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Abstract

We can effectively monitor soil condition—and develop sound policies to offset the emissions of greenhouse gases—
only with accurate data from which to define baselines. Currently, estimates of soil organic C for countries or conti-

nents are either unavailable or largely uncertain because they are derived from sparse data, with large gaps over

many areas of the Earth. Here, we derive spatially explicit estimates, and their uncertainty, of the distribution and

stock of organic C in the soil of Australia. We assembled and harmonized data from several sources to produce the

most comprehensive set of data on the current stock of organic C in soil of the continent. Using them, we have pro-

duced a fine spatial resolution baseline map of organic C at the continental scale. We describe how we made it by

combining the bootstrap, a decision tree with piecewise regression on environmental variables and geostatistical

modelling of residuals. Values of stock were predicted at the nodes of a 3-arc-sec (approximately 90 m) grid and

mapped together with their uncertainties. We then calculated baselines of soil organic C storage over the whole of

Australia, its states and territories, and regions that define bioclimatic zones, vegetation classes and land use. The

average amount of organic C in Australian topsoil is estimated to be 29.7 t ha�1 with 95% confidence limits of 22.6

and 37.9 t ha�1. The total stock of organic C in the 0–30 cm layer of soil for the continent is 24.97 Gt with 95% confi-

dence limits of 19.04 and 31.83 Gt. This represents approximately 3.5% of the total stock in the upper 30 cm of soil

worldwide. Australia occupies 5.2% of the global land area, so the total organic C stock of Australian soil makes an

important contribution to the global carbon cycle, and it provides a significant potential for sequestration. As the most

reliable approximation of the stock of organic C in Australian soil in 2010, our estimates have important applications.

They could support Australia’s National Carbon Accounting System, help guide the formulation of policy around

carbon offset schemes, improve Australia’s carbon balances, serve to direct future sampling for inventory, guide the

design of monitoring networks and provide a benchmark against which to assess the impact of changes in land cover,

land management and climate on the stock of C in Australia. In this way, these estimates would help us to develop

strategies to adapt and mitigate the effects of climate change.
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Introduction

Organic carbon in soil derives from living organisms in

and above the soil that convert atmospheric carbon

dioxide (CO2) into a range of organic compounds and

structures. Throughout their life cycles, the organisms

synthesize organic matter, which later decomposes in

the soil. As these organisms respire, most of the cap-

tured carbon is eventually returned to the atmosphere

as CO2.

The decomposition of organic matter in the soil

releases significant quantities of nutrients, particularly

nitrogen, that become available to plants, microorgan-

isms and fungi. The nutrients released can also be

retained in soil, in store and on exchange sites, thereby

augmenting the soil’s buffering capacity. Organic

matter also helps to aggregate soil particles and to

develop soil structure, and it increases the storage of

water and availability of that water for plants. In sum,

the amount of organic carbon in the soil is an important

attribute of the soil’s condition.

The organic carbon content of the soil is seen as

increasingly important for ecosystems, both natural

and agricultural; the topic attracts interest both nation-

ally and internationally (e.g., Bui et al., 2009; Chaplot

et al., 2010; Lugato et al., 2013). Capturing and retaining

additional carbon in soil (sequestration) can mitigate

the emissions of the greenhouse gases, carbon dioxide,

methane, nitrous oxide and, at the same time, improve
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the quality and productivity of the soil to sustain food

production. Around the world, governments are devel-

oping policies to increase or restore the organic C

stored in the soil. One example is the Australian Gov-

ernment’s Carbon Farming Initiative (Garnaut, 2011).

Soil holds the largest terrestrial store of organic C.

Globally, estimated stores of organic C are approxi-

mately 684–724 Gt (1 Gt = 1015 g = 1 Pg) in the top

30 cm, 1200–1550 Gt in the uppermost metre of soil and

around 2300–2450 Gt in the upper 2 or 3 m (Sombroek

et al., 1993; Eswaran et al., 1995; Batjes, 1996; Jobb�agy

and Jackson, 2000; Lal, 2004). Comparative estimates of

organic C contained in living biomass (550–560 Gt) and

the atmosphere CO2 (760–780 Gt) (Lal, 2004; Houghton,

2005 ) indicate that variations in the size of the soil’s store

of organic C could significantly alter the concentration of

CO2 in the atmosphere. In contrast, the amount of inor-

ganic C in the soil is estimated to be around 720–930 Gt

(Sombroek et al., 1993; Batjes, 1996), with a more recent

estimate of 947 Gt provided by Eswaran et al. (2000).

In Australia, modelling studies of the dynamics of

organic C have produced estimates of about 20 and

26.9 Gt in the top 20 and 100 cm (Barrett, 2002, 2013),

and 18.8 and 34.2 Gt in the top 30 and 100 cm of soil

respectively (Grace et al., 2006). However, the state and

temporal trends of the stores of organic C in Australian

soil and their spatial distributions are largely unknown

or uncertain, mainly because there are too few data on

the soil’s organic C content and bulk density (BD) that

can be used to provide estimates for the country. Con-

ventional methods of soil survey and analyses are

expensive.

It is thought that soil in many regions is losing C, but

some scientists suggest that—with appropriate land

management or changes in land use—the soil could

store more organic C than it does now, particularly in

the savannas of northern Australia (Cleugh et al., 2011;

Richards et al., 2011) and the agricultural land of south-

eastern Australia (Luo et al., 2010; Zhao et al., 2013).

There is no consistent overall trend, however, and evi-

dence is fragmentary. To improve the confidence and

robustness of such assessments, we must investigate

methods for obtaining spatially explicit estimates of

organic C in the soil with estimates of uncertainty from

data.

The aim of this study was to estimate at a fine spatial

resolution the current stock of organic C in Australian

soil in the 0–30 cm layer, which is the reference depth

of the Intergovernmental Panel on Climate Change

(IPCC), along with estimates of uncertainty, and to cal-

culate baselines of organic C stock and their uncertainty

over the whole of Australia, its states and territories,

regions that define bioclimatic zones and vegetation

and land-use types.

Soil inventory

The data on the soil’s organic C content and BD

recorded from 2000 to 2013 (median year 2009) came

from three sources.

1. Australia’s National Soil Carbon Research Pro-

gramme (SCaRP). It was designed to quantify vari-

ations in the content, stock and composition of

organic C in the 0�30 cm layer of soil due to agri-

cultural management (Baldock et al., 2013). The soil

was sampled within 25 m 9 25 m quadrats that

were representative of predefined combinations of

soil type and agricultural management. Soil was

collected from each of 10 randomly selected loca-

tions from the intersection points of a 5 m 9 5 m

grid within each quadrat with a ≥40-mm diameter

soil corer. Ten cores from each of the 0–10, 10–20
and 20–30 cm layers were composited into one

bulk sample for each layer for laboratory analysis.

