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Analytical and Theoretical Plant Pathology 

The Sensitivity of the Epidemic Growth Rate to Weather Variables, 
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ABSTRACT 

Papastamati, K., and van den Bosch, F. 2007. The sensitivity of the 
epidemic growth rate to weather variables, with an application to yellow 
rust on wheat. Phytopathology 97:202-210. 

We first show how to estimate the exponential epidemic growth rate, r, 
for different combinations of three weather variables. Then we derive a 
method to quantify the sensitivity of r to a weather variable as a function 
of the pathogen life cycle variables of latent period, basic reproductive 
number, and the mean and standard deviation of the sporulation curve. 
The method can be used to identify the most important weather variable  

and pathogen life cycle component in terms of epidemic progress. The 
method is applied to yellow rust, caused by Puccinia striiformis, on 
winter wheat. We conclude that the most important weather variable for 
the progress of yellow rust is temperature, followed by dew period and 
light quantity. By far, the most important pathogen life cycle component 
is the basic reproductive number, especially at low and high temperatures. 
This disagrees with the general view that latent period is the most 
important variable at low temperatures. We discuss explanations of this. 

Additional keywords: exponential growth rate, sensitivity analysis. 

 
It is well known that weather plays a key role in the 

development of most plant disease epidemics, with temperature, 
leaf wetness duration, and light being the most-studied weather 
variables in this context. One example is yellow rust (caused by 
Puccinia striiformis) on wheat (Triticum aestivum), of which the 
dependence of various life cycle characteristics on temperature, 
wetness duration, and light intensity and quantity have been 
studied (3,4,7). These studies show the dependence of the latent 
period, sporulation, infection efficiency, and basic reproductive 
number of yellow rust epidemics on weather variables, but do not 
show how these effects of the weather feed through to epidemic 
development. 

Models are frequently used in plant disease epidemiology. The 
route usually followed is to study the relationship of weather and 
disease using weather variables as the input to estimate their 
effect on the pathogen’s life cycle variables (latent period, 
sporulation, infectious period, and infection efficiency) and  
then based on these, calculate the epidemic progress as the output. 
There are various types of models ranging from simple equations, 
like the Vanderplank model (19), the Zadoks model (26), which 
has been the basis for other models in plant disease epidemi- 
ology, or the SEIR models (20), to complex (simulation) models, 
such as those for epidemics of apple scab (23) and light leaf spot 
on winter oilseed rape (8). Even though these models perform 
well, it is difficult to compare their results because of different 
inputs, complexity, and different quantifications of epidemic 
development. Moreover, these models only show how a change 
in, for example, temperature works out at the epidemic level with 
a resulting change in disease severity. They do not, however, 
allow identification of the pathogen life cycle characteristic 
through which this change in temperature affected the epidemic 
the most. The difficulty in comparing existing models, and  
the inability of existing models to further unfold the chain of 

cause and effect relations between weather variables, pathogen 
life cycle variables, and epidemic progress shows the need for a 
standardized systematic method to this end. We present the 
development of such a method in this paper. 

In the initial stages of an epidemic most plants and plant parts 
are susceptible and density dependence is negligible. In this phase 
the epidemic grows exponentially with growth rate, r. In 
continuous time, rXdtdX =  with solutions of rteXX )0(=  
where X is the pathogen density and the initial condition is X(0), 
represents exponential growth or decline with growth when r > 0 
and decline when r < 0 (6). We use here the term “epidemic” to 
signify the pathogen and not the visual symptoms of disease. The 
exponential growth rate, r, depends on the pathogen’s life cycle 
components, i.e., the latent period, the infectious period, the 
sporulation curve, and the basic reproductive number and hence, 
on any weather variable that might affect these. 

