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13Abstract: A sensitivity analysis is critical for determining the relative importance of 
14model parameters to their influence on the simulated outputs from a process-based 
15model. In this study, a sensitivity analysis for the SPACSYS model, first published in 
16Ecological Modelling (Wu, et al., 2007) was conducted with respect to changes in 61 
17input parameters and their influence on 27 output variables. Parameter sensitivity was 
18conducted in a ‘one at a time’ manner and objectively assessed through a single 
19statistical diagnostic (normalized root mean square deviation) which ranked parameters 
20according to their influence of each output variable in turn. A winter wheat field 
21experiment provided the case study data. Two sets of weather elements to represent 
22different climatic conditions and four different soil types were specified, where results 
23indicated little influence on these specifications with respect to the identification of the 
24most sensitive parameters. Soil conditions and management were found to influence 
25the ranking of parameter sensitivities more strongly than weather conditions for the 
26selected outputs. Parameters related to drainage were strongly influential for 
27simulations of soil water dynamics, yield and biomass of wheat, runoff and leaching 
28from soil - during individual and consecutive growing years. Wheat yield and biomass 
29simulations were sensitive to the ‘ammonium immobilised fraction’ parameter which 
30related to soil mineralization and immobilisation. Simulations of CO2 release from the 
31soil and soil pool changes were most sensitive to external nutrient inputs and the 
32process of denitrification, mineralization and decomposition. This study provides 
33important evidence of which SPACSYS parameters require the most care in their 
34specification. Moving forward, this evidence can help direct efficient sampling and lab 
35analyses for increased accuracy of such parameters. Results provide a useful reference 
36for model users on which parameters are most influential for different simulation goals, 
37which in turn provides better informed decision making for farmers and government 
38policy alike.

39Keywords: sensitivity analysis; winter wheat, drainage, yield, soil water dynamics, soil loss, soil pool

40

411. Introduction

42Process-based models for agricultural systems provide a widely used and 
43efficient tool for understanding the complex interactions between soil water, 
44carbon (C), nitrogen (N), phosphorus (P) and plant growth [1,2], where both 
45production under various environmental conditions [3] and nutrient cycling [4] 
46can be simulated. To run a simulation successfully, models need to be informed 
47with parameters that accurately quantify individual processes, together with 
48local soil conditions, weather and management practices. However, 
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49parameters that vary with environmental conditions and have varying, possibly 
50complex distributions themselves [5], are often difficult to precisely 
51characterise, especially if they are costly to measure requiring long-term 
52monitoring [6]. In turn, this parameter variability, uncertainty or quality directly 
53effects the reliability of the model simulations [1,7]. In general, agricultural 
54simulation models require a large amount of input data and parameters, many 
55of which are difficult to source or collect. At the same time, it is common for 
56only a few parameters to strongly influence (and maximize) the variability of 
57model outputs, while the majority of parameters only provide a weak influence 
58in this respect [8]. Therefore, understanding the likely influence of each 
59parameter on a model’s outputs is crucial, as this allows the number of 
60parameters to be safely reduced without a worrying loss of model accuracy, 
61while at the same time, focus can be placed on data collection for parameters 
62that most strongly influence model performance.

63To identify how parameters impact on model outputs, sensitivity 
64diagnostics can be calculated through running multiple model simulations 
65while varying the parameters across specific ranges [9]. Sensitivity analysis for 
66model parameterization and outputs have been applied to various crop 
67systems, soil types and climate conditions using a range of models. For 
68example, Specka et al. [10] applied a parameter sensitivity analysis for 
69modelling above-ground biomass with regard to a future model calibration and 
70an improved understanding of model response patterns; Jabloun et al. [11] 
71assessed the sensitivity of outputs (crop yield and N leaching) from a crop 
72simulation model, where 128 parameters were assessed. A sensitivity analysis 
73quantifies those parameters which are most influential on model outputs, and 
74in the respect can guide the efforts towards improving their accuracy and as 
75well as the model’s output accuracy [12].

76The SPACSYS model is implemented in a modular approach and provides 
77a field-scale and weather-driven dynamic process-based simulation model of 
78water, C and N cycling between plants, soils and microbes [13]. The model has 
79been widely used to assess the impact of climate change [14-16], tillage [17], 
80fertilizer application [16,18] and different cultivars [19] on agricultural systems 
81in terms of crop yields, C and N budgets, soil physical properties and soil water 
82redistribution. However, the model requires over 200 parameters for the 
83simulation of various processes and plant growth and development. It would 
84therefore be informative and beneficial to assess which parameters the 
85SPACSYS outputs are the most and the least sensitive to, so that guidelines to 
86its use when all 200 parameters are not readily available.

