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Abstract: In regions with cool temperate climates tomatoes are grown on an10

industrial scale in large greenhouses. There the crops are susceptible to infection by11

powdery mildew, the fungus Erysiphe neolycopersici, which is introduced largely as12

fungal spores from outside the greenhouses and spread by wind within them. We13

have monitored the spread of the disease and mapped its distribution in four14

commercial greenhouses throughout the growing season to understand its aetiology.15

We modelled the patterns of infection geostatistically each comprising a deterministic16

long-range trend plus a short-range spatially correlated random residual. We17

identified three main kinds of pattern; one consisted of a constant plus a spatially18

correlated residual, a second comprised a linear trend throughout the greenhouse plus19

a correlated random residual, and in a third the trend had the form of a bell akin to a20

Gaussian surface plus, again, a correlated random residual. Here we show three21

examples of these distributions and the detail of their geostatistical analysis using22

both traditional method-of-moments estimation of variograms and residual maximum23

likelihood (reml) to separate the deterministic and random components. The24

analytical modelling is followed by ordinary punctual kriging in the first case, by25

universal kriging in the second, and by regression kriging in the the third case to26
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display the infection as isarithmic (‘contour’) maps. We interpret the first form of27

distribution as arising from numerous foci as spores landed on the leaves from various28

sources spread by air currents and the movement of workers along the paths through29

the greenhouse. In the second case the disease seemed to have spread from infection30

introduced through the main door in one corner of the greenhouse and spread from31

there by the workers and air currents. In the third infection arose near the centre of32

the greenhouse by the main path and spread outwards from there. In all three33

examples the main pathways seemed important routes along which the fungus spread.34

Keywords: Tomatoes, Greenhouses, Powdery mildew, Erysiphe neolycopersici,35

Geostatistics, Kriging36

1. Introduction37

Tomatoes are an important crop in many countries and are grown commercially38

on an industrial scale. In regions with cool temperate climates, such as the UK,39

outdoor production is limited to a short summer season. To extend the season the40

tomatoes are instead grown in poly-tunnels and greenhouses. The greenhouses are41

huge, typically 1 hectare in extent, and in many instances are built into larger blocks42

separated by plastic or glass barriers to make effectively 1-ha individual houses. In43

the UK the season begins when the tomatoes are placed in the greenhouses as44

seedlings from a nursery.45

As the plants grow they become susceptible to infection by the fungus, (Erysiphe46

neolycopersici), due to the increase in leaf and stem area. The initial symptoms of the47

disease appear as small white spots on the leaves. These spots later develop into48

larger patches covered with the fungus’s spores, which give them a white powdery49

appearance. Figure 1 is a typical example of the fungus on tomato leaves. If the50

plants are left untreated the leaves eventually turn yellow and die, and the fruit is of51

poor quality with smaller yield [1]. The disease tends to be most prevalent in summer52
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when the plants are at their peak of growth. The disease can be halted by treatment53

with fungicides. Growers consider that prevention is better than cure, however, and54

with this aim they spray their crops with fungicides as prophylactics at regular55

intervals.56

57

Figure 1. Photograph of powdery mildew on tomato58
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Infection by E. neolycopersici begins when spores land on the plants. Fungal59

hyphae grow from each spore into the plants. The fungus then colonizes the surface60

of the leaf whilst producing its fruiting bodies, conidiophores, bearing more conidia,61

which are readily detached by wind or mechanical disturbance when they are mature;62

and the cycle begins again from many more foci when the spores land on the plants.63

It takes only about 10 days from initial infection to the first visible signs of the disease64

[1]. Infection within any one greenhouse seems to be introduced from elsewhere by65

wind through vents and doors. Workers can introduce the disease as they move along66

pathways, most frequently during the peak season to tend and harvest the crop.67

There have been many investigations of the distributions of weeds, plant68

parasites and crop diseases in the field with attempts to model them statistically and69

map them with a view to identifying the processes that have brought them about.70

