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Identifying and implementing management actions that can mitigate the impacts 
of climate change on domestically grown crops is crucial to maintaining future 
food security for the United Kingdom (UK). Crop models serve as critical tools for 
assessing the potential impacts of climate change and making decisions regarding 
crop management. However, there is often a gap between yields predicted by 
current modeling methods and observed yields. This has been linked to a sparsity 
of models that investigate crop yield beyond field scale or that include data on 
crop management or crop protection factors. It remains unclear whether the 
lack of available data imposes these limitations or if the currently available data 
presents untapped opportunities to extend models to better capture the complex 
ecosystem of factors affecting crop yield. In this paper, we synthesize available 
data on plant physiology, management, and protection practices for agricultural 
crops in the UK, as well as associated data on climate and soil conditions. 
We then compare the available data to the variables used to predict crop yield 
using current modeling methods. We  find there is a lack of openly accessible 
crop management and crop plant physiology data, particularly for crops other 
than wheat, which could limit improvements in current crop models. Conversely, 
data that was found to be available at large scales on climate and soil conditions 
could be used to explore upscaling of current approaches beyond the field level, 
and available data on crop protection factors could be  integrated into existing 
models to better account for how disease, insect pest and weed pressures may 
impact crop yield under different climate scenarios. We conclude that while a lack 
of available data on crop management, protection, physiology, at scales other 
than field level, and for species other than wheat currently hampers advancement 
of modeling methods for UK crops, future investment into data collection and 
management across a broader range of factors affecting crops, at larger scales 
and for a broader range of crop species could improve predictions of crop plant 
development and yield.
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1. Introduction

Different studies have already shown that the climate change has 
negative effects on crop yield and these effects are likely to have a 
major negative impact on future crops unless significant steps are 
taken to mitigate and adapt to changing conditions and extreme 
weather events (Lobell et al., 2011; Campbell et al., 2016). Domestically 
grown produce is the largest food source for the United Kingdom 
(UK); therefore, ensuring UK farmers can make well-informed, 
evidence-based decisions regarding the management, selection and 
breeding of local arable crops is critical for maintaining future food 
security of the nation and its trade partners (Department for 
Environment, Food, and Rural Affairs, 2021). Furthermore, while it is 
recognized globally that agriculture is one of the food production 
sectors likely to be  most adversely affected by changing climate 
conditions, crops grown outdoors in the UK have been shown to 
be particularly vulnerable to variations in weather patterns such as 
temperature and precipitation which impact the availability of water 
to plants, the water balance of soil, and the ability of farmers to 
traverse fields to carry out management activities such as pesticide 
spraying, harvesting and seedbed preparation (Knox et  al., 2010; 
Harkness et al., 2020; Department for Environment, Food, and Rural 
Affairs, 2021).

Models that predict crop yield have long been relied upon as a key 
tool for decision support and risk management (Afshar et al., 2021). 
In recent years there has been a shift toward using crop models to 
predict yield under possible climate change conditions and drive 
adaptational practices (Challinor et al., 2013; Kadiyala et al., 2015; 
Jones et al., 2017; Challinor et al., 2018). Current crop models vary 
widely in approach, ranging from process or mechanistic-based 
models, that are developed using experimental agronomic and 
physiological data to explain and predict crop growth and 
development under different management and environmental 
conditions, statistical-or machine learning-based models that link 
different datasets such as meteorological variables, soil conditions, or 
vegetation indices obtained from remotely sensed data to observed 
crop yields (Chenu et al., 2009; Watson et al., 2015; Rötter et al., 2018; 
Huang et al., 2019; Silva and Giller, 2021). However, a common issue 
across contemporary modeling approaches is that there are frequently 
substantial differences between predicted and observed yields (Snyder 
et al., 2017; Silva and Giller, 2021). These yield gaps, when coupled 
with increased yield volatility and inter-annual variability detected in 
recent decades, revealed substantial uncertainty around yield 
predictions produced by current crop models, and therefore imposed 
uncertainties to management actions that are necessary to mitigate 
climate change effects and safeguard future food security (Beza et al., 
2017; Gobbett et al., 2017; Hoffmann et al., 2018; Addy et al., 2020; 
Raza and Bebber, 2022).

A recent review of current trends in crop modeling has revealed 
key limitations of current approaches in monitoring of crop yield 
information (Silva and Giller, 2021). These limitations mainly revolve 
around the predominant focus of current crop models on field-scale 
crop yield variations with little consideration to how these findings 
can be scaled to farm or landscape levels at which management and 
policy decisions are often made (Silva and Giller, 2021). Other than 
scale limitations, it was also revealed that relatively little research had 
been undertaken on modeling non-cereal crops, and that the effects 
of nutrients other than nitrogen, pests, pathogens, and disease on 

crops have rarely been integrated into predictions (Silva and Giller, 
2021). It is unclear though whether these limitations are due to a lack 
of available data related to the management practices at larger scales, 
due to the specific motivations driving the development of models, or 
an incomplete understanding of how interaction of these factors with 
climate and soil conditions affects crop yield (Beza et  al., 2017; 
Gobbett et al., 2017; Snyder et al., 2017; Beveridge et al., 2018; Silva 
and Giller, 2021).

The aim of this review is to collate and characterize recent models 
of UK arable crop yields and compare the data inputs currently used 
to inform yield predictions with the openly accessible data that is 
available on crops grown in the UK. This includes available data on 
crop management practices, crop protection, and crop plant 
physiology as well as associated metadata on weather conditions and 
soil properties. This comparison will identify the overlap and gaps 
between available data and the data required by current modeling 
methods. In addition, opportunities to improve model predictions of 
crop yield under changing climate conditions at field and landscape 
scales through the integration of novel data sources will be elucidated.

2. Literature review methods

2.1. Available datasets

Data sources containing information on factors that may 
influence arable crop growth in the UK were identified using Scopus 
and Web of Science databases, as well as UK government open data 
records. The datasets were then categorized based on which factors 
the variables they included related to (Table 1). In order to assist in 
identification of opportunities for future integration of novel data 
sources into crop yield models, datasets on factors that could 
potentially impact crop growth were included in Table 1 even if 
similar data had not previously been used as crop yield model 
inputs in the past. These factors included ‘crop management,’ ‘crop 
plant physiology,’ ‘climate,’ ‘crop protection,’ ‘land use,’ and ‘soil.’ A 
category for ‘crop yield’ was also included to identify datasets 
containing yield observations as well as associated metadata that 
could be used in model development and validation. For several of 
these broad categories/factors, datasets were further sorted into 
sub-categories including ‘crop planning’ and ‘crop nutrition’ under 
‘crop management’, ‘genotype’ and ‘phenotype’ under crop plant 
physiology,’ ‘disease,