At each site, the BD and gravel content of the soil

was measured for each depth layer. Organic C con-

tent was measured in the laboratory on a dry-com-

bustion Dumas elemental analyser (Rayment and

Lyons, 2011). This gave us 4125 values of the

organic C content and BD from sites in fields on

commercial farms. We denote them as the variables

C and DB for our study.

2. Spectroscopic estimates of organic C and BD made

with the Australian visible–near infrared database

(Viscarra Rossel and Webster, 2012) on soil samples

collected for the National Geochemical Survey of

Australia (NGSA) (de Caritat et al., 2008). The sam-

ples were collected from across Australia after first

dissection of the continent into drainage catchments

and then selection of sampling sites at low points of

the catchments but well above the water table in the

lowest positions. At each site, samples were col-

lected and bulked to produce two specimens from

within two depth layers, 0–10 cm and 60–80 cm.

The spectroscopic measurements were made on the

fine earth fraction (<2 mm), and we used data from

1101 sites.

3. The Australian Soil Resource Information System

(ASRIS), the Commonwealth Scientific and Indus-

trial Research Organisation’s (CSIRO’s) central

repository for soil data in Australia (Johnston et al.,

2003). We could use 491 soil profile data from

ASRIS that had measurements of organic C content

and BD from two or three depth layers. The sam-

ples originated primarily from agricultural soil in

eastern and southern Australia, and the organic C

contents had been determined by the Walkley–
Black wet oxidation method and a LECO elemental
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analyser (Rayment and Lyons, 2011). When

recorded, the most common method of measuring

BD of the soil was the one using intact cores as

described in Cresswell and Hamilton (2002).

The combined data represent soil from all states and

territories of Australia, all soil types present in the Aus-

tralian Soil Classification (Isbell, 2002) and all land-use

classes (DAFF, 2010) (Table 1 second column). Figure 1

shows the spatial distribution of the data.

Materials and methods

Harmonizing the data and calculating the 0–30 cm stock
of carbon

Determining values of soil properties from bulk horizon data,

which are often sparse, can produce inaccuracies when predic-

tion is needed at a specific depth within a soil profile. In our

case, we needed estimates of the organic C content for the 0–

30 cm layer, but as above, our data originated from various

sources on soil sampled at various depths. The soil from the

SCaRP was sampled from within the three depth layers 0–10,

10–20, and 20–30 cm, and measurements of organic C, BD and

gravel were made to represent the soil there. Soil from the

geochemical survey from which the spectroscopic estimates of

organic C content and BD were made came from within two

depth layers, 0–10 and 60–80 cm, and data from ASRIS had at

each sampling site, measurements from within the 0–30 cm

but also from within two or three different depth layers. To

derive estimates of the total amount of organic C integrated

over the 0–30-cm layer for the modelling (below), we harmo-

nized the data by interpolation using continuous depth func-

tions as follows.

First, we calculated the carbon density, DC, of each sample,

i, from the three different sample sets:

DCi
¼ ðCi �DB;iÞ � ð1� giÞ; ð1Þ

where Ci is the gravimetric proportion of organic C (%) in the

<2-mm fraction, DB,i is the bulk density in g cm�3, and g is the

gravimetric proportion of gravel in the sample. This results in

DC in units of g cm�3.

Second, we needed to estimate the total stock, SC, for the

0–30 cm layer. For sites that had only two data points

recorded from within specific depth layers, (i.e. largely the

spectroscopic estimates, but also some of the ASRIS data), we

fitted log–log models (Jobb�agy and Jackson, 2000) to the data:

logDC ¼ blogdþ a; ð2Þ

where b and a are parameters of the model and d represents

the depth. We then integrated the functions over the 0–30 cm

to obtain estimates of the total amount of organic C to that

depth.

For sites with three data points (i.e. largely data from the

SCaRP and also some of the ASRIS data), we fitted natural

cubic splines (Bartels et al., 1987) to the carbon density data

with depth by first generating a basis matrix with two degrees

of freedom and boundary conditions that extend the range of

depths in the data between 5 and 25 cm. This imposes the con-

straint that the function is to be linear (rather than cubic)

beyond the boundary points. The coefficients of the function

were then used to estimate the stock, SC, every 1 cm from 0 to

30 cm so that we could obtain the total estimates of SC to that

depth.

Finally, our harmonized estimates of SC were positively

skewed, so for the modelling, we transformed the data to

their common logarithms, i.e. log10(SC).

Table 1 The number of data used in the spatial modelling,

by State and Territory, Australian soil classification order and

land-use class. CountA is the total number of data, Counttr is

the number of data used to train the model, Countts is the

number of independent test data used to assess the results

CountA Counttr Countts

State or Territory

New South Wales (NSW) &

Australian Capital

Territory (ACT)

1697 1224 473

Western Australia (WA) 1236 892 344

Victoria (Vic) 939 677 262

Queensland (Qld) 788 568 220

South Australia (SA) 415 299 116

Tasmania (Tas) 286 206 80

Northern Territory (NT) 227 163 64

Total 5588 4029 1559

Australian soil classification order

Sodosol 1738 1255 483

Vertosol 829 598 231

Chromosol 576 416 160

Kandosol 538 388 150

Calcarosol 372 268 104

Tenosol 366 264 102

Kurosol 245 176 69

Dermosol 241 174 67

Hydrosol 227 163 64

Ferrosol 199 143 56

Rudosol 143 103 40

Podosol 98 70 28

Organosol 13 9 4

Anthroposol 3 2 1

Total 5588 4029 1559

Land use

Improved grazing 2608 1896 712

Cropping 1370 972 398

Grazing 736 525 211

Minimal use 632 455 177

Nature conservation 111 79 32

Irrigated cropping 84 71 13

Forestry 32 21 11

Horticulture 11 8 3

Irrigated horticulture 4 2 2

Total 5588 4029 1559

© 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.,

Global Change Biology, 20, 2953–2970

A 2010 ORGANIC CARBON MAP FOR AUSTRALIAN SOIL 2955



Variogram of organic carbon

As a preliminary to the modelling, we wanted an idea of the

spatial scale of variation in carbon stock across Australia. For

this, we treated SC as a stationary random process:

SCðuÞ ¼ lðuÞ þ eðuÞ ð3Þ
Here l(u) is a constant, the mean of the process, and e(u) is a

spatially correlated random component with a mean of zero

and variogram

cðhÞ ¼ 1

2
var eðuÞ � eðuþ hÞ½ � ¼ 1

2
E eðuÞ � eðuþ hÞf g2
h i

; ð4Þ
in which e(u) and e(u + h) are values of the random variable

at places u and u+h separated by the vector h, and E denotes

the expectation. We estimated and modelled a declustered

variogram derived using the approach we described in Mar-

chant et al. (2013) and which is an elaboration of Eqn (5)

below.

We treated the variation as isotropic, so that h became a

scalar, h, in distance only. We fitted an isotropic double-

spherical-plus-nugget model to the resulting ordered set

of bcðhÞ by weighted least-squares approximation using the

FITNONLINEAR algorithm in GenStat (Payne, 2013).