The basic reproductive number is defined as the total number of 
new daughter lesions produced by a mother lesion in the early 
stages of an epidemic. Following Segarra et al. (14) we define the 
basic reproductive number as 

∫
∞

ττξψ
0

00 )( dIHR =  (1) 

with ξ the probability that a spore is deposited on a healthy leaf, ψ 
the probability that a spore deposited on a healthy leaf will initiate 
an infection, I(τ) the sporulation curve, and τ the age of infection, 
i.e., τ shows when an infection was caused (14). I(τ) is defined as 
the number of spores produced per unit of time by an infected site 
of age τ, taking into account both the latent [I(τ) = 0] and the 
sporulation [I(τ) > 0] period. The integral gives the total number 
of spores produced until the end of the sporulating (infectious) 
period. 

Recently, Segarra et al. (14) discussed that a range of models, 
including the Vanderplank and SEIR models, are special cases of 
the Kermack and McKendrick model. For low pathogen density, 
the Kermack and McKendrick model reduces to a linear form 
(14), and the exponential growth rate, r, can be calculated from 
the Euler equation: 
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ττ= ∫
∞

τ− dieR r )(1
0

0  (2) 

where R0 is the basic reproductive number, and i(τ) is  
the normalized sporulation curve (14). A summary explaining  
the derivation of equation 2 is given in Appendix 1. The initial 
exponential growth rate, r, can therefore be estimated for any type 
of model that is a special case of the Kermack and McKendrick 
one. Since the exponential growth rate is strongly influenced 
by weather variables and is a parameter widely used to describe 
epidemics, it would be useful to have methods to (i) calculate  
r from the Euler equation as a function of weather variables and 
(ii) quantify how the effect of weather variables on specific 
pathogen life cycle components is passed through to r. It then 
becomes possible to compare different weather scenarios for the 
same pathogen, or different pathogens under the same weather 
conditions. Such a method would also provide insight into how 
the progress of an epidemic is influenced by weather variables 
and in doing so, provide suggestions for disease management.  
In this paper we derive such a method using the ideas of 
sensitivity analysis as described by Caswell (1), and apply it to 
the example of yellow rust on wheat. Sensitivity analysis 
quantifies, in our case, the response of the exponential growth  
rate of the epidemic, r, to changes in a weather variable. 
Sensitivity analysis became popular with the development of 

matrix population models, but no comparable method has been 
developed for the Euler equation and the models it represents 
(13). 

In this paper, we first show how to calculate the exponential 
growth rate when the basic reproductive number, R0, and the 
spore production curve, i(τ), depend on weather variables. Then, a 
method is developed to calculate the sensitivity of the exponential 
growth rate to weather variables. After the theoretical description 
of the methodology, published data on yellow rust are used to 
demonstrate (i) the type of information needed to apply this 
method, (ii) the ease of application and, most importantly, (iii) the 
output produced and how this can facilitate the unraveling of the 
relationship between weather and disease.  

THEORY AND APPROACHES 

Generic methods. Exponential growth rate. Several authors 
have shown that the sporulation curve, i(τ), is well described by a 
delayed gamma distribution function (5,7,18) (Fig. 1). The 
delayed gamma distribution is delayed by the latent period, p, 
after which spore production starts increasing gradually from zero 
at τ = p to reach a peak value and then decreasing back to zero at 
the end of the sporulation period (Fig. 1). The spore produc- 
tion curve is described by the mean and standard deviation (μ and 
σ, respectively) of the gamma distribution, with μ the mean time 

 

Fig. 1. Spore production data of yellow rust (Puccinia striiformis) found in McGregor and Manners (7), per square millimeter of infected leaf area (y axis) for each 
day after the end of the latent period (x axis), on three wheat cultivars (Maris Beacon, Maris Nimrod, and Maris Huntsman) at 10, 15, and 20°C. The solid lines are 
the fitted sporulation curves, i.e., I(t) in Appendix 2. 
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after the end of the latent period p, of producing a spore; σ2 
represents the variation of this time. Using this type of sporu- 
lation curve, the Euler equation (equation 1) becomes (14) 
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The latent period, p, mean, μ, and standard deviation, σ, of the 
spore production distribution, and the basic reproductive number, 
R0, are basic characteristics of the pathogen life cycle. Their 
dependence on weather is represented by setting R0, p, μ, and σ as 
functions of x, which represents weather and can be one or more 
weather variables. Equation 3 cannot be solved explicitly for r. 
Various software packages with root-finding algorithms can be 
used to calculate r for any combination of the weather variables, 
x. In our application of this method, x is any combination of 
temperature (T), dew period (DP), and light quantity (L). 