Recent examples in which the most up-to-date methods of spatial analysis have been71

applied include bacterial blight in rice [2], virus disease in tomatoes [3], rust in72

coffee[4], crown atrophy in coconut [5] and weed infestation in cereal crops [6-7]. The73

most relevant recent example in the context of our investigation is that by Liu et al.74

[8] on microclimatic conditions combined with theoretical disease spread in75

greenhouses. Earlier Boulard et al. [9-10] investigated the role of air flow in76

greenhouses and exchange of air from outside them on the spread of a fungal disease77

of roses, and they combined it with the fluid dynamics of the air flow and the78

movement of spores within the air.79

Combining these dynamics of infection and the complexity of the spatial80

distribution of the evident symptoms has proved problematic. We are investigating81

powdery mildew, E. neolycopersici, in large commercial greenhouses. Our aim is to82

assess its severity, map its distributions within the greenhouses and to understand the83

origins of infection and its spread. As far as we know, this has not been done before.84

Only the investigators mentioned in references [2,8-9] seem to have approached the85

problem, though with other diseases. Here we describe quantitatively the spatial86
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distribution of the disease at particular times, taking into account its evident spatial87

correlation, and to map it in individual greenhouses. we describe the geostatistical88

techniques we are using to model the spatial correlation and then to interpolate by89

kriging to produce maps.90

2. Methods91

2.1. Monitoring92

We monitored the fungus, E. neolycopersici, in four commercial greenhouses,93

each of ≈ 1 ha, on the Isle of Wight from June to the end of the crop in November.94

To show the nature of the spatial variation in the disease, we selected the95

observations from two of the greenhouses, namely H11 and H13, on three occasions96

only in 2021, which were 22 July (OB2), 19 August (OB4) and 2 September (OB5).97

The severity of the disease was scored from 0 to 9 in accordance with IPGRI [11], the98

principal points on which are as follows.99

0: Very low (no visible signs of infection).100

3: Low (small patches < 2 cm across, little sporulation and mycelium).101

5: Medium (approximately 50 % the leaves have visible symptoms of disease).102

7: High (large patches affecting ≈ 70 % of the leaves and abundant mycelium).103

Severities between these points were scored with intermediate values. The disease was104

scored along rows every 4.5 m. The distance between rows was 1.5 m, and every 8th105

row was assessed. The greenhouses have paths through their middles, approximately106

4 m wide, for the movement of heavy machinery and produce. The pathway is107

denoted in Figure 2 with a blue dashed line going through the greenhouse at 42 m on108

the eastings axis. The tomato varieties differed in the two greenhouses. In greenhouse109

H13 the sole variety was Piccolo, which is highly susceptible to the fungus.110

Greenhouse H11 grew five varieties, only one of which, Graziano, has any resistance111

to the disease. Tomato plants were planted at a density of 1 m apart.112
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113

Figure 2. Shows the sampling grid of disease in the greenhouses H13 and H11.The114

short diagonal line at the bottom of the greenhouse indicates the door.115

3. Implementations and Results116

3.1 Data summary117

Figures 3(a), 4(a) and 5(a) show the scores, the data, as ‘bubble plots’; they are118

respectively for greenhouse H13 on OB2, greenhouse H13 on OB5 and greenhouse119

H11 on OB4. The diameters of the ‘bubbles’ are proportional the scores. We mention120

here that the upper two rows of bubbles in Fig. 5(a) are the scores on the somewhat121

resistant variety Graziano. The dashed blue lines running from top to bottom of the122

bubble plots mark the 4-m wide paths.123

The small bubbles outnumber the large ones by far; there are large proportions124

of zeros, i.e. no infection, and progressively fewer sampling points as scores increased125

from 1 to maxima in the range 5 to 8; the distributions of the scores are strongly126

positively skewed—see Table 1. To stabilize the variances for statistical analysis we127

transformed the scores to common logarithms as log10(score + 1). These values thus128

became the data for all subsequent analyses. Table 1 summarizes them.129
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130

