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A B S T R A C T   

In agriculture, variations in soil nutrients and water are driven by soil properties, topography and agronomic 
practice that typically interact and change over space and time. Agroecosystem models need to capture these 
sources in variation, where this study’s first objective was to assess the potential of using measured saturated soil 
hydraulic conductivity (ksat) to improve the simulation accuracy of water and soil mineral nitrogen content from 
the SPACSYS model for a lowland UK grazed field (6.34 ha). As a second objective, SPACSYS was run at the field 
level and at the within-field level to provide a further comparison of simulation accuracy. For model calibration, 
ksat was measured at 27 points at 0–10, 10–20 and 20–30 cm soil depths on a 50 × 50 m grid. For model 
validation, moisture and mineral nitrogen content in the same three soil layers, at 10 adjacent points on a 25 ×
25 m grid, were measured monthly from May 2018 to April 2019, together with in situ field level water flux 
measurement. Measured ksat coupled with the within-field setting allowed a novel spatial investigation of 
SPACSYS performance. Measured ksat (as opposed to unmeasured, default values) was found to improve water 
flux simulation, but only slightly so, which was considered in part due to a high positive skew in the measured 
ksat coupled with no clear spatial structure. Field level and within-field specifications simulated soil moisture 
with equal accuracy, while simulation accuracy of soil ammonium and nitrate improved via the within-field 
setting; for water flux simulation, the field level setting should be preferred. Results provide further evidence 
for when a field level setting should be preferred to a within-field setting and vice-versa.   

1. Introduction 

In agriculture, the spatiotemporal variation of soil nutrients and 
water is influenced by interacting factors such as soil properties, terrain 
characteristics and agronomic practice (Mohanty et al., 2000). The 
water potential gradient drives water fluxes, and thus affects soil 
nutrient cycling, and plant growth and development (Alletto and 
Coquet, 2009; Herbst et al., 2021; Kreiselmeier et al., 2020). Similarly, 
biological dynamics in the land management system can induce fluc-
tuations of soil water content (Liu et al., 2018). Because of the 
complexity of the interactions between soil water, nutrient, plant and 
hydrology, understanding and accurately quantifying processes for 
water redistribution and nutrient cycling in the soil, plant and 

atmospheric domains is an on-going challenge. Furthermore, charac-
terization of these processes at an appropriate spatial and temporal scale 
is essential to accurately quantify the effects on ecosystem management 
(Centeno et al., 2020; Rathjens and Oppelt, 2012; Rienzner and Gan-
dolfi, 2014). However, difficulties arise in measuring such dynamic 
processes, as measurement, particularly at the required spatial resolu-
tion, is often costly and time consuming (West et al., 2010; Zhang et al., 
2014; 2015). As an alternative, process-based models can be applied that 
have a spatial component, where a ‘grid-to-grid’ methodology is 
employed that divides an object area into a finite number of cells to form 
a grid structure on which all of the operations are implemented indi-
vidually (Rathjens et al., 2015; Zhang et al., 2014; 2017). 

The SPACSYS (Soil-Plant-Atmosphere Continuum SYStem) model 
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(Wu et al., 2007) has been widely adopted to simulate plant growth, soil 
carbon (C), nitrogen (N) and phosphorus (P) cycling, water redistribu-
tion at the field scale - either for arable land (Bingham and Wu, 2011; Liu 
et al., 2020; Wu et al., 2019; Zhang et al., 2016) or for grassland (Li et al., 
2017; Wu et al., 2015; 2016), with a daily time step. SPACSYS has been 
recently spatially-adapted to capture within-field processes with the 
‘grid-to-grid’ approach where the field was overlaid with a representa-
tive grid to consider lateral nutrient and water exchange between 
adjacent grid cells, and where it was shown to improve simulation ac-
curacy over the default field scale (‘single-point’) version (Liu et al., 
2018). However, in Liu et al., (2018), the soil hydro-physical properties 
were naively taken at the field level only, i.e., treated uniformly across 
the study field with default, unmeasured information. 

Soil hydro-physical properties are essential in understanding key 
processes of the hydrological cycle and in turn, can ensure efficient 
management of water resources (Beskow et al., 2016; Lim et al., 2020; 
Wösten et al., 2001). Saturated soil hydraulic conductivity (ksat) is one 
such measure (Alletto and Coquet, 2009; Li et al., 2017; Nikodem et al., 
2021). However spatially, ksat typically exhibits high variability (Baia-
monte et al., 2017; She et al., 2017), driven by variation in soil texture 
and pore space geometry, topography and geology (Baiamonte et al., 
2017; Centeno et al., 2020; Ming et al., 2020; Papanicolaou et al., 2015), 
which in turn, influences land–atmosphere interaction, plant growth, 
surface runoff and nutrient movement. 

Thus, directly building upon the previous implementation of the 
‘grid-to-grid’ method with SPACSYS (Liu et al., 2018), this study focused 
on simulations for soil moisture, water fluxes and soil mineral N at the 
same grid resolution of 25 × 25 m but now across a much larger grazed 
field of the same research farm in southwest England, UK. This new 
study was also for a different grass variety, had a richer model validation 
dataset with different processes, and had measured ksat (rather than a 
default value) for model calibration. In summary, the key objective was 
to simulate nutrient cycling more accurately than that found using de-
faults at field level by considering: 1) within-field measurements of ksat 
and 2) within-field water pathways via the ‘grid-to-grid’ model 
formulation. 

