SO4 (5 g soil to 25 ml solution) by 1392 

shaking for 30 min (200 rev min-1), centrifuging (10 000 g) and recovering the supernatant. 1393 

Intensive site soil samples were sieved to 6 mm prior to extraction with 2 M KCl (50 g soil to 1394 

100 ml extractant), by shaking for 60 min (150 strokes min-1) and filtering extracts through 1395 

rinsed high purity filter papers. Both are standard methods, which are considered comparable 1396 

(Jones and Willett, 2006).  1397 

Extensive site soil extracts were analysed for extractable-NO3
- and NH4

+ via the colorimetric 1398 

methods of Miranda et al. (2001) and Mulvaney (1996) using a microplate reader. Intensive 1399 

site soil extracts were analysed using an Aquakem 250 (Thermo Fisher Scientific Ltd.), a 1400 

discrete photometric analyser. Extractable total oxidised nitrogen concentrations were 1401 

determined as nitrite (NO2
-) via reduction of NO3

- to NO2
- by vanadium chloride and a version 1402 

of the Griess reaction. As soil NO2
- concentrations are generally very low, measured extractable 1403 

total oxidised nitrogen concentrations have been assumed to be equivalent to extractable soil 1404 

NO3
- concentrations. Extractable NH4

+ concentrations were determined by reaction to an 1405 

indophenol via a modified version of the Berthelot reaction (Krom, 1980; Searle, 1984). 1406 

 1407 

Soil pH 1408 

Soil pH was measured on fresh Extensive site soils (5 g to 12.5 ml distilled water; briefly 1409 

shaken and allowed to settle) using standard electrodes. For the Intensive site, soil pH was 1410 

determined on 10 ml air-dried, ground and sieved (< 2 mm) soil shaken (15 min) in 25 ml 1411 

deionised water (MAFF 427, 1986) using a Jenway 3320 pH meter (Jenway Ltd., Felsted, 1412 

Essex, UK). 1413 
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 1414 

Soil moisture and soil organic matter 1415 

Gravimetric soil moisture contents of all soil samples (ca. 4 g fresh soil for the Extensive site, 1416 

20 g for the Intensive site) were determined by mass loss during oven drying (105 °C; 24 h). 1417 

Soil organic matter contents were determined via loss-on-ignition (ca. 2 g oven-dried soil for 1418 

the Extensive site; 10 g for the Intensive site) in a muffle furnace (450 °C, 16 h for the 1419 

Extensive site (Ball, 1964); 400 °C, overnight for the Intensive site (Davies, 1974; Ben-Dor 1420 

and Banin, 1989; Schulte et al., 1991)). 1421 

 1422 

Total C and N analyses 1423 

For the Extensive site, total soil C and soil N content were determined on oven-dried and 1424 

ground soils using a TruSpec® Analyzer (Leco Corp., St. Joseph, MI). For the Intensive site, 1425 

total soil C and N content were determined on sieved (< 2 mm), oven-dried (105 °C, 24 h) and 1426 

ground soils using a Carlo Erba NA2000 elemental analyser (Fisons instruments) coupled to a 1427 

PDZ Europa 20-22 isotope ratio mass spectrometer (Sercon Ltd., Cheshire, UK). Weighed 1428 

samples (to achieve 8-3500 µg C and 0.5-215 µg N), sealed in tin capsules, were combusted in 1429 

a chromium oxide packed tube under oxygen (O2) and products carried in helium (He) over 1430 

heated copper wires to reduce N oxides to N2 and remove excess O2. Water was removed by a 1431 

magnesium perchlorate trap and N2 and CO2 were chromatographically separated and 1432 

quantified in the mass spectrometer. 1433 

 1434 

Determination of gas parameters: 1435 

Soil headspace N2O, CO2 and CH4, concentrations were determined using the same Perkin 1436 

Elmer Clarus 580 Gas Chromatograph, served with a Turbo Matrix 110 auto-sampler (Perkin 1437 

Elmer Inc., Beverly, CT) for samples from both sites. The gas samples passed through two 1438 

Elite-Q mega bore columns via a split injector, with one connected to an electron capture 1439 

detector at 375 °C for N2O measurement and the other to a flame ionisation detector for CO2 1440 

and CH4 determination. The oven temperature of the gas chromatograph was maintained at 1441 

50 °C and oxygen free nitrogen (OFN; BOC, UK) was used as the carrier gas. Soil GHG fluxes 1442 

were calculated using the increase in headspace N2O, CO2 and CH4 concentrations between 1443 

0 min and 60 min (Extensive) or 0 min and 40 min (Intensive). Intensive site gas samples were 1444 
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run within 24 h of collection. 1445 

 1446 

Topographic data: 1447 

Elevation, aspect and slope data were calculated from 1 m LiDAR grids using the Spatial 1448 

Analyst extension within ArcMap 10.4.1, where values for the sample point locations were 1449 

obtained using the ArcMap Extraction toolset. At the Extensive site, the 1 m LiDAR grid was 1450 

created by the Environment Agency Geomatics group and subsequently distributed by Natural 1451 

Resources Wales. At the Intensive site, the 1 m LiDAR grid was created by the Tellus South 1452 

West project. 1453 

 1454 

Empirical Maximum Likelihood Kriging (EMLK): 1455 

EMLK is a sophisticated kriging algorithm where more efficient results (over a standard 1456 

kriging algorithm) are obtained by solving the prediction problem in the Gaussian domain via 1457 

a normal scores transform of the sample data. A Bayesian component in EMLK ensures 1458 

conditionally unbiased results where a posterior predictive distribution is found at all target 1459 

locations s (in this study, a grid). For a variable z, the mean of the posterior distribution is taken 1460 

as the EMLK prediction �̂�𝐸𝑀𝐿𝐾(s) and the variance of the posterior distribution 𝜎2𝐸𝑀𝐿𝐾(s) can 1461 

be used to assess the uncertainty of �̂�𝐸𝑀𝐿𝐾(s). In all six study kriging runs, isotropic exponential 1462 

variogram models (e.g. Chilès and Delfiner, 1999) were chosen to characterise the spatial 1463 

dependence in the normal scores data sets of the N2O, CO2 and CH4 fluxes. EMLK was chosen 1464 

to predict the GHG data, in so much it is: (i) advocated for small data sets; (ii) advocated for 1465 

non-normal data sets, including those with observations below the limit of detection; (iii) able 1466 

(via its Bayesian construction) to provide a more realistic approach to prediction uncertainty 1467 

than that found in many standard kriging algorithms (e.g. see discussions given in Harris et al., 1468 

2010) and, in turn, can provide reliable estimates of risk for exceeding a given GHG emission 1469 

threshold; and (iv) it is open-source (FORTRAN code, EMLK2D.FOR). Applications of 1470 

EMLK to soil data can be found in Pardo-Igúzquiza and Chica-Olmo (2005); Radu et al. 1471 

(2013); Glennon et al. (2014). 1472 
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