Figure 3. (a) Bubble plot of infection in Greenhouse H13 on occasion 2; (b)131

experimental variogram and fitted functions.132

133

Figure 4. (a) Bubble plot of infection in Greenhouse H11 on occasion 4; (b)134

experimental variogram of M-o-M residuals and fitted function.135
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136

Figure 5. (a) Bubble plot of infection in Greenhouse H13 on occasion 5; (b)137

experimental variogram of M-o-M residuals and fitted function and REML estimate138

of the variogram.139

Table 1 Data summaries140

Scores Log10transforms
Glasshouse Mean Max. Skew Mean Variance Skew

H13 OB2 0.657 6 2.10 0.168 0.04042 0.77

H13 OB5 1.68 8 0.95 0.357 0.06481 −0.17
H13 OB5 residuals 0 0.02844 0.16

H11 OB4 0.556 5 1.97 0.132 0.04387 1.26
H11 OB4 residuals 0 0.01300 0.96

141

3.2 Geostatistical modelling142

Figures 3(a), 4(a) and 5(a) show general patterns of infection in the greenhouses,143

including much point-to-point fluctuation. Following Cressie [6] we can express this144

combination as145

Z(x) = long-range variation + short-range variation , (1)
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in which x ≡ {x1, x2} denotes the spatial coordinates of any position in a greenhouse146

in two dimensions and Z(x), a random variable, is the score there. To understand the147

aetiology of the infection we need to consider both terms on the right-hand side of148

Equation (1). Figure 3(a) shows a fairly uniform spread of the disease about which149

the scores fluctuate over short distances. In that equation the long-range variation150

would be represented by a constant. Figure 4(a) shows a trend extending from one151

corner of the greenhouse, bottom right in the figure, into the rest of the greenhouse.152

Figure 5(a) has a maximum near the centre of the greenhouse from which the153

infection appears to have spread and which diminishes with increasing distance from154

the maximum. In both these there is a long-range component of the variation that is155

clearly not constant. The scores displayed in Fig. 3(a) are evidently correlated156

spatially. So too is the short-range variation in Figs 4(a) and 5(a) once the long-range157

variation has been filtered out.158

To display the infections simply we wanted isarithmic (‘contour’) maps showing159

the main patterns, taking into account the short-range correlation in the data. For160

this we interpolated logarithms of the scores on fine grids by punctual kriging and161

threaded isarithms through the grids. We therefore needed formal models of162

Equation (1) from which to formulate and estimate the variograms. We treated the163

long-range component of variation as deterministic, a fixed effect, and the short-range164

component as an autocorrelated random residual from the trend. By modelling the165

variation in this way we should be able both to map the variation and to understand166

the way infection spreads.167

The example of H13 (OB2), illustrated in Fig. 3(a), is the simplest to model. As168

above, we treat the trend as constant and the residual as a spatially correlated169

intrinsically stationary random process:170

Z(x) = µ+ ε(x) . (2)

Here µ is the mean of the process, and ε is a spatially correlated random variable171

with mean zero and variance σ2. The variogram is then a sufficient expression of the172
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correlation between all places x and x + h separated by the vector h, the lag, in173

distance and direction. It is defined as174

γ(h) =
1

2
E
[
{Z(x)− Z(x + h)}2

]
for all h , (3)

in which E denotes the expected value (of the squared difference).175

Where there is evident trend in fungal infection within the crops the means, µ,176

can no longer be treated as constant; the trend depends on x, so that the underlying177

model of Equation (2) must be elaborated to178

Z(x) = µ(x) + ε(x) . (4)

The combination of linear trend with correlated residuals in Fig. 4(a) for H13179

(OB5) can be expressed as180

Z(x) = β0 + β1x1 + β2x2 + ε(x) . (5)

It is a standard model of regression in which β1 and β2 are coefficients of the spatial181

coordinates x1 and x2, β0 is a constant, and ε(x) is the residual. It is a mixed-effects182

model of the variation comprising the fixed effects of the βi, i = 0, 1, 2, and the183

random ε with variogram184

γ(h) =
1

2
E
[
{ε(x)− ε(x + h)}2

]
for all h . (6)