87A sensitivity analysis quantifies the importance of input parameters and 
88has been used in building and understanding the structure of agro-ecosystem 
89models [20,21]. Distinctions are made between a local and global sensitivity 
90analysis (LSA and GSA, respectively), where the former is also known as a ‘one 
91at a time’ (OAT) approach, while the latter considers multiple parameters at 
92the same time. Thus, an LSA does not consider any interactions between 
93parameters, while a GSA does. Both GSA [22] and LSA [23-26] have merit, 
94where in ideal situations both should be applied and their results objectively 
95assessed and compared [27,28]. In studies where uncertainty and interactions 
96in model parameters are minimal, then an LSA may suffice [27] over the 
97inherently more complex, GSA. Specifically, Link et al. [27] concludes that an 
98LSA may suffice for situations where the ranking of model parameters is of 
99importance, while GSA should be used for a precise attribution of variance in 
100model outputs. Of course, it should be noted, that results and insights from 
101literature are always dependent on the characteristics of the process-based 
102models employed.
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103Given this study is the first to identify parameter input sensitivity for the 
104SPACSYS model, we choose to present results in two stages, first, an LSA as 
105presented here, and second, a GSA (which is prep.) for presentation elsewhere. 
106This two-stage reporting approach is followed for computational reasons, 
107together with differences in associated interpretations, visualisations and 
108comparisons of the LSA and GSA outputs. Given SPACSYS requires over 200 
109parameters, assessing and reporting the sensitivity of them all would be 
110problematic, for both an LSA and a GSA alike. Further, different subsets of 
111parameters would be chosen according to their likely importance in simulating 
112different processes under different background conditions. Given 
113computational and associated interpretation constraints, an LSA can 
114investigate the sensitivity of outputs to a greater number of input parameters 
115and investigate the distribution of each input parameter more intensively, than 
116that feasible with a GSA. A GSA for say, only four parameters entails the added 
117investigation of six 2-parameter interactions, four 3-parameter interactions 
118and one 4-parameter interaction, which themselves vary on how the parameter 
119input distributions are described (likely done simply, with say low, medium and 
120high values only). Given these thorny design and implementation issues for a 
121GSA, for this study, we only consider the effects of a single parameter change 
122on outputs via an LSA. This allows for a greater number of parameters to be 
123investigated (in this instance, 61 parameters) coupled with more detailed 
124descriptions of the parameter distributions (in this instance, 100 values) than 
125would be viable within a GSA.

126For this study, we carried out an LSA on the parameters that control soil 
127water redistribution, and C and N cycling with the SPACSYS model, using a 
128winter wheat field experiment conducted at Rothamsted Research in 
129Harpenden, UK as the case study. To investigate potential influences of climatic 
130and soil conditions on the analysis, simulations with the same configurations 
131were run with different climatic and soil conditions. The study objectives were: 
132(1) to identify those parameters that have the maximum influence on the 
133simulation outputs with respect to wheat production and environment risks 
134under UK soils and climatic conditions and (2) to examine and understand the 
135relationships between parameter sensitivity and model outputs.

1362. Materials and Methods

1372.1. Study site

138Data from a winter wheat field experiment was used for this study. The 
139experiment was conducted for three growing seasons from 2011 to 2014 in the 
140experimental plots of “Exhaustion Land”, one of the classical long-term 
141experiments at Rothamsted Research in Harpenden (51˚49’N, 0˚21’W and 
142128m a.s.l.). The winter wheat cultivar was Xi-19. The soil is classified as a 
143Chromic Luvisol (FAO classification) with a silty clay loam texture topsoil. Daily 
144maximum and minimum air temperatures and monthly precipitation during the 
145growing years are shown in Fig. Figure 1. Compared to the mean climatic 
146conditions over the growing season between 1981 and 2010 (mean 
147temperature is 8.7 ℃, precipitation 611mm), the first growing season and the 
148third growing season were warmer and wetter (9.4 ℃ and 770 mm, 10.1 ℃ and 
149814mm, respectively), but the second season was cooler and dryer (7.9 ℃ and 
150672mm, respectively). The total sunshine hours of the three growing seasons 
151(1314, 1268 and 1363 hrs, respectively) were all higher than the 1981 to 2010 
152mean (1243 hrs). Data for the study period were downloaded from the 
153electronic Rothamsted Archive (e-RA, http://www.era.rothamsted.ac.uk/).

http://www.era.rothamsted.ac.uk/
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154

155Figure 1. Daily rainfall and mean air temperature over the observational 
156period (2011 to 2014).

1572.2. Parameters and simulated outputs

158A total of 61 model required parameters, describing both water 
159redistribution and C and N processes were chosen to investigate the responses 
160of the system with respect to a sensitivity analysis. To reduce complexity in 
161the analysis, parameters that related to crop growth and development were 
162set as the usual default values, and thus not part of the 61 parameters 
163investigated. The ranges (maximum to minimum) of the chosen parameters 
164were ± 50% of the default values used in previous studies [29-31]. Each 
165parameter was set to one of 100 different values using Latin Hypercube 
166Sampling, to ensure sampling points are uniformly and evenly distributed 
167across the probability distribution. A total number of 6100 SPACSYS simulations 
168were run, each with a 3-years length, meaning that only one of 61 parameters 
169(Table A1) was investigated in turn, whilst all others were set at their default. 
170Details on the linkage of each parameter to each process can be found in 
171various applied SPACSYS model studies [13,32] and also in a subsequent, 
172developmental studies [31].

173For the simulation outputs, a total of 27 variables were considered. 
174Variables include those for grain yield and dry matter biomass of the winter 
175wheat, soil water dynamics, losses (runoff, leaching and release) from soil and 
176pool sizes (Table A2).

1772.3. Sensitivity analysis and diagnostics 

178As indicated above, only the effect of a single parameter change on the 
179simulated outputs was considered - i.e. an LSA was followed (which does not 
180consider concurrent multiple parameter changes and their interactions). We 
181analysed SPACSYS sensitivity to the 61 parameters by ranking the values of 
182the root mean square deviation (RMSD) of simulated outputs as follows: 
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RMSD =
1
n

n

∑
i = 1

(Di - Si)2 (1)

183where Di represents simulated values using the default parameter value (Wu, 
184et al., 2019) and Si represents the simulated values as defined above, at the ith 
185time step and n is the number of total output time steps, in other words, n is 
186equal to 100 (the number of simulations) times the number of simulated days. 
187In order to ensure that all results from the SPACSYS runs, with each of 61 
188parameters varying in turn, can be assessed and objectively compered to each 
189other, we found the normalized RMSD (NRMSD) as follows:

NRMSD =
RMSD
Smax

× 100% (2)

190where Smax is the maximum value of all the simulated outputs for the whole set 
191(100 simulations) of a single parameter over the entire simulated period. The 
192NRMSD diagnostic combines RMSD values across multiple output variables to 
193produce an overall measure of model sensitivity, while normalising for the 
194different scales of the outputs. It can be interpreted as a fraction of the 
195maximum values. The higher the NRMSD, the more sensitive the output 
196variables are to the given parameter specification. A parameter that yields an 
197NRMSD equal to 0% means it contributes very little on the simulated outputs 
198and can be taken as a fixed parameter [33]. Simulations are considered 
199sensitive to parameters yielding NRMSD values > 1 %.