The resulting variogram is shown in Fig. 2(a) in which the

points are the individual estimates and the fitted double

spherical function appears as the curve with variance parame-

ters, nugget c0 and correlated variances c1 and c2, and ranges

r1 and r2. Their values are listed on the figure. Two distinct

correlation ranges are evident; one of r1 = 73 km, the other

much longer at r2 = 1787 km. We comment on them later.

Pedological inference and spatial distribution

For many years, pedologists have recognized that the soil as a

whole and its individual properties are the outcomes of the

climate, the biota and the landscape processes acting in con-

cert on parent material. Some attributes of these general envi-

ronmental factors are easier to observe and measure than the

soil and can be used as surrogates from which to predict soil

properties such as organic C. We took advantage of the experi-

ence by setting up a model in the form of a decision tree at the

sites for which we had data and then using the model to pre-

dict SC elsewhere. In this case, we assumed SC to be a non-sta-

tionary process in which l(u), Eqn (3), depends on u and is a

deterministic component, which could be described by our

pedological model. The surrogates that we used to represent

the environmental factors and their interactions in the model

are listed in Table 2.

The model was the data mining algorithm CUBIST (Quinlan,

1992). CUBIST is a form of piecewise linear decision tree, which

we have described in some detail elsewhere (Viscarra Rossel

and Webster, 2012). It partitions the response data into subsets

within which their characteristics are similar with respect to

the predictors. A series of rules derived using if and else

define the partitions, and these rules are arranged in a hierar-

chy. A condition may be a simple one based on one predictor

Fig. 1 Spatial distribution of the points from which data on the

stock of soil organic C used in the spatial modelling.
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or, more often, it comprises several. If a condition is true,

the next step, then, is the prediction of SC by ordinary

least-squares regression from the predictors within that par-

tition. If the condition is false, then the rule defines the next

node in the tree. The sequence if, then, else is repeated.

The result is that the regression equations, although general

in form, are local to the partitions and their errors smaller

than they would otherwise be. CUBIST has been used effec-

tively in several branches of research and for various pur-

poses including soil mapping over large areas (e.g., Bui

et al., 2009; Viscarra Rossel and Chen, 2011; Viscarra Rossel,

2011).

There are inevitable discrepancies, or errors, between the

predictions and the true values; these are represented by the

residuals from CUBIST. They, like the data, are spatially corre-

lated, and they too can be predicted, provided they can be

modelled suitably. For this purpose, we treated the residuals,

e, as spatially correlated random variables with mean = 0 and

variance defined as in Eqn (4). Values of semivariance, c(h) in
that equation were estimated at a sequence of values of h from

the residuals to give an experimental variogram by the

method of moments:

bcðhÞ ¼ 1

2mðhÞ
XmðhÞ

j¼1

eðujÞ � eðuj þ hÞ� �2
; ð5Þ

in which e(uj) and e(uj + h) are the residuals at positions

uj and uj + h and m(h) is the number of comparisons contrib-

uting to the estimate at lag h. This variogram was then

modelled, and the fitted functions used for ordinary kriging to

predict the residuals. To derive the final estimates of SC, as in

Eqn (3), the predictions from CUBIST and the kriging estimates

are summed. We call these the CUBIST–kriging (CK) estimates

of SC.

Bootstrapping the spatial model

A shortcoming of the above approach is that the prediction

variances are underestimated (Webster and Oliver, 2007); one

cannot reliably use the kriging variances as measures of uncer-

tainty. An alternative is to use the non-parametric bootstrap

(Efron and Tibshirani, 1993) to provide independent sets of

residuals on which to compute and model the random compo-

nent, Eqn (3), and so prevent underestimation of the predic-

tion variances.

We used the bootstrap also to assess the uncertainties in

both the deterministic and random components of the spatial

model. By repeated sampling with the bootstrap, and per-

forming the spatial modelling on each bootstrap sample, one

obtains probability distributions of the outcomes from the

modelling. Robust estimates can be derived by averaging the

bootstrap samples, and the uncertainty of the modelling can

be quantified by computing confidence limits on the estimates,

as we describe below. Viscarra Rossel et al. (2013) provide

details on a similar approach.

We took 100 bootstrap samples of SC and associated pre-

dictors (Table 2), and for each bootstrap, which we denote

b, we implemented CUBIST. For each of the 100 bootstrap

samples, the CUBIST model was then used to predict the

values at the sampling points not included in the bootstrap,

i.e. the out-of-bag samples. The number of data in the out-

of-bag samples was roughly one third of the original data,

i.e. approximately 1500, which is ample for estimating a

variogram (Webster and Oliver, 2007). The differences

between the predictions and the observed values at these

points, excluded at random from the bootstrap, provide a

set of residuals that are assumed to be independent and on

which we computed variograms by the usual method of

moments, Eqn (5), and treating the variation as isotropic.

We fitted Mat�ern models (Webster and Oliver, 2007) to each

of the series and used the functions for ordinary punctual

kriging (e.g., Goovaerts, 1997; Webster and Oliver, 2007)

using the nearest 20 to 90 data points. The resulting 100

variograms of the residuals, and their uncertainty are sum-

marized in Fig. 2b. We comment on the figure below. For

each b we then added the CUBIST predictions to those from

kriging to derive the CK estimates of SC, as in Eqn (3).

Model training and validation

We selected at random two-thirds of the data from which

to train the model and used the remaining third to test it.

The States and Territories of Australia, the Australian soil

classification orders and land-use classes were represented

in both data sets (Table 1, third and fourth columns). The

spatial modelling was done with the training set, and we

assessed it using a 10-fold cross-validation and the boot-

strap out-of-bag samples. Both the CUBIST and the CK esti-

mates were validated independently from the modelling by

comparison of their predictions of organic C from each bth

bootstrap sample with the values of organic C in the test

set of data. Thus, we could quantify the improvements in

the modelling by CK compared with our use of CUBIST

alone. The assessment statistics that we used were the con-

cordance correlation coefficient, qc, (Lin, 1989) to assess

covariation and correspondence between our predictions

and the original data, the root mean squared error (RMSE)

of the predictions to quantify their inaccuracy, the standard

deviation of the error (SDE) to quantify their imprecision

and the mean error (ME) their bias. We note that the inac-

curacy embraces both the bias and imprecision, so that

RMSE2 = ME2 + SDE2 and that qc combines measures of

both precision and bias to determine how far the observed

data deviate from the line of perfect concordance, which is

the 1:1 line. qc ranges from �1 to +1. A value of +1

denotes perfect agreement, values >0.9 suggest near perfect

agreement, values between 0.8 and 0.9 substantial agree-

ment, between 0.65 and 0.8 moderate agreement and

values <0.65 poor agreement. The 100 bootstraps enabled

us to also derive distributions for these validations and

their statistics, which we report in a Table (Table 4).