The trend in Fig. 5(a) with its peak near the centre of the greenhouse has a185

bell-shape akin to a two-dimensional Gaussian surface. We modelled it as186

Z(x) = β0 + β1
1

2πα1α2

exp

[
−
{

(x1 − u1)2

α2
1

+
(x2 − u2)2

α2
2

}
/2

]
+ ε(x) , (7)

in which u1 and u2 represent the position of the peak of the surface in the two187

dimensions and α1 and α2 are the distances between the peak and the points of188

inflexion in those dimensions, β0 is a constant and β1 is a coefficient.189

3.2.1 Estimating the variogram190
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Traditional practice has been to estimate the variogram from observed values,191

z(xi), i = 1, 2, . . . , by the method of moments. The formula is192

γ̂(h) =
1

2m(h)

m(h)∑
j=1

{z(xj)− z(xj + h)}2 , (8)

where m is the number of paired comparisons at lag h. By incrementing h in steps193

one obtains an ordered set of semivariances which constitute the experimental or194

sample variogram. To this one fits a plausible valid function, usually nowadays by195

non-linear least-squares approximation—non-linear because the most suitable196

functions such as the spherical and exponential are non-linear in their parameters.197

An alternative means of estimation that has gained some popularity in recent198

years is by residual maximum likelihood (reml). It takes into account all possible199

paired comparisons, whereas the method-of-moments procedure tends to disregard200

comparisons at the largest lag distances because they are unreliable. Neither method201

is necessarily better than the other.202

Where there is trend the observed values in Equation (8) must be replaced by203

the residuals, ε(x). Early practitioners obtained them by trend-surface analysis, i.e.204

ordinary least-squares regression on the spatial coordinates, and disregarded the bias205

in the variograms, which increased with increasing lag distances [12]. The estimated206

trend surface itself was no longer a minimum-variance estimate because of the failure207

to take into account the spatial correlation in the residuals. The introduction of208

reml has made good these shortcomings; it enables one to estimate both the209

coefficients of the trend and the parameters of the variogram of the residuals210

simultaneously and without bias [13-14]. It is now best practice.211

Unfortunately reml can take into account only fixed effects that are linear212

combinations of the spatial coordinates; it cannot cope with non-linear ones such as213

the bell-shaped surface of Equation (7). We have therefore had to fall back on the214

earlier technique of separating the trend from the residuals and estimating their215

coefficients and parameters independently thereafter. We spell out the procedure216

below.217
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3.2.2 Kriging218

Where data z(xi), i = 1, 2, . . . , appear to be drawn from a stationary random219

process as represented by Equation (2) an ordinary kriged prediction Ẑ(x0) at any220

new point x0 is a weighted average:221

Ẑ(x0) =
n∑

i=1

λiz(xi) . (9)

The weights, λi, i = 1, 2, . . . , n sum to 1 to avoid bias and are chosen to minimize the222

kriging error variance by solution of equations that incorporate the semivariances223

from the variogram. The mathematics are well documented—in for example Webster224

& Oliver [14]. The number of points, n, in the summation may embrace all the data,225

but in practice only the few data closest to the target carry sufficient weight to226

influence the result. Solution of the kriging system also provides the prediction error227

variance.228

Where there is trend, as represented by Equation (5), for example, kriging is229

somewhat more complex. Matheron [15] augmented the kriging system with230

coefficients of the trend in what he called ‘universal kriging’. The semivariances in231

the system are still drawn from the variogram of the random process, but that232

variogram is now that of the residuals from the trend, i.e. the ε(xi), i = 1, 2, . . . , not233

that of the original data. What Matheron did not do was to provide the means of234

estimating that variogram. Thanks to reml we can now do that and incorporate235

semivariances from it in the universal kriging systems.236

For our third example with the Gaussian trend surface of Equation (7) we237

proceeded in stages as follows.238

1. Fit a trend surface to the data by ordinary least-squares regression on the spatial239

coordinates as predictors.240

2. Compute an experimental variogram of the residuals from the trend, and fit a241

plausible function to that variogram.242
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3. Interpolate values of the residuals on a fine grid by ordinary punctual kriging243

