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Summary

The serine-threonine kinase TOR, the Target of Rapa-

mycin, is an important regulator of nutrient, energy

and stress signaling in eukaryotes. Sch9, a Ser/Thr

kinase of AGC family (the cAMP-dependent PKA,

cGMP- dependent protein kinase G and

phospholipid-dependent protein kinase C family), is

a substrate of TOR. Here, we characterized the fungal

opportunistic pathogen Aspergillus fumigatus Sch9

homologue (SchA). The schA null mutant was sensi-

tive to rapamycin, high concentrations of calcium,

hyperosmotic stress and SchA was involved in iron

metabolism. The DschA null mutant showed

increased phosphorylation of SakA, the A. fumigatus

Hog1 homologue. The schA null mutant has

increased and decreased trehalose and glycerol

accumulation, respectively, suggesting SchA per-

forms different roles for glycerol and trehalose accu-

mulation during osmotic stress. The schA was

transcriptionally regulated by osmotic stress and this

response was dependent on SakA and MpkC. The

double DschA DsakA and DschA DmpkC mutants

were more sensitive to osmotic stress than the corre-

sponding parental strains. Transcriptomics and pro-

teomics identified direct and indirect targets of SchA

post-exposure to hyperosmotic stress. Finally, DschA

was avirulent in a low dose murine infection model.

Our results suggest there is a complex network of

interactions amongst the A. fumigatus TOR, SakA

and SchA pathways.

Introduction

A central coordinator of nutrient, energy and stress sig-

naling in eukaryotes is the highly conserved protein

serine-threonine kinase TOR, the Target of Rapamycin

that belongs to the phosphatidylinositol kinase-related

(PIKK) family (Wullschleger et al., 2006; Laplante and

Sabatini, 2012; Robaglia et al., 2012; Cornu et al.,

2013; Dobrenel et al., 2013; Yuan et al., 2013). Rapa-

mycin is a macrocyclic lactone produced by Streptomy-

ces hygroscopicus that inhibits proliferation and has

potent immunosuppressive properties (Wullschleger

et al., 2006). TOR was identified for the first time in Sac-

charomyces cerevisiae through genetic mutant screens

for resistance to rapamycin (Heitman et al., 1991). TOR

supports cell growth in response to nutrients, growth

factors and cellular energy, by repressing catabolic
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processes (such as mRNA degradation, ubiquitin-

dependent proteolysis, autophagy or apoptosis) and

activating anabolic processes (such as nutrient trans-

port, ribosome biogenesis, protein synthesis, or mito-

chondrial metabolism; Liko and Hall, 2015). Two TOR

genes have been identified in S. cerevisiae. However,

only one TOR gene is found in plants, animals and fila-

mentous fungi (Wullschleger et al., 2006; Liko and Hall,

2015). TOR exists as two multi-protein complexes, TOR

complex 1 (TORC1) and TOR complex 2 (TORC2),

which are found both in animals and in yeast (Wulls-

chleger et al., 2006). Yeast TORC1 regulates protein

synthesis, ribosome biogenesis, translation, nutrient

uptake or autophagy and is sensitive to rapamycin while

TORC2 regulates actin organization, lipid synthesis and

cell survival and is not sensitive to rapamycin (Loewith

et al., 2002; Reinke et al., 2004; Wullschleger et al.,

2006). In filamentous fungi, very little is known about

the mechanism and function of TOR signaling. Model fil-

amentous fungi such as Aspergillus nidulans, A. fumiga-

tus, Fusarium graminearum and Podospora anserina

are sensitive to rapamycin (Fitzgibbon et al., 2005; Tei-

chert et al., 2006; Lopez-Berges et al., 2010; Yu et al.,

2014; Baldin et al., 2015). Recently, Baldin et al. (2015)

showed that in A. fumigatus TOR participates in the reg-

ulation of ornithine biosynthesis, a major precursor of

siderophores, iron-chelating molecules that are impor-

tant for adaptation to iron starvation and virulence.

S. cerevisiae Sch9p is a Ser/Thr kinase of the AGC

family (the cAMP-dependent PKA, cGMP-dependent

protein kinase G and phospholipid-dependent protein

kinase C family) and a substrate of TORC1. Sch9p is

directly phosphorylated by TORC1, while rapamycin or

nutrient starvation inhibits this phosphorylation (Urban

et al., 2007). Sch9 regulates ribosome biogenesis,

adaptation to nutrient availability and aging (Powers,

2007). Sch9 regulates ribosome biosynthesis similarly to

the mammalian S6K1, responding to nutrient resources

and aging (Fabrizio et al., 2001; Jorgensen et al., 2004).

Recently, Gonz�alez et al. (2015) have shown, using a

highly specific antibody that recognizes phosphorylation

of TORC1 target ribosomal protein S6 (Rps6), that in S.

cerevisiae nutrients rapidly induce Rps6 phosphorylation

in a TORC1-dependent manner. However, these authors

demonstrated that Sch9p is dispensable for Rps6

phosphorylation.

Pascual-Ahuir and Proft (2007) have described a

novel role for S. cerevisiae Sch9p in the transcriptional

activation of osmostress-inducible genes and observed

that the sch9 mutant was sensitive to hyperosmotic

stress. During osmotic stress, the mutant showed

reduced expression of genes important for osmotic

shock adaptation, among them the transcription factor

Sko1p, which is directly targeted by the mitogen-

activated protein (MAP) kinase, Hog1. Interestingly, in

vitro, Sch9p interacts with both Sko1p and Hog1p, and

phosphorylates Sko1p. Hog1p is the main regulator of

the high osmolarity glycerol response (HOG) pathway

(Maeda et al., 1994). This raised the interesting hypoth-

esis that Sch9p might act as an intermediary for the

crosstalk between TOR and HOG pathways. Accord-

ingly, in the filamentous phytopathogen F. graminearum,

the DFgSch9 mutant exhibited increased sensitivity to

osmotic and oxidative stress, cell wall-damaging agents

and rapamycin, while showing increased thermal toler-

ance (Chen et al., 2014; Gu et al., 2015). In addition,

co-immunoprecipitation and affinity capture-mass spec-

trometry showed that FgSch9 interacted with FgTOR

and FgHog1. In other filamentous fungi, Sch9 homo-

logues have also been linked to interconnecting various

stress responses and signaling pathways. In the hyper-

cellulolytic fungus Trichoderma reesei, the Trsch9D
mutant displayed a decreased growth rate on different

carbon sources, produced less conidia and cellulase,

while having defects in the cell wall integrity pathway (Lv

et al., 2015). A. nidulans strain defective for SchA

showed altered trehalose mobilization and kinetics of

germ tube outgrowth, in addition to other defects in col-

ony formation (Fillinger et al., 2002). A. nidulans schA

null mutant also showed a dramatic reduction in the

cellulose-induced transcriptional responses, including

the expression of hydrolytic enzymes and transporters,

due to an inability to unlock CreA-mediated carbon

catabolite repression under derepressing conditions

(Brown et al., 2013).

A. fumigatus is a ubiquitous air-borne saprophytic fun-

gus, found living on decaying organic and plant materi-

als (de Vries and Visser, 2001; Tekaia and Latg�e, 2005;

Kwon-Chung and Sugui, 2013). This major opportunistic

allergenic fungus causes a significant percentage of all

invasive fungal infections in humans and is the most

common cause of fungal pulmonary infections in mam-

mals (Greenberger, 2002; Dagenais and Keller, 2009;

Brown et al., 2012a,b; Lackner and Lass-Fl€orl, 2013). A.

fumigatus causes several clinical diseases including the

life-threatening disease, invasive pulmonary aspergillosis

(IA) that has high mortality with fatality rates reaching

80% in neutropenic patients (Brown et al., 2012a,

2012b; Lackner and Lass-Fl€orl, 2013). Calcium signaling

plays an important role in A. fumigatus virulence

(Thewes, 2014). The A. fumigatus transcription factor

CrzA regulates calcium signaling and we have shown by

ChIP-seq (Chromatin Immunoprecipitation DNA

sequencing) its putative gene targets (de Castro et al.,

2014). Some of these targets are for instance the PhkB

histidine kinase and the SskB MAP kinase kinase

kinase of the HOG pathway. Additionally, we were able

to show that CrzA::GFP goes to the nucleus during

MAP kinase activity and it is essential for virulence 643
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osmotic stress (de Castro et al., 2014). Phosphorylation

of the SakAHOG1 MAPK is dependent on CrzA in

response to osmotic stress. Taken together, these

results strongly suggest an interaction between A. fumi-

gatus calcium-calcineurin-CrzA and HOG pathways.

One of the gene targets identified in this screening was

the Sch9 homologue, named SchA. Here, we show that

DschA mutation was more sensitive to rapamycin, high

concentrations of calcium and hyperosmotic stress,

while SchA is involved in iron metabolism. The schA null

mutant showed increased SakA phosphorylation. Tran-

scriptomics and proteomics identified direct or indirect

targets of SchA during hyperosmotic stress. Finally,

DschA was avirulent in a low dose murine infection

model. Our results show the complex network of interac-

tions between CrzA, SakA, TOR and SchA pathways.

Results

The DschA mutant is more sensitive to calcium and
osmotic stress

A BLASTp search of the A. fumigatus genome revealed

a single putative orthologue of the S. cerevisiae Sch9,

Afu1g06400 (named SchA). The schA gene model is

supported by RNA-seq data (available at www.aspgd.

org) and the hypothetical protein is predicted to be 934

amino acids in length and possess a mass of 102.8

kDa. A. fumigatus SchA has 66.1% identity and 78.8%

similarity with S. cerevisiae Sch9p over their best local

alignment (e value 5 2e-180; BLASTp alignment) and

37.2% and 47.2% globally (Needleman-Wunsch global

alignment). A comparison of protein structure and orga-

nization between Sch9 and SchA was performed using

the SMART interface (http://smart.embl-heidelberg.de/).

Similar to Sch9, the orthologous SchA protein in A.

fumigatus was predicted to contain a protein kinase C

conserved region 2 (CalB, SM000239), a serine/threo-

nine protein kinase catalytic domain (SM000220) and an

extension to Ser/Thr-type protein kinases (SM000133)

(Supporting Information Fig. S1). S. cerevisiae Sch9 is

phosphorylated by Pkh1/2 at Thr570 residue (Voordeck-

ers et al., 2011), which is conserved in SchA (Thr696)

and by TORC1 kinases at residues Ser711, Thr723,

Ser726, Thr737, Ser758, Ser 765, of which three are

conserved in SchA (Thr857, Ser860, Thr871) (Support-

ing Information Fig. S1).

To gain an initial insight into the function of the Sch9

homologue in A. fumigatus, a schA null mutant and

complemented strains were generated (Supporting Infor-

mation Fig. S2). The wild-type, DschA and

DschA::schA1 strains were grown in minimal medium

(MM) and exposed to agents that affect calcineurin-

CrzA signaling, including CaCl2 and MnCl2 (Soriani

et al., 2008), and those that induce osmotic stress such

as NaCl and sorbitol (Fig. 1A–C). The DschA strain

showed radial growth and conidiation similar to the wild-

type strain (data not shown). The DschA was more sus-

ceptible to CaCl2, MnCl2 and osmotic stress (Fig. 1A–

C). The DschA strain was slightly more sensitive to the

phenylpyrrole antifungal agent fludioxonil, but showed

the same sensitivity as the wild-type strain to antifungal

dicarboximide iprodione, azoles and echinocandin, itra-

conazole and caspofungin (Supporting Information Fig.

S3; data not shown).

Schizosaccharomyces pombe Sch9 directly phos-

phorylates Rps6 when TOR is active (Nakashima

et al., 2010). Therefore in A. fumigatus SchA activity

was measured by quantifying the phosphorylation of

the ribosomal protein S6 (Rps6), a well-known down-

stream target of SchA orthologues, using immunoblot

analysis with a commercial phospho-specific antibody

against Ser235 and Ser236 of human Rps6, which

has already been shown as able to recognize Rps6

phosphorylated residues in S. pombe and S. cerevi-

siae homologues (Nakashima et al., 2010; Gonz�alez

et al., 2015). The phosphorylated serines with an argi-

nine (R) or a lysine (K) at position 24 (relative to

phosphorylated serine) which are recognized by this

antibody are conserved in A. fumigatus (data not

shown). Negative and a positive controls of Rps6A-P

from MCF7 cell lines not induced (C-) or induced with

insulin (C1) showed that the Rps6-P antibody is func-

tional (data not shown). In both the wild-type and

DschA strains, the total Rps6 concentration is constant

with rapamycin and decreases with time in the pres-

ence of sorbitol (Fig. 1D and E). We have evaluated

the RPS6-P/total RPS6 signal by densitometric analy-

sis by using the ImageJ software (http://rsbweb.nih.

gov/ij/index.html). Post exposure to 30 and 60 min

rapamycin, the wild-type strain displayed an 80 and

50% decrease in the Rps6-P/Rps6 ratio, while the

DschA mutant showed an 80 and 96% decrease (Fig.

1D). Upon osmotic stress, the total concentration of

Rps6 was about 30% decreased in the wild-type

strain, while the DschA mutant showed a 40–55%

decrease (Fig. 1E). In addition, the Rps6-P/Rps6 ratio

showed a 30 and 80% decrease in the wild-type

strain, while the DschA mutant displayed an 80 and

95% decrease, when compared to the control (Fig.

1E). These results suggest that SchA is important for

Rps6A phosphorylation and stability, the latter, when

A. fumigatus is subject to osmotic stress.

In accordance with a role in TOR signaling, the DschA

mutant displayed slightly increased sensitivity to rapa-

mycin (Fig. 2), and this sensitivity was not increased

during osmotic stress (data not shown). The comple-

mented DschA::schA1 strain showed the same
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phenotypes as the wild-type strain, strongly indicating

that the observed null phenotypes were due to the loss

of SchA function (Figs. 1–10 and 11). Taken together,

these results show that SchA is more sensitive to rapa-

mycin and is involved in osmotic stress.