2. Materials and methods 

2.1. The SPACSYS model 

Detailed descriptions of SPACSYS are given elsewhere (Wu, 2019; 
Wu et al., 2007). Briefly, the model includes a plant growth and devel-
opment component, N, C and P cycling components, a soil water 
component, together with a heat transfer component. Core processes 
concerning a plant are plant development, assimilation, respiration, 
nutrient and water uptake, and the partition of photosynthate and nu-
trients, plus N fixation for legume plants, and root growth and devel-
opment. N cycling coupled with C cycling covers the transformation 
processes for organic matter and inorganic N including mineralization, 
nitrification and denitrification. The Richards equation for water po-
tential and the Fourier’s equation for temperature are used to simulate 
water and heat fluxes. In this study, we only focus on water redistribu-
tion and N cycling. 

Commonly, SPACSYS is applied at the field scale (single-point 
setting) where processes are assumed to be uniformly distributed across 
the whole field, and where the means of observed data represent the 
field. To account for spatial variation of soil water and nutrients within a 
field, SPACSYS provides a sub-field (grid-to-grid or ‘multiple-point’) 
setting that divides a field into grid cells (or square pixels) with flexible 
length that consider the topographical inter-connections of the field’s 
water flow pathways. At each time step, the model runs simulations that 
traverse all grid cells starting from those that have no upstream linkage. 
Water and nutrient flows out of a grid cell via runoff and drainage are 
passed to its recipient grid cell as inputs before the simulation for the 
grid cell starts. Apart from exchanges in water and nutrients with the 

linked grid cells, each grid cell is treated as an independent entity with 
assigned soil physical and chemical properties, including ksat and man-
agement. Such detailed within-field characterisation has the potential to 
improve model performance over the default (single-point) version 
provided data are available at the grid cell resolution. 

2.2. Study site 

The study field is located on the North Wyke Farm Platform (NWFP) 
which is a farm-scale experiment situated at the North Wyke campus of 
Rothamsted Research in southwest England (50◦46′12′′N, 3◦54′05′′W). 
The soils belong predominantly to two similar series: Hallsworth (Dys-
tric Gleysol) and Halstow (Gleyic Cambisol), which comprise a slightly 
stony clay loam topsoil (ca. 36% clay) that overlies a mottled stony clay 
(ca. 60% clay), derived from underlying Carboniferous culm rocks 
(Harrod and Hogan, 2008). From 1982 to 2019, the average annual 
precipitation at North Wyke was 1031 mm (minimum and maximum 
values of 705 and 1361 mm, respectively) together with average mini-
mum and maximum daily temperatures of 6.8 and 13.5 

◦

C, respectively. 
The average annual potential evapotranspiration from 2015 to 2019 was 
575 mm (Stanley et al., 2021). 

The 63 ha site was established in 2010 and consists of 15 hydro-
logically isolated sub-catchments across three 21 ha small farms 
(farmlets) with five sub-catchments in each (Orr et al., 2016). The 
platform routinely monitors livestock and silage performance together 
with records of farm management events. These data are coupled with 
primary collections for weather elements, soil moisture, water flux and 
chemistry, and greenhouse gases. To calibrate and validate SPACSYS, 
measurements for soil water and soil mineral N content were conducted 
in Great Field of the re-seeded monoculture farmlet in 2018/19 (re- 
seeded from permanent pasture in 2013). This sub-catchment (6.34 ha) 
slopes downwards from an east to west direction, to a water flume in its 
west corner, where water flux from the sub-catchment is measured at a 
15 min interval. For this study, the sub-catchment was virtually divided 
into 107 grid cells resulting from a 25 × 25 m grid where grid cell 
linkages were based on water potential moving direction, so the grid-to- 
grid approach could be applied. It was assumed that each 25 × 25 m grid 
cell has eight possible drainage flow directions and where each grid cell 
only has up to one downstream grid cell. This resulted in eleven hy-
drological flow lines as depicted in Fig. 1. 

2.3. Model calibration: Soil hydraulic conductivity measurements 

For model calibration, ksat was measured by the falling head tech-
nique. Twenty-seven points at 0–10, 10–20 and 20–30 cm soil depths 
were measured on a 50 × 50 m grid across the whole of Great Field over 
the period between March to July 2019 (Fig. 1). Undisturbed soil sam-
ples were taken using a 250 ml volume steel cylinder with 8 cm inner 
diameter and 5 cm height (cores were taken in the middle of each soil 
layer). The ksat measurement was performed using a KSAT® device 
(METER Group AG, Munich, Germany). Measured ksat for the three soil 
depths are shown in Fig. 2. For all depths, the ksat measurements were 
highly positively skewed and with no clear spatial structure. At each of 
the three soil depths, the measured ksat data were subsequently inter-
polated to the 25 × 25 m simulation grids (Fig. 1) using inverse distance 
weighting (IDW) (via functionality in ArcGIS version 10.2, www.esri. 
com). Thus, for the grid-to-grid method, ksat datasets are found for 
each soil layer, each consisting of 107 interpolated ksat values covering 
all 25 m grid cells. 