with semivariances drawn from the variogram function.244

4. Add to those kriged residuals predicted values from the trend-surface regression245

equation.246

The whole process became known as regression kriging. The kriged predictions are247

unbiased, but the calculated prediction error variances underestimate the true error248

variances, often seriously, as Lark & Webster [16] discovered when re-analysing the249

data of Moffat et al. [17] who used regression kriging to map the depths of geological250

strata. The technique has come in for a lot of criticism on this account. Part of the251

reason is that the variogram itself is biased. Perhaps equally serious for our252

investigation is that the trend function might not be the best fit to the data because253

of the spatial correlation in the residuals. The situation is not necessarily as bad in254

practice as it might seem, however, because, as Cressie [12] points out, the biases255

approach zero with increasing numbers of data. Further, by suitably weighting the256

γ̂(h) of Equation (8) when modelling the experimental variogram one can diminish257

the bias in the fitted function. Also, differences between the variograms computed258

from the residuals as described above and those from reml at short lag distances are259

small, and the semivariances at these short distances are typically the only ones that260

enter in the kriging equations.261

With these considerations in mind and with 216 scores on each occasion we have262

adopted the above procedure where the trend appeared bell-shaped.263

3.3 Direct application of the geostatistical models264

We shall report the results of our investigation in full elsewhere. Here we present265

the selection mentioned above to show the main forms of spatial variation in the266

fungal infection, how we modelled them geostatistically and the inferences we can267

draw from the modelling. Table 1 summarizes the data.268
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3.3.1 Constant trend269

The bubble plot of the scores in Glasshouse 13 (OB2), Figure 3(a), shows little270

evidence of trend, and we have treated data as deriving from a stationary process271

represented by Equation (2). Table 1 summarizes the data. The experimental272

variogram computed by the methods of moments, Equation (8), is shown by the red273

discs in Figure 3(b). We fitted both exponential and spherical functions to the274

experimental variogram using the directive FITNONLINEAR in GenStat [12]; both fit275

well, accounting for 89. % of the variance. Their equations are276

Exponential γ(h) = c0 + c1

{
1− exp

(
−h
a

)}
for 0 < h

= 0 for h = 0 , (10)

and277

Spherical γ(h) = c0 + c1

{
3h

2r
− 1

2

(
h

r

)3
}

for 0 < h < r

= c0 + c1 for h ≥ r

= 0 for h = 0 . (11)

The parameters are c0 the nugget variance, c1 the sill variance of the correlated278

variance, and r and a are the distance parameters of the functions. Their values are279

listed in Table 2.280

We show in addition the functions fitted by REML for comparison, and Table 3281

lists the conventional leave-one-out cross-validation statistics of the differences282

between the true values and the kriged predictions when the points where the true283

values are omitted from the kriging systems:284

ME =
1

N

N∑
i=1

z(xi)− Ẑ(xi) ,

MSE =
1

N

N∑
i=1

{
z(xi)− Ẑ(xi)

}2

,

MSDR =
1

N

N∑
i=1

{
z(xi)− Ẑ(xi)

}2

σ̂2
OK(xi)

.
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In these equations N is the total number of observations, ME, the mean error, is the285

mean difference between the observed values and the predicted ones, the MSE is the286

mean of the squared differences, and the MSDR is the mean squared deviation ratio287

in which the squared differences are divided by the ordinary kriging error variances,288