Mapping the organic C stock and its uncertainty

For each bootstrap sample, b, the CUBIST model was used to

predict values of SC at the nodes, u0, of the 3-arc-sec grid.

We denote these predictions blb
Cðu0Þ. Note that to map at this
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resolution, the predictors described in Table 2 were all resam-

pled to a 3-arc-sec resolution, which is the same as the Shuttle

Radar Topographic Mission (SRTM) digital elevation model

(DEM).

To improve on these predictions, any residual variance not

accounted for by CUBIST was modelled geostatistically, as

above, and the parameters of the variograms were used

together with the residuals to krige values of the residuals at

the same nodes of the 3-arc-sec grid. We denote these predic-

tions bebðu0Þ. At each node, the two values were added to give

our final CK predictions of the organic C stock, bSb
Cðu0Þ, for the

bth bootstrap sample:

bSb
Cðu0Þ ¼ blb

Cðu0Þ þ bebðu0Þ: ð6Þ
As this sequence was repeated over all 100 bootstrap sam-

ples, the outcomes were probability distributions of the pre-

dictions at each and every grid node. We averaged the

estimates of bSb
Cðu0Þ from the B = 100 bootstrap samples to

obtain our map of the most likely and robust estimates of the

stock of organic C:

bSm
C ðu0Þ ¼ 1

B

XB
b¼1

bSb
Cðu0Þ: ð7Þ

The overall uncertainty, from the 100 bootstraps, was calcu-

lated by summation of the variance in the CK estimates and

the average kriging variances of the residuals, r2OK:

bVðu0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

B� 1

XB
b¼1

bSb
Cðu0Þ � bSm

C ðu0Þ
n o2

þr2OK

vuut : ð8Þ

We back-transformed bSm
C ðu0Þ, which was on the log10 scale,

to the original scale by

exp lnð10Þ � bSm
C ðu0Þ þ lnð10Þ � 0:5var bSm

C ðu0Þ
h in o

ð9Þ

We used bVðu0Þ to compute 95% confidence intervals, on the

logarithmic scale and back-transformed them by Cox’s

method, which is described in Zhou and Gao (1997):

exp

(
lnð10Þ � ðbSm

C ðu0Þ þ lnð10Þ � 0:5bV2ðu0Þ

� n1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibV2ðu0Þ
B

þ
bV4ðu0Þ
2ðB� 1Þ

s )
;

ð10Þ

where ξ is the standard normal deviate for the chosen proba-

bility a = 0.05. We expressed the uncertainty of our estimates

in standardized form as the range of the 95% confidence inter-

vals divided by their mean, bSm
C ðu0Þ.

CUBIST also provided estimates of the frequency of use of

the predictors in the conditions and regressions of each rule

set. We mapped the rule sets to assess their spatial pattern

and gain insights into the soil and environmental factors

that characterize the spatial distribution of the organic C

stock in the soil of the continent.

We compared this map of the CUBIST rule sets with the

Regional Carbon Cycle Assessment and Process (RECCAP)

bioclimatic classification of Australia based on Hutchinson

et al. (2005).

The mean and total organic carbon stock of Australia

The final step in the procedure was to calculate the mean and

total stock of organic C in the soil of Australia as a whole and

in the individual States and Territories, together with uncer-

tainties on those estimates. These were computed from the

back-transformed estimates bSm
C ðu0Þ and their upper and lower

95% confidence intervals. Each mean was calculated as the

average of the predictions at the grid nodes within its area,

and the total stock was computed as the sum:

STC ¼
XN
i¼1

bSm
C ðu0Þ � A; ð11Þ

where A is the area of Australia or that of a state or territory

and N is the total number of pixels in the area.

To interpret our results and to evaluate the estimates, we

also intersected spatial data not used in the spatial modelling

with the back-transformed estimates, bSm
C ðu0Þ and confidence

intervals. The data that we used include a map of land use in

the years 2005–2006 (DAFF, 2010), a map of native vegetation

classes (DEH, 2006) and RECCAP zones. As above, we com-

puted the mean and total stock, Eqn (11), for the classes in

each map, and we present the data in Tables and graphs.

Results

Table 3 summarizes the statistical distribution of the

data. The distribution of the stock of C, SC, was posi-

tively skewed. Its mean was 49 t ha�1, its median

40 t ha�1 and its range was from 0.3 to 300 t ha�1

(Table 3). Ninety per cent of the SC values were smaller

than 94 t ha�1. Table 3 also lists statistics for measure-

ments of organic C and BD, which were used to derive

SC in the 0–30 cm layer.

We have already drawn attention to the variogram of

SC across the continent (Fig. 2a) with its two distinct

structures. The first, with its range of 73 km represents

variation on the regional scale in eastern and coastal

Australia. The second, with an estimated range of

1787 km, characterizes the variation across large areas

in the centre and west of Australia.

Figure 2b shows the experimental variograms of the

bootstrap samples with twice the standard deviation of

the fitted model in red. All could be fitted with single

Mat�ern functions plus nugget variances. Comparison of

the two variograms in Fig. 2 shows that CUBIST has

taken into account on average more than 84% of the

spatially correlated variance: the quantity c1 of the

residuals is 0.010 compared with c1 + c2 = 0.0626 for

the raw data. The nugget variance is almost unchanged

at 0.018. This component includes measurement error,

which of course remains irrespective of the statistical

analysis, plus variation over much shorter distances

than those between observation points. Two spatial

structures are no longer distinguishable; the change of
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slope at around 73 m evident in the model fitted to the

variogram of the raw data (Fig. 2a) is replaced by the

smoother curve (Fig. 2b), with a somewhat shorter

effective range of 1316 km (�2.5 9 a).

Spatial modelling and mapping of carbon stock and its
uncertainty

The validation statistics of the CUBIST model calculated

from 10-fold cross- and out-of-bag validations suggest

good predictability, with values of qc ranging from 0.75

to 0.82 (Table 4). The validation of the CK model on the

independent set of test data (qc = 0.812) was better than

that of CUBIST alone (qc = 0.759). The validation statis-

tics of the CK model are shown in Table 4. They are

similar to the internal validations above, with values of

qc ranging between 0.8 and 0.82. Evidently, the model

and its predictions were robust. In the validations of

the test set, the primary contribution to the RMSE was

from the SDE and not the ME, as our predictions were

almost unbiased (Table 4).

Figure 3a is a map of carbon stock, SC. Values on it

range from around 5.9 t ha�1 in the centre of Australia,

and increase gradually towards the coast in the north,

south-west and east, to around 230 t ha�1 in the high-

temperate regions in south-eastern Australia and in the

cool, wet regions of western Tasmania (Fig. 3a). The

fine-resolution maps show detailed expressions of the

multi-scale spatial variation of SC across Australia (Fig.

3a) and provide estimates that might also be used to

derive baselines for regions and catchments.

The uncertainties of the estimates, expressed as the

standardized range of the 95% confidence intervals

(Fig. 3b) were generally small where observations were

dense—in Australia’s agricultural regions (Fig. 1).