2.4. Model validation: Soil moisture and nitrogen measurements 

Soil water (soil weight fraction), soil ammonium (NH4
+-N) and ni-

trate (NO3
–-N) contents at depths of 0–10, 10–20 and 20–30 cm at ten 

grid cell locations (25 × 25 m grid, highlighted by red grid cells in Fig. 1) 
along three downstream lines (highlighted by green lines in Fig. 1) were 
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measured monthly from May 2018 to April 2019. For the soil mea-
surements, roughly 100 g of soil from each soil layer was taken and then 
sieved over a 2 mm mesh to remove roots and stones. A quarter of the 
sample was put into a wide-mouth 500 ml plastic bottle and 50 ml KCL 
extracts were added. The sealed bottle was then shaken on a recipro-
cating shaker for 1 h at a nominal 150 S per minute. The filtered solution 
from the bottle was used to measure N contents. The rest of the sampled 
soil was weighted and dried for over 8 h at 105 ◦C, and then weighed 
again to calculate soil moisture. 

2.5. Simulation design and SPACSYS parameterisation 

For calibrating SPACSYS, input parameters on soil physical proper-
ties of the three soil types in Great Field (Fig. 1), including the default 
ksat value, were estimated by the pedo-transfer function based on soil 

texture and soil organic matter content (Cosby et al., 1984). For vali-
dating SPACSYS, measured soil moisture, NH4

+-N and NO3
–-N contents at 

the ten grid cells between May 2018 and April 2019 were used, together 
with water flux measurements from January 2011 to December 2019. 
Four model simulation scenarios were defined as follows:  

1) a single simulation for the field (single-point) with a single ksat value 
in a soil layer taken as the mean of the estimated ksat values in the 
layer for the three soil types. This is unmeasured ksat and referred to 
as the default ksat value thereafter;  

2) a single simulation using the single-point method with a single ksat 
value in a soil layer taken as the mean of the measured ksat in the 
layer;  

3) multiple simulations (at 107 grid cells) using the grid-to-grid method 
with the default ksat value as used in scenario 1 for all grid cells; 

Fig. 1. Elevation, soil type and water runoff collection point (flume) in Great Field with 27 measurement points for ksat (on a 50 × 50 m grid); 10 measurement points 
for soil moisture, ammonium and nitrate (all on a 25 × 25 m grid); and 107 grid-cell SPACSYS simulation points (also on the 25 × 25 m grid) with grid cells labelled 
by row moving in a southward manner (A1 to L8). Water potential moving direction shown by green lines, three of which traverse the soil moisture and nutrient 
measurements. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Measured soil saturated hydraulic conductivity (ksat, cm d-1) sampled on a 50 m grid at (a) 0–10 cm, (b) 10–20 cm (b) and (c) 20–30 cm soil depths in Great 
Field. Maps are shown with the soil series. 
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4) multiple simulations using the grid-to-grid method with ksat values 
for each of the 107 grid cells. For brevity, this scenario was still 
referred to as using the measured ksat values given that 27 of the 107 
ksat interpolations were still the same as those measured, as IDW was 
used in an exact interpolator form (i.e., IDW honoured existing 
measurements). 

Scenarios 1 and 3 relate to the typical situation when no measure-
ments of ksat exist. When the simulations using the single-point method 
are compared with the measured data, it was assumed that mean soil 
moisture, and NH4

+-N and NO3
–-N contents measured over the ten grid 

cells at a time are representative of the entire field, at any given time. For 
the grid-to-grid method, simulated water fluxes from each flow line are 
summed to represent the water fluxes from the field. To compare with 
the single measured water flow at the flume, at each time step, soil water 
and soil nutrients out of a grid cell through surface runoff and drainage 
flow are passed to its recipient grid cell as inputs. All other aspects of 
model parameterisation and initial conditions were the same as that 
used in previous SPACSYS studies on the NWFP (Li et al., 2017; Liu et al., 
2018). 

2.6. Statistical analysis for model performance 

The following statistical indices were used to assess SPACSYS per-
formance (Smith et al., 1997): (a) the root mean squared error (RMSE) 
that reflects the average size of the error between measured and simu-
lated data (for an accurate simulation this should tend to zero); (b) 
modelling efficiency (EF, the closer to unity, the better) that quantifies 
the accuracy and confidence of the simulation; (c) the coefficient of 
determination (CD, the closer to unity, the better) that describes the 
goodness of fit between measured and simulated data; (d) the correla-
tion coefficient (r) between measured and simulated data which should 
tend to unity; (e) the relative error (RE); and (f) the mean error (ME). 
Here RE and ME are used to assess bias (tendencies for over- and under- 
prediction) in the simulations as they reflect differences between 
measured and simulated data. 

3. Results 

3.1. Soil moisture 

The spatiotemporal variation in the measured soil moisture in the 
three soil layers is shown in Fig. 3. The data exhibited moderate levels of 
positive skew at all three depths. As expected, soil moisture varied across 
months and by depth. In summer (June–August), the soil was dry in each 

measured layer. From November to May, soil moisture in the topsoil was 
relatively high, while throughout the year, the bottom layer showed 
persistent lower water content. There were no apparent spatial patterns 
along the three downstream lines that traverse the 10 measured grid 
cells. 