σ̂2
OK.289

The two functions for the M-o-M procedure have remarkably similar statistics;290

both have mean square deviation ratios, MSDRs, close to the ideal of 1. The models291

fitted by REML are not quite so good in that respect, but would be acceptable in the292

absence of other information.293

Figure 6(a) maps were made by ordinary punctual kriging of the data with the294

M-o-M variogram model. The kriging interval was 2.5 m, and the results were passed295

to MATLAB for the final display.296

Table 2 Variogram parameters297

Parameters
Glasshouse Model Nugget Sill Distance/m

H13 OB2 M-o-M Exponential 0.01125 0.03174 18.77
H13 OB2 M-o-M spherical 0.01847 0.02308 52.73
H13 OB2 REML Exponential 0.00739 0.02717 11.87
H13 OB2 REML spherical 0.01015 0.01979 23.44

H13 OB5 M-o-M residuals Exponential 0.00415 0.02443 7.63
H13 OB5 REML residuals Exponential 0.01354 0.008457 9.13

H11 OB4 M-o-M residuals Spherical 0.00977 0.004964 28.18

298
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299

Table 3 Cross-validation statistics300

301

Mean Mean squared
Glasshouse Model Mean deviation deviation MSDR

H13 OB2 M-o-M Exponential 0.168 −0.000108 0.023988 1.066
H13 OB2 M-o-M Spherical 0.168 −0.000319 0.02577 0.984
H13 OB2 REML Exponential 0.168 −0.000048 0.02371 1.176
H13 OB2 REML Spherical 0.168 0.000351 0.02358 1.198

H13 OB5 M-o-M residuals Exponential 0.357 0.001204 0.02138 1.149
H13 OB5 REML residuals Exponential 0.357 0.001385 0.021254 1.169

H11 OB4 M-o-M residuals Spherical 0.132 0.000644 0.01295 1.028

302

3.3.2 Linear trend303

The scores in Glasshouse 13 OB5 showed a strong trend from north to south,304

Figure 4(a). As above, we have two options for analysing the data geostatistically:305

the earlier technique of separating the trend from the residuals and analysing them306

separately and the current best procedure by reml. We have done both for307

comparison; first an ordinary least-squares regression (OLS), Equation (5), and308

second REML. The coefficients were as follows.309

OLS β0 = 0.510 β1 = 0.00215 β2 = −0.00565 ,
REML β0 = 0.368 β1 = 0.00301 β2 = −0.00471 .

310

Figure 4(b) shows the experimental variogram computed by the method of311

moments as the red discs to which we fitted an isotropic exponential function by312

non-linear least-squares approximation using the directive FITNONLINEAR in GenStat313

[18]. The function is the dashed line is that obtained by reml. Table 2 lists the314

parameter values, Table 3 the cross-validation statistics.315

Figure 6(b) is the map made by universal punctual kriging of the data with the316

REML variogram of the residuals and the spatial coordinates. The kriging interval317
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was again 2.5 m, and the results were transferred to MatLab for the final display.318

3.3.3 Gaussian trend319

The scores in Glasshouse 11 OB4, Figure 5(a), exemplify the Gaussian trend320

with the form defined by Equation (7). We fitted the surface by non-linear321

least-squares approximation of the transformed scores again using the directive322

FITNONLINEAR in GenStat. The trend surface accounted for 70.4 % of variance with323

the following values.324

Peak positions u1 = 48.9 m u2 = 54.0 m
Distances to inflexions α1 = 19.3 m α2 = 16.2 m
Coefficients β0 = 0.00922 β1 = 1450

325

We subtracted the trend from the data, and analysed the residuals. We326

computed the experimental variogram of the residuals by the method of moments,327

Equation (8), to which we fitted an isotropic spherical function. Figure 5(b) shows328

the resulting experimental variogram as red discs and the fitted function. Table 2329

lists the estimates of the parameters, and Table 3 lists the cross-validation statistics.330

As expected, the mean error is close to zero because kriging is unbiased. The mean331

squared error seems modest, and the mean squared deviation ratio is very close to 1.0332

Figure 6(c) shows the map made by regression kriging following the steps in333

section 3.3. The Gaussian surface was first subtracted from the data. The334

experimental variogram of the residuals was computed by the method of moments335

and modelled with a spherical function to give the parameter values listed in Table 2.336