The uncertainties were small too where the soil and

Table 3 Summary statistics for the data used in the modelling with statistics for all the data, those used to train the model and

those used to test the predictions. The variables listed are the content of organic C in the soil (C) and bulk density (DB) used to

derive the carbon densities from which the stock of organic C, SC, for the 0–30-cm layer was calculated

Mean SD Minimum 10% 1st Quartile Median 3rd Quartile 90% Maximum Skew

All data N = 5588

C /% 1.28 1.01 0.01 0.36 0.62 0.98 1.61 2.54 8.53 2.12

DB /g cm�3 1.43 0.17 0.59 1.2 1.33 1.44 1.54 1.62 1.99 �0.76

SC /t ha�1 49.25 33.55 0.33 16.37 26.26 40.09 63.44 94.47 299.58 1.62

Training N = 4029

C /% 1.29 1.02 0.01 0.37 0.63 0.98 1.62 2.57 8.53 2.15

DB /g cm�3 1.42 0.18 0.59 1.2 1.33 1.44 1.54 1.62 1.99 �0.75

SC /t ha�1 49.77 34.05 0.33 16.49 26.42 40.29 64.33 95.93 299.58 1.63

Test N = 1559

C /% 1.24 0.98 0.07 0.35 0.6 0.96 1.57 2.45 7.99 1.98

DB /g cm�3 1.43 0.17 0.6 1.21 1.34 1.45 1.54 1.62 1.95 �0.77

SC /t ha�1 48.4 33.01 0.5 16.2 25.86 39.81 62.82 2.76 288.16 1.66

Table 4. Cross-, out-of-bag (OOB) and independent test set validation statistics for the spatial model of SC. Assessment with the

concordance correlation coefficient (qc) and the root mean square error (RMSE), the mean error (ME) and the standard deviation of

the error (SDE). The latter three are in log10(SC)/% units. Note that the RMSE embraces both the ME and SDE, such that

RMSE2 = ME2 + SDE2

Mean SD Minimum 1st quartile Median 3rd quartile Maximum

Cross validation

qc 0.784 0.032 0.749 0.773 0.789 0.796 0.803

RMSE 0.175 0.009 0.165 0.169 0.172 0.181 0.195

OOB validation

qc 0.803 0.007 0.782 0.782 0.803 0.807 0.818

RMSE 0.165 0.003 0.158 0.163 0.165 0.167 0.173

Test validation

qc 0.812 0.004 0.802 0.810 0.813 0.815 0.821

RMSE 0.165 0.001 0.162 0.164 0.166 0.166 0.168

ME �0.001 0.004 �0.009 �0.003 �0.001 0.002 0.007

SDE 0.165 0.002 0.162 0.164 0.165 0.166 0.168
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(a)

(b)

Fig. 3 Maps of (a) the Australian soil organic C stock and (b) its uncertainty expressed in standardized form as the range of the 95%

confidence intervals divided by their mean. The insets are examples of the estimates for each State or Territory showing the multi-scale

detail achieved by mapping at 90 m. They are the Northern Territory (NT), Western Australia (WA), South Australia (SA), Queensland

(Qld), New South Wales (NSW), Victoria (Vic) and Tasmania (Tas).
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environment were well represented by the characteris-

tics of the predictors. In contrast, uncertainties were

larger where data were sparser or lacking and where

the soil and environmental conditions were poorly

represented by the characteristics of the predictors. In

future, these rangeland, savanna and desert regions

(Fig. 3b) should be sampled more densely to improve

the certainty of predictions and the national carbon

accounts.

The CUBIST model used 14 rules to characterize the

spatial variation in SC across Australia. To help with

interpretation, we grouped these rules into spatially

coherent sets that represent model-derived bioclimatic

zones. Their descriptions and the predictors used in the

conditions and in the linear models of the rules are

given in Table 5. The resulting map of the rules is

shown in Fig. 4a.

The amount of organic C in soil and its spatial distri-

bution depend on the environment—its climate, biota,

landscape, lithology, soil type, as well as the type of

land use and management, all of which interact in time

to affect rates of addition and decomposition of C. The

conditions in the rules discretized the continent using

predictors that account for pedogenetic processes that

determine the distribution of organic C in Australian

soil. In the linear models, predictors capture regional

and smaller scale variations in stock across the

landscape.

As might be expected, and found in previous investi-

gations (Wynn et al., 2006; Bui et al., 2009), predictors

that represent climate are most frequently used and

provide the greatest contribution to the conditions of

the rule sets (Table 5). Climate influences the rate of

mineralization of organic C in the soil to CO2 as well as

the productivity of vegetation and therefore addition of

organic C to the soil. Low temperatures and waterlog-

ging inhibit decomposition and mineralization. The

result is that carbon tends to accumulate, and soil in

such environments contains much organic C. Soil with

Table 5 Rule sets of the CUBIST model showing the proxies for the environmental factors (Table 2) that it used in the conditions

and in the linear models of the rules. Values in parentheses are the proportions of the predictors used

Rules

Bioclimatic

zone

Conditions

(top 3 or 100% usage) Linear models (Top 10 or 100% usage)

1–7 Desert Rainfall (67%), PC3 (67%),

DEM (67%)

Rainfall (100%), Fpar-e (100%), Kaolinite (100%), Prescott (83%),

PC3 (83%), max. temp. (67%), min. temp. (67%), PC1 (50%),

Relief (33%), Aspect (33%)

13 Tropical,

sub-tropical,

coastal

Rainfall (100%),

min. temp.(100%),

Prescott (100%)

PC1 (100%), Smectite (100%), DEM (100%), max. temp. (100%),

Solar radiation (100%), Fpar-e (100%), Fpar-r (100%),

min. temp. (100%), PC3 (100%), Gravity (100%)

4, 8 Savanna Rainfall (100%),

Prescott (100%),

min. temp. (50%)

Smectite (100%), Prescott (100%), max. temp. (100%),

Fpar-e (100%), Fpar-r (100%), Rainfall (50%), PC3 (50%),

PET (50%), Slope (50%), min. temp. (50%)

9–11 Temperate

mediterranean

PET (100%),

min. temp. (100%),

PC3 (67%)

Kaolinite (100%), DEM (100%), PC3 (100%), PET (100%),

max. temp. (100%), Solar radiation (100%), DEM (100%),

PC2 (100%), Rainfall (100%), gamma K (100%), PC1 (100%)

12, 14 Cool temperate Solar radiation (100%),

PET (50%)

Kaolinite (100%), PC1 (100%), PC3 (100%), Rainfall (100%),

min. temp. (100%), DEM (100%), gamma K (100%), Fpar-e (100%),

PC2 (100%), gamma K (100%), gravity (100%)

(a)

(b)

Fig. 4 Maps of (a) the model-derived bioclimatic zones and (b)

those from the Regional Carbon Cycle Assessment and Process

(RECCAP).
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abundant smectite and illite, some goethite and organic

matter, represented by the third principal component

of Australian visible–near infrared spectra (PC3) (Vis-

carra Rossel & Chen, 2011), and the DEM were also

used in the conditions that characterize deserts and

temperate Mediterranean zones (Table 5). As in the

conditions, predictors that represent climate are also

frequently used in the linear models. However, other

predictors play a role. They include the type of vegeta-

tion, which determines to some extent the rate at which

organic C is added to the soil; the type of clay and par-

ent material, which determine, also to some extent, the

capacity of soil to support plant growth and the ability

to protect organic C against decomposition; and the

form of the terrain through its effect on drainage

(Tables 5 and 2).