Sensitivity analysis. As mentioned in the introduction, 
sensitivity analysis quantifies the response of the exponential 
growth rate, r, to changes in weather variables. This sensitivity is 
calculated by the derivative of the exponential growth rate with 
respect to each of the weather variables under consideration, x. In 
Appendix 2 we show how this derivative is given by the equation 
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This expression is our key result. It unravels the effect of weather 
on the exponential growth rate, r, through the various pathogen 
life cycle components. If we take the first product on the right 
side of equation 4, the sensitivity of R0 to x is multiplied by the 
sensitivity of r to R0. So the change in R0 after a unit change in the 
weather variable, x, is multiplied with the change that will happen 
to r after a unit change in R0. This product shows the change in r 

after a unit change in x through the effect this change in x first had 
on R0. Therefore, the sensitivity of r to changes in the weather 
variable, x, is the sum of the sensitivity of r to the weather 
variable, x, through its effect on the life cycle characteristics R0, p, 
σ, and μ. So not only can we calculate the sensitivity of the 
exponential growth rate, r, to the weather variable, x, but we can 
quantify the effect of the weather on r through each of the life 
cycle components and therewith assess whether it is the effect of 
the weather on the life cycle component or the effect of the life 
cycle component on the exponential growth rate that is the more 
important. 

An application to yellow rust. Data sources. We have used 
published data from McGregor and Manners (7) and de 
Vallavieille-Pope et al. (3) to study the effect of temperature, T, 
dew period, DP, and light quantity, L, on the exponential growth 
rate of epidemics of yellow rust caused by P. striiformis. 
McGregor and Manners (7) conducted glasshouse experiments to 
study the sporulation rate per unit area of leaves covered 
uniformly with pustules under three different temperatures (10, 
15, and 20°C). They also studied the effect of temperature on 
latent period using the same three temperatures. de Vallavieille-
Pope et al. (3) studied the effect of postinoculation temperature 
and dew duration on infection in controlled environments, and the 
effect of preinoculation light intensity on infection in the field and 
under controlled conditions. They assessed infection by counting 
the number of sporulating pustules, while they calculated 
infection efficiency as the number of chloroses per unit leaf area 
and spore. In order to use this information we define the latent 
period, p, the mean, μ, and the standard deviation of the 
sporulation curve, σ, and the basic reproductive number, R0, as 
functions of weather variables in the following sections. All the 
curve fittings described below were done using nonlinear least 
square regression. 

Latent period and sporulation. The effect of temperature on 
the latent period, p, of P. striiformis infecting wheat cvs. Maris 
Beacon, Maris Nimrod, and Maris Huntsman was studied by 
McGregor and Manners (7) under controlled conditions. Their 

   

Fig. 2. Estimated functions of temperature for yellow rust (Puccinia striiformis) shown in Fig. 1 and describing A, the latent period; B and C, the mean and 
standard deviation of the gamma sporulation curves; and D, total spore production per square millimeter of infected leaf area. The mean and standard deviation of 
a gamma curve with parameters n and λ are µ = n/λ and σ = √n/λ. The data for the latent period and total spore production are from McGregor and Manners (7). 
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results agreed well with those of Zadoks (25). An exponential 
curve relating temperature to latent period, which ranged between 
9 and 20 days, was fitted to the data (Fig. 2A, Table 1). The effect 
of temperature on spore production rates was studied by 
McGregor and Manners (7) on wheat cvs. Maris Beacon, Maris 
Nimrod, and Maris Huntsman at temperatures of 10, 15, and 
20°C. Their data were used to fit a sporulation curve to each 
combination of cultivar and temperature, as explained in 
Appendix 1. The interpolated data points and the fitted curves are 
shown in Figure 1. The mean, μ, and the standard deviation, σ, of 
the fitted curves were not significantly different between cultivars, 
and exponential functions of temperature were fitted to describe 
these (Fig. 2B and C, Table 1). 