200In order to capture the effects of different weather conditions on parameter 
201sensitivity, we calculated the NRMSD in each individual growing year (2011/12, 
20212/2013, and 13/2014) and consecutive years (2011/13, 12/2014, and 
20311/2014). Further clarity was provided with averaged NRMSDs for the 
204individual growing years and consecutive years:

NRMSDIN =
NRMSD1 + NRMSD2 + NRMSD3

3
(3)

NRMSDCO =
NRMSD12 + NRMSD23 + NRMSD123

3
(4)

205Where NRMSDIN and NRMSDCD represent the averaged NRMSD for the 
206individual and the consecutive years, respectively. NRMSD1, NRMSD2, NRMSD3, 
207NRMSD12, NRMSD23 and NRMSD123 represent the NRMSD for years 2011/12, 
2082012/13, 2013/14, 2011/13, 2012/14 and 2011/14, respectively. All analyses 
209were carried out within the R statistical programming environment (version 
2103.5.0).

2112.4. Simulated climate and soil data   

212In order to assess the impact of climate and soil type on the results of the 
213sensitivity analysis, four additional simulation runs were built with the same 
214configuration as the main simulation experiment described; replacing the 
215weather over the simulation period with another set collected for South West 
216England (50°46′10′′N, 3°54′05′′W) and replacing soil properties with: a) a sandy 
217soil with 10% clay, 70% sand and 20% silt content in the top 10 cm layer, with 
21812% clay, 72% sand and 16% silt content in the 10-20 cm layer and with 15% 
219clay, 75% sand and 10% silt content in the 20-30 cm layer; b) a loam soil with 
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22020% clay, 40% sand and 40% silt content in the top 10 cm layer, with 22% clay, 
22142% sand and 36% silt content in the 10-20 cm layer and with 25% clay, 45% 
222sand and 30% silt content in the 20-30 cm layer; and c) a clay soil with 80% 
223clay, 10% sand and 10% silt content in the top 10 cm layer, with 76% clay, 
22412% sand and 12% silt content in the 10-20 cm layer and with 70% clay, 15% 
225sand and 15% silt content in the 20-30 cm layer. Additional simulations were 
226configured as described in section 2.2, where the use of default parameter 
227values was considered reasonable.

2283. Results

229Fig. Figure 2 maps the influence of each of the 61 parameters with respect 
230to their effect on the simulations of 27 output variables (i.e. drainage water 
231flux, soil water storage, the biomass of winter wheat, soil loss and the change 
232of soil pool) both for the individual growing years and the consecutive years. 
233The values of NRMSD range between 0 to 16%, with 87.83% between 0 and 
2341%. Output variables were insensitive to 11 of the 61 parameters, as their 
235NRMSDs were all 0. The 11 parameters were: maximum nitrifier growth rate 
236(MNG), maximum growth yield on NO (MGY-NO), maximum growth yield on N2O 
237(MGY-N2O), half ammonium concentration (HAC), half NOx concentration 
238(HNC), water content interval to unity (WCI), unsaturated conductivity 
239decrease (UCD), half saturation global radiation intensity (HSG), drain pipe 
240diameter (DPD), and finally, half closure vapour pressure deficit (HCV). 

241

242Figure 2. Heat maps of averaged NRMSDs for the 61 parameters (rows) with 
243respect to the 27 output variables (columns) under the experimental condition 
244from individual years (left) and the pairs of consecutive years (right). A yellow 
245pixel represents no interaction.

246The influences of the parameters on the chosen output variable under 
247alternative weather conditions (South West England) are shown in Fig. Figure 
2483 and with the three different soil types in Figs Figure 4 (sandy), Figure 5 (loam) 
249and Figure 6 (clay). The results from these additional climate and soil 
250simulations were little different to those from the main simulation experiment 
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251(Fig. Figure 2), where the sensitive parameters with NRMSD greater than 1% 
252were almost identical. However, the number of fixed parameters reduced, 
253especially in the sandy soil where none of the 61 parameters could be taken 
254as fixed.

255

256Figure 3. Heat maps of averaged NRMSDs for the 61 parameters (rows) with 
257respect to the 27 output variables (columns) with the climate condition in South 
258West England from individual years (left) and the pairs of consecutive years. 
259(right). A yellow pixel represents no interaction.

260
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261  

262

263 Figure 4. Heat maps of averaged NRMSDs for the 61 parameters (rows) with 
264respect to the 27 output variables (columns) in the sandy soil from consecutive 
265years. A yellow pixel represents no interaction.

266
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267 

268

269 

270Figure 5. Heat maps of averaged NRMSDs for the 61 parameters (rows) with 
271respect to the 27 output variables (columns) in the loam soil from consecutive 
272years. A yellow pixel represents no interaction.

273 
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274 

275

276Figure 6. Heat maps of averaged NRMSDs for the 61 parameters (rows) with 
277respect to the 27 output variables (columns) in the clay soil from consecutive 
278years. A yellow pixel represents no interaction.

279

280As the most sensitive parameters had similar trends across all the 
281simulations (main and additional), regardless of climate or soil type, we now 
282focus our attention only on the relationships between the parameters and the 
283output variables from the main simulation experiment. Here the greatest 
284sensitivity to parameter specification was observed for simulated outputs 
285grouped as: 1) soil water dynamics, 2) crop dry matter accumulation, and 3) N 
286and C losses and pools.