SchA null mutant has an increased high-osmolarity
glycerol response (HOG)

To determine if DschA was involved in the HOG pathway

in A. fumigatus, the amount and phosphorylation state

of the Hog1p homologue, SakA, was determined in the

presence and absence of osmotic stress. The

phosphorylation level of the SakA protein was deter-

mined using the anti-phospho-p38 MAPK (Thr180/

Tyr182) and anti-Hog1 (y-215) antibodies.

We have previously shown in a time course kinetics

(10–60 min exposure to 1 M sorbitol) that 10 min is the

timepoint with the highest SakA phosphorylation when

A. fumigatus is exposed to 1 M sorbitol (Hagiwara et al.,

2013). The reduction of SakA phosphorylation in the

wild-type strain after 10 min is due to SakA modulation

by dephosphorylation by SakA phosphatases

(Winkelstr€oter et al., 2015). The DschA mutant has

increased levels of SakA phosphorylation upon osmotic

stress (Fig. 3A). However, after longer exposure to

Fig. 1. The A. fumigatus DschA mutant is more sensitive to osmotic stress and increased calcium concentrations.
A and B. Radial Growth of the A. fumigatus wild-type, DschA, and DschA::schA1 on MM, MM 1 CaCl2 500 mM or MM 1 MnCl2 1 mM. The
data are expressed as radial growth sorbitol/radial growth control (mm).
C. The strains were inoculated in liquid MM with increasing concentrations of sorbitol or NaCl and incubated with agitation for 48 h at 378C.
The data are expressed as dry weight sorbitol/dry weight control (g). The radial diameter and dry weight data are expressed as
average 6 standard deviation of three independent biological repetitions (* and *** denote p< 0.01 and 0.001, respectively, by t-tests when
compared to the wild-type strain).
D and E. Western blot analysis for the total protein level and phosphorylation state of Rps6. The wild-type and DschA strains were grown for
16 h at 378C and exposed, or not, to rapamycin or osmotic stress. Proteins were normalized by Ponceau red staining. Signal intensities were
quantified using the Image J software by dividing the intensity of SakA-P/SakA ratio and expressed as fold increase from the control (0 min).

MAP kinase activity and it is essential for virulence 645
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sorbitol, SakA phosphorylation was increased in the

DschA mutant (Fig. 3A). The markers used to evaluate

the induction of the HOG pathway include catA (cata-

lase, Afu6g03890), dprA (dehydrin, Afu4g00860) and

dprB (dehydrin, Afu6g12180) expression. Catalase and

dehydrin-like proteins play a role in oxidative, osmotic

and pH stress responses and their expression is

dependent on the SakA pathway (Wong Sak Hoi et al.,

2011). Upon 1 h osmotic stress, both the wild-type and

DschA mutant showed high levels of catA, dprA and

dprB expression that drop after 2–4 h (Fig. 3B). How-

ever, in all time points the catA, dprA and dprB mRNA

levels are much higher in the DschA mutant than in the

wild-type strain (Fig. 3B). Taken together, these results

suggest that SchA influences the HOG pathway in A.

fumigatus.

Increased levels of glycerol and trehalose are well-

known mechanisms to adapt to high osmotic pressure in

S. cerevisiae and A. fumigatus primarily triggered by the

HOG pathway (Saito and Posas, 2012; Hagiwara et al.,

2014). Subsequently, we studied glycerol production of

hyphae in response to 1 M Sorbitol for either 0, 10 min,

30 min, 1, 2 or 4 h (Supporting Information Fig. S4 and

Fig. 4C). Upon hypertonic stress from 10 to 60 min or 1

to 4 h the wild-type and DschA::schA1 strains showed a

significant increase in glycerol content, while the DschA

mutant strain does not increase as much as the wild

type (Supporting Information Fig. S4 and Fig. 3C). Tre-

halose accumulation in response to 1 M Sorbitol for

either 0, 10, 30 or 60 min was also investigated (Fig.

3D). Post hypertonic stress for 10–60 min, the DschA

strain showed significantly increased trehalose levels

(Fig. 3D). These results suggest that SchA performs dif-

ferent roles for glycerol and trehalose accumulation dur-

ing osmotic stress.

SchA genetically interacts with SakA and MpkC MAP

kinases upon osmotic stress

Our results indicate that schA genetically interacts with

sakA upon osmotic stress. In A. fumigatus SakA and its

paralogue MpkC, are involved in osmotic stress, carbon

and nitrogen starvation and regulation of conidial germi-

nation (May, 2008). In the wild-type strain, schA mRNA

levels increased post exposure to osmotic stress (Fig. 4).

In contrast, no schA mRNA accumulation was observed

in the DsakA and the double DmpkC DsakA mutants

upon osmotic stress (Fig. 4). Interestingly, the DmpkC

mutant showed a higher level of schA mRNA accumula-

tion than the wild-type strain (Fig. 4). Our results indicate

schA was transcriptionally regulated by osmotic stress

and that this response was dependent on SakA and

MpkC. Highlighting the genetic interaction, the double

DschA DsakA and DschA DmpkC mutants were more

sensitive to osmotic stress than the corresponding paren-

tal strains (Fig. 5). Additionally, DmpkC and DsakA

DmpkC showed increased sensitivity to rapamycin, which

also suggested an interaction between TOR and SakA/

MpkC pathways (Fig. 6). However, the DschA DsakA and

DschA DmpkC mutants were as sensitive to rapamycin

as DschA (data not shown). It can be emphasized that

DschA did not show sensitivity to 0.9 M sorbitol in solid

medium but it did only in liquid medium (compare Figs.

5B to 1C). Interestingly, we were able to see significant

differences among schA and sakA mutants only when we

performed experiments by using radial growth but not dry

weight measurements. Together, these results suggest

SchA and SakA/MpkC interact and both pathways are

interacting with TOR.

MpkC::GFP and SakA::GFP are translocated to the

nucleus upon osmotic stress with SakA::GFP showing a

quicker response (10 min compared to 120 min) (Bruder

Nascimento et al., 2016). Accordingly, SakA::GFP

migrates to the nucleus after 30 min exposure to Sorbi-

tol 1.0 M, while MpkC::GFP did not (Fig. 7A). Both

MpkC::GFP and SakA::GFP do not translocate to the

nucleus upon exposure to rapamycin (Fig. 7B). Interest-

ingly, MpkC::GFP translocation for the nucleus is

induced after 30 min concomitant exposure to sorbitol

and rapamycin (Fig. 7C). These results suggest that

TOR modulates the MpkC translocation to the nucleus

upon osmotic stress.

Fig. 2. A. fumigatus DschA is more
sensitive to rapamycin. The strains were
inoculated in YG medium 1 Alamar Blue
with increasing concentrations of
rapamycin, and incubated for 48 h at
378C. This experiment was repeated
three times and the experiment that is
shown here is is a representative
experiment.
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SchA is important for sphingolipid biosynthesis upon
osmotic stress

In S. cerevisiae Sch9 is an effector of sphingolipid sig-

naling (Spincemaille et al., 2014; Swinnen et al., 2014a,

2014b). Subsequently, we examined sensitivity to

sphingolipid inhibitors and the total concentration of dif-

ferent sphingolipids (Fig. 8A; Supporting Information

Fig. S5). The DschA mutant was as sensitive to myrio-

cin (that inhibits serine palmitoyltransferase, the first

step in sphingosine biosynthesis) and aureobasidin A

Fig. 3. The schA null mutant has
increased SakA phosphorylation.
A. Immunoblot analysis for SakA
phosphorylation in response to osmotic
stress. The wild-type and the schA null
mutant were grown for 18 h at 378C.
Then, sorbitol (1 M final concentration)
was not added (control) and added for 0
(control), 10, 60, 120 and 240 min. The
mycelium was harvested at the indicated
times, and total proteins were extracted.
Anti-phospho-p38 was used to detect
the phosphorylation of SakA, and anti-
Hog1p was used to detect the total
SakA protein. A Coomassie Brilliant Blue
(CBB)-stained gel is shown as a loading
control. Signal intensities were quantified
using the Image J software by dividing
the intensity of SakA-P/SakA ratio and
expressed as fold increase from the
control (0 min).
B. The DschA mutant shows higher
expression of osmostress dependent
genes. The wild-type and the DschA
mutant were grown for 18 h at 378C.
Then, sorbitol (1 M final concentration)
was added for 0 (control), 1, 2 and 4 h.
The mycelium was harvested at the
indicated times, and total RNA was
extracted. The absolute quantitation of
catA, dprA, and dprB and actA
(Afu6g04740, encoding the actin) was
determined by a standard curve (i.e., CT

–values plotted against a logarithm of
the DNA copy number). The results are
the means (6 standard deviation) of four
biological replicates (*, p< 0.001,
comparison of the treatments with
wild2type).
C and D. Glycerol and trehalose
accumulation in the wild-type, DschA,
and DschA::schA1 strains upon osmotic
stress. The strains were grown for 18 h
at 378C. Then, sorbitol (1 M final
concentration) was added for 0 (control),
1, 2 and 4 h. Glycerol and trehalose
were quantified and normalized
according to the volume of the lysate or
dry weight respectively. The results are
the means (6 standard deviation) of
three biological replicates (*, p< 0.001,
comparison of the treatments with wild-
type).
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(an inhibitor of inositol phosphorylceramide (IPC) syn-

thase) as the wild-type strain (Fig. 8B; data not shown).

We also changed the balance in intermediary sphingoli-

pid metabolites to disturb cell viability and growth by

adding phytosphingosine (PHS) and dihydrosphingosine

(DHS). PHS was able to inhibit DschA growth more than

the wild-type and complementing strains, while all three

strains showed the same degree of inhibition to DHS

(Fig. 8A; data not shown). Sphingolipid profiling in the

presence of osmotic stress (1 h Sorbitol 1.0 M) showed

that the DschA mutant had reduced levels of hexosyl

ceramides (HexCer), hydroxyceramides (OH-Cer), dihy-

droceramide species (dhCer), sphingosine (Sph), sphin-

gosine 1-phosphate (Sph-1-P), ceramides (Cer),

phytoceramide species with acyl chains of different length

(aOHPhytoCer), phytoceramide species (PhytoCer) and

inositol phosphorylceramide (IPC) (Fig. 8B; Table 1). In

the absence of osmotic stress, DschA showed only

reduced levels of dhCer, aOHPhytoCer and increased

levels of MIPC (Fig. 8B and Table 1). Taken together,

these results suggest that SchA influences sphingolipid

biosynthesis primarily upon osmotic stress.

High-troughput data suggests a temporal program for
osmotic stress response modulated by SchA

RNA-sequencing and proteomics were used to interro-

gate how the A. fumigatus wild-type and DschA strains

adapt to long exposure to osmotic stress (1.0 M Sorbitol),

with the objective of identifying possible SchA targets.

We have used long exposure to osmotic stress because

all our previous data suggest that SchA is important to

modulate the strength of the signal since during its

absence SakA remains longer time phosphorylated (see

Fig. 3). The genes that were transcriptionally modulated

post transfer to osmotic stress (1 h in 1.0 M Sorbitol)

were identified (Supporting Information Fig. S1 and

Tables S1 and S2), revealing 986 and 680 genes up or

downregulated, respectively in the wild-type, and 1,152

and 799 genes up or downregulated in the DschA strain

(21.0� log2FC� 1.0). A comparison of the differentially

expressed genes showed 324 genes which are either

more highly expressed (151) or less expressed (173) in

the DschA mutant in comparison to the wild-type strain

(Supporting Information Tables S1 and S2).

Fig. 4. The schA expression upon
osmotic stress is dependent on SakA.
The wild-type, DsakA, DmpkCand
DmpkC DsakAmutants were grown for
18 h at 378C. Then, sorbitol (1 M final
concentration) was added for 0 (control),
10, 30, 60 and 120 min. The mycelium
was harvested at the indicated times,
and total RNA was extracted. The
absolute quantitation of schA and tubC
was determined by a standard curve
(i.e., CT –values plotted against a
logarithm of the DNA copy number). The
results are the means (6 standard
deviation) of four biological replicates (*,
p< 0.001, comparison of the treatments
with wild2type).

Fig. 5. The A. fumigatus DschA genetically interacts with DsakA
and DmpkC upon osmotic stress. Wild-type (CEA17 pyrG1 or
AfS35), DschA, DsakA, DschA DsakA, DmpkC, DschA DmpkC were
grown in MM with increasing concentrations of sorbitol for 72 h at
378C. The data are expressed as radial growth sorbitol/radial
growth control (mm). The radial diameter data are expressed as
average 6 standard deviation of three independent biological
repetitions (* denotes p< 0.001, by t-tests when compared to the
wild-type strain).
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Gene Ontology (GO) enrichment analyses of the dif-

ferentially expressed genes in DschA showed a tran-

scriptional downregulation of mitochondrial metabolism

and function, ion transport, intracellular protein trans-

membrane and vacuolar transport, cofactor biosynthetic

process, nucleotide biosynthetic process and cellular

nitrogen compound biosynthetic process (Table 2). Con-

versely, there was an upregulation of genes encoding

proteins involved in numerous biosynthetic processes,

including hexose metabolic process, pentose-phosphate

shunt and NADPH regeneration, alcohol metabolic pro-

cess, DNA-dependent DNA replication and cell cycle,

RNA metabolic process, ribosome biogenesis and trans-

lational initiation and monosaccharide catabolic process

(Table 2). Therefore, this analysis of the transcriptome

implies that upon prolonged osmotic stress SchA is

important for mitochondrial function and intracellular

transport, while its absence increases the expression of

genes important for monosaccharide metabolism and

cell cycle progression.