Basic reproductive number. McGregor and Manners (7) also 
measured the effect of temperature on the total spore production 
per unit of infected leaf area, which we denote f(T). A quadratic 
function was used to describe the total spore production as a 
function of temperature (Fig. 2D, Table 1). The basic reproductive 
number is calculated as the product of the number of spores 
produced by one unit of infected leaf area during its lifetime, f(T), 
the per spore probability of landing on a healthy leaf, α, and the 
probability of this spore causing an infection (the infection 
efficiency), IE. Area is not included as such in this equation but 
McGregor and Manners (7) scaled sporulation to one unit of 
infected leaf area, so essentially we assume that this is equal to 
one lesion. The weather dependence of R0 is determined through 
the spore production and the infection efficiency, IE. de 
Vallavieille-Pope et al. (3) derived the following function of 
temperature, light quantity, and dew period for the infection 
efficiency, IE, of yellow rust: 

 
)()()(),,( max DPRIELRIETRIEIEDPLTIE =  (5) 

where IE(T,L,DP) is the infection efficiency at temperature, T, 
light quantity, L, and dew period, DP. RIE(T), RIE(L), and 
RIE(DP) are the relative infection efficiencies in relation to each 
weather variable separately, with T between 2.37 and 19.8°C, L 

between 0 and 60 mol quanta m–2, and DP between 0 and 18 h, 
while IEmax is the maximum infection efficiency they 
estimated. The functions for the relative infection efficiency 
for each climatic variable are shown in Table 1. 

We, thus, get 

 
)()()()()( max0 DPRIELRIETRIEIETfIETfR α=α=  (6) 

The only remaining parameter to be estimated in equation 6 is α, 
the fraction of spores that are deposited on a leaf and cause an 
infection. This parameter is very difficult to estimate and no 
convincing values can be obtained from published data. To find a 
suitable value for α, we had to use an indirect method. Given 
estimated values of the epidemic growth rate, r, of yellow rust 
epidemics, we used the Euler equation (13) to find values of α 
that reproduced these values of r. Young et al. (24) reported r 
values of 0.17 and 0.18, Paveley et al. (9) reported 0.018 and 
0.074, while van den Bosch et al. (16,17) found 0.11, 0.07, 0.10, 
and 0.12. These papers do not provide estimates of temperature, 
leaf wetness duration, or light quantity, but all experiments were 
done in the early summer months. We assumed that temperatures 
were above 8°C but not more than 19°C so that we could 
calculate the infection efficiency due to temperature. A value of 
0.02 for α could reproduce such r values and we used this in our 
calculations. 

RESULTS 

Exponential growth rate. Using the relationship between the 
weather variables (temperature, dew period, and light quantity) 
and the life cycle characteristics of yellow rust (basic reproductive 
number, latent period, mean and standard deviation of the 
sporulation curve) in combination with equation 3, we con-
structed Figure 3. The contour lines for equal values of r as 
functions of temperature and dew period are U shaped (Fig. 3A to 
C). The contour lines for r = 0 clearly show that at low 

TABLE 1. Functions of temperature fitted to data from McGregor and Manners (7) on the sporulation and latent period of yellow rust on winter wheat and 
components of the infection efficiency of yellow rust on winter wheat as described by de Vallavieille-Pope et al. (4) 

Function Variable/function/parameter description 

L, T, DP  Light quantity (mol quanta m–2), temperature (°C), and dew period (h) 
Te 075.083.20 −=μ  

 