2873.1. Soil water dynamics
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288The drainpipe level (DPL) parameter had the greatest influence on the 
289simulations for ground water flow (GWF) and water storage (WCN) with NRMSD 
290values > 7% (Fig. Figure 2), especially when the specified value of DPL was 
291from the surface to the 2 m soil depth (Fig. Figure 7b, e and h). Here GWF 
292increased and then plateaued at around 2 m, while WCN decreased moving 
293from positive to negative values. For DPL values between 0 and -2 m, surface 
294runoff (SRO) decreased from about 1700 mm to values of zero. Likewise, other 
295parameters relating to the drainage system, such as distance between 
296drainpipes (DBD) and minimum roughness length (MRL) were similarly 
297influential with NRMSD values > 1% and > 3% (Fig. Figure 2) for GWF, WCN 
298and SRO outputs (Fig. Figure 7). Here GWF, WCN and SRO outputs all decreased 
299as the MRL parameter increased from its minimum (0.001 m) to maximum 
300specification (1 m) (Table A1 in Supplementary Information), while only GWF and 
301SRO outputs decreased as the DBD parameter increased from its minimum (2 
302m) to maximum specification (100 m) (Table A1). The influence of minimum 
303hydraulic conductivity (MHC), runoff first order rate coefficient (RFO) and 
304maximum surface storage (MSS) parameters on GWF, WCN and SRO outputs 
305are given in Figure A1 in Supplementary Information.

306

307Figure 7. Response of averaged drainage water fluxes and the change in soil 
308water storage (i.e. groundwater flow (GWF), water storage (WCN) and surface 
309runoff (SRO)) to parameter change for distance between drainpipe (DBD), drain 
310pipe level (DPL) and minimum roughness length (MRL).

311

3123.2. Dry matter of winter wheat
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313The simulation of dry matter of leaves, stems and grains for winter wheat 
314(LDM, SDM and GDM) are particularly sensitive to parameters DBD, MRL, DPL 
315and AIF (ammonium immobilisation fraction) following their NRMSD values (Fig. 
316Figure 2). DBD was the most sensitive parameter (NRMSD > 3%) for LDM, SDM 
317and GDM in the individual years, with increases in dry matter simulation only 
318for DBD < 40 m. However, SDM and GDM were most sensitive to AIF with 
319NRMSD > 4%, where dry matter simulation increased slightly across the full 
320range of the AIF values specified (i.e. 0 to 1). Increases in dry matter simulation 
321were found for DPL > -2 m, while a stepped but small increase in dry matter 
322simulation was observed for MRL across its minimum to maximum values 
323specified (Figure A2 in Supplementary Information).

324

3253.3. Nitrogen and carbon losses from soil

3263.3.1. Losses with surface runoff

327The simulations for nitrate (NO3) loss with surface runoff (NOR) were also 
328highly sensitive to DPL with NRMSD values of 1.38% and 1.73% in the individual 
329and pairs of consecutive years, respectively (Fig. Figure 2). For DPL > -2m, NOR 
330displayed an increasing trend (Fig. Figure 8a). As would be expected, 
331simulations for NOR were also sensitive to the fertiliser dissolution rate (SFD), 
332where NOR simulations displayed a non-linear increase for SFD < 0.2. (Fig. 
333Figure 8b). With NRMSD values > 0%, the simulations of dissolved N loss (NDR) 
334and C loss (CDR) with surface runoff were sensitive to the loss of litter 
335parameter (LLF) (Fig. Figure 8c) and the simulations of residue N loss (NRR) 
336and residue C loss (CRR) were sensitive to the loss of residue parameter (RLF) 
337(Fig. Figure 8d).

3383.3.2. Nitrogen and carbon leaching

339The specification of parameters DBD, MRL, DPL, MHC and ESP (the empirical 
340scale in pore shape), each had a clear influence on the simulations of leaching 
341for NO3 (NOL), NH4 (NHL), N (NDL) and C (CDL) in the individual and pairs of 
342consecutive years (Fig. Figure 2). The same variable simulations were also 
343sensitive to parameters AIF, LLF, RLF, DFF (a transferring fraction of 
344decomposed fresh litter to dissolved organic matter), DFL (a transferring 
345fraction of litter to dissolved organic matter), CWF (coefficient in the water 
346function for decomposition) and DPR (potential decomposition rate of dissolved 
347organic matter). DBD was a highly influential parameter for NOL and NHL with 
348NRMSDs > 3% whilst DPL was highly influential for NDL and CDL with NRMSDs 
349> 4%. Relationships between output simulations of NOL, NHL, NDL and CDL 
350and parameters DBD, MRL, DPL, AIF, MHC, ESP, DFF, DFL, CWF, DPR, LLF and 
351RLF are given in Figures A3 and A4 in Supplementary Information.
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352

353Figure 8. Relationships for simulations of: (a) NO3 runoff (NOR) and parameter 
354drain pipe level (DPL), (b) NOR and parameter specific fertiliser dissolution 
355rate (SFD), (c) dissolved N loss (NDR) and C dissolved loss (CDR) and 
356parameter litter loss (LLF), and (d) residue N loss (NRR) and residue C loss 
357(CRR) and parameter residue loss (RLF).