Comparisons between simulated and measured soil moisture are 
shown in Fig. 4 and the corresponding performance indices are pre-
sented in Table 1. Temporal trends of the measured data were broadly 
reproduced by the simulations for all four scenarios, especially when the 
soil was getting drier. However, large discrepancies between measured 
and simulated soil moisture occurred in winter, commonly the wettest 
period. Visually, the grid-to-grid simulations appear to better capture 
the fluctuations of measured soil moisture at each soil depth compared 
with the single-point simulation although the peaks of the measured soil 
moisture were somewhat under-predicted by the simulations. 

The performance indices, however, suggested little difference in soil 
moisture simulations between single-point and grid-to-grid modes and 
regardless of whether default ksat (scenarios 1 and 3) or measured ksat 
(scenarios 2 and 4) were used. On average for each soil depth, the single- 
point simulations performed similarly to that from grid cells H6, J5 and 
K7 (Fig. 1) in the grid-to-grid simulations, where these cells were closest 
to the locations in the last third grid cell of each water flux direction 
(Fig. 1). SPACSYS tended to under-predict soil moisture for all four 
simulation scenarios across all periods and depths, as RE and ME were 
always positive, where scenario 1 consistently resulted in the smallest 
prediction bias. As all r values > 0.73, simulation under any scenario 
showed reasonably accurate prediction in soil moisture, with the 
weakest performance in the lower layer (the smallest r coupled with CD 
values > 4). 

3.2. Soil ammonium content 

Spatiotemporal variation in soil NH4
+-N content across the ten 

sampled grid cells at different depths in the logarithmic form are shown 
in Fig. 5. Relatively high NH4

+-N content was often found in the upper 
grid cells (K6, K7) in each soil layer. Relatively high NH4

+-N was also 
found in June, July and March, especially in the top layer, likely coin-
ciding with recent fertilizations (see Fig. 6, below). Overall, there was no 
clear change in soil NH4

+-N along the downstream water flux direction 
lines. The raw NH4

+-N data ranged from a minimum of 0.01 mg N kg− 1 

soil in October and November 2018 to a maximum of 129.5 mg N kg− 1 

soil in March 2019 (Fig. A1). 
Comparisons between simulated and measured soil NH4

+-N are 
shown in Fig. 6 and the corresponding performance indices are pre-
sented in Table 2. As with soil moisture, the temporal trends in measured 

Fig. 3. Spatiotemporal variation in soil moisture at depths of 0–10 cm (top row, ‘T’), 10–20 cm (middle row, ‘M’) and 20–30 cm (bottom row, ‘B’) across the ten grid 
cells highlighted in Fig. 1 (labelled H5, H6, I5, I6, I7, J5, J6, J7, K6 and K7). Data measured monthly from May 2018 to April 2019. 
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soil NH4
+-N were broadly reproduced with the simulations, often picking 

up key step changes over time, especially in the topsoil layer. Perfor-
mance indices clearly indicate the grid-to-grid simulations to better 
represent the measured soil NH4

+-N than the single-point simulations, 
but in the topsoil only (for example, r values of 0.74 to 0.76 for grid-to- 
grid rather than 0.23 to 0.28 for single point). However, simulated NH4

+- 
N in the grid cells of the middle downstream water flux direction line 
(H5, I6 and J6 from Fig. 1) poorly matched the measured values (Fig. 6). 
On viewing the performance indices, all simulation scenarios performed 
poorly at the middle and bottom soil layers as highlighted with negative 
r values, but where grid-to-grid simulations reduced bias over single- 

point simulations (as they lowered ME and RE). The use of measured 
(scenarios 2 and 4) rather than default ksat values (scenarios 1 and 3) did 
not provide an improvement in the simulations for any scenario. 

3.3. Soil nitrate content 

Spatiotemporal variation in soil NO3
–-N content over the ten sample 

grid cells for the three depths in the logarithmic form are shown in 
Fig. 7. Clearly, soil NO3

–-N was relatively high in the topsoil throughout 
the year, but where differences were weaker in September, October and 
November (as for these months, soil NO3

–-N was broadly similar through 
the layers). The raw NO3

–-N data ranged from a minimum of 0.05 mg N 
kg− 1 soil in May and June 2018 to a maximum of 106.9 mg N kg− 1 soil in 
March 2019 (Fig. A2). 

Comparisons between simulated and measured soil NO3
–-N are shown 

in Fig. 8 and the corresponding performance indices are presented in 
Table 3. Again, the measured temporal trends were broadly reproduced 
with the simulations. It appears that grid-to-grid simulations capture 
seasonal fluctuations much better than those from the single-point 
method, although the peak between September and October 2018 was 
only captured with the single-point method. 

Similar to soil NH4
+-N, the performance indices indicate the grid-to- 

grid simulations better represent measured soil NO3
–-N than the single- 

point simulations, especially in the topsoil layer (for example, r values 
of 0.81 to 0.84 for grid-to-grid rather than 0.22 to 0.26 for the single 
point). For the middle and bottom soil layers, there was little to choose 
between any of the four modelling scenarios with respect to simulation 
accuracy. Again, the use of measured rather than default ksat values did 
not improve simulation accuracy. 