 
Mean of sporulation curvea 

Te 075.003.12 −=σ  
 

 
Standard deviation of sporulation curvea 

2667.40667.10410.3325)( TTTf −+−=  
 

 
Total spore production per lesiona 

Tep 06.024.28 −=  
 

 
Latent perioda 

)()()(),,( max DPRIELRIETRIEIEDPTLIE =  
 

 
Infection efficiency, IEmax = 0.421b 

Relative infection efficiency of temperatureb 

T min = 2.37°C, Tmax = 19.8°C, p = 2.24, n = 0.87, 
m = 0.41 
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Relative infection efficiency of lightb 

 c = 0.045, d = –0.065 

[ ])()( min1)( TDPDPTbeDPRIE −−−=  
 

 
Relative infection efficiency of dew periodb 

200101.00246.0023.0)( TTTb −+−=  
 

 
Initial infection rateb 

2
min 0427.0024.114.10)( TTTDP +−=   

 
Minimum dew period necessary for infectionb 

a McGregor and Manners (7). 
b de Vallavieille-Pope et al. (4) 
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temperatures (T < 6 to 8°C) as well as at high temperatures (T > 
16 to 20°C), depending to some extent on dew period and light 
quantity, the pathogen population decreases (r < 0). An 
exponential growth rate of zero, meaning no change in pathogen 
density, corresponds to a basic reproductive number of one 
because every lesion just replaces itself so that the epidemic is 
sustained with no increase or decrease in pathogen density. 
Combining equation 6 with Table 1, we have therefore found an 
explicit, though complicated, invasion criterion of a yellow rust 
epidemic dependent on weather variables (Fig. 3A to C). 

The exponential growth rate reaches its maximum at tem-
peratures roughly between 14 and 16°C, and decreases at higher 
temperatures. The latent period and the mean of the sporulation 
curve are decreasing functions of temperature. Either a shorter 
latent period, an earlier start of sporulation, both factors, or only 
one of them, should increase the epidemic growth rate. Therefore, 
the fact that the exponential growth rate, r, decreases at higher 
temperatures must be entirely due to the decreased basic 
reproductive number at higher temperatures (T > 14°C). 

Lower temperatures translate into longer latent periods and 
delayed sporulation. These both lead to a reduced epidemic 
growth rate. Additionally, the basic reproductive number is small 
at lower temperatures, which also leads to small values for the 
exponential growth rate. Therefore, it is not clear which life cycle 
characteristic is most responsible for the low r values at low 
temperatures. Only our sensitivity analysis will reveal which life 
cycle component is of key importance here. 

The contour lines of the exponential growth rate as a func- 
tion of dew period and light quantity (Fig. 3D to F) show  
the shape of a response surface for two limiting factors. Starting 
from low light quantity, an increase has a significant effect on the 
exponential growth rate, while the opposite is true when we start 
at a high light quantity. Therefore, light quantity is limiting at low 

but not at high values. The same is true regarding dew period. The 
combination of these two variables, which are limiting at low 
values, results in contours that are steep at low values of dew 
period and light quantity and almost horizontal at high values of 
dew period and light quantity. 

Sensitivity analysis. The sensitivity of the exponential growth 
rate of the epidemic to the weather variables is shown in Figure 4. 
All the life cycle characteristics are affected by temperature (Fig. 
4A to D), while only the basic reproductive number is affected by 
dew period or light quantity (Fig. 4E and F). Figure 4 clearly 
shows that the sensitivity of the exponential growth rate to 
changes in temperature is by far the greatest through its effect on 
the basic reproductive number. This is especially true for tempera-
tures at which the exponential growth rate is small or even nega-
tive. The sensitivity is influenced by the other weather variables 
only to a smaller extent. It is also evident that the sensitivity of r 
to the mean of the sporulation curve is greater than to its standard 
deviation. The sensitivities to temperature through the latent period 
and mean of the sporulation curve (Fig. 4A and B) are very simi-
lar and comparable to the sensitivity through the basic reproduc-
tive number at intermediate temperatures (9 to 15°C). The sensi-
tivities of r to the latent period and the mean of the sporulation 
curve are influenced by changes in dew period and light quantity. 