We compared our map of the model-derived

bioclimatic zones (Fig. 4a) with the RECCAP bioclimatic

zones (Fig. 4b) and found good agreement between

them. However, the bioregional classification that the

model produced to predict soil organic C provides more

detailed zoning in south western Western Australia.

Elsewhere, like the RECCAP zones, the model-derived

bioregional classification reflects the seasonality of

climate, patterns in plant growth and composition

and prime features of the landscape. They, in turn,

reflect the different land uses across the continent.

Baselines of the soil organic C stock in Australia and its
states and territories

We estimate that the average stock of organic C in Aus-

tralian soil in the 0–30 cm layer is 29.7 t ha�1. The

uncertainty around this value, calculated by 95% confi-

dence intervals, ranges between 22.6 and 37.9 t ha�1.

By aggregating the spatial estimates over the continent

we calculate, using Eqn (11), that the total stock of

organic C in Australian soil to a depth of 30 cm is

24.98 Gt. The uncertainty around our estimate ranges

between 19.04 and 31.83 Gt.

Table 6 lists our estimates of the mean and total stock

of organic C for the Australian states and territories,

and their uncertainties. The average stock of the

0–30 cm soil layer in the states and territories follows

roughly a mean annual temperature gradient and are

listed in decreasing order in Table 6. States and territo-

ries in southern Australia where there is more than

average rain, and cooler than average mean annual

temperatures and at high elevations, where conditions

are conducive to more biomass production and slower

decomposition, on average, have larger stocks of

organic C than those further north with Mediterranean,

sub tropical, tropical climates (Fig. 3a; Table 6). The

exception is South Australia where the soil contains the

least organic C (Table 6), largely because it spans large

extents of desert. The total stock of organic C stock in

the 0–30-cm layer of soil in the states and territories,

however, does not follow the temperature gradient.

Instead, it is well correlated with their total areas, with

Western Australia having the largest area and total

stock, and the Australian Capital Territory and the Jer-

vis Bay Territory the smallest of both (Table 6).

The soil organic carbon stock in bioclimatic regions

Estimates of the mean and total stock for the RECCAP

and CUBIST bioclimatic zones (Fig. 4) and their

uncertainties are shown in Fig. 5a and b. The largest

contents of organic C occur in the cool, temperate and

Mediterranean bioclimatic zones (Fig. 5a and b, also see

Figs 3a and 4a) with extensive rain forests and many

types of eucalypt forests. There, the environment

favours vigorous vegetation growth and slow decom-

position of organic matter (dry hot summers, cool

Table 6 Estimates of the stocks of soil organic C of Australia and its States and Territories and their uncertainties expressed as

95% confidence intervals

States and

Territories

Mean SC
(t ha�1)

Lower

95% CI

Upper

95% CI

Total SC
(Gt)

Lower

95% CI

Upper

95% CI

Area

(km2)

Tasmania 133.99 108.44 162.40 1.048 0.848 1.270 64 519

Jervis Bay Territory 95.59 75.56 118.02 0.000 67 0.000 53 0.000 83 72.0

Victoria 66.69 54.66 80.03 1.684 1.381 2.022 227 010

Australian Capital

Territory

62.29 48.76 77.55 0.01623 0.01271 0.02021 2358

New South Wales 42.40 34.55 51.12 3.701 3.016 4.462 800 628

Queensland 31.15 24.33 38.92 5.883 4.595 7.350 1 723 936

Western Australia 25.77 18.99 33.66 7.087 5.222 9.259 2 526 786

Northern Territory 22.61 15.85 30.61 3.364 2.358 4.554 1 335 742

South Australia 20.32 14.86 26.76 2.171 1.587 2.858 978 810

Australia 29.712 22.65 37.86 24.977 19.038 31.826 7 659 861
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winter temperatures and abundant rain in the more

temperate regions) coincide.

The amounts of carbon per unit area are small in the

savanna, desert and northern tropical and subtropical

coastal zones where the dominant vegetation is open

woodland, acacia shrub- and wood-land, tussock

grasslands and arid spinifex grasslands (Fig. 3 and Fig.

5a and b). Nevertheless, because these types of vegeta-

tion cover such large areas of Australia, they have larg-

est total stocks of organic C.

The soil organic carbon stock of vegetation groups

The soil of tall and short open eucalypt forests, rain for-

ests, short open forests, heath-lands, open eucalypt for-

ests and tall dense thickets have mean contents of

organic C exceeding 50 t ha�1 (Table 7). All other major

types of vegetation contain less. The mean stock of

organic C (and its uncertainty in parenthesis) in the soil

under tall open eucalypt forests (with dominant trees

>30 m tall) is 110 t ha�1 (88–135 t ha�1), which is more

than that under any other type of vegetation (Table 7).

These are cool temperate evergreen forests, dominated

by Eucalyptus, Corymbia and Angophora genera, that

have a secondary stratum of rainforest species and

often form landscape mosaics with rain forests (DEH,

2006). These forests are home to the world’s tallest

flowering plant, Eucalyptus regnans, and are among the

world’s most C-dense, with average living above-

ground carbon content of 1053 t ha�1 (Keith et al.,

2009). The rain forests have the next largest mean

carbon content of 92 t ha�1 (68–120 t ha�1) (Table 7).

Open eucalypt forests contain somewhat less carbon

with a mean of 69 t ha�1 (54–86 t ha�1), but they

occupy the largest area of all forest types and therefore

their soil contains the largest total stock of organic C

(Table 7).

Although the soil under eucalypt woodlands and

arid spinifex grasslands contain small proportions of

organic C, they store more organic C than the soil

(a) (b)

Fig. 5 Soil organic C stocks of (a) the Regional Carbon Cycle Assessment and Process (RECCAP) and (b) the model-derived regions,

and their uncertainty expressed as 95% confidence intervals. We provide a comparison to estimates made by Haverd et al. (2013) who

use an exponential organic C profile to estimate the stock for the 0–10 cm layer. Thus, to convert the 0–10 cm estimate of the stock to

the stock in the 0–30 cm layer, we multiplied by {exp (�30k)�1}/{exp (�10k)�1}, with k = 0.0101.
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under other major vegetation groups simply because

they are the two most extensive, covering 890 181

and 1 344 034 km2 respectively (Table 7). Acacia

shrub-lands occupy almost the same area as eucalypt

woodlands, but the soil under them holds only half

as much organic C (Table 7). Soil under chenopod

shrub-lands (salt-bushes and marshes), with small

above-ground biomass and organic C content, has a

larger total stock than does that under tall eucalypt

open forests and rain forests combined; these types

of vegetation occupy an area of 427 807 km2, which

is approximately six times larger than the combined

area of the two forest types.