We also used label-free quantitative proteomics (spec-

tral counts) to investigate proteins differentially abundant

in the DschA mutant upon osmotic stress (Supporting

Information Tables S3–S5, Tables 3 and 4). Proteins of

significant differential abundance in DschA were classi-

fied in terms of biological function. Upon osmotic stress,

in DschA, there was a reduction in abundance of pro-

teins related to RNA and protein synthesis, chromatin

modification, lipid metabolism and the glycerol-3-

phosphate dehydrogenase (Table 3). Upon osmotic

stress, in DschA, there was an increase in protein abun-

dance related to oxidative and osmotic stresses

(Table 4). Therefore, this proteomic analysis implies that

upon prolonged osmotic stress the absence of SchA

promotes oxidative stress response, phosphatidic acid

synthesis and carbohydrate metabolism.

The integration of the transcriptomics, proteomics and

large-scale lipid analysis strongly supports the notion

that the SchA has an influence on the hyperosmotic

stress response network in A. fumigatus. In fact, the

analysis of all three independent approaches shows that

while under normal growth condition only minor differ-

ences are noted between wild-type and schA mutant

strain, a strong difference in the RNA, protein and lipid

composition is noticed between both strains under

osmotic stress. In the case of RNA expression, most of

the initial differences noticed between both strains are

augmented after 1 h exposition to osmotic stress. As

shown in Fig. 9A (and Supporting Information Table

S6), 36 genes are induced in the mutant strain while

73 are repressed (groups C2, C3 and C7), while 8

genes (group C1) are induced in the mutant strain at

the initial condition but are not differentially expressed

upon osmotic stress. Accordingly, groups C4 and C8

represent genes induced (116 genes) or repressed

(100 genes) in the mutant strain upon osmotic stress

that are not differentially expressed during normal

growth conditions. Finally, five genes were found to be

repressed in the mutant under normal growth but

induced upon osmotic stress (group C5), while three

genes repressed under normal growth were not differ-

entially expressed upon 1 h exposure to the osmotic

stress (group C6).

The analysis of the proteomics data allows the obser-

vation of a more complex behavior, since the effect of

osmotic stress was quantified after 2 and 4 h. In fact,

the proteomics analysis demonstrated again that under

normal growth, only few proteins are differentially abun-

dant in the mutant compared to the wild-type strain.

However, upon exposition to osmotic stress, the number

of proteins differentially abundant grows five-times, and

several different profiles were observed. Most of these

differences in the proteome occurs in the first 2 h of

stress and disappears upon prolonged exposition, as

indicated for 42 proteins with higher levels (group C1,

Fig. 9B and Supporting Information Table S6) and 41

proteins with lower levels (group C6), indicating that in

these cases the proteome returns to a steady-state con-

dition. From these two groups, we found that a signifi-

cant amount of the proteins from group C1 are related

to Protein Synthesis (17 proteins) and Osmotic and Oxi-

dative Stress (6 proteins), while group C6 is abundant

Fig. 6. The A. fumigatus DmpkC and
DmpkC DsakA mutants are more
sensitive to rapamycin. The strains were
inoculated in YG medium 1 Alamar Blue
with increasing concentrations of
rapamycin, and incubated for 48 h at
378C. This experiment was repeated
three times and the experiment that is
shown here is is a representative
experiment.
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for genes also related to Protein Synthesis (14 proteins) and

Chromatin Modification (7 proteins). A reduced but still sig-

nificant number of proteins only appears after prolonged

exposition to osmotic stress (4 h), with 28 proteins being

highly abundant (group C5) and 10 proteins with reduced

levels (C8). Quite interestingly, analysis of these late pro-

teins reveals enrichment for Osmotic and Oxidative Stress

proteins at group C5 (9 out of 28) and 3 proteins related to

Protein Synthesis at group C8 (3 out of 10). It is quite

remarkable as well that from the proteins differentially

expressed in normal growth conditions but not signifcantilly

upon osmotic stress (groups C4 and C10), 7 out of 10 genes

with lower level in mutant stress are related to Protein Syn-

thesis (group C10).

In other words, the comparison of early and late-

induced proteins upon osmotic stress indicates that the

Fig. 7. MpkC::GFP migrates to the nucleus upon osmotic stress in the presence of rapamcyin.
A. The SakA::GFP and MpkC::GFP strains were grown for 16 h at 308C in MM and incubated for 30 min in the presence of 1.0 M sorbitol at 308C,
B. rapamycin 2 mg/ml for 30 min at 308C or
C. rapamycin 2 mg/ml combined with 1.0 M sorbitol for 30 min at 308C. Bars, 5 lm.
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first response is enriched for proteins related to ‘Protein

Synthesis’ while encompass only a few proteins related

to ‘Oxidative and Osmotic Stress’. However, the late-

induced group has no proteins related to ‘Protein

Synthesis’ but a larger amount of proteins related to

‘Oxidative and Osmotic Stress’. This analysis indicates

the existence of a temporal program regulated by SchA

in A. fumigatus that is activated when this fungus is

Fig. 8. The DschA mutant has reduced
sphingolipids production.
A. The wild-type, DschA, and
DschA::schA1 strains were inoculated in
MM medium 1 Alamar Blue with
increasing concentrations of
phytosphingosine (PHS), and incubated
for 48 hrs at 378C.
B. Schematic representation of the
sphingolipids biosynthesis pathway
(adapted from Swinnen et al., 2014b)
showing in red the reduction of different
intermediaries or products. HexCer5
hexosyl ceramides; OH-Cer5
hydroxyceramides; dhCer5
dihydroceramide species; Sph5

sphingosine; Sph-1-P5 sphingosine 1-
phosphate; Cer5 ceramides;
aOHPhytoCer5 phytoceramide species
with acyl chains of different length;
PhytoCer5 phytoceramide species; and
IPC5 inositol phosphorylceramide.

Table 1. Lipids distribution in the wild-type and DschA upon non-stress (control) and osmotic stress conditions (Sorbitol 1.0 M).

Lipidsa

Wild-type DschA Wild-type X DschA Wild-type Sorbitol 1.0 M DschA Wild-type X DschA

Control (b) Control (p-valuesc) Sorbitol 1.0 M Sorbitol (p-valuesc)

HexCer 4.040 6 0.363 3.610 6 0.939 0.314 4.264 6 0.219 1.043 6 0.086 0.000
OH-Cer 0.124 6 0.016 0.103 6 0.020 0.178 0.142 6 0.017 0.029 6 0.005 0.001
dhSph 0.040 6 0.002 0.044 6 0.005 0.193 0.065 6 0.032 0.023 6 0.004 0.092
dhSph-1-P 0.001 6 0.001 0.001 6 0.000 0.277 0.000 6 0.000 0.000 6 0.000 0.445
dhCer 0.404 6 0.023 0.316 6 0.019 0.011 0.216 6 0.004 0.113 6 0.008 0.000
Sph 0.059 6 0.013 0.073 6 0.025 0.280 0.030 6 0.006 0.031 6 0.008 0.431
Sph-1-P 0.000 6 0.000 0.001 6 0.000 0.071 0.000 6 0.000 0.000 6 0.000 0.032
Cer 0.632 6 0.103 0.466 6 0.061 0.082 0.464 6 0.084 0.154 6 0.020 0.006
aOHPhytoCer 0.353 6 0.004 0.257 6 0.011 0.000 0.224 6 0.079 0.063 6 0.007 0.034
PhytoCer 2.414 6 0.660 2.028 6 0.101 0.259 1.623 6 0.220 0.392 6 0.057 0.001
IPC 0.495 6 0.042 0.518 6 0.238 0.457 0.626 6 0.173 0.106 6 0.010 0.011
MIPC 0.012 6 0.003 0.023 6 0.002 0.010 0.005 6 0.002 0.005 6 0.002 0.474

aHexCer5 hexosyl ceramides; OH-Cer5 hydroxyceramides; dhSph5 dihydrosphingosine; dhSph-1-P5 dihydrosphingosine 1-phosphate;
dhCer5 dihydroceramide species; Sph5 sphingosine; Sph-1-P5 sphingosine 1-phosphate; Cer5 ceramides; aOHPhytoCer5 phytoceramide
species with acyl chains of different length; PhytoCer5 phytoceramide species; IPC5 inositol phosphorylceramide; and MIPC5 mannosylino-
sitol phosphorylceramide
bData represented as pmol/Pi (Mean of three repetitions 6 SEM).
cStudent’s t-test.

MAP kinase activity and it is essential for virulence 651

VC 2016 John Wiley & Sons Ltd, Molecular Microbiology, 102, 642–671



exposed to osmotic stress conditions. To the best of our

knowledge, this is the first time such comprehensive

high-throughput analysis is used to investigate the func-

tional scope of a Sch9 homologue.

SchA is involved in sensing iron availability

Recently, Baldin et al. (2015) demonstrated that in A.

fumigatus the repression of TOR disrupted iron regula-

tion. We investigated the response of DschA to iron star-

vation or excess. A. fumigatus cannot directly use

human iron sources such as heme, ferritin or transferrin

(Schrettl and Haas, 2011; Moore, 2013). It utilizes both

reductive iron assimilation (RIA) and siderophore (low-

molecular-mass ferric iron chelators)-mediated iron

uptake during murine infection (Schrettl and Haas,

2011; Moore, 2013). Two master transcription factors

regulate iron assimilation, HapX (during starvation but

also can affect iron excess) and SreA (during iron

repletion or excess) (Schrettl and Haas, 2011; Moore,

2013; Gsaller et al., 2014). There was no difference

in growth between strains in MM or iron excess. How-

ever, the DschA mutant grew approximately 20% more

than the wild-type and the complemented strains dur-

ing iron starvation (Fig. 10A and data not shown).

Western blot analysis showed that both iron starvation

and excess decrease total Rps6 (Fig. 10A). Iron

excess increases the ratio of Rps6-P/Rps6 in the wild-

type (40 and 60% in 1 and 2 h iron excess) and in

the DschA mutant is about the same and 48% lower

than the control (in 1 and 2 h iron starvation)

(Fig. 10B). During iron starvation the ratio of Rps6-P/

Rps6 increases 1.9-fold and 2.3-fold in the wild-type

than in the control while in the DschA there is 70%

less and 30% more Rps6-P/Rps6 than in the control

(Fig. 10B).

Table 2. A summary of the GO terms over-represented up or down regulated in log2FC DschA versus wild-type post transfer to 1 M Sorbitol

for 1 h. For the full list refer to Supporting Information Table S1. BP 5 Biological Process.

GO term Description p-value Class Reg

GO:0042375 Quinone cofactor metabolic process 0,000186 BP Down
GO:0045324 Late endosome to vacuole transport 0,002303 BP Down
GO:0006626 Protein targeting to mitochondrion 3,08E-07 BP Down
GO:0034220 Ion transmembrane transport 0,000309 BP Down
GO:0051188 Cofactor biosynthetic process 0,001837 BP Down
GO:0009165 Nucleotide biosynthetic process 0,001054 BP Down
GO:0015992 Proton transport 6,37E-08 BP Down
GO:0072655 Establishment of protein localization in mitochondrion 1,59E-07 BP Down
GO:0044271 Cellular nitrogen compound biosynthetic process 0,002281 BP Down
GO:0006623 Protein targeting to vacuole 0,001624 BP Down
GO:0007006 Mitochondrial membrane organization 3,18E-05 BP Down
GO:0006839 Mitochondrial transport 9,48E-07 BP Down
GO:0006091 Generation of precursor metabolites and energy 6,44E-06 BP Down
GO:0007034 Vacuolar transport 0,00019 BP Down
GO:0061024 Membrane organization 0,000836 BP Down
GO:0000002 Mitochondrial genome maintenance 0,001626 BP Down
GO:0071806 Protein transmembrane transport 0,002165 BP Down
GO:0065002 Intracellular protein transmembrane transport 0,002165 BP Down
GO:0007007 Inner mitochondrial membrane organization 0,000442 BP Down
GO:0006123 Mitochondrial electron transport, cytochrome c to oxygen 0,000622 BP Down
GO:0006886 Intracellular protein transport 0,000151 BP Down
GO:0030150 Protein import into mitochondrial matrix 0,000856 BP Down
GO:0006139 Nucleic acid metabolic process 5,91E-16 BP Up
GO:0046365 Monosaccharide catabolic process 1,06E-05 BP Up
GO:0007049 Cell cycle 0,001353 BP Up
GO:0016070 RNA metabolic process 4,06E-15 BP Up
GO:0006298 Mismatch repair 0,002667 BP Up
GO:0006740 NADPH regeneration 0,00093 BP Up
GO:0042254 Ribosome biogenesis 2,93E-34 BP Up
GO:0006413 Translational initiation 0,001423 BP Up
GO:0006007 Glucose catabolic process 0,001423 BP Up
GO:0019320 Hexose catabolic process 0,000514 BP Up
GO:0006261 DNA-dependent DNA replication 2,11E-05 BP Up
GO:0006066 Alcohol metabolic process 0,002778 BP Up
GO:0019318 Hexose metabolic process 0,002044 BP Up
GO:0006098 Pentose-phosphate shunt 0,002457 BP Up
GO:0034471 ncRNA 5’-end processing 6,56E-09 BP Up
GO:0031126 snoRNA 3’-end processing 0,002457 BP Up
GO:0006807 Nitrogen compound metabolic process 2,93E-13 BP up
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The wild-type, DhapX, and DsreA mutants were grown

for 24 h in iron replete or iron starvation conditions and

then exposed to either iron starvation or iron excess for

1 or 2 h (Fig. 10C). During iron starvation, the wild-type

strain exhibited increased schA expression, while in the

DhapX and DsreA mutants schA showed constant levels

of expression (Fig. 10C, left panel). During iron excess,

the wild-type, DhapX, and DsreA strains showed similar

levels of schA expression (Fig. 10C, right panel). As

expected the wild-type strain showed increased hapX

and sidA (L-ornithine N5-oxygenase; the first committed

step in siderophore biosynthesis) expression during iron

starvation, while the transcriptional response was higher

in the DschA mutant (Fig. 10D). During iron excess,

hapX and sidA expression was slightly decreased in the

wild-type strain, while in the DschA mutant, hapX has

about the same expression levels while sidA has slightly

decreased levels than the wild-type (Fig. 10D). Surpris-

ingly, in the wild-type strain there is an unexpected low

induction of the sreA gene during iron starvation condi-

tions while this was not observed in the DschA mutant

(Fig. 10D).