Overall, the sensitivity of the exponential growth rate to 
changes in dew period or light quantity is greatest for short dew 
periods and low light quantity, respectively, and least when 
compared with the sensitivity due to temperature. This is in 
agreement with the shape of the contour lines for the exponential 
growth rate (Fig. 3D to F). 

To study the sensitivity of the exponential growth rate to 
temperature through its effect on the basic reproductive number in 
more detail, we plotted the two components from equation 3 in 
Figure 5. This figure shows that the sensitivity of the exponential 

 

Fig. 3. Contours of estimations of the exponential growth rate, r, for different combinations of climatic variables. A, B, and C show estimates of r for 
various combinations of dew period and temperature at set values of light quantity (5, 20, or 40 mol quanta m–2, respectively). D, E, and F show 
estimates of r for various combinations of dew period and light quantity at set values of temperature (5, 12, or 19°C, respectively). 
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growth rate to changes in the basic reproductive number, ∂r/∂R0, 
is small compared with the sensitivity of the basic reproductive 
number to temperature, ∂R0/∂x, where x = T. This implies that the 
significance of the temperature for the exponential growth rate is 
mainly determined by the effect of temperature on the basic 
reproductive number, except at low temperatures. 

DISCUSSION 

The method of sensitivity analysis developed in this paper 
quantifies the effect of climatic variables on the exponential 
growth rate of epidemics in two steps. We first quantify the effect 
of the weather variable on the pathogen life cycle component and 
then the effect of the life cycle component on the epidemic 
growth rate. The advantage of this technique is that one can assess 
the sensitivities of the epidemic growth rate to a life cycle 
component and of the life cycle component to a climatic variable 
separately, and then combine them to yield the sensitivity of the 
epidemic growth rate to the climatic variable in question. Here, 
the method has been applied to yellow rust on winter wheat, and 
we have shown that the most important weather variable for the 

progress of yellow rust is temperature, followed by dew period 
and light quantity. Chen (2) stresses that the development of 
yellow rust is more sensitive to weather variables (moisture, 
temperature, and wind) than other plant pathogens, and that 
temperature is probably the most important weather variable in 
terms of how many pathogen life cycle components can be 
affected by it. We also found that the epidemic growth rate, r, is 
most sensitive to the basic reproductive number, R0. The latter 
contradicts the general belief that epidemic development is 
mainly delayed at low temperatures by the long latent period of 
the pathogen. At low temperatures latent period can increase to as 
many as 120 days, and even up to 150 under the protection of 
snow cover (25). Longer latent periods might be deceptive 
regarding epidemic assessment and management, due to the delay 
of symptom appearance and lack of fungicide application on time. 
For example, at low temperatures, when latent periods will be 
longer, treatments against Septoria tritici on wheat are probably 
better applied earlier in the season before symptom appearance 
(21). West et al. (22) have reported that while phoma leaf spots on 
oilseed rape caused by Leptosphaeria maculans (stem canker) can 
be seen more or less throughout winter in Europe, in Canada, 

 

Fig. 4. Contribution of pathogen life cycle variables to the sensitivity of the exponential growth rate to A to D, temperature for three dew periods (——, – – –, and 
····· = 7, 16, and 22 h) and two light quantities (□ and △ = 5 and 20 mol quanta m–2); E, dew period for two light quantities (□ and △ = 5 and 20 mol quanta m–2) 
and three temperatures (□, △, and ▽ = 5, 12, and 19°C); and F, light quantity for two dew periods (—— and – – – = 7 and 16 h) and three temperatures (□, △,
and ▽ = 5, 12, and 19°C).  
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where temperatures are lower, appearance of leaf symptoms can 
be delayed. Latent period has generally been studied more as it is 
easier to measure under different conditions of temperature, while 
the basic reproductive number is a more complex variable and 
more difficult to measure. Furthermore, the latent period is essen-
tially a measure of the time lapse between successive generations 
of sporulating lesions, while the basic reproductive number is a 
measure of the performance of a sporulating lesion because it 
incorporates infection efficiency, which under specific weather 
conditions might compensate for a lower spore production. 