The soil organic C stock in types of land use

Table 8 lists our estimates of the current, average and

total stock of organic C for types of land use, and their

uncertainties, arranged in decreasing order of their

mean stock. It shows that areas with natural vegetation,

Table 7 Estimates of the stocks of soil organic C in major vegetation groups and their uncertainties expressed as 95% confidence

intervals. Values are derived from the National Vegetation Information System (NVIS)

Major

vegetation

Mean SC
(t ha�1)

Lower

95% CI

Upper

95% CI

Total

SC (Gt)

Lower

95% CI

Upper

95% CI

Area /

km2

Eucalypt tall open

forests (>30 m)

109.88 87.75 134.61 0.390 0.311 0.477 35 467

Rainforests 91.94 67.96 119.90 0.324 0.240 0.423 35 283

Eucalypt low open

forests (<10 m)

90.06 72.23 109.97 0.036 0.029 0.045 4049

Heathlands 69.82 55.65 85.65 0.056 0.044 0.068 7969

Eucalypt open

forests (10–30 m)

68.65 53.74 85.56 1.866 1.461 2.326 271 882

Tall dense thickets 53.08 41.88 65.67 0.085 0.067 0.105 16 056

Mangroves 44.91 31.33 61.08 0.036 0.025 0.049 8077

Regrowth, modified

native vegetation

40.05 33.48 47.28 0.114 0.095 0.134 28 429

Swampy grasses and

sedges

39.33 29.97 50.06 0.252 0.192 0.321 64 187

Tropical eucalypt

woodlands/grasslands

36.84 26.03 49.60 0.423 0.299 0.569 114 763

Eucalypt woodlands 36.59 27.95 46.51 3.258 2.488 4.140 890 181

Callitris forests and

woodlands

34.67 28.43 41.57 0.110 0.090 0.132 31 738

Other forests and

woodlands

31.34 24.10 39.58 0.225 0.173 0.285 71 903

Melaleuca forests and

woodlands

30.68 22.57 40.09 0.307 0.226 0.401 100 136

Mallee woodlands and

shrublands

28.38 21.47 36.30 0.757 0.573 0.969 266 956

Other shrublands 27.39 20.74 35.05 0.332 0.251 0.424 121 030

Eucalypt open

woodlands

25.40 18.97 32.86 1.154 0.862 1.493 454 395

Acacia forests and

woodlands

23.77 18.17 30.19 0.951 0.727 1.208 400 013

Casuarina forests

and woodlands

21.84 16.20 28.37 0.319 0.237 0.415 146 180

Tussock grasslands 21.06 16.13 26.73 1.092 0.837 1.386 518 556

Acacia shrublands 20.59 14.87 27.29 1.714 1.238 2.272 832 510

Arid spinifex

grasslands

19.46 13.40 26.70 2.616 1.800 3.589 1 344 034

Acacia open

woodlands

18.45 13.60 24.06 0.566 0.418 0.739 306 972

Salt bushes and

salt marshes

18.23 13.26 24.04 0.780 0.567 1.029 427 807
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those that are under horticulture and forestry have the

largest average organic C stock. Their total stocks, how-

ever, are small and reflect the small areas in which they

are present (Table 8).

Improved pastures for grazing and irrigated land

have the next largest, and similar average carbon

stocks. The total stock of C in the soil under improved

pastures is larger than that in soil under irrigation,

because its area is larger (Table 8). Soil used for crop

production contains on average 35 t ha�1 organic C,

(30–42 t ha�1 95% confidence intervals), while the total

carbon stock is 0.90 Gt (0.75–1.1 Gt).

Little-used land (including land with residual native

cover, deserts, areas of rehabilitation and that for tradi-

tional indigenous use) and grazing on native vegetation

hold the smallest average amounts of organic C, with

29 and 24 t ha�1. Nevertheless, these land-use types

hold the largest total stocks with 8.2 and 8.5 Gt, because

they cover such a large area (Table 8).

Agricultural land, including the large areas of land

used for grazing on native vegetation, occurs over

approximately 61% of all land in Australia and holds

around 51% of the total soil organic C stock. The total

soil organic C stock of agricultural land is 12.76 Gt ha�1

with 95% confidence intervals of 9.93 and 15.99 Gt ha�1

(Table 8).

Discussion

We mapped the stock of organic C in the 0–30 cm layer

of soil across Australia at 90 m pixel resolution from

fairly sparse data with little bias and with estimates of

uncertainty. The data that we used represent all states

and territories of Australia, all soil types and all land-

use classes (Table 1), and our spatial modelling is based

on harmonized data and required few assumptions.

Therefore, we believe that our estimates are more reli-

able than those reported previously in the literature,

which are derived from sparse data or from simulation.

Our estimates are somewhat different from those pre-

viously reported. Most other estimates were for a 1990

baseline, and most were derived by simulation model-

ling. They are described below and where possible,

summarized in Table 9. Gifford et al. (1992) derived

estimates of the stock of organic C in the root zone of

Australian ecosystems using estimates of the total

organic C in live vegetation and assumed ratios of soil

C to plant C. They derived the estimates of organic C in

live vegetation from a global assessment by Olson et al.

(1985). In that study, the Earth’s surface was divided

into 50 m 9 50 m cells each of which was heuristically

coded with typical values for carbon in live vegetation

and net annual primary production as recorded in the

literature.

Using a patchwork of surveys of various scales from

the states and territories, and sparse and largely biased

data, AGO (2002) derived a map of soil organic C for

the 0–30 cm layer before the land was cleared. Its result

provides only an approximate range in stock, suggest-

ing that there could be less than 10 t ha�1 of organic C

Table 8 Estimates of the stocks of soil organic C by land use and their uncertainties expressed as 95% confidence intervals

Land use

Mean SC
(t ha�1)

Lower

95% CI

Upper

95% CI

Total SC
(Gt)

Lower

95% CI

Upper

95% CI

Area

(km2)

Nature conservation 83.25 67.41 100.88 1.148 0.930 1.391 137 729

Horticulture 67.14 53.66 82.31 0.022 0.018 0.027 3190

Irrigated horticulture 64.67 50.95 80.18 0.0079 0.0062 0.0098 1187

Forestry 56.86 44.98 70.33 0.029 0.023 0.036 4984

Improved grazing 45.88 38.27 54.26 3.246 2.707 3.839 707 006

Irrigated cropping 44.32 36.80 52.64 0.059 0.049 0.070 13 306

Cropping 35.36 29.58 41.73 0.897 0.750 1.058 253 186

Minimal use 28.98 21.26 37.99 8.204 6.012 10.763 2 860 605

Grazing 24.35 18.28 31.37 8.528 6.402 10.988 3 678 668

Agriculture total 12.760 9.931 15.991 4 656 543

Table 9 Comparison of our estimates of the total stock of

organic C in Australian soil with others found in the literature

Source

Depth

(cm)

Estimate

(Gt)

Lower

95% CI

Upper

95% CI

Gifford

et al. (1992)

rooting

depth

51.8

Barrett (2002) 0–20 20.0

Barrett (2013)* 0–100 26.9 20.3 33.5

Grace et al. (2006) 0–30 18.8

0–100 34.2

Our estimate 0–30 24.97 19.04 31.83

*We approximated the values of the lower and upper 95% CIs

as twice the standard deviation of the estimates provided by

Barrett (2013).
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in arid, desert areas and possibly more than 250 t ha�1

in highland areas of southeastern Australia and in Tas-

mania.