358

3593.3.3. Gas emissions

360Simulations of N2O emission rate (N2O) were most sensitive to changes in 
361maximum autotrophic nitrification rate (MAN), secondly, NO production 
362fraction from nitrification (PFF-NO) and thirdly, Q10 temperature coefficient for 
363denitrification (Q1D) (Fig. Figure 2). Specification of the latter two parameters 
364also strongly influenced the NO emission rate (NOE) and N2 emission rate (N2E) 
365(Fig. Figure 2). In addition, N2O simulations were found to be relatively 
366sensitive to DBD, MRL and DPL (Fig. Figure 2). Fig. Figure 9 displays the 
367relationships between the nitrogenous gas emissions outputs (NOE, N2O and 
368N2E) and a range of values for parameters PFF-NO and Q1D. For the range of 
369PFF-NO specified, the simulation of NOE, N2O and N2E were erratic with no 
370clear pattern. For the range of Q1D specified, the simulation of NOE, N2O and 
371N2E all decreased in magnitude moving from 0 to 2 gN/m2/d for N2O, 0 to 1 
372gN/m2/d for NOE and 0 to 0.2 gN/m2/d for N2E. Further plots for NOE only are 
373given in Figure A5 in Supplementary Information.
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374

375Figure 9. Relationships between simulations of nitrogenous gas emissions 
376(NOE: NO emission rate, N2O: N2O emission rate, and N2E: N2 emission rate) 
377and the parameters of NO production fraction from nitrification (PFF-NO) and 
378Q10 value for denitrification (Q1D).
379
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380

381

382Figure 10. Relationships between simulations of CO2 emissions from soil 
383organic C pools (DRE: dissolved release; FLR: fresh litter release; HRE: humus 
384release; MRE: microbial release) and the parameters they are most sensitive 
385to (CWF: coefficient in water function; Q1M: Q10 value for mineralization; 
386ASF: assimilation factor) over the simulation period.

387Parameters CWF, Q1M (Q10 temperature coefficient for mineralization) 
388and ASF (assimilation factor), in general, provided the highest NRMSDs (Fig. 
389Figure 2) with respect to influencing CO2 emissions from various soil organic C 
390pools (DRE: dissolved release; FLR: fresh litter release; HRE: humus release; 
391MRE: microbial release). However, the simulation of HRE was most sensitive to 
392the humus potential decomposition rate (HPD) (NRMSD > 15%) (Fig. Figure 2). 
393Fig. Figure 10 displays the relationships between CO2 emissions DRE, FLR, HRE, 
394MRE with respect to the top-ranking sensitive parameters CWF, Q1M, ASF over 
395the simulation period. Almost all CO2 emission outputs deceased as CWF, Q1M 
396and ASF parameters were increased through their minimum/maximums set 
397(Table A1); the exception being MRE with ASF. Further CO2 emission plots 
398depicting their sensitivity to key parameters are given in Figures A6, A7 and 
399A8 in Supplementary Information.

4003.4. Changes of soil C and N pools

401Although simulations of soil N and C pools in humus (NHP and CHP, 
402respectively) were most sensitive to HPD (Fig. Figure 2), no discernible trend 
403in this sensitivity was observed (Figure A9a in Supplementary Information). 
404Simulations of N and C dissolved (NDP and CDP, respectively) were most 
405sensitive to CWF, DFL (dissolved fraction in litter), HFL (humus fraction from 
406fresh litter) and DBD (Fig. Figure 2), where in this case, clear increasing trends 
407in this sensitivity were observed, some plateauing (Figure. A9b and e for CWF 
408and DBD, respectively), some not (Fig. A9c and d for DFL and HFL, 
409respectively). Further soil N and C pools plots depicting their sensitivity to key 
410parameters are given in Figures A10 and A11 in Supplementary Information.
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411

4124. Discussion

413Parameters describing drainage implementation (DBD and DPL, the 
414distance between drainpipes and the level of the drainpipes, respectively) play 
415a critical role in the performance of the agriculture system reflecting changes 
416in the weather and soil condition. For this study, simulations for soil water 
417dynamics, crop dry matter accumulation and N and C losses, were all found to 
418be highly sensitive to the specification of DBD and DPL. Our results corroborate 
419with Ballantine and Tanner [34], and Ritzema [35], where both studies 
420demonstrated how the drainage system was an important externality for 
421agricultural production to prevent waterlogging and salinization of the soil in 
422arid and semi-arid regions and strategically control drainage of excess water 
423from the soil profile. It has also been reported that water use efficiency for 
424wheat with a controlled drainage with a varying depth was 40% higher than 
425that with the conventional drainage, depending on the crop stage [36]. Tomic 
426et al. [37] showed that a DBD value of 25m provided the highest wheat yield 
427among seven different drainage systems, which is in agreement with our result 
428in that DBD is one of the most sensitive parameters for the dry matter of winter 
429wheat simulation. However, this might not be transferrable to other crops, e.g. 
430drainage control was found to have no significant influence on soybean yield 
431in Helmers et al. [38]. Designing an appropriate drainage system in humid 
432areas can reduce N loss from an agricultural field [39]. By raising the water 
433level in the soil profile, which is equivalent to decreasing DPL in our study here, 
434controlled drainage has the potential to increase denitrification in the 
435anaerobic zone [40]. Design of subsurface drainpipes involves the 
436determination of depth (DPL), spacing (DBD) and pipe diameter (DPD) [41]. As 
437a parameter of a drainage system, however, DPD had no influence on any of 
438the 27 selected output variables (Fig. Figure 2), which implied the effects of 
439vertical water flow were stronger than horizontal water flow towards the pipes 
440in our study’s wheat field.

441Our analysis suggests that simulations were sensitive to changes in MRL 
442(minimum roughness length), where it is known to strongly affect water and 
443heat fluxes on the soil surface [42,43]. Wang et al. [44] have shown that an 
444accurate assessment of soil moisture might be problematic if MRL is 
445inappropriately parameterised. However, our sensitivity analysis showed that 
446SRI, HSG, and HCV (all related to evaporation and transpiration processes, see 
447Table A1) had no influence on any of the 27 selected outputs.