The residuals were kriged at intervals of 2.5 m, the Gaussian surface added to the337

kriged predictions, and the results then passed to MATLAB for the final display.338

339
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340

Figure 6. (a) Kriged map of infection in Greenhouse H13 on occasion 2; (b) Kriged341

map of infection in Greenhouse H13 on occasion 5; (c) Kriged map of infection in342

Greenhouse H11 on occasion 4.343

4. Discussion and Inference344

The three examples of spatial variation in E. neolycopersici in the two345

greenhouses provide insight into the behaviour of the disease: its origins, its346

establishment and its spread.347

The trend evident in Figure 6(b) is perhaps most readily explained. The348

infection is most serious in one corner of the greenhouse, bottom right in the figure,349

and declines in an apparent linear fashion from there. The doorway to the greenhouse350

is at that corner, and it seems most likely that currents of air, bearing spores, entered351

there to infect the plants, and that the disease then spread from those infected plants.352

The pattern of disease displayed in Fig. 6(b) is dominated by the trend. But we must353

bear in mind that kriging smooths; it loses fine detail. The bubble plot, Fig 3(b),354

shows individual monitoring positions where the infection exceeds the general trend.355

The are isolated exceptional large scores by the side of the main pathway and along356

the rows, and it seems likely that the disease was spread to these sites by workers as357

they travelled along these routes.358

Figure 6(c) has near the centre of the greenhouse a single dominant peak, away359

from which the infection declines in a bell-shaped fashion. Almost certainly the360

disease initially infected one or more plants close to that peak and then spread from361
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there in all directions. We note, however, that the decline is most marked towards the362

top of the figure, and we believe the reason is that the top two rows that were scored363

were of , Graziano, a cultivar that is more resistant to E. neolycopersici that the364

other varieties. As with the previous example, there are several isolated scores365

evident in the bubble plot, Fig. 3(c), that stand out from the trend, notably alongside366

the main path from south to north. The combination of the Gaussian trend surface,367

which accounts for 70.4 % of the variance, and the kriged smoothing obscure these368

exceptional scores.369

Figures 3(a) and 6(a) show more varied patterns of disease with several foci.370

There are several points of infection along the main pathway leading from the door to371

the middle of the greenhouse. These suggest that the disease was spread mainly along372

the pathway by air currents from the door and perhaps by the workers. One of the373

main foci is immediately to right of the doorway which would have admitted air374

currents bearing spores and then spread them along the rows. Other foci at the edge375

of the greenhouse could have resulted from convection currents rising from the centre376

of the greenhouse and falling at the walls.377

It remains for us to interpret the correlation among the residuals, the ε(x) of378

Equation (4). The residuals comprise the short-range variation, and the correlation379

among them, which extends for ≈ 20 to 60 m, almost certainly arises as infection380

spreads between neighbouring plants.381

5. Conclusions382

The patterns of the disease differ in the two greenhouses and from time to time in the383

one greenhouse. All, however, seem to comprise two components, namely a384

deterministic trend or constant and a spatially correlated residual that can be treated385

as random. We modelled the distributions of the observed scores of the disease’s386

severity geostatistically. In particular, we characterized quantitatively and located387

the trends, and we could relate them to plausible sources of infection. In the case of388

the linear trend (OB5) the infection seems to have spread from the spores entering389
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the greenhouse from the corner, bottom right in Figure 4. The Gaussian trend (OB2)390

seems to have arisen by the spread of spores from infected plants near the centre of391

the greenhouse close to the central gangway, Figure 5. The most likely explanation is392

that it was introduced along that gangway by the workers as they moved their393

equipment to attend the crop. The pattern displayed in Figure 3 is more complex.394

We could not separate a trend analytically. What is apparent, however, is the greater395

severity of the disease close to the central gangway from which the disease has spread396

along the rows. It seems that this gangway, the principal pathway through the397

greenhouse, plays an important role in the spread and infection of infection.398

Greenhouse managers and crop workers need to be aware of this and take precautions399

as best they can to prevent the spread of disease by that route.400
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