With the Vegetation and Soil-carbon Transfer (VAST)

model, Barrett (2002, 2013) estimated the organic C

stock of Australian soil in the 0–20 and 0–100 cm layers

to be 20 and 26.9 Gt respectively. The 0–100 cm esti-

mates were provided with a standard deviation of

3.3 Gt (Barrett, 2013). Barrett used 341 measurements of

soil C content and 50 measurements of soil bulk den-

sity, all within the 0–15 cm layer.

Using the SOCRATES terrestrial carbon model, Grace

et al. (2006) estimated the 1990 baseline stock of

organic C in Australian soil in the 0–30 cm layer to

be 18.8 Gt. Their simulations used a biogeographical

regionalization of Australia, information on soil type

and texture and an assumed BD of 1.3 g cm�3. Their

estimate for the 0–30 cm layer is significantly differ-

ent from ours as it falls outside our 95% confidence

interval (Table 9).

Haverd et al. (2013) estimated the stock of organic C

for Australia using a modified version of the CSIRO

Atmosphere and Biosphere Land Exchange (CABLE)

land surface model implemented in BIOS2. They com-

pared their estimates with a map of stock for the 0–10-
cm layer derived by the lead author here (which we

refer to as the VR2012 map), using data from ASRIS

recorded from 1950 to 2010 and spectroscopic estimates

of organic C on samples collected for the NGSA (see

above).

Their spatial estimates produced with BIOS2 show

spatial patterns similar to those of the VR2012 map and

ours here [compare Fig. 3a to 10 in Haverd et al.

(2013)], but with some apparent discontinuities in

their map. Both the BIOS2 and VR2012 estimates are

generally larger than ours here. A possible reason

for the larger estimates in the VR2012 map is that that

map was produced with data recorded during six

decades (1950–2010) and not from the recent data for

the SCaRP.

Haverd et al. (2013) compare their estimates of BIOS2

and those of VR2012 with the mean organic C stock for

the RECCAP zones. The trends in those estimates are

fairly similar to ours; all reveal there to be more carbon

in the cool temperate zone than in the warm temperate,

the tropics, the Mediterranean, savannas and the desert

(Fig. 5a). However, all of the BIOS2 estimates lie outside

of the 95% confidence limits of our estimates, and all

except for those of the desert zone are significantly lar-

ger than ours (Fig. 5a). Their estimates for the desert

zone are significantly smaller than ours.

The VR2012 estimates of the mean organic C stock in

the RECCAP zones are all larger than ours, but all

except for the estimates in the Mediterranean zone, lie

within our 95% confidence limits (Fig. 5a). We have

already commented above on the reason for these over-

estimates. However, we note that they are significant in

the Mediterranean zone because, unlike our estimates,

the VR2012 estimates do not use the data from the

SCaRP, many of which are in this zone. Therefore we

believe that our estimates are more reliable.

Our estimate of the total stock of organic C in Austra-

lian soil is somewhat less than the global average for

the upper 0–30 cm of soil. Foley (1995) and Post et al.

(1982) report that the average amount of organic C in

soil to a depth of 1 m is approximately 104 t ha�1. If

we assume that the amount of organic C in the upper

30 cm of soil is 39–70% of the total in top 1 m of soil

(Batjes, 1996), then globally the average organic C con-

tent for this depth layer is 40–72 t ha�1. The organic C

in this layer is most sensitive to interactions with the

atmosphere and to change in the environment. The

smaller average stock of organic C in Australian soil

than the global estimate is due to the large areas of arid

and semi-arid land in the continent with soil that con-

tains little organic C (Figs 3 and 4).

Our estimate represents approximately 3.5% of the

total stock in the upper 30 cm worldwide. Australia

occupies 5.2% of the global land area, and so the total

organic C stock of Australian soil makes an important

contribution to the global carbon cycle, and it provides

significant potential for sequestration and possible

source of CO2 released to the atmosphere.

Conversion of native land for agriculture, and culti-

vation in particular, has resulted in the loss of between

0.086 and 0.222 Gt organic C in the top 30 cm of soil

between 1960 and 2010 (Wang et al., 2013). This is why

it is generally thought that agriculture could sequester

and store carbon through improvements in manage-

ment, the use of conservation agricultural practices or

conversion to other land use such as grasslands (Luo

et al., 2010). The relevance for Australian agriculture

lies in that even a small increase in the soil organic C

stock across the vast area of agricultural land (Table 8)

could sequester a significant amount of organic C and

thereby mitigate the emissions of greenhouse gases.

Such assessments depend on accurate spatially explicit

baseline estimates like the one we report here.

Using data-driven spatial modelling, we have made

the most spatially detailed and accurate estimates of

the stocks of organic C in Australian soil to date, and

these are accompanied by measures of their uncer-

tainty. Our maps of the estimates and their uncertain-

ties have important applications. They could be used to

improve future modelling and reduce the uncertainties

of their estimates.

The maps could help identify the potential of Austra-

lian soil to sequester carbon and guide the formulation
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of policy around carbon offset schemes. Although our

maps might not be directly used for local carbon trad-

ing, they might provide, as a starting point, probable

regional baselines of the soil organic C stock.

The maps could serve to direct future soil sampling

for inventory. For example, uncertainties in our esti-

mates were larger in the rangelands, savannas and

deserts (Fig. 3) where the soil holds large total stocks of

organic C. Future sampling efforts should target such

areas so that we might better estimate their soil organic

C stocks, and thereby improve the national accounts.

The maps could guide the design of networks in

which organic C in the soil is repeatedly measured for

monitoring. Our estimates are for the year 2010 and

could be used as reference against which to monitor

and evaluate the impacts of changes in land cover, land

management and climate on Australia’s organic C

stock.

Our spatially explicit estimates and their uncertain-

ties might also support Australia’s National Carbon

Accounting System; they might improve Australia’s

terrestrial carbon balances and help develop strategies

that will mitigate and adapt to the effects of changing

climate.
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