The parameter α was chosen using an indirect method because 
of lack of information and because reported values of the 
epidemic growth rate, r, for yellow rust were not accompanied by 
observations of weather variables. Further research is needed to 
estimate this parameter more accurately. We note, however, that 
other values of α do not change our results qualitatively, although 
quantitative differences are found. 

There are a few issues that may have had an effect on the 
results presented here, even though this effect would be 
quantitative rather than qualitative. The sporulation data we used 
refer to one unit of infected leaf area (1 mm2) and not to one unit 
of sporulating area or one lesion. However, in their experiments, 
McGregor and Manners (7) inoculated over the whole adaxial leaf 
surface and only used leaves with a uniform distribution of 
pustules, so that when they looked into the total spore production 
they referred to a unit of colonized leaf area. Likewise, we have 

assumed that one lesion could be approximated by one unit of 
colonized leaf area and have defined the basic reproductive 
number using the sporulation data by McGregor and Manners (7).  

In another study Sache and de Vallavieille-Pope (11) found that 
single-spore inoculations led to medium density of infections due 
to the semisystemic nature of yellow rust; sporulation was 
estimated per lesion, even though the actual average area of one 
lesion is not provided. In addition to these differences between 
the two studies’ method of inoculation, type of leaf area used as 
reference unit for the spore counts, and length of the sporulating 
period, the controlled environment conditions also differed. The 
day length was 2 h longer and the light quantity used was almost 
double that used by McGregor and Manners (7). However, even 
though the sporulation curves are not directly comparable, their 
shapes are very similar. It seems logical to assume that if the 
sporulation data we used referred to an average sporulating lesion, 
the difference in the final results would have been quantitative 
and not qualitative. 

The method presented here for calculating the exponential 
growth rate, r, from the Euler equation as a function of weather 
variables and its sensitivity analysis, can be used for other types 
of sporulation curve. Segarra et al. (14) showed that the 
Vanderplank model is a special case of the Kermack and 
McKendrick model. In the case of the Vanderplank model the 
Euler equation (4) becomes 

[ ]pripr ee
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where r is the exponential growth rate, p is the latent period, and i 
is the infectious period. All derivatives in equation 4 can easily be 
calculated for the Vanderplank model. 

Our method can also be used to study the effects of the appli-
cation of fungicides on the rate of epidemic progress. Different 
timings of applications and different types of fungicides can 
easily be investigated for their effect on epidemic progress. A 
protective fungicide would affect infections and hence, the basic 
reproductive number. A curative fungicide would delay sporu-
lation, and hence, would affect the latent period and the mean of 
the sporulation curve. Different timings could further affect the 
results depending on weather conditions. Our results for yellow 
rust suggest that a fungicide targeting the basic reproductive num-
ber would be the best choice, especially at the beginning of the 
epidemic season (March/April) when temperatures are still quite 
low.  

In this paper we have presented a method of sensitivity analysis 
for the exponential rate of epidemic growth. This method is easy 
to apply, can easily accommodate new information, and can 
provide insight into the relative importance of climatic variables 
and life cycle components for the epidemic growth rate. 

APPENDIX 1 

Derivation of the Euler equation. The basic reproductive 
number, R0, is a key variable used in both plant and animal 
disease epidemiology and is defined as the total number of 
daughter infections (lesions) produced by a single mother 
infection (lesion) throughout the latter’s infectious period at very 
low disease density (10). Assume that the rate of increase of the 
density of lesions is given by 

)(
)(

tb
dt

tdY
=  (A1) 

where Y(t) is the number of pathogen lesions at time t and b(t) is 
the rate of appearance of new lesions per time unit t. 