4484.1 Sensitive parameters for water dynamics

449Soil water dynamics is a key component for nutrient cycling and crop growth 
450and development. Our study showed that soil water dynamics were sensitive 
451to MHC (minimum hydraulic conductivity), DPL, DBD and MRL (Fig. Figure 2 
452and Figure A1). This is not surprising given that: (1) MHC is a key parameter to 
453control the soil water infiltration process where water moves downward from 
454the surface [45] and (2) soil hydraulic conductivity determines surface energy 
455and water fluxes and then soil water content [46-48].

4564.2 Sensitive parameters for yield and biomass

457For simplicity, we did not include in our sensitivity analysis, the plant biological 
458parameters. Therefore, the identified sensitivities influence biomass 
459accumulation and the grain yield of winter wheat indirectly via other processes. 
460Here DBD, MRL, DPL and AIF (fraction of ammonium content) are all important 
461parameters for yield and aboveground biomass simulation (where DBD, MRL 
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462and DPL also influence water dynamics in the soil, as discussed above). 
463Unarguably, soil water content itself plays an important role in yield and 
464aboveground dry matter accumulation under non-irrigation conditions [49,50]. 
465It regulates N cycling and its availability to crops is important, as this in turn, 
466affects crop growth and yield formation [51-53]. AIF that can be immobilised 
467when the immobilisation process occurs, impacts crop growth and yield 
468through changing mineralisation, and in sequence, the status of soil N and C 
469content [1,54].

4704.3 Sensitive parameters for losses from soil

471The drainage parameters DPL and DBD also had significant influence on C and 
472N losses through surface runoff and leaching from soils. In addition, SFD 
473(fertiliser dissolution rate), LLF (loss of litter) and RLF (loss of residue) that are 
474each related to external nutrient inputs also played a critical role in the 
475simulations of surface runoff losses. Results showed that SFD was an influential 
476parameter for the simulations of NHL (NH4 leach); LLF was influential for the 
477simulations of NDR and CDR (dissolved N and C loss); and RLF was influential 
478for the simulations of NRR and CRR (residue N and C loss). External nutrient 
479inputs can increase soil nutrient pools, and in turn, nutrient losses when surface 
480runoff occurs.

481Clearly, parameters related to nitrification and denitrification processes have 
482a great influence on nitrogenous gas emissions. A higher nitrification rate 
483increases N availability for the denitrification process that is enhanced by Q1D 
484(Q10 temperature coefficient for denitrification). Specification of MAN 
485(maximum autotrophic nitrification rate) had the biggest influence on NOE (NO 
486emission rate), and both PFF-NO (NO production fraction from nitrification) and 
487Q1D influenced NOE, N2O (N2O emission rate) and N2E (N2 emission rate). 
488Conversely, simulations for soil CO2 release were sensitive to a different set of 
489parameters that control nutrient cycling. Here, the specification for Q1M (Q10 
490temperature coefficient for mineralization), CWF (coefficient in the water 
491function for decomposition) and ASF (assimilation factor) all had a significant 
492influence on DRE (dissolved release), FLR (fresh litter release), HRE (humus 
493release) and MRE (microbial release) (i.e. outputs variables that generate from 
494decomposition from various soil C pools). Our results are supported by previous 
495studies [55-57]. The soil organic matter decomposition rate depends on 
496substrates [58,59], a potential decomposition rate and other abiotic and biotic 
497factors including soil temperature (related to Q1M), soil moisture (i.e. CWF) and 
498microbial activities (i.e. ASF) [60].

4995. Conclusions

500This study’s local sensitivity analysis for the SPACSYS model using data 
501from a winter wheat field experiment found that input parameters related to 
502drainage not only affected drainage fluxes but also grain yield and 
503aboveground dry matter accumulation of winter wheat, and losses of water, C 
504and N from soil under given weather and soil conditions. In addition, 
505parameters related to mineralization and immobilisation processes influenced 
506crop yield and biomass, significantly. Further, parameters that control the 
507nitrification and denitrification processes had a great influence on nitrogenous 
508gas emissions. All results were found to be largely insensitive to different 
509climatic and soil conditions, where identified parameter sensitivity remained 
510relatively the same.

511Overall, this study has provided evidence of which parameters require the 
512most care in their specification and in turn, which parameters need to be 
513determined accurately. This evidence can lead to efficient and cost-effective 
514sampling and lab analyses for such parameters. Results provide a reference 
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515for model users on which parameters are key for different simulation goals. 
516However, although this study has provided some important advances in model 
517understanding and use, we have only considered the influence of single 
518parameter change at a time on the model outputs. Interaction effects through 
519a global sensitivity analysis were not assessed, and as such, is a focus of 
520current and complementary research.

521
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534Appendix A

535Table A1. List of the parameters chosen for the sensitivity analysis, together with their maximum 

536and minimum units specified.