3.4. Water fluxes 

Simulated water fluxes were visually compared with measured fluxes 
over the nine-year period between 2011 and 2019, as shown in Fig. 9. As 
indicted by the performance indices (Table 4), the single-point simula-
tion using the measured ksat value was the most accurate (lowest RMSE 
and strongest r values) with relatively small bias (smallest RE and ME 
values), then that using the default ksat value. Unlike the results above, 
the grid-to-grid simulations performed poorly in comparison to the 
single-point simulations. 

Fig. 4. Temporal comparison of measured (points) and simulated (lines) soil moisture for the single-point simulation (scenarios 1 and 2 with default and measured 
ksat, respectively) and grid-to-grid simulations (scenarios 3 and 4 with default and measured ksat, respectively) at depths of 0–10 cm (Top), 10–20 cm (Middle), 20–30 
cm (Bottom) from May 2018 to April 2019. The x-axes are the same for all the grids as the single-point. Scenarios with the default ksat are given with a red unbroken 
line, while those with measured ksat are given with a blue dashed line. Grid-to-grid simulations are given at each of the ten grid cells highlighted in Fig. 1 (labelled 
H5, H6, I5, I6, I7, J5, J6, J7, K6 and K7). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Statistical performance indices for soil moisture at soil depths of 0–10 (Top), 10 
–20 (Middle) and 20–30 cm (Bottom) for the single-point and grid-to-grid 
simulation scenarios with default and measured ksat.  

Soil 
layer 

Index Single-point (n = 12) Grid-to-grid (n = 120) 

Scenario 1 
default ksat 

Scenario 2 
measured ksat 

Scenario 
3 
default 
ksat 

Scenario 4 
measured 
ksat 

Top RMSE  0.25  0.30  0.27  0.27 
EF  0.54  0.35  0.46  0.46 
CD  1.03  1.29  1.20  1.20 
r  0.78  0.75  0.78  0.78 
ME  0.02  0.06  0.05  0.05 
RE  6.95  16.03  13.59  13.36 

Middle RMSE  0.20  0.23  0.20  0.20 
EF  0.62  0.50  0.61  0.61 
CD  1.51  2.22  1.81  1.81 
r  0.79  0.77  0.79  0.79 
ME  0.00  0.03  0.01  0.01 
RE  0.65  9.23  4.04  3.94 

Bottom RMSE  0.23  0.26  0.23  0.23 
EF  0.46  0.35  0.47  0.47 
CD  5.10  8.91  4.19  4.18 
r  0.74  0.73  0.73  0.73 
ME  0.00  0.01  0.00  0.00 
RE  0.07  5.17  1.62  1.59 

Note: RMSE: the root mean squared error; EF: modelling efficiency; CD: the 
coefficient of determination; r: the correlation coefficient; RE: the relative error 
and ME: the mean error. 
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4. Discussion 

4.1. Characteristics of measured ksat 

Clearly, ksat is a key input parameter for any process-based hydro-
logical model. However, this study’s largely null results tend to reflect its 
highly variable nature with ksat values changing markedly over space. 
High positively skewed distributions of measured ksat had no clear 
spatial structure, where their empirical variograms tended to random 
variation (not shown) for each soil layer. This is in agreement with 
existing work regardless of the measurement methodology, geograph-
ical location, land use, soil type and scale (Centeno et al., 2020; Papa-
nicolaou et al., 2015; She et al., 2017). As a soil hydro-physical variable, 
ksat typically responds to changes in topography (e.g., elevation and 
slope) and small-scale changes in soil macroporosity (Centeno et al., 
2020; She et al., 2017), which is reflected in its highly localised nature. 
Given such localised properties of ksat, it was unsurprising that only for 
the simulation of water flux, a field scale process, did the use of 
measured ksat hold any promise (scenario 2). 

Further, for scenario 4 which was never considered as the best sce-
nario, the IDW interpolation of ksat to the 25 m grid would have been 
somewhat compromised by the underlying localised properties of 
measured ksat in the first place. In hindsight, measuring ksat, at the same 
scale of the simulations (i.e., the 25 m grid) may have been a better 
approach, where uncertainties due to the IDW interpolation would not 
arise. In addition, using only three depths could have been limiting given 
the differences observed across depths in Fig. 2; and this study did not 
consider temporal changes in measured ksat (i.e., ksat was assumed time 
invariant). 

Thus, characteristics of the ksat distributions are dictated by the 
sample resolution (in space, time and depth), where this study’s 50 m 
grid was likely to be too coarse to robustly detect true spatial structure in 
ksat. The ideal spatial resolution is likely to be a trade-off between 
inherent practical considerations in ksat measurement and the scale at 
which the core components of the water cycle are expected to operate at. 
Difficulties then arise, in that different components can operate at their 
own spatial scale, and / or operate at a range of spatial scales (i.e., multi- 
scale in nature). 