The age of infection of a lesion is the number of days elapsed 
since the lesion was caused (i.e., since the infection took place). 
The number of spores produced per unit time by a lesion of age of 
infection, τ, is denoted by I(τ). Integration over the age of 

Fig. 5. Contribution of the basic reproductive number, R0, to the sensitivity of 
the exponential growth rate, r, to temperature (Fig. 4A) is split into A, the 
direct contribution of the life cycle variable, R0, to r, and B, the direct 
contribution of the climatic variable to R0 for three dew periods (——, – – –, 
and ····· = 7, 16, and 22 h) and two light quantities (□ and △ = 5 and 20 mol 
quanta m–2). 
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infection gives the total number of spores, Ω, produced by one 
lesion during its entire infectious period (during the latent period 
I(τ) = 0). The ratios of I(τ) and Ω give the probability distribution 
function, i(τ), which is called the sporulation curve. So 
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In the application presented here, the gamma probability 
distribution function was the best choice for the sporulation data 
of McGregor and Manners (7). The fitted curves represent I(t) 
(Fig. 1). The mean, μ, and standard deviation, σ, of the gamma 
distribution are functions of the distribution parameters n and λ 
with μ = n/λ and σ2= n/λ2. Using nonlinear least square regression 
we obtained the fitted curves by comparing optimization results 
for λ with n set to different values. We got the best overall fit to 
the data by setting n = 3 (R2 ranged from 79 to 93.4%). 

The rate of appearance of new lesions per time unit, b(t), is 
assumed to be linearly dependent on the density of spores, Λ(t), 
in the crop and the density of the healthy (susceptible) sites at 
time t, H(t). So 

)()()( tHttb Λθ=  (A3) 

where θ is the probability that a spore lands on a healthy plant and 
causes an infection. The density of spores, Λ(t), is the sum of all 
spores produced by the lesions in the crop. At time (t – τ), b(t – τ) 
lesions were caused, each of which will produce Ω i(τ) spores. To 
account for all ages of lesions present, integrate over all ages of 
infection to yield 
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Therefore in the initial stages of an epidemic, we have 

τττ−θΩ= ∫
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At low pathogen density we assume that disease starts with as 
little as a single sporulating lesion producing Ω spores during its 
infectious period, the initial density of healthy sites is high,  
H(t) ≈ H0, and R0 = Ω θH0. At low pathogen density disease grows 
exponentially and if the initial disease level is Q, then Y(t) = Q ert. 
Substituting the latter equations in A1 and A5 gives 
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This is the Euler equation, which can be solved numerically to 
estimate r if i(τ) and R0 are known. 

It is now easy to derive equation 2 in the main text from 
equation A6 using the fact that i(τ) is represented by a gamma 
probability density function with parameters n and λ. So 
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So equation A7 becomes 
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After dividing equation A10 with 

2σ

μ
 we get equation 2 in the 

main text. 

APPENDIX 2 

Derivation of equation 4 in the main text. Equation 3 cannot 
be solved for r explicitly. We do, however, want to calculate the 
sensitivity of r to x, ∂r/∂x. Equation 3 can be written as 

[ ] 1)(),(),(),(),( 0 =σμ xxxpxRxrG  (A11)

Taking the derivative of G with respect to x gives equation A12 
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Solving equation A12 for xr ∂∂  gives 
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All derivatives in this expression can be calculated from equation 
3 in the main text and from the equations in Table 1. For ease of 
interpretation, the expressions in square brackets are rewritten to 
give equation 4 in the main text, i.e., 
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The epidemiological variables R0, r, p, σ, or μ can be functions 
of more than one weather variable and they might also not all 
depend on the same set of weather variables. The case showed 
above is for the simple case of dependence of all of these 
epidemiological variables on a common weather variable, x, 
which is what applies when the sensitivity of the exponential 
growth rate to temperature is investigated in the main text. In the 
case of dependence of some of the epidemiological variables, 
apart from r, on a weather variable, x, the terms in the sum above 
relating to the epidemiological variables not dependent on x will 
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be replaced by zero. So, if only R0, apart from r, are functions of 
x, the sensitivity of r to x is given by 
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This applies when the sensitivity of the exponential growth rate to 
dew period or light quantity is investigated in the main text. 
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