No. Abbreviations Variable description Unit Min Max

1 SFD Specific fertiliser dissolution rate 1/day 0.0001 0.5

2 Q1N Coenzyme Q10 temperature 
coefficient for nitrification

- 0.1 5

3 Q1M Coenzyme Q10 temperature 
coefficient for mineralization

- 0.1 5

4 Q1D Coenzyme Q10 temperature 
coefficient for denitrification

- 0.1 5

5 PFF-NO NO production fraction from 
nitrification

- 0.00001 0.1

6 PFF-N2O N2O production fraction from 
nitrification

- 0.000001 0.01

7 MHC Minimum hydraulic conductivity mm/day 0 10

8 MMR Microbial maintenance respiration rate 1/day 0.01 2

9 MDG-NO3 Maximum NO3 denitrifier growth rate 1/day 1 40

10 MDG-N2O Maximum N2O denitrifier growth rate 1/day 1 20

11 MDG-NO2 Maximum NO2 denitrifier growth rate 1/day 1 40

12 MDG-NO Maximum NO denitrifier growth rate 1/day 1 20

13 MNG Maximum nitrifier growth rate 1/day 0.1 15

14 MND Maximum nitrifier death rate 1/day 0.01 5

15 MGY- NO3 Maximum growth yield on NO3 gC/gN 0.01 1

16 MGY- NO2 Maximum growth yield on NO2 gC/gN 0.01 1

17 MGY- NO Maximum growth yield on NO gC/gN 0.01 3

18 MGY- N2O Maximum growth yield on N2O gC/gN 0.01 4

19 MAN Maximum autotrophic nitrification rate 1/day 0.001 0.1

20 MCC Maintenance coefficient on carbon in 
denitrification

1/day 0.0001 0.02

21 HPD Humus potential decomposition rate 1/day 0.0000001 0.001

22 HFL Partitioning fraction to humus from 
decomposed fresh litter

- 0 1

23 HFD Partitioning fraction to humus from 
decomposed dissolved organic matter

- 0 1
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24 HDC Michaelis constant on dissolved 
organic carbon concentration

g/m3 1 40

25 HAC Michaelis constant on ammonium 
concentration

gN/m3 1 30

26 HNO Michaelis constant on NOx 
concentration

gN/m3 50 200

27 FLD Fresh litter potential decomposition 
rate

1/day 0.0001 0.1

28 DBD distance between drainpipes m 2 100

29 DPR Potential decomposition rate of 
dissolved organic matter

1/day 0.0001 0.1

30 UCD Unsaturated conductivity decrease - 0 10

31 SCF Soil cover fraction to prevent 
infiltration

- 0 1

32 RFO Runoff first order rate coefficient 1/day 0.01 1

33 MRL Minimum roughness length m 0.001 1

34 MSS Maximum surface storage (no runoff) mm 0.01 10

35 HSG Half saturation global radiation 
intensity

J/m2/day 0 10000000

36 ESP Empirical scale in pore shape - 0.01 10

37 DPL Drain pipe level, negative downwards m -10 0

38 DPD Drain pipe diameter m 1 10

39 CAC Corresponding water amount that the 
ground is fully covered

mm 1 200

40 RAP Relative activity at porosity - 0 1

41 WCI Water content interval to unity vol% 1 15

42 OAW Optimal water content at which there 
is no adverse effect from soil moisture

vol% 3 40

43 CWF Coefficient in the water function for 
decomposition

- 0 100

44 ASF Assimilation factor - 0 1

45 LLF Unit loss fraction of litter with surface 
runoff

- 0 1

46 RLF Unit loss fraction of residue with 
surface runoff

- 0 1
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47 BTM Reference temperature at which the 
reaction function is unity for 
mineralization

℃ 0 35

48 RLT A transferring fraction of residue to 
the litter pool

1/day 0 0.5

49 DFH A transferring fraction of decomposed 
humus pool to dissolved organic 
matter 

- 0 1

50 DFF A transferring fraction of decomposed 
fresh litter to dissolved organic matter

- 0 1

51 DFL A transferring fraction of litter to 
dissolved organic matter

- 0 1

52 HNC Michaelis constant on nitrate 
concentration

gN/m3 5 15

53 BTN Reference temperature at which the 
reaction function is unity for 
nitrification

℃ 0 35

54 BTD Reference temperature at which the 
reaction function is unity for 
denitrification

℃ 0 35

55 WCA Water content interval activity vol% 0 100

56 FWD- NH4 NH4 fraction in wet deposition - 0 1

57 FDD- NH4 NH4 fraction in dry deposition - 0 1

58 AFI Fraction of ammonium that cannot 
move freely with water

- 0 1

59 MCN C:N ratio in microbial biomass - 5 15

60 AIF A fraction of ammonium that can be 
used for immobilisation

- 0 1

61 HCV Vapour pressure deficit at which leaf 
stomata half closed

537Table A2. List of simulated output variables from the SPACSYS model.

No. Abbreviations output Unit

1 GWF Groundwater water flux mm/d 

2 WCN Soil water storage in the soil profile mm

3 GDM Grain dry matter gDM/m2
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4 LDM Leaf dry matter gDM/m2

5 SDM Stem dry matter gDM/m2

6 NOR NO3 loss with surface runoff gN/m2/d

7 NDR Dissolved N loss with surface runoff gN/m2/d

8 NRR Residue N loss with surface runoff gN/m2/d

9 CDR Dissolved C loss with surface runoff gC/m2/d

10 CRR Residue C loss with surface runoff gC/m2/d

11 SRO Surface runoff mm

12 NHL NH4 leaching gN/m2/d

13 NOL NO3 leaching gN/m2/d

14 NDL N dissolved leach gN/m2/d

15 CDL C dissolved leach gN/m2/d

16 NOE NO emission rate gN/m2/d

17 N2O N2O emission rate gN/m2/d

18 N2E N2 emission rate gN/m2/d

19 DRE Dissolved release gC/m2/d

20 FLR Fresh litter release gC/m2/d

21 HRE Humus release gC/m2/d

22 MRE Microbial release gC/m2/d

23 NHP N in humus gN/m2

24 NDP Dissolved N gN/m2

25 NMR Mineralization rate gN/m2/d

26 CDP Dissolved C gC/m2

27 CHP C in humus gC/m2

538

539
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540

541
542Figure A1. The relationships between ground water flow (GWF), water storage (WCN) and surface runoff 
543(SRO) with changes in parameters with NRMSE > 1% (minimum hydraulic conductivity (MHC), ammonium 
544immobilised fraction (AIF), specific fertiliser dissolution rate (SFD) and maximum autotrophic nitrification 
545rate (MAN)). 
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546 
547Figure A2. Response of grains (GDM), leaves (LDM) and stems (SDM) dry 
548matter to the parameters - distance between drainpipes (DBD), minimum 
549roughness length (MRL), drain pipe level (DPL) and ammonium immobilised 
550fraction (AIF). All with NRMSD > 1% over the simulation period.