Fig. 5. Spatiotemporal variations in soil NH4
+-N content (mg N kg− 1 soil) at 0–10 cm (top row, ‘T’), 10–20 cm (middle row, ‘M’) and 20–30 cm (bottom row, ‘B’) 

across the ten grid cells highlighted in Fig. 1 (labelled H5, H6, I5, I6, I7, J5, J6, J7, K6 and K7). Data measured monthly from May 2018 to April 2019 and presented 
in logarithmic (base 10) form. 

Fig. 6. Temporal comparison of measured (points) and simulated (lines) soil NH4
+-N content for the single-point simulations (scenarios 1 and 2 with default and 

measured ksat, respectively) and grid-to-grid simulations (scenarios 3 and 4 with default and measured ksat, respectively) at depths of 0–10 cm (Top), 10–20 cm 
(Middle), 20–30 cm (Bottom) from May 2018 to April 2019. The x-axes are the same for all the grids as the single-point. Scenarios 1 and 3 are given with a red 
unbroken line, while the others are given with a blue dashed line. Grid-to-grid simulations are given at each of the ten grid cells highlighted in Fig. 1 (labelled H5, H6, 
I5, I6, I7, J5, J6, J7, K6 and K7). Times of fertilization are also shown. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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For this study, the 25 m and 50 m grids were simply chosen to match 
the previous (unrelated soil) study at these resolutions (Peukert et al., 
2016) and available resources for sampling. However, the resources 
(costs and labour) required for sampling at a higher resolution may not 
have provided sufficient increase in model accuracy, for it to be 
worthwhile. Further, sampling at a finer resolution would not guarantee 
that the required spatial structure is adequately captured. It may be that 
ksat is always effectively a random process, as to detect usable spatial 
structure would be too costly. In this respect, if it is taken as impractical 
to measure ksat, the pedo-transfer function used for the default ksat value, 
appears to provide a robust ksat estimate. However, this function is 
highly site dependent, and as such, alternatives to estimate ksat could be 
trialled (e.g., hierarchical functions for different soils (Schaap et al., 
2001)). 

4.2. Characteristics of measured soil water and N contents 

The measured spatio-temporal soil moisture and soil mineral N at the 
three soil layers all exhibited moderate to high levels of positive skew 
(and were thus presented in logarithmic form for soil mineral N in Figs. 5 

and 7). Distributions of soil moisture largely behaved as expected, they 
varied across months and by depth, with low moisture values in the 
summer months and at the lower depth throughout the year. These 
relatively interpretable characteristics were carried forward to relatively 
accurate SPACSYS simulations of soil moisture for all four scenarios. 
Distributions of soil N were more challenging with no clear trends. These 
more challenging characteristics (including the strong levels of skew) in 
the measured data were similarly carried forward to the SPACSYS sim-
ulations, but where now the simulation accuracy was often much poorer 
in relation to that found for soil moisture, especially at the lower soil 
depths (Fig. 4). 

Water movement and soil water content can affect the pathways of 
soil NH4

+-N and NO3
–-N. A high surface water flux and quick redistribu-

tion downward could accelerate the movement of mineral N, especially 
NO3

–-N in soil, and speed up N losses (Dou et al., 2022; Song et al., 2022; 
Whitson, 2020). In our study, the vertical distribution of soil NO3

–-N and 
NH4

+-N contents decreased with soil depth (Figs. 6 and 8), which follows 
the distribution of soil water content (Fig. 4). However, there is no 
spatial pattern with a water flux direction, which might be caused by 
heterogeneity in grass growth, grazing, excreta deposition and fertiliser 
spreading. Additionally, the measured soil moisture at some locations in 
time were higher than the estimated porosity. Such high measurements 
may be in error, as they did not correspond to heavy or persistent rainfall 
before the measurement dates or readings from an in situ soil moisture 
sensor located in the centre of the study field (grid cell G5 in Fig. 1). 

4.3. SPACSYS model performance 

Taking all four scenarios as one, SPACSYS performed reasonably and 
accurately for simulating soil moisture and water flux, but not so well for 
simulating soil N. For soil N, the grid-to-grid method provided clear 
improvements in simulation accuracy, especially for the top layer. Re-
sults complement and extend those of Liu et al. (2018), who focused on 
water flux, soil moisture, N2O emissions and biomass in a different and 
smaller field of the NWFP. Liu et al. showed that the single-point method 
is adequate for accurate water flux and soil moisture simulations, while 
the grid-to-grid formulation was considered of value in terms of accurate 
grass biomass simulation. This study also complements that of Liu et al. 
(2018), in the evaluation of ksat measurements for model calibration, 
where a still valid and reportable, null outcome has resulted. 

Inevitably, discrepancies between simulated and measured values 
exist, which might in part be due to a likely spatial heterogeneity of the 
canopy as a result of uneven grazing and also root systems that affect 
water uptake and infiltration, which in turn impact water redistribution 
(Logsdon, 2013). Management simplifications used in the model could 
also cause discrepancies. For example, it was assumed that animals 

Table 2 
Statistical performance indices for soil NH4

+-N content at soil depths of 0–10 
(Top), 10 –20 (Middle) and 20–30 cm (Bottom) for the single-point and grid-to- 
grid simulation scenarios with default and measured ksat.  