To have a preliminary insight of the compounds

which are accumulating during iron starvation or

excess, we grew the wild-type and DschA strains for

48 h in liquid MM with iron starvation or 200 mM

FeSO4, and extracted the intracellular polar com-

pounds for gas chromatography coupled to mass-

spectrometry (GC-MS) analysis. Principal Component

Analyses (PCA) demonstrated that the first source of

variation in their metabolome, the amino acids and

some other primary metabolites of the wild-type and

DschA strains, were distinct under the different condi-

tions (Supporting Information Table S7; Fig. 10E and

F). Tables 5 and 6 show the values of fold increase

during iron starvation or excess versus the control,

comparing the DschA and wild-type strains. During

iron starvation, most of the amino acids in both

strains dramatically decreased when compared to the

control (Table 5). However, this decrease was greater

in the DschA mutant. Interestingly, there was a much

higher accumulation of ornithine, pyruvate, succinate

and trehalose in the DschA mutant compared to the

wild-type strain. In contrast, isocitrate and malate

showed a moderately higher level of accumulation in

the DschA mutant when compared to the wild-type

strain. Upon iron excess, a less dramatic alteration

was observed. Nonetheless there was an increased

utilization of malate and increased accumulation of tre-

halose in the DschA mutant when compared to the

wild-type strain (Table 6). Therefore, SchA appeared

to influence both ornithine and general amino acid

biosynthesis and metabolites in the glyoxylate path-

way, in addition to trehalose biosynthesis.

SchA is important for A. fumigatus virulence in a low
dose murine infection

We have used a neutropenic murine model of invasive

pulmonary aspergillosis to evaluate A. fumigatus

DschA pathogenicity (Fig. 11A). The infection by the

wild-type strain resulted 100% mortality after 13 days

post-infection; however, DschA infection yielded a sig-

nificantly reduced mortality rate of about 20% after 15

days post-infection (Fig. 11A, p< 0.001 and p<0.0038

for the comparison between the wild-type strain and

the DschA mutant, Log2rank, Mantel2Cox and

Gehan2Breslow2Wilcoxon tests respectively). We

have restored the virulence in an independent strain

produced from a single ectopic reintegration of the

wild-type schA locus. No statistical difference was

observed between the wild-type and the comple-

mented DschA::schA1 strains (Fig. 11A, p> 0.90 and

p> 0.82 for the comparison between the wild-type and

the complemented strains, Log2rank, Mantel2Cox

and Gehan2Breslow2Wilcoxon tests respectively),

directly linking the attenuation of DschA virulence to

SchA function.

Histopathological examination revealed that at 72 h

post-infection the lungs of mice infected with the wild-

type strain contained multiple foci of invasive hyphal

growth, which penetrated the pulmonary epithelium in

major airways, while pockets of branched invading

hypha originated from the alveoli (Fig. 11B). In con-

trast, DschA infections revealed inflammatory infiltrates

in bronchioles, with some containing poorly germinated

or ungerminated conidia (Fig. 11B). Fungal burden

was measured by qPCR, showing that the DschA

strain did not grow within the lungs as well as the

wild-type and the complemented DschA::schA1 strains

(Fig. 11C, p< 0.0001 for the comparison between the

wild-type and the DschA mutant, and p>0.05

between the wild-type and the complemented strains).

Taken together, this strongly indicates that SchA plays

an important role in A. fumigatus virulence.

Discussion

We have characterized the A. fumigatus Sch9 homo-

logue, SchA, as a substrate of TOR, which regulates

diverse aspects of cell growth in response to intracellular

and extracellular signals. In S. cerevisiae Sch9p plays

multiple roles in stress resistance, longevity, sphingolipid

biosynthesis and nutrient sensing (Smets et al., 2010;

Longo and Fabrizio, 2012; Spincemaille et al., 2014;

Swinnen et al., 2014a, 2014b). Three of the six amino

acid residues on the C-terminus of Sch9 which are phos-

phorylated by TORC1 were conserved in SchA. We pre-

viously identified SchA as a target for the calcineurin-
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Table 3. Proteins identified as less expressed in the DschA mutant strain upon growth on YPD medium (time 0 h) and transfer to 1.0 M

Sorbitol (for 2 or 4 h). For the full list refer to Supporting Information Tables S3–S5.

Aspergillus fumigatus DschA x Wild type (t-test difference)

Strain Af293 Strain A1163 Protein annotation 0 h 2 h 4h

RNA and Protein synthesis
AFUA_7G04280 AFUB_089820 Small nuclear ribonucleoprotein (LSM5) NIa NI 22.1380
AFUA_1G04280 AFUB_004610 30S ribosomal protein S7 21.0016 NI NI
AFUA_1G06770 AFUB_007150 40S ribosomal protein S26 21.2207 NI NI
AFUA_1G14220 AFUB_013760 nopA. Nucleolar protein NI 21.29947 NI
AFUA_2G07970 AFUB_023990 60S ribosomal protein 21.6866 NI NI
AFUA_3G13480 AFUB_035720 Translation initiation factor 2 alpha subunit NI 21.36763 NI
AFUA_3G13400 AFUB_035810 nop5. Putative nucleolar protein NI 23.09814 NI
AFUA_3G13310 AFUB_035890 Ribosomal protein S15. Putative NI NI 21.0561
AFUA_3G10800 AFUB_038330 Eukaryotic translation initiation factor 3

subunit CLU1/TIF31
NI 22.73375 21.6641

AFUA_3G09600 AFUB_039570 sik1. Ortholog(s) have role in rRNA proc-
essing and 90S preribosome.

NI 25.59322 NI

AFUA_3G08600 AFUB_040500 Translational initiation factor 2 beta NI 21.65107 NI
AFUA_3G06840 AFUB_042210 40S ribosomal protein S4 21.286 NI NI
AFUA_6G03580 AFUB_094710 mRNA-nucleus export ATPase (Elf1) 21.0381 NI NI
AFUA_6G02520 AFUB_095820 Eukaryotic translation initiation factor eIF-

1A subunit
NI 21.37648 NI

AFUA_6G02440 AFUB_095900 60S ribosomal protein L24a 21.2355 NI NI
AFUA_7G05290 AFUB_090870 40S ribosomal protein 21.3228 NI NI
AFUA_1G05310 AFUB_005660 nucleolus localization NI 21.83611 NI
AFUA_8G02730 AFUB_083860 Translation machinery-associated protein

22
NI 21.00583 NI

AFUA_4G10550 AFUB_067650 small nucleolar ribonucleoprotein complex
component (Utp5)

NI 21.39821 NI

AFUA_1G03970 AFUB_004370 Putative mitochondrial translation initiation
factor IF-2

NI 21.03423 21.24289

AFUA_5G11000 AFUB_058570 U2 small nuclear ribonucleoprotein A’ (U2
snRNP-A’)

NI 21.18664 NI

AFUA_5G03470 AFUB_051980 tRNA-guanine transglycosylase family
protein

21.4233 NI 21.90945

AFUA_1G05560 AFUB_005900 Ortholog(s) have role in cytoplasmic
translation

NI 21.56902 NI

AFUA_3G06010 AFUB_043040 RNA processing protein Emg1. Putative NI 21.0297 NI
AFUA_6G05080 AFUB_093200 CCR4 Associated Factor NI NI 21.10484
AFUA_2G05950 AFUB_022990 RNA binding activity and role in mRNA

splicing. via spliceosome
NI 21.42661 NI

AFUA_4G07580 AFUB_064670 translation initiation factor EF-2 gamma
subunit

NI 21.90111 NI

Chromatin modification
AFUA_1G09600 AFUB_009050 Putative GNAT-type acetyltransferase NI 22.2675 NI
AFUA_1G13780 AFUB_013260 Histone H4.1. core histone protein; nearly

identical to histone H4.
NI 21.05959 NI

AFUA_2G03390 AFUB_020460 rpdA. putative histone deacetylase NI 21.07917 NI
AFUA_3G06070 AFUB_042980 histone H1 NI 22.60937 NI
AFUA_3G05360 AFUB_043640 histone H2A NI 21.60511 NI
AFUA_3G05350 AFUB_043650 Histone H2B NI 21.49352 NI
AFUA_4G11910 AFUB_068910 N-terminal acetyltransferase catalytic sub-

unit (NAT1)
NI 22.76482 NI

Lipid metabolism
AFUA_7G05920 AFUB_091500 stearic acid desaturase (SdeA) NI 21.04105 NI
AFUA_7G03740 AFUB_089270 14-alpha sterol demethylase14-alpha ste-

rol demethylase Cyp51B
NI 21.04625 NI

Miscellaneous
AFUA_1G05320 AFUB_005670 role in cell redox homeostasis. glycerol

ether metabolic process
NI 21.26321 NI

AFUA_6G13420 AFUB_001330 Ubiquitin-like protein DskB. Putative NI NI 21.25449
AFUA_1G08810 AFUB_008170 Glycerol-3-phosphate dehydrogenase 22.6886 NI 21.23237
AFUA_1G10380 AFUB_009800 Non-ribosomal peptide synthetase

(NRPS);essential for fumigaclavine C
NI 21.70174 21.27983

AFUA_1G10400 AFUB_009820 Putative nuclear pore complex protein NI 21.04484 NI
AFUA_4G04740 AFUB_098260 Ran guanyl-nucleotide exchange factor

activity. signal transducer activity
NI 21.39637 NI
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CrzA pathway in response to calcium stress, while also

demonstrating that the genetic interaction between the

calcineurin-CrzA and HOG pathways was essential for

full virulence (de Castro et al., 2014). Several members

of the two-component system (TCS) and the HOG path-

way were more sensitive to calcium (de Castro et al.,

2014). Interestingly, the DschA mutant was more sensi-

tive to calcium, rapamycin and osmotic stress, suggesting

its involvement in all three signaling pathways.

The highly conserved MAPK signaling pathways are

essential for the adaptation to environmental changes

(Pearson et al., 2001; Rispail et al., 2009). The MAPK

cascades are important for relaying, integrating and

amplifying intracellular signals, and are crucial signaling

components involved in many cellular processes (Pear-

son et al., 2001; Rispail et al., 2009). In A. fumigatus

MpkC and SakA are paralogues of the S. cerevisiae

Hog1, which is the main regulator of the HOG pathway

(Maeda et al., 1994). SakA and MpkC play a role in car-

bon utilization and adaptations to the antifungal agent,

caspofungin (Reyes et al., 2006; Altwasser et al., 2015;

Valiante et al., 2015). Pascual-Ahuir and Proft (2007)

have shown that Sch9 is involved in the regulation of

adaptations to acute hyperosmotic stress in S. cerevi-

siae. Here, we demonstrated that the expression of

schA was dependent on SakA, while SchA modulated

SakA phosphorylation and increased expression and

protein accumulation of several downstream targets by

transcriptomics and proteomics. Accordingly, the double

mutants DschA DsakA and DschA DmpkC were more

sensitive to osmotic stress, suggesting these pathways

genetically interacted upon osmotic stress. Additional

evidences for an interaction between TOR and SakA/

MpkC MAP kinases are: (i) increased rapamycin sensi-

tivity of DsakA DmpkC, and (ii) upon osmotic stress,

SakA::GFP was translocated to the nucleus quicker

than MpkC::GFP, while rapamycin accelerated the trans-

location of MpkC::GFP to the nucleus during osmotic

stress. These results suggest that MpkC could act by

modulating SakA activity upon exposure to osmotic

stress and this was controlled by the TOR pathway.