551
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552

553Figure A3. Relationships between simulated leached losses of N and C to their 
554most influential parameters (by NRMSD). Simulated variables: NHL: NH4 
555leach; NOL: NO3 leach; NDL: N dissolve leach; CDL: C dissolve leach). Model 
556parameters: DBD: distance between drainpipes; MRL: minimum roughness 
557length; DPL: drain pipe level; AIF: ammonium immobilised fraction; MHC: 
558minimum hydraulic conductivity; and ESP: empirical scale in pore shape.

559
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560
561Figure A4. The relationships between leached losses of N and C and the parameters with NRMSEs higher 
562than 1% (CDL: C dissolve leach; NDL: N dissolve leach; DFF: dissolved fraction from fresh litter; DFL: 
563dissolved fraction in litter; CWF: coefficient in water function in the process of organic matter 
564decomposition; DPR: potential decomposition rate of dissolved organic matter; LLF: litter unit loss 
565fraction; RLF: residue unit loss fraction).

566 
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567
568Figure A5. The relationships between NOE and sensitive parameters (DBD: distance between drainpipes; 
569MRL: minimum roughness length; DPL: drain pipe level; AIF: ammonium immobilised fraction; MAN: 
570maximum autotrophic nitrification rate; SCF: soil cover fraction prevent infiltration; CWF: coefficient in 
571water function in the process of organic matter decomposition; BTD: base temp to unity denitrification; 
572BTN: base temp to unity nitrification).
573
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574
575Figure A6. The relationships between carbon dissolved release (DRE) and sensitive parameters (DBD: 
576distance between drainpipes; MRL: minimum roughness length; DPL: drain pipe level; MHC: minimum 
577hydraulic conductivity; HPD: humus potential decomposition rate; LLF: litter unit loss fraction; OAW: 
578optimal available water content; HFD: humus fraction from fresh litter; DFF: dissolved fraction from fresh 
579litter; DFL: dissolved fraction in litter; RLT: residue to litter transfer fraction; FLD: fresh litter potential 
580decomposition rate; RLF: residue unit loss fraction; DPR: dissolved potential decomposition rate; BTM: 
581base temp to unity mineralization).
582
583
584
585
586
587

588 
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589Figure A7. The relationships between fresh litter release (FLR) and sensitive parameters (MRL: minimum 
590roughness length; DPL: drain pipe level; MHC: minimum hydraulic conductivity; LLF: litter unit loss 
591fraction; OAW: optimal available water content; RLT: residue to litter transfer fraction; FLD: potential 
592decomposition rate of fresh litter; RLF: residue unit loss fraction; BTM: base temp to unity mineralization; 
593DFL: dissolved fraction in litter; DFF: dissolved fraction from fresh litter; HFL: partitioning fraction to 
594humus from decomposed fresh litter).

595 
596 

597 
598Figure A8. The relationships between microbial release (MRE) and sensitive parameters (DBD: distance 
599between drainpipes; MRL: minimum roughness length; DPL: drain pipe level; MHC: minimum hydraulic 
600conductivity; HPD: humus potential decomposition rate; HFL: partitioning fraction to humus from 
601decomposed fresh litter; LLF: litter unit loss fraction; OAW: optimal available water content; HFD: 
602partitioning fraction to humus from decomposed dissolved organic matter; DFF: dissolved fraction from 
603fresh litter; DFL: dissolved fraction in litter; RLT: residue to litter transfer fraction; FLD: potential 
604decomposition rate of fresh litter; RLF: Residue unit loss fraction; DPR: potential decomposition rate of 
605dissolved organic matter; BTM: base temp to unity mineralization; MMR: microbial maintenance 
606respiration rate). 
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607

608Figure A9. Relationships between changes in soil organic C and N pools and 
609the parameters they are most sensitive to over the simulation period. NHP: N 
610humus pool; CHP: C humus pool; NDP: N dissolve pool; CDP: C dissolve pool; 
611HPD: humus potential decomposition rate; CWF: coefficient in water function; 
612DFL: dissolved fraction in litter; HFL: humus fraction from fresh litter; DBD: 
613distance between drainpipes.

614

615 

616

617Figure A10. The relationships between nitrogen dissolved pool (NDP) and 
618sensitive parameters (MRL: minimum roughness length; DPL: drain pipe level; 
619MHC: minimum hydraulic conductivity; HPD: humus potential decomposition 
620rate; Q1M: Q10 value for mineralization ;ASF: assimilation factor; LLF: litter unit 
621loss fraction; OAW: optimal available water content; DFF: dissolved fraction 
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622from fresh litter; FLD: potential decomposition rate of fresh litter; RLF: residue 
623unit loss fraction; DPR: potential decomposition rate of dissolved organic 
624matter; BTM: base temp to unity mineralization).

625
626
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627

628
629

630Figure A11. The relationships between carbon dissolved pool (CDP) 
631simulations and sensitive parameters (MRL: minimum roughness length; DPL: 
632drain pipe level; MHC: minimum hydraulic conductivity; CWF: coefficient in 
633water function in the process of organic matter decomposition; Q1M: Q10 value 
634for mineralization; ASF: assimilation factor; LLF: litter unit loss fraction; DFF: 
635dissolved fraction from fresh litter; RLT: residue to litter transfer fraction; FLD: 
636potential decomposition rate of fresh litter; RLF: residue unit loss fraction; DPR: 
637potential decomposition rate of dissolved organic matter; BTM: base temp to 
638unity mineralization).

639
640
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