Soil 
layer 

Index Single-point (n = 12) Grid-to-grid (n = 120) 

Scenario 1 
default ksat 

Scenario 2 
measured ksat 

Scenario 3 
default ksat 

Scenario 4 
measured ksat 

Top RMSE  2.17  2.22  1.42  1.44 
EF  − 0.10  − 0.15  0.53  0.51 
CD  6.24  3.82  2.45  2.38 
r  0.28  0.23  0.76  0.74 
ME  − 0.71  − 0.60  − 0.30  − 0.31 
RE  − 85.16  − 71.64  − 35.64  − 36.72 

Middle RMSE  2.08  2.10  1.93  1.92 
EF  − 0.79  − 0.83  − 0.55  − 0.53 
CD  6.25  3.37  4.55  4.80 
r  − 0.58  − 0.45  − 0.35  − 0.35 
ME  − 0.17  − 0.08  − 0.01  0.00 
RE  − 63.80  − 31.25  − 4.40  − 1.45 

Bottom RMSE  1.70  1.93  1.44  1.44 
EF  − 2.31  − 3.29  − 1.40  − 1.39 
CD  0.86  0.65  0.95  0.94 
r  − 0.25  − 0.28  − 0.05  − 0.05 
ME  − 0.08  − 0.10  − 0.05  − 0.05 
RE  − 73.50  − 95.85  − 45.82  − 44.44 

Note: RMSE: the root mean squared error; EF: modelling efficiency; CD: the 
coefficient of determination; r: the correlation coefficient; RE: the relative error 
and ME: the mean error. 

Fig. 7. Spatiotemporal variations in soil NO3
–-N content (mg N kg− 1) at 0–10 cm (top row, ‘T’), 10–20 cm (middle row, ‘M’) and 20–30 cm (bottom row, ‘B’) across 

the ten grid cells highlighted in Fig. 1 (labelled H5, H6, I5, I6, I7, J5, J6, J7, K6 and K7). Data measured monthly from May 2018 to April 2019 and presented in 
logarithmic (base 10) form. 
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grazed evenly in the study field and their excreta were assumed similarly 
uniform and that fertiliser/manure was uniformly applied. This unifor-
mity is unlikely to be the case, and in turn, the measurements of soil N 
could be compromised by a likely spatial unevenness in grazing or fer-
tiliser/manure application. 

The model also over-predicted NH4
+-N and under-predicted NO3

–-N 
content in the lower soil layers (Figs. 6 and 8), where inherent com-
plexities in the processes of N cycling and the connectivity between 
linked grid cells would be influential. Errors in the model estimation of 
nitrification/denitrification, organic matter decomposition, plant up-
take and movement with water could exaggerate poor soil N simula-
tions. The chosen interlinks among the grid cells based on the water 

potential moving direction could be too simplistic to reflect the actual 
water moving direction. Here, little change in the measured soil NH4

+-N 
and NO3

–-N contents along the downstream water flux direction lines 
(Figs. 5 and 7) suggested an over-simplicity. 

Model performance should be taken in context of inherent com-
plexities, where an agroecological system at the within field level is 
multiscale in nature, characterized by strong heterogeneities and 
geometrical complexity. The grid-to-grid setting, as a kind of the 
asymptotic homogenization, should be able to exploit the sharp length 
scale separation that exits in such multiscale systems. As a power series 
representation of the field, the grid-to-grid setting can provide macro-
scale systems of partial differential equations, where derived models 
encode the role of the microstructure in their coefficients (hydraulic 
conductivities, diffusivities, elastic stiffness, etc.) (Penta and Gerisch, 
2017). 

4.4. Limitations and implications 

4.4.1. Limitations 
In summary, we can identify the following (linked) limitations to our 

simulation results: (a) the (arbitrary) determination of the grid sizes, (b) 
the highly localised nature of ksat and (c) the assumption of the exchange 
of water and soil N between grids. We hypothesized that measuring ksat 
at a spatial resolution of a 50 × 50 m grid would be acceptable for 
determining spatial patterns of soil water and mineral N content. 
However, measured ksat displayed a highly localised nature – meaning 
the chosen resolution was likely too coarse. Previous studies have sug-
gested that the complex water exchanges generally exhibit substantial 
spatial variability in the soil hydraulic properties (Jaffri et al., 2019; 
Schaap et al., 2001). Therefore, accuracy in simulating the spatial dis-
tribution of soil water and mineral N can be hampered by the mea-
surement resolution of ksat. With the grid-to-grid setting, we assumed 
that soil water and mineral N fluxes in a layer from a grid are added to 
the pools in the same layer of its adjacent lower grid. Further, vertical 
and lateral fluxes in a soil layer could be affected by grid resolution, field 
steepness, and the thickness of the soil layer. Further research is needed 
to investigate the implications of these factors for downward and lateral 
water and N movement at the field scale. 