Recently, in F. graminearum FgSch9 and FgHog1 null

mutants exhibited increased sensitivity to osmotic and

oxidative stresses, and this defect was more severe in

Table 3: Continued

Aspergillus fumigatus DschA x Wild type (t-test difference)

Strain Af293 Strain A1163 Protein annotation 0 h 2 h 4h

AFUA_2G11020 AFUB_026790 Putative triose-phosphate isomerase 21.3098 NI NI
AFUA_3G05580 AFUB_043410 Chitin synthase activator (Chs3) NI NI 21.18957
AFUA_5G01940 AFUB_050460 R3H domain protein. putative. ssRNA

binding protein
NI 21.35519 NI

AFUB_051760 AFUB_051760 ubiquitin C-terminal hydrolase (HAUSP) NI 21.00107 NI
AFUB_052020 AFUB_052020 alpha glucosidase II. alpha subunit NI 21.27163 NI
AFUA_5G09910 AFUB_057500 Nitroreductase family protein. Putative 21.2944 NI NI
AFUA_5G11760 AFUB_059330 Hydroxymethylbilane synthase. Putative NI NI 21.12319
AFUA_4G07160 AFUB_064250 ATP dependent RNA helicase (Dob1) NI 21.50385 NI
AFUA_4G07660 AFUB_064750 secretory component protein shr3 NI 21.18606 NI
AFUA_4G08710 AFUB_065800 short chain dehydrogenase 21.4619 NI NI
AFUA_4G08710 AFUB_065800 Putative short chain dehydrogenase NI NI 21.33766
AFUA_4G09660 AFUB_066770 secretory component protein shr3 NI 21.15888 NI
AFUA_6G06620 AFUB_072550 COPII vesicles protein Yip3 NI NI 21.43633
AFUA_6G07210 AFUB_073150 Sod4. Putative copper-zinc superoxide dis-

mutase (1)
NI NI 21.58874

AFUA_6G08580 AFUB_074540 FKBP-type peptidyl-prolyl isomerase NI 23.77503 NI
AFUA_7G01220 AFUB_087800 Farnesyl-diphosphate farnesyltransferase NI 21.01045 NI
AFUA_7G02230 AFUB_088780 mRNA binding post-transcriptional regula-

tor (Csx1)
NI 21.62588 NI

Unknown
AFUA_1G04550 AFUB_004890 Uncharacterized NI 21.41957 NI
AFUA_2G02630 AFUB_019730 Protein of unknown function NI NI 24.09779
AFUA_1G06780 AFUB_007160 Ortholog(s) have cytosol. nucleus

localization
NI 21.16415 NI

AFUA_2G05670 AFUB_022700 Protein of unknown function NI 21.05243 NI
AFUA_2G12580 AFUB_028240 Ortholog(s) have endoplasmic reticulum

localization
NI 21.40812 NI

AFUA_3G07710 AFUB_041390 Has domain(s) with predicted nucleic acid
binding. nucleotide binding activity

NI 22.62475 NI

AFUA_8G04570 AFUB_082920 PWWP domain protein NI 21.71027 NI

aNI 5 not identified, the protein was not identified in this timepoint.
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Table 4. .Proteins identified as more expressed in the DschA mutant strain upon growth on YPD medium (time 0 h) and transfer to 1.0 M

Sorbitol (for 2 or 4 h). For the full list refer to Supplementary Tables S3–S5.

Aspergillus fumigatus DschA x Wild type(t-test difference)

Strain Af293 Strain A1163 Protein annotation 0 h 2 h 4 h

oxidative and osmotic stresses
AFUA_3G02270 AFUB_046060 mycelial catalase Cat1 1.505 NIa NI
AFUA_6G12450 AFUB_078460 awh11. Putative heat shock protein NI NI 2.200
AFUA_3G14540 AFUB_034690 heat shock protein Hsp30/Hsp42 NI 1.068 NI
AFUA_6G12180 AFUB_078180 DprB. Fungal dehydrin-like protein NI 6.192 1.394
AFUA_7G04520 AFUB_090060 DprC. Dehydrin-like protein NI NI 1.149
AFUA_7G02070 AFUB_088630 AIF-like mitochondrial oxidoreductase; conidia-

enriched protein
NI 4.063 1.332

AFUA_8G01090 AFUB_085510 Putative thioredoxin; hypoxia repressed protein NI NI 1.459
AFUA_1G09890 AFUB_009330 Protein with Yap1-dependent induction in response to

hydrogen peroxide
NI 1.341 NI

AFUA_4G14380 AFUB_071650 Glutathione S-transferase. Putative NI NI 1.176
AFUA_2G05060 AFUB_022090 Alternative oxidase. mediates the cyanide-insensitive

respiratory pathway
NI 1.290 NI

AFUA_5G07000 AFUB_054560 Putative NAD binding Rossmann fold oxidoreductase NI NI 1.625
AFUA_1G02090 AFUB_002470 predicted oxidoreductase activity NI 1.413 NI
AFUA_3G00330 AFUB_048120 NAD dependent epimerase/dehydratase family

protein
NI NI 1.911

AFUA_5G09910 AFUB_057500 nitroreductase family protein NI 2.686 NI
AFUA_4G09220 AFUB_066340 flavin-binding monooxygenase-like protein NI NI 1.128
AFUA_8G04340 AFUB_083200 Cystathionine gamma-lyase NI 1.160 NI
AFUA_8G06080 AFUB_081400 Putative flavohemoprotein NI NI 1.633
AFUA_1G09930 AFUB_009370 glycerol dehydrogenase; protein level decreases

upon heat shock
NI NI 1.040

Protein synthesis
AFUA_5G05450 AFUB_053010 40S ribosomal protein S3Ae; 40S ribosomal protein

S1
NI 1.953 NI

AFUA_4G07845 AFUB_064950 Ortholog(s) have cytosolic large ribosomal subunit NI 2.226 NI
AFUA_6G02440 AFUB_095900 60s ribosomal protein L24 NI 1.354 NI
AFUA_7G05290 AFUB_090870 Cytosolic small ribosomal subunit S13/S15 NI 1.813 NI
AFUA_6G12720 AFUB_078720 40S ribosomal protein S29 NI 1.191 NI
AFUA_3G06840 AFUB_042210 Putative cytosolic small ribosomal subunit S4 NI 1.102 NI
AFUA_2G10300 AFUB_026110 40S ribosomal protein S17 NI 1.541 NI
AFUA_2G07970 AFUB_023990 60S ribosomal protein L19 NI 1.618 NI
AFUA_2G08130 AFUB_024140 Ortholog(s) have cytosolic large ribosomal subunit

localization
NI 1.829 NI

AFUA_1G17120 AFUB_016510 Elongation factor 1 gamma NI 2.034 NI
AFUA_3G06640 AFUB_042410 40S ribosomal protein S27 NI 1.688 NI
AFUA_2G03380 AFUB_020450 Ortholog(s) have cytosolic large ribosomal subunit NI 2.383 NI
AFUA_1G06770 AFUB_007150 40S ribosomal protein S26 NI 1.851 NI
AFUA_2G11850 AFUB_027590 Allergenic ribosomal L3 protein NI 1.510 NI
AFUA_1G09440 AFUB_008890 40S ribosomal protein S23 NI 2.711 NI
AFUA_1G16523 AFUA_1g16523 cytosolic small ribosomal subunit localization NI 1.201 NI
AFUA_2G10440 AFUB_026240 Ortholog(s) have mRNA binding. small ribosomal

subunit rRNA binding
NI 1.975 NI

Chromosome metabolism
AFUA_2G14080 AFUB_029700 chromosome segregation protein SudA NI NI 1.435
AFUA_2G16080 AFUB_031760 role in mitotic sister chromatid cohesion and mating-

type region
2.503 NI NI

AFUA_3G14260 AFUB_034970 mismatched base pair and cruciform DNA recognition
protein

NI 3.679 NI

AFUA_3G10480 AFUB_038680 meiotic sister chromatid recombination protein Ish1/
Msc1

NI 1.129 NI

Phosphatidic acid metabolism
AFUA_3G12330 AFUB_036830 Putative phosphatidyl synthase NI NI 1.896
AFUA_7G05580 AFUB_091160 Putative phospholipase D. pldA NI 1.270 NI
AFUA_4G12000 AFUB_068990 phosphatidylinositol phospholipase C 1.089 NI NI
AFUA_4G11720 AFUB_068730 Putative phosphatidyl synthase NI 1.452 NI

Carbohydrate metabolism
AFUA_2G15430 AFUB_031090 Sorbitol/xylulose reductase NI 1.566 NI
AFUA_6G07720 AFUB_073680 Phosphoenolpyruvate carboxykinase AcuF. 1.233 NI NI
AFUA_6G03540 AFUB_094750 Malate synthase AcuE NI NI 1.156
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the FgSch9/FgHog1 double mutant (Gu et al., 2015).

Glycerol and trehalose accumulation are conserved

eukaryotic responses to hyperosmotic stress (Saito and

Posas, 2012). Upon hypertonic stress, A. fumigatus

showed a significant increase in glycerol and trehalose

contents. However, the DschA mutant strain does not

increase as much as the wild type the glycerol content

and shows significant increased trehalose levels than

the wild-type strain. The reduced glycerol levels in the

DschA mutant are probably related to the observed

reduction in the abundance of glycerol-3-phosphate

dehydrogenase (GpdA; see Table 3), a key enzyme for

glycerol biosynthesis (Saito and Posas, 2012). How

SchA can reduce GpdA levels remains to be investi-

gated. These results suggest that TOR and Sch9 homo-

logues in fungi were involved in the osmotic stress

response via modulating the HOG pathway.

Additionally, we demonstrated that SchA was impor-

tant for sphingolipid biosynthesis upon osmotic stress.

In S. cerevisiae Sch9 has been shown to regulate

Table 4: Continued

Aspergillus fumigatus DschA x Wild type(t-test difference)

Strain Af293 Strain A1163 Protein annotation 0 h 2 h 4 h

Miscellaneous
AFUA_2G04610 AFUB_021660 Role in post translational protein targeting to mem-

brane and TRC complex
1.204 NI 1.543

AFUA_2G08920 AFUB_024830 GDSL Lipase/Acylhydrolase family protein NI NI 1.066
AFUA_2G08920 AFUB_031880 Uracil phosphoribosyltransferase NI NI 1.008
Afu2G16530 AFUB_032210 Cyanate hydratase 1.041 NI NI
AFUA_3G07410 AFUB_041670 Putative isoamyl alcohol oxidase NI NI 1.138
AFUA_3G06660 AFUB_042390 Putaive NIPSNAP family protein NI NI 1.528
AFUA_3G00650 AFUB_047780 Lap2. Putative aminopeptidase Y NI NI 1.508
AFUA_5G02330 AFUB_050860 Major allergen and cytotoxin AspF1 NI NI 1.168
AFUA_5G12590 AFUB_060250 Solid-state culture expressed protein (Aos23) NI NI 1.365
AFUA_4G05900 AFUB_062990 Transcript up-regulated in conidia exposed to neutro-

phils (2)
NI NI 1.298

AFUA_4G08240 AFUB_065340 Putative zinc-containing alcohol dehydrogenase;
conidia-enriched protein

NI 1.185 NI

AFUA_6G07590 AFUB_073550 Has domain(s) with predicted zinc ion binding activity NI 1.634 NI
AFUA_6G07880 AFUB_073860 DUF500 and SH3 domain protein 1.072 NI NI
AFUA_6G08750 AFUB_074710 PrncI, role in hyphal growth and cytosol. mitochond-

rion localization
NI NI 1.313

AFUA_6G11430 AFUB_077440 AldA. Putative aldehyde dehydrogenase 1.003 NI 1.068
AFUA_8G05580 AFUB_081980 Putative coenzyme A transferase, coaT NI 1.728 NI
AFUA_8G01930 AFUB_084680 Methyltransferase LaeA-like 1.183 NI 1.020
AFUA_8G00550 AFUB_086020 Putative methyl transferase; member of the pseurotin

A gene cluster
2.742 NI NI

AFUA_7G01000 AFUB_087580 Putative alcohol dehydrogenase involved in ethanol
metabolism

1.659 NI NI

AFUA_7G01340 AFUB_087920 Putative RPEL repeat protein NI NI 1.315
AFUA_7G06050 AFUB_091630 Ortholog(s) have SNARE binding. polyubiquitin bind-

ing activity
NI 1.158 NI

AFUA_6G04920 AFUB_093370 Putative NAD-dependent formate dehydrogenase, fdh NI 2.031 NI
AFUA_4G04318 AFUB_098700 Copper resistance protein Crd2. similar to Cu-binding

metallothionein
NI 2.265 NI

AFUA_3G07150 AFUB_041900 Succinate-semialdehyde dehydrogenase 1.141 NI NI
AFUA_6G13330 AFUB_001440 Putative RNA binding protein of unknown function NI 1.150 NI

Unknown
AFUA_1G06350 AFUB_006730 Uncharacterized NI NI 1.301
AFUA_3G05610 AFUB_043380 Uncharacterized NI NI 1.020
AFUA_6G02535 AFUB_095800 Uncharacterized NI 1.861 1.498
AFUA_4G02840 AFUB_100280 Uncharacterized NI 3.513 NI
AFUA_3G02430 AFUA_3g02430 Uncharacterized NI NI 2.177
AFUA_8G05650 AFUB_081900 Hypothetical protein NI NI 1.784
AFUA_5G14890 AFUB_079000 Hypothetical protein 1.683 NI 1.298
AFUA_6G11850 AFUB_077850 Protein of unknown function; hypoxia induced protein NI 1.908 NI
AFUA_5G13100 AFUB_060810 Hypothetical protein NI 3.732 NI
AFUA_3G09990 AFUB_039180 Hypothetical protein NI 1.452 NI
AFUA_1G13550 AFUB_013040 Uncharacterized NI 3.024 NI
AFUA_1G15260 AFUB_014810 Uncharacterized NI NI 1.785
AFUA_1G08960 AFUB_008380 Uncharacterized NI NI 1.242

a. NI 5 not identified, the protein was not identified in this timepoint.
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Fig. 9. Cluster analysis of RNA-seq and proteomics data.
A. Analysis of RNAseq data reveals the existence of eight different expression profiles (C1–C8) according to the behavior of the genes with or
without exposition to osmotic stress.
B. Cluster Analysis of proteomics data without or with 2 or 4 h of exposition to osmotic stress, revealing the existence of 10 protein-expression
profiles (C1–C10). All analyses were performed using hierarchical clustering in MeV software (http://www.tm4.org/mev.html).
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sphingolipid signaling (Swinnen et al., 2014b). However,

there appear to be differences between the two fungal

systems, since the A. fumigatus DschA mutant was

more sensitive to PHS, while the sch9D mutant showed

increased sensitivity to different inhibitors of sphingolipid

metabolism, such as myriocin and aureobasidin A.