Fig. 8. Temporal comparison of measured (points) and simulated (lines) soil NO3
–-N content for the single-point simulation (scenarios 1 and 2 with default and 

measured ksat, respectively) and grid-to-grid simulations (scenarios 3 and 4 with default and measured ksat, respectively) at depths of 0–10 cm (Top), 10–20 cm 
(Middle), 20–30 cm (Bottom) from May 2018 to April 2019. The x-axes are the same for all the grids as the single-point. Scenarios with the default ksat are given with 
a red unbroken line, while those with measured ksat are given with a blue dashed line. Grid-to-grid simulations are given at each of the ten grid cells highlighted in 
Fig. 1 (labelled H5, H6, I5, I6, I7, J5, J6, J7, K6 and K7). Times of fertilization are also shown. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Table 3 
Statistical indices for soil NO3

–-N content at soil depths of 0–10 (Top), 10–20 
(Middle), 20–30 cm (Bottom) for the single-point and grid-to-grid simulation 
scenarios with default and measured ksat.  

Soil 
layer 

Index Single-point (n = 12) Grid-to-grid (n = 120) 

Scenario 1 
default ksat 

Scenario 2 
measured ksat 

Scenario 3 
default ksat 

Scenario 4 
measured ksat 

Top RMSE  1.38  1.53  0.71  0.74 
EF  − 0.23  − 0.51  0.68  0.64 
CD  2.31  1.43  2.01  1.92 
r  0.26  0.22  0.84  0.81 
ME  − 0.68  − 0.78  − 0.18  − 0.19 
RE  − 46.86  − 53.51  − 12.48  − 13.29 

Middle RMSE  1.09  1.09  1.13  1.12 
EF  − 0.06  − 0.06  − 0.14  − 0.12 
CD  8.35  5.36  4.00  4.14 
r  0.14  0.32  0.29  0.31 
ME  0.19  0.39  0.43  0.43 
RE  20.28  41.14  44.49  45.40 

Bottom RMSE  1.13  1.13  1.20  1.21 
EF  0.10  0.10  − 0.01  − 0.03 
CD  3.20  2.62  2.05  1.99 
r  0.38  0.39  0.34  0.33 
ME  0.04  0.01  0.00  0.01 
RE  12.47  4.34  1.40  2.95 

Note: RMSE: the root mean squared error; EF: modelling efficiency; CD: the 
coefficient of determination; r: the correlation coefficient; RE: the relative error 
and ME: the mean error. 
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4.4.2. Implications 
Our results have demonstrated that modified process-based models 

that are applied at the field scale can simulate the spatial dynamics of 
soil water and N content at a sub-field scale. In arable and grassland 
settings, soil hydraulic properties and agronomic inputs (e.g., fertilisers) 
are not always evenly distributed in a field. Thus, using simple field- 
scale averages of these variables in a (single-point) simulation can 
generate inaccurate simulations. If a field can be divided into cells, each 
of which has common properties and inputs, the aggregation of simu-
lated outputs from individual cells (grid-to-grid simulation) can more 
accurately represent the outputs from the entire field. In this context, 
our results have implication for precision agriculture, which can 
recommend inputs at the right place and at the right time based on local 
environmental conditions and plant growth status. The modified model 
could also be extended to any scale, moving beyond the field to the farm, 
and above. For example, at the farm scale, each farm field with its own 
characteristics in soil properties and management practices can be 
treated as a cell. All fields of the farm can be connected by exchanging 
water and nutrients, enabling farm-level forecasts for water and nutrient 
budgets. Finally, the modified model could be usefully implemented 
within a digital twin of an agricultural system (Pylianidis et al., 2021), at 
a given scale (field, farm and above), dynamically updated by in situ or 
remotely sensed data. 

5. Conclusions 

This study investigated if key nutrient cycling components could be 

simulated more accurately than that found using defaults of the SPAC-
SYS model, by considering within-field measurements of ksat, together 
with a model specification that captures within-field water pathways. 
Using measured rather than estimated default values of ksat was found to 
be of marginal value, where measured ksat was only worthwhile for 
improving water flux simulation accuracy. For soil moisture and water 
flux simulations, the default field level setting was either sufficient or 
appropriate, respectively. For soil N simulations, the within-field setting 
was appropriate. Given the highly localised and skewed nature of the 
measured ksat, it is unclear whether further work, with measured ksat at 
some finer spatial resolution would revise (improve accuracy) or 
collaborate this study’s findings. The former could indicate value in 
directing resources to measure ksat for improving model performance, 
while the latter would not. 
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Fig. 9. Comparison of measured and simulated water fluxes from 2011 to 2019 for: (a) single-point (scenarios 1 and 2) and (b) grid-to-grid simulations (scenarios 3 
and 4) between default and measured ksat. Precipitation data are given for context (c). 

Table 4 
Statistical performance indices for water fluxes (n = 2126) for the single-point 
and grid-to-grid simulations at the sub-catchment scale, for the four scenarios.  

Index Single-point Grid-to-grid 

Scenario 1 
default ksat 

Scenario 2 
measured ksat 

Scenario 3 
default ksat 

Scenario 4 
measured ksat 

RMSE  1.99  1.85  2.13  2.16 
EF  0.37  0.46  0.28  0.26 
CD  1.05  2.48  5.28  5.76 
r  0.68  0.72  0.59  0.57 
ME  − 0.13  0.65  0.60  0.61 
RE  − 11.58  56.13  51.80  52.33 

Note: RMSE: the root mean squared error; EF: modelling efficiency; CD: the 
coefficient of determination; r: the correlation coefficient; RE: the relative error 
and ME: the mean error. 
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