Nonetheless, both mutants showed decreased levels of

several species of (phyto)ceramides, and altered ratios

of complex sphingolipids. Lipid rafts or membrane

microdomains are comprised by sphingolipids and ster-

ols (Lingwood and Simons, 2010). Lipid rafts can play

signal transduction regulatory roles through modifica-

tions of the membrane structure that also can affect pro-

tein–protein interactions (Douglas and Konopka,

2014;.Farnoud et al., 2015). Tanigawa et al. (2012) have

isolated a S. cerevisiae mutant that has constitutive

activity of the HOG pathway independently of the

osmotic conditions. This mutation was localized in the

LCB2 gene (encoding a subunit of the serine palmitoyl-

transferase complex, SPT, Fig. 8). Subsequently, the

depletion of sphingolipids was shown to activate the

HOG pathway. These authors have shown that Sln1 and

Sho1 were present in raft enriched detergent-resistant

membranes (DRMs). Interestingly, the combination of

reduced sphingolipids with osmotic stress causes a sep-

aration of Sln1 and increased union of Sho1 with DRMs.

These results strongly indicate that SchA and Sch9 are

important regulators of sphingolipid biosynthesis, but

they have different mechanisms of action. This raises

the interesting hypothesis that lipid rafts are important

for the mechanisms of sensing osmotic alterations

(HOG pathway-mediated) and that translocation of

osmosensors may be an essential step in osmosensing.

The A. fumigatus osmotic stress, HOG, pathway is com-

posed of two signaling modules: (i) the two-component

system (TCS)-like phosphorelay module composed of a

hybrid sensor kinase (TcsC/NikA), a histidine-containing

phosphotransfer protein (YpdA) and a response regulator

(SskA), and (ii) the MAP kinase module comprising of a

MAP kinase kinase kinase (MAPKKK, SskB), a MAP

kinase kinase (MAPKK, PbsB) and a MAP kinase (MAPK,

SakA). The TCS senses and relays environmental signals

that subsequently activate the Hog1 MAPK pathway, which

mediates the cellular response (Bahn, 2008; Ma et al.,

2008; Hagiwara et al., 2013). Limited information is avail-

able about the putative osmosensors, such as Sln1 and

Sho1 homologues (Yang et al., 2011; Hagiwara et al.,

2013). Hence, the increased activation of the A. fumigatus

SakAHOG1 in DschA may potentially be caused by a reduc-

tion in sphingolipids.

We demonstrated that SchA contributes to the phos-

phorylation of the Rps6 ribosomal protein when TOR

was activated. The DschA mutant had a lower Rps6-P/

Rps6 ratio than the wild-type strain when exposed to

rapamycin or osmotic stress, suggesting that SchA was

important for Rps6 phosphorylation. Interestingly, iron

excess and starvation increased the ratio Rps6-P/Rps6

in the wild-type. In contrast, upon iron excess and star-

vation there is a decrease of the Rps6-P/Rps6 ratio in

the DschA mutant when compared to the wild-type

strain, strongly indicating that SchA was important for

iron assimilation in A. fumigatus. Accordingly, Baldin

et al. (2015) have shown that TOR signaling participates

in the regulation of biosynthesis of ornithine, a major

precursor of siderophores in A. fumigatus. Interestingly,

our work revealed that SchA was important for the mod-

ulation of ornithine production and amino acid biosynthe-

sis. In addition, schA expression increased upon iron

starvation and excess, but it was dependent on both

HapX and SreA during iron starvation, suggesting that

SchA could play a role in the regulation of these two

transcription factors during iron starvation. This was

emphasized by the fact that both sidA and hapX, impor-

tant for iron starvation, had increased expression in the

DschA mutant during iron starvation.

SchA was important for A. fumigatus virulence. Other

fungal Sch9 homologues are important for virulence in

other human and plant pathogens. The Cryptococcus

neoformans Sch9 null mutant has cells with enlarged

capsules, increased thermal tolerance, and it is attenu-

ated in mating and in virulence (Wang et al., 2004). The

C. albicans CaSch9 deletion has no chlamydospores

(Nobile et al., 2003), reduced cell size, showed a

delayed log-phase growth, was sensitive to rapamycin,

caffeine and sodium dodecyl sulfate, has reduced fila-

mentation and attenuated virulence in a mouse model of

systemic candidiasis (Liu et al., 2010). Interestingly,

CaSch9 prevented hyphal formation, specifically under

hypoxia, and was hyperfilamentous under concomitant

hypoxia (<10% O2) and elevated CO2 levels (>1%) at

temperatures lower than 378C (Stichternoth et al.,

2011). Recently, a novel role for C. albicans Sch9 in

genetic stability was reported since deletion of CaSch9

leads to a 150-fold to 750-fold increase in chromosome

loss (Varshney et al., 2015.). In the rice blast fungus

Magnaporthe oryzae, the DMosch9 mutant has defects

in conidiation and pathogenesis, producing smaller coni-

dia and appressoria (Chen et al., 2014; Gu et al., 2015).

The F. graminearum DFgSch9 mutant has reduced pro-

duction of the mycotoxin deoxynivalenol and was aviru-

lent (Chen et al., 2014; Gu et al., 2015). Taken together,

these studies indicate that Sch9 homologues play an

important role in virulence and pathogenicity in different

fungal pathogens of plants and animals.

We proposed a possible model for the interaction

between A. fumigatus SchA, calcineurin-CrzA, and

SakA/MpkC during nutrient sensing and osmotic stress

(Fig. 12). In A. fumigatus, TOR phosphorylates SchA
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and Rps6 SchA during nutrient sensing or osmotic

stress. SchA also phosphorylates Rps6 and other tar-

gets, and activates unknown transcription factors which

are transported to the nucleus, where they activate tar-

gets related to ribosome biogenesis, iron assimilation,

ornithine, amino acid biosynthesis, osmotic stress

response and sphingolipid biosynthesis. Mu~noz et al.

(2015) showed that hyper-osmotic shock significantly

impacted the maximal cytoplasmic (Ca21) amplitude.

Accordingly, the Ca21-chelator BAPTA inhibited the ini-

tial responses to hyperosmotic stress. CrzA goes to the

nucleus during osmotic stress and the activity of SakA

MAPK is dependent on CrzA (de Castro et al., 2014).

This implies that upon osmotic stress, there was an

increase in cytoplasmic Ca 1 2, activating the calcineurin

complex that will dephosphorylate the transcription fac-

tor CrzA. Then CrzA will be transported to the nucleus

to activate genes including the MAP kinases of the

HOG/SakA pathway and proteins of the two-component

system (TCS). It is not known if there is any interaction

between TOR and calcineurin/CrzA. The MAPK SakA

and MpkC are controlled by TOR and will be translocated

to the nucleus upon nutrient sensing or osmotic stress.

In conclusion, this study revealed novel functions for

the A. fumigatus SchA, suggesting its involvement with

several cell functions and virulence. Novel SchA func-

tions described here are: (i) the connection with calcium

metabolism and Ca 1 2-calcineurin/CrzA pathway, (ii) its

involvement with iron assimilation; and (iii) its influence

on Rps6p phosphorylation upon several kinds of stress.

We have also shown here the first analysis of the influ-

ence of a Sch9 homologue in a filamentous fungus on

global transcriptomics, proteomics and metabolomics

during osmotic stress. In addition, evidences linking the

HOG and sphingolipid biosynthesis pathways were also

presented. Importantly, we propose that SchA and other

Sch9p homologues could serve as mediators of the

TOR and HOG pathways. Further studies are necessary

to fully understand biochemical interaction and how

these two pathways crosstalk during a response to dif-

ferent environmental stresses and pathogenicity. In A.

fumigatus, both the HOG and calcium-calcineurin/CrzA

pathways are important to stress responses and viru-

lence in a mammalian host. Therefore, the identification

of the link between these central pathways and TOR will

provide new avenues for research into the identification

of novel targets for disease intervention.

Experimental procedures

Ethics statement

The principles that guide our studies are based on the Dec-

laration of Animal Rights ratified by the UNESCO in Janu-

ary 27, 1978 in its 8th and 14th articles. All protocols used

in this study were approved by the local ethics committee

for animal experiments from the Campus of Ribeir~ao Preto,

Universidade de S~ao Paulo (Permit Number:

08.1.1277.53.6; Studies on the interaction of A. fumigatus

with animals). All animals were housed in groups of five

within individually ventilated cages and were cared for in

strict accordance with the principles outlined by the Brazil-

ian College of Animal Experimentation (Princ�ıpios �Eticos na

Experimentaç~ao Animal – Col�egio Brasileiro de

Experimentaç~ao Animal, COBEA) and Guiding Principles

for Research Involving Animals and Human Beings, Ameri-

can Physiological Society. All efforts were made to minimize

suffering. Animals were clinically monitored at least twice

daily and humanely sacrificed if moribund (defined by leth-

argy, dyspnoea, hypothermia and weight loss). All stressed

animals were sacrificed by cervical dislocation.

Strains, media and culture methods

The A. fumigatus parental recipient strains used in this

study were Afs35 (FGSC A1159), CEA17 (pyrG1)

akuBKU80 and CEA17(pyrG-) akuBKU80 (da Silva Ferreira

et al., 2006). The mutant strains were: DmpkC, DsakA,

DmpkC DsakA, DmpkC::mpkC1, DsakA::sakA1, SakA::GFP

and MpkC::GFP (Hagiwara et al., 2014; Bruder Nascimento

et al., 2016). The media used were: complete media com-

posed for 2% w/v glucose, 0.5% w/v yeast extract, trace

elements (YAG) and minimal media (MM) consisting of 1%

glucose, trace elements and salt solution (Kafer, 1977), pH

6.5, plus or minus 2% w/v agar or AMM, with the same

Fig. 10. A. fumigatus SchA is involved in iron metabolism.
A. The wild-type and DschA mutant strains were grown for 48 h in MM, MM 1 200 mM FeSO4 or AMM 1 300 mM ferrozine (*, p< 0.01, Wild-
type compared to DschA).
B. Western blot analysis for the A. fumigatus total and phosphorylated Rps6A. The wild-type and DschA strains were grown for 20 h at 378C
and exposed or not iron excess or starvation (60 or 120 min) and total proteins extracted. Proteins were normalized by Ponceau red staining.
Signal intensities were quantified using the Image J software by dividing the intensity of SakA-P/SakA ratio and expressed as fold increase
from the control (0 min).
C. RTqPCR for the A. fumigatus schA gene. The strains were grown for 20 h at 378C and transferred for iron excess or starvation conditions
for 1 and 2 h. The results are expressed as fold increase of the control (in the absence of iron excess or starvation) and the results were
normalized with the tubC expression.
D. RTqPCR for the A. fumigatus hapX, sidA, and sreA genes. The strains were grown for 20 h at 378C and transferred for iron excess or
starvation conditions for 1 and 2 h. The results are expressed as fold increase of the control (in the absence of iron excess or starvation) and
the results were normalized with the tubC expression.
E and F. Principal Component analysis (PCA) of the gas chromatography study for the wild-type and DschA strains during iron starvation (left
panel) and excess (right panel).
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concentration of MM, but without iron. Strains were gener-

ally grown at 378C. The pharmacological inhibition of A.

fumigatus with rapamycin was perfomed by inoculating 1 3

106 conidia in 1 ml of liquid YG media in 24 well polysty-

rene plates containing 10% Alamar Blue (Life Technologies)

as the viability indicator, according to Yamaguchi et al.

(2002). Cells were grown for 48 h at 378C and growth

assessed at 24 h intervals.

Glycerol and trehalose measurements in mycelia

A. fumigatus conidia (1.0 3 105 to 1.0 3 106) were inocu-

lated into liquid YPD (1% yeast extract, 1% polypeptone

and 1% glucose) and cultured for 16 h prior to addition of

1/2 vol. 3 M sorbitol (Final concentration: 1 M) and incu-

bated at 378C for different periods of time. Mycelia were

ground in liquid nitrogen and immediately resuspended by

inversion in extraction buffer [50 mM: Tris base pH 7.0,

50 mM NaF, 1 mM Na3VO4, 1 mM DTT, phosphatase inhibi-

tor cocktail P0044 (Sigma) and an EDTA-free protease

inhibitor cocktail (Roche)] prior to centrifugation for 5 min at

14,000g. The protein concentration of the extracts was

measured using the Bio-Rad protein assay according to

manufacturer’s instructions. The glycerol and trehalose con-

tent within the extracted cell lysate (equivalent to 5, 10 and

20 lg of total protein for the respective assays) was meas-

ured using the Free Glycerol Detection ab65337 kit

(AbCam) according to the manufacturer’s instructions. The

trehalose content was measured using Trehalose Assay kit

K-TREH 11/12 (Megazyme) according to the manufac-

turer’s instructions with an additional standard curve rang-

ing from 0 to 4 lg of trehalose dihydrate.

Microscopy

For microscopy, SakA::GFP, or MpkC::GFP conidiospores

were grown on coverslips in 4 ml of MM media for 16 h at

308C. After incubation, the coverslips with adherent germ-

lings were left untreated or treated with 1M sorbitol, 2 ug/ml

of rapamycin, iron starvation or excess. Subsequently, the

coverslips were rinsed with phosphate-buffered saline

(PBS; 140 mM NaCl, 2 mM KCl, 10 mM NaHPO4, 1.8 mM

KH2PO4, pH7.4) and mounted for examination. Slides were

visualized on an Observer Z1 fluorescence microscope

Table 5. Comparison of the metabolite profile of the wild-type and

DschA mutant strains during growth in iron starvation conditions by

GC-MS analysis between. Fold change was built by comparing a

given genotype under starvation and control condition and the

significant differences were assessed by paired t-test.

DschA
Starvation

Wild-type
Starvation

Compounds Fold p-value Fold p-value

Alanine 0.65 0. 00 20.01 0.93
Aspartate 24.81 0.00 23.26 0.00
b-Alanine 21.20 0.06 21.20 0.00
Glutamate NA NA 0.52 0.02
Glutamine 21.43 0.01 20.11 0.78
Glycine 21.59 0.00 20.73 0.01
Histidine 22.47 0.00 20.17 0.59
Isoleucine 21.26 0.00 20.82 0.02
Leucine 21.21 0.00 20.54 0.08
Lysine 22.09 0.00 20.99 0.00
Methionine 20.72 NA NA NA
Proline 21.48 0.00 21.40 0.00
Serine 21.12 0.00 20.63 0.02
Tryptophan 22.97 0.00 21.17 0.00
Tyrosine 22.69 0.00 20.62 0.06
Ornithine 1.35 0.01 20.41 0.27
Threonine 21.46 0.00 20.76 0.02
Putrescine 0.01 0.99 3.15 NA
Urea 21.35 0.00 20.65 0.00
(r|z) Spermidine 1.16 0.05 1.45 0.00
Glycerate 0.48 0.14 0.62 0.01
Glycerol 0.37 0.31 0.98 0.02
Pyruvate 2.87 0.00 1.70 0.00
Citrate 20.26 0.36 1.38 0.00
Isocitrate 2.78 0.00 4.42 0.00
Succinate 2.56 0.00 0.47 0.02
C4H4O4 (Fumarate|Maleate) 21.23 0.01 21.31 0.00
Malate 1.36 0.01 0.45 0.09
Pantothenate 2.43 0.00 3.09 NA
(r|x) C5H10O5 (Ribose|Ribulose) NA NA 0.52 0.10
(r|x) Mannose 2.39 0.00 1.66 0.00
C4H10O4 (Erythritol|Threitol) NA NA NA NA
C6H12O5 (Fucose|Epifucose) 20.27 0.76 22.60 0.02
Fructose (|Psicose) 6.79 0.00 4.75 0.00
Galactinol 0.29 0.24 20.02 0.95
Galactitol 4.08 0.00 6.44 0.00
Glucose 7.11 0.00 7.04 0.00
Trehalose 1.07 0.00 0.18 0.61
Melibiose 0.78 0.00 1.37 0.08
Myo-Inositol 20.84 0.00 20.07 0.83
Similar to 2-Aminobutyrate 21.16 0.00 20.82 0.00
Similar to 2-Hydroxypyridine 1.16 0.07 0.96 0.00

Table 6. Comparison of the metabolite profile of the wild-type and

DschA mutant strains during growth in iron excess conditions by

GC-MS analysis between. Fold change was built by comparing a

given genotype under iron excess and control condition and the

significant differences were assessed by paired t-test.

Compounds

DschA_Fe excess
Wild-type Fe
excess

Fold p-value Fold p-value

Alanine 20.44 0.03 20.35 0.02
b-Alanine 0.87 0.09 0.77 0.02
Glutamine 0.05 0.87 1.05 0.02
Histidine 0.78 0.07 1.29 0.01
Methionine 0.34 0.00 NA NA
Serine 0.53 0.02 0.44 0.06
Tyrosine 0.41 0.07 1.05 0.05
Ornithine 0.67 0.03 20.75 0.09
Threonine 0.43 0.01 0.60 0.04
Urea 20.71 0.04 20.99 0.04
cis-Aconitate 20.77 0.01 20.56 0.07
Citrate 0.13 0.56 0.42 0.04
Malate 22.13 0.00 20.68 0.22
Ribonate 0.44 0.05 NA NA
Pantothenate 20.18 0.33 0.43 0.03
Fructose (|Psicose) 20.38 0.10 20.84 0.01
Galactinol 20.55 0.03 20.41 0.17
Trehalose 0.27 0.34 20.83 0.01
Myo-Inositol 20.65 0.02 20.39 0.09
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using a 100x objective oil immersion lens for GFP, filter set
38-high efficiency (HE), excitation wavelength of 450 to
490 nm and emission wavelength of 500 to 550 nm. DIC

(differential interference contrast) images and fluorescent
images were captured with an AxioCam camera
(Carl Zeiss) and processed using AxioVision software
(version 4.8).

Construction of the A. fumigatus mutants

The gene replacement cassettes were constructed by ‘in

vivo’ recombination in S. cerevisiae as previously described

by Colot et al. (2006). Thus, approximately 2.0 kb from the

5’-UTR and 3’-UTR flanking region of the targeted ORF

regions were selected for primer design. The primers 5F

Fig. 11. A. fumigatus schA contributes to virulence in neutropenic mice.
A. Comparative analysis of wild-type and the mutants strains in a neutropenic murine model of pulmonary aspergillosis. Mice in groups of 10
per strain were infected intranasally with a 20 ll suspension of conidia at a dose of 105.
B. Histological analyses of infection murine lung were performed 72 h after infection (C) Fungal burden was determined 72 h post infection by
qPCR based on 18S rRNA gene of A. fumigatus and an intronic region of the mouse GAPDH gene.
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and 3R contained a short homologous sequence to the

MCS of the plasmid pRS426. Both the 5- and 3-UTR frag-

ments were PCR-amplified from A. fumigatus genomic

DNA (gDNA). The pyrG gene placed within the cassette as

a prototrophic marker was amplified from pCDA21 plasmid.

The deletion cassette was generated by transforming each

fragment along with the plasmid pRS426 cut with BamHI/

EcoRI into the S. cerevisiae strain SC94721 using the lith-

ium acetate method (Schiestl and Gietz, 1989.). The DNA

from the transformants was extracted by the method

described by Goldman et al. (2003). The cassette was

PCR-amplified from these plasmids utilizing TaKaRa Ex

TaqTM DNA Polymerase (Clontech Takara Bio) and used for

A. fumigatus transformation. Southern blot analyses dem-

onstrated that the transformation cassettes had integrated

homologously at the targeted loci. The single gene deletion

strains were complemented by co-transforming a DNA frag-

ment (approximately 1 kb from each 5’ and 3’- flanking

regions plus the ORF) together with the pHATa (Herrera-

Estrella et al., 1990) and selecting for hygromycin resist-

ance in MM plates with 250 mg/ml of hygromycin B.

To generate the double DschA DsakA and DschA DmpkC

mutants, plasmids pSH75-sakA::hph and pUC119-

mpkc::ptrA that are described previously (Hagiwara et al.,

Fig. 12. A possible model for the interaction between A. fumigatus SchA, calcineurin/CrzA and SakA/MpkC during nutrient sensing and
osmotic stress. A. fumigatus TOR phosphorylates SchA and Rps6 SchA during nutrient sensing or osmotic stress. SchA also phosphorylates
Rps6 and other targets, and activates unknown transcription factors (UTF). UTFs will be transported to the nucleus via importins and bind to
upstream regulatory elements (URE), activating targets related to ribosome biogenesis, iron assimilation, ornithine, amino acids biosynthesis,
osmotic stress response and sphingolipids biosynthesis. Upon osmotic stress, there is an increased (Ca 12) released in the cytoplasm,
activating the calcineurin complex (CalA and CalB are the catalytic and regulatory subunits respectively) that will dephosphorylate the
transcription factor CrzA. CrzA will be transported to the nucleus via importins and bind to UREs, activating genes encoding MAP kinases of
the HOG/SakA pathway and proteins of the two-component system (TCS). Upon increased (Ca 12), CrzA binds to the schA URE activating
transcriptionally this gene. It is not known if there is any interaction between TOR and calcineurin/CrzA. The MAPK SakA and MpkC are
controlled by TOR and will be translocated to the nucleus upon nutrient sensing or osmotic stress and will interact with the chromatin. It is
likely MpkC modulates SakA and both phosphorylate several of the UTFs to activate them as transcription factors.
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2013, 2014) were used respectively. From these plasmids,

marker cassette flanked by 5’- and 3’-flanking regions of

the target gene were amplified by primer sets, sakA-U-F/

sakA-D-R and mpkC-U-F/mpkC-D-R (Supporting Informa-

tion Fig. S2). Transformation by each fragment was con-

ducted in the DschA as a parental strain, from which

transformants were selected with hygromycin or pyrithi-

amine. Targeted replacement of the sakA or mpkC genes

was confirmed by PCR with the genome and by real-time

PCR for the absence of its transcript.
Southern blot analysis was used to demonstrate that the

cassettes had integrated homologously at the targeted A.

fumigatus schA locus. Genomic DNA from A. fumigatus

was extracted by grinding frozen mycelia in liquid nitrogen

and genomic DNA was extracted as previously described

(Malavazi and Goldman, 2012). Standard techniques for

manipulation of DNA were carried out as described (Sam-

brook and Russell, 2001). For Southern blot analysis,

restricted chromosomal DNA fragments were separated on

1% agarose gel and blotted onto Hybond N1 nylon mem-

branes (GE Healthcare). Probe labeling for detection was

performed using (a-32P)dCTP using the Random Primers

DNA Labeling System (Life Technologies). Labeled mem-

branes were exposed to X-ray films, which were scanned

for image processing. Southern blot schemes are shown in

Supporting Information Fig. S2.

Phenotypic assays

The phenotypes of the deletion mutant were evaluated

either by radial growth or assessing the initial growth of a

droplet of conidia from a serial dilution, at different tempera-

tures, in the presence or absence of oxidative and osmotic

stressing agents, and rapamycin. Drop out experiments

were performed using 5 ml of a 10-fold dilution series start-

ing at a concentration of 2 3 107 for the wild-type and

mutant strain spotted on different media and grown for 48 h

at 378C. Additionally, dry weight experiments were per-

formed by growing different strains for 48 h at 378C, wash-

ing and lyophilizing the mycelia.

Immunoblot analysis

Detection of SakA phosphorylation by Western blotting was

performed as described by Hagiwara et al. (2013) with

some modifications. Briefly, A. fumigatus conidia were ino-

culated into liquid YPD (1% yeast extract, 1% polypeptone

and 1% glucose) and cultured for 16 h prior to addition of

1/2 vol. 3 M sorbitol (Final concentration: 1 M). Mycelia

were harvested, frozen and ground into a powder in liquid

nitrogen, then mixed with protein extraction buffer contain-

ing protease inhibitors. The suspension was centrifuged

and the supernatant was boiled with an appropriate sample

buffer. Proteins were separated with NuPAGE system (Invi-

trogen) and blotted using iBlot gel transfer system (Invitro-

gen). To detect SakA and phosphorylated SakA proteins, a

rabbit polyclonal IgG antibody against Hog1 y-215 (Santa

Cruz Biotechnology, Santa Cruz, CA, USA) and a rabbit

polyclonal IgG antibody against dually phophorylated p38

MAPK (Cell Signaling Technology) were used respectively.

The ECL Prime Western Blotting Detection System (GE

Healthcare) and LAS1000 (FUJIFILM) were used to detect

the signal on blotted membranes.
To assess the phosphorylation status of RPS6, fresh

harvested conidia (1 3 107) of the wild-type and mutant

strain were inoculated in 50 ml of liquid MM at 378C for

20 h (160 rpm) and after this period, the mycelia

were treated with rapamycin (2 mg/ml) for 10, 30 and 60

min, or submitted to iron starvation or iron excess. For

iron starvation, the mycelia was transferred to MM with-

out iron plus 3-(2-pyridyl)25,6-bis(4-phenylsulfonic

acid)21,2,4-triazine (ferrozine)) 300 mM. For iron excess,

200 mM FeSO4 was added. These treatments were per-

formed for 1 and 2 h and then, the mycelia was frozen

and ground in liquid nitrogen. For protein extraction,

0.5 ml of lysis buffer (Valiante et al., 2009) containing

10% (v/v) glycerol, 50 mM Tris–HCl pH 7.5, 1% (v/v) Tri-

ton X-100, 150 mM NaCl, 0.1% (w/v) SDS, 5 mM EDTA,

50 mM sodium fluoride, 5 mM sodium pyrophosphate, 50

mMb-glycerophosphate, 5 mM sodium orthovanadate,

1 mM PMSF and 1X Complete Mini-protease inhibitor

(Roche Applied Science) was added to the ground myce-

lium. Extracts were centrifuged at 20,000g for 40 min at

48C. The supernatants were collected and the protein

concentrations were determined using the Bradford

method (Bradford, 1976) (BioRad). 50 mg of protein from

each sample were resolved in a 12% (w/v) SDS–PAGE

and transferred polyvinylidene difluoride (PVDF) mem-

branes using the iBlotVR 2 Dry Blotting System (Thermo

ScientificTM). The phosphorylation state and total RPS6

was examined using Phospho-S6 Ribossomal Protein

(Ser235/236) Antibody, Cell Signaling Technologies and

Anti-RPS6 antibody ab40820, abcamVR , following the man-

ufacturer’s instructions using a 1:1000 dilution in TBST

buffer (137 mM NaCl, 20 mM Tris, 0.1% Tween-20). Pri-

mary antibody was detected using an Anti-rabbit IgG,

HRP-linked Antibody #7074 (Cell Signaling Technologies).

Chemoluminescent detection was achieved using the

Super Signal West Pico Chemiluminescent Substrate

(Thermo ScientificTM) and the images generated were

subjected to densitometric analysis using the ImageJ soft-

ware (http://rsbweb.nih.gov/ij/index.html). The RPS6 phos-

phorylated signal was normalized by total RPS6 signal.

Signal intensities were quantified using the Image J soft-

ware by dividing the intensity of SakA-P/SakA ratio and

expressed as fold increase from the control (0 min). The

Western blots were repeated twice (Supporting Informa-

tion Fig. SXXX) and a representative blot for each experi-

ment in shown in the manuscript. We have used the

p70 S6 kinase control cell extracts (#9203, Cell Signaling,

USA) as a control for the antibody recognition of Rps6-P

(see Fig. 1D, right panel).

Label-free quantitative proteomics

Wild-type (CEA17) and DschA (5x107spores) were grown in

darkness in MM for 24 h, 378C, 200 rpm. Mycelia were

transferred to MM plus 1.2 M sorbitol for 2 and 4 h. Each

condition was carried out in triplicate. Sorbitol-free control

samples were also prepared for each strain. The mycelia
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(18 x samples) were harvested with Miracloth, dried

between tissue and snap-frozen in liquid nitrogen. The cul-

ture supernatants were also collected. The mycelia were

ground in liquid nitrogen and suspended in lysis buffer

(100 mM Tris-HCl, 50 mM NaCl, 20 mM EDTA, 10% (v/v)

Glycerol, 1 mM PMSF, 1 mg/ml pepstatin A pH 7.5). The

mycelia were lyzed using the sonication probe and clarified

by centrifugation. The resulting clarified lysates were pre-

cipitated using TCA/acetone and resuspended in 8M Urea.

Samples were reduced (DTT) and alkylated (IAA) prior to

digestion with sequencing grade trypsin combined with Pro-

teaseMax surfactant. Samples were acidified following over-

night digestion and the peptide samples were cleaned

using C18 spin columns. The resultant peptide samples

were analyzed on a Q-Exactive mass spectrometer coupled

to a Dionex RSLCnano. The gradient ran from 4 to 35% B

over 120 min, and data was collected using a Top15

method for MS/MS scans. Data analysis was performed

using MaxQuant software, with Andromeda used for data-

base searching and Perseus used to organize the data

(Dolan et al., 2014; Owens et al., 2015).

Lipid analysis

For lipid analysis by mass spectrometry, A. fumigatus coni-

dia from YPG (1% yeast extract, 1% polypeptone and 1%

glucose) agar plates were inoculated into liquid YPD media

and cultured for 16 h at 378C. Sorbitol was added, at a final

concentration of 1 M, to the separate 16 h grown cultures

and grown further for 1 h at 378C. Then, fungal mass was

harvested and lipids extracted (Bligh and Dyer, 1959; Man-

dala et al., 1995). Lipids C17 ceramide and C17 sphingo-

sine were added as internal standards. One tenth of each

sample was aliquoted for determination of the inorganic

phosphate (Pi). For Pi measurement, 0.6 ml of ashing

buffer (10 N H2SO4: 10% perchloric acid: water 9:1:40/

v:v:v) was added to each sample and heated at 150 �C
overnight. Samples were cooled and 0.9 ml of ultrapure

water was added. Then, 0.5 ml of 0.9% ammonium molyb-

date and 0.2 ml of 9% ascorbic acid solution were added to

each sample, and incubated at 45 �C for 30 min. Pi

amounts for each sample was determined using a sodium

dihydrogen phosphate standard curve. Readings were

noted at OD820 nm.
The remainder of the sample was subjected to base

hydrolysis. Briefly, sample was dissolved in 0.5 ml of chloro-

form and followed by addition of 0.5 ml 0.6 M potassium

hydroxide (in methanol). Samples were vortexed and kept

at room temperature for 1 h. Samples were then acidified

by adding 0.325 ml 1M HCl and 0.125 ml of ultrapure water

was added, the tubes vortexed and centrifuged at

3.000 rpm for 10 min. The lower organic phase was trans-

ferred to a new tube, dried in SpeedVac, flushed with N2

and stored at 2208C until analyzed.
The dry lipid extracts were suspended in a buffer contain-

ing 1mM ammonium formate 1 0.2% fromic acid in metha-

nol (Buffer B) and analyzed using LC-ESI-MS/MS (Liquid

chromatography electrospray ionization tandem mass spec-

trometry) using TSQ Quantum UltraTM Triple Quadrupole

Mass Spectrometer (Thermo Scientific, US). Lipid species

were detected by multiple reaction monitoring (MRM)

approach described previously (Weckwerth et al., 2004;

Cuadros-Inostroza et al., 2009; Singh et al., 2012). A 10 ml

sample was delivered by Accela Pump/Autosampler

(Thermo Finnigan, US) to the HPLC fitted with 3 mm C8SR,

150 3 3.0 mm column (Peeke Scientific, US). A two buffer

mobile system was used: 2mM ammonium formate 1 0.2%

formic acid in H2O (Buffer A) and Buffer B. Processing of

the collected data was performed using Xcaliber and

LCquan software systems. Quantitation of lipid species was

based on internal standard normalization using linear

regression model as described previously (Bligh and Dyer,

1959; Mandala et al., 1995; Bielawski et al., 2006). The lev-

els of different lipid species in each sample were normal-

ized to the inorganic phosphate level.

Metabolite profiling analysis

For the metabolite extraction at least five biological repli-

cates were ground to a fine powder. 5 mg of lyophilized

material was grounded and extracted in 1 ml of a precooled

(2158C) MTBE: methanol:water 3:1:1 (v/v/v) (Giavalisco

et al., 2011). 100 ll of the organic phase was dried and

derivatized (89). 1 ll of the derivatized samples were ana-

lyzed on an Combi-PAL autosampler (Agilent Technologies)

coupled to an Agilent 7890 gas chromatograph coupled to

a Leco Pegasus 2 time-of-flight mass spectrometer (LECO)

as described by Weckwerth et al. (2004). Chromatograms

were exported from Leco ChromaTOF software (version

3.25) to R software. Peak detection, retention time align-

ment and library matching were performed using Target

Search R-package (Cuadros-Inostroza et al., 2009).
Metabolites were quantified by the peak intensity of a

selective mass. Metabolites intensities were normalized

according to the dried-weight, followed by the sum of total

ion count and log 2 transformed. The principal component

analysis was performed using pcaMethods bioconductor

package (Stacklies et al., 2007).

RNA extraction and real-time PCR reactions

Post treatment, mycelia were harvested by filtration,

washed twice with H2O and immediately frozen in liquid

nitrogen. For total RNA isolation, mycelia were ground in

liquid nitrogen. Total RNA was extracted using Trizol (Invi-

trogen). The RNA from each treatment was analyzed using

an Agilent 2100 Bioanalyzer system to assess the integrity

of the RNA. For real-time PCR experiments, RNase free

DNase I treatment was carried out as previously described

by Semighini et al. (2002). Twenty micrograms of total RNA

was treated with DNase, purified using a RNAeasy kit (Qia-

gen) and cDNA was generated using the SuperScript III

First Strand Synthesis system (Invitrogen) with oligo(dT)

primers, according to the manufacturer’s instructions. All

the PCR reactions were performed using an ABI 7500 Fast

Real-Time PCR System (Applied Biosystems) and SYBRVR

Green PCR Master Mix (Applied Biosystems). The primer

sets for the analyses are listed in Supporting Information

Table S8.
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Murine model of pulmonary aspergillosis, lung

histopathology and fungal burden

Outbreed female mice (BALB/c strain; body weight, 20–

22 g) were housed in vented cages containing five animals.

Mice were immunosuppressed with cyclophosphamide

(150 mg per kg of body weight), which was administered

intraperitoneally on days 24, 21 and 2 prior to and post

infection. Hydrocortisonacetate (200mg/kg body weight)

was injected subcutaneously on day 23. A. fumigatus

strains were grown on YAG for 2 days prior to infection.

Fresh conidia were harvested in PBS and filtered through a

Miracloth (Calbiochem). Conidial suspensions were spun

for 5 min at 3,000x g, washed three times with PBS,

counted using a hemocytometer and resuspended at a con-

centration of 5.0 3 106 conidia/ml. The viability of the

administered inoculum was determined by incubating a

serial dilution of the conidia on YAG medium, at 378C. Mice

were anesthetized by halothane inhalation and infected by

intranasal instillation of 1.0 3 105 conidia in 20 ml of PBS.

As a negative control, a group of five mice received PBS

only. Mice were weighed every 24 h from the day of infec-

tion and visually inspected twice daily. The statistical signifi-

cance of the comparative survival values was calculated

using log rank analysis and the Prism statistical analysis

package.
To investigate fungal burden in murine lungs, mice were

immunosuppressed with cyclophosphamide (150 mg/kg of

body weight), which was administered intraperitoneally on

days 24 and 21, while hydrocortisonacetate was injected

subcutaneously (200 mg/kg) on day-3. Five mice per group

were intranasally inoculated with 1 3 106 conidia/20 ml of

suspension. A higher inoculum, in comparison to the sur-

vival experiments, was used to increase fungal DNA detec-

tion. Animals were sacrificed 72 h post-infection, and the

lungs were harvested and immediately frozen in liquid nitro-

gen. Samples were homogenized by vortexing with glass

beads for 10 min, and DNA was extracted via the phenol-

chloroform method. DNA quantity and quality were

assessed using a NanoDrop 2000 spectrophotometer

(Thermo Scientific). At least 500 mg of total DNA from each

sample was used for quantitative real-time PCRs. A primer

and a Lux probe (Invitrogen) were used to amplify the 18S

rRNA region of A. fumigatus (primer, 5’-

CTTAAATAGCCCGGTCCGCATT-3’; probe, 5’-CATCACA-

GACCTGTTATTGCCG-3’) and an intronic region of mouse

GAPDH (glyceraldehyde-3-phosphate dehydrogenase)

(primer, 5’-CGAGGGACTTGGAGGACACAG-3’; probe, 5’-

GGGCAAGGCTAAAGGTCAGCG-3’). Six-point standard

curves were calculated using serial dilutions of gDNA from

all the A. fumigatus strains used and the uninfected mouse

lung. Fungal and mouse DNA quantities were obtained

from the threshold cycle (CT) values from an appropriate

standard curve. Fungal burden was determined as the ratio

between picograms of fungal and micrograms of mouse

DNA.

For the histopathology, the animals were also sacrificed

72 h post-infection, the lungs were removed and fixed for

24 h in 3.7% formaldehyde–PBS. Samples were washed

several times in 70% alcohol before dehydration in a series

of alcohol solutions of increasing concentrations. Finally,

the samples were diafanized in xylol and embedded in par-

affin. For each sample, sequential 5 mm thick sections were

collected on glass slides and stained with Gomori methena-

mine silver (GMS) or hematoxylin and eosin (HE) stain fol-

lowing standard protocols. Briefly, sections were

deparaffinized, oxidized with 4% chromic acid, stained with

methenamine silver solution, and counterstained with picric

acid. For HE staining, sections were deparaffinized and

stained first with hematoxylin and then with eosin. All

stained slides were immediately washed, preserved with

mounting medium, and sealed with a coverslip. Microscopic

analyses were done using an Axioplan 2 imaging micro-

scope (Zeiss) at the stated magnifications under bright-field

conditions.

RNA sequencing

A. fumigatus conidia (1 3 106 sp/ml) were inoculated into

liquid YPD (1% yeast extract, 1% polypeptone and 1% glu-

cose) and cultured for 16 h prior to addition of 1/2 vol. 3 M

sorbitol (Final concentration: 1 M). Mycelia were harvested,

frozen in liquid nitrogen. For total RNA isolation, mycelia

were ground in liquid nitrogen. Total RNA was extracted

using Trizol (Invitrogen), treated with RNase-free DNase I

(Fermentas) and purified using a RNAeasy Kit (Qiagen)

according to manufacturer’s instructions. The RNA from

each treatment was quantified using a NanoDrop and Qubit

fluorometer, and analyzed using an Agilent 2100 Bioana-

lyzer system to assess the integrity of the RNA. RNA Integ-

rity Number (RIN) was calculated; RNA sample had a

RIN 5 9.0 2 9.5.
Illumina TruSeq Stranded mRNA Sample Preparation kit

was used. Briefly, polyA containing mRNA molecules were

selected using polyT oligo-attached magnetic beads. Frag-

mentation and paired-end library preparation was done

using divalent cations and thermal fragmentation. First

strand cDNA synthesis was performed using reverse tran-

scriptase (Superscript II) and random primers. This was fol-

lowed by second strand cDNA synthesis using DNA

Polymerase I and RNase H and dUTP in place of dTTP.

AMPure XP beads were used to separate the dscDNA from

the second strand. At the end of this process, we had

blunt-ended cDNA to which a single ‘A’ nucleotide was

added at the 3’ end to prevent them from ligating to one

another during the adapter ligation reaction. A correspond-

ing single ‘T’ nucleotide on the 3’ end of the adapter pro-

vided a complementary overhang for ligating the adapter to

the fragment. The products were then purified and enriched

using a PCR to selectively enrich those DNA fragments

that have adapter molecules on both ends and to amplify

the amount of DNA in the library. The PCR was performed

with a PCR Primer Cocktail from the Illumina kit that

anneals to the ends of the adapters. Libraries were

sequenced (2 3 100bp) on a HiSeq 2500 instrument,

sequencing approx. 17.3 3 106 fragments per sample.

Short reads were submitted to the NCBI’s Short Read

Archive under the Bioproject: PRJNA305564.
Obtained fastq files were quality checked with FastQC

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/),

and cleaned with Trimmomatic (Bolger et al. 2014); quality
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trim, adaptor removal and minimum length filtering), finally,

ribosomal RNA was removed using SortMeRNA (Kopylova

et al., 2012). High-quality reads were mapped to the A.

fumigatus A1163 genome sequence using Tophat2 (Kim

et al., 2013) in strand-specific mode. Saturation of sequenc-

ing effort was assessed by counting the number of detected

exon-exon junction at different subsampling levels of the

total high-quality reads, using RSeQC (Wang et al., 2012).

All samples achieved saturation of known exon-exon junc-

tions. In order to assess transcript abundance exonic reads

were counted in a strand-specific way using the Rsubread

library (Liao et al., 2013) from the Bioconductor suite

(Huber et al., 2015). Differential gene expression analysis

was carried-out in EdgeR (Robinson et al., 2010) controlling

for a False Discovery Rate of 0.05 (Benjamini et al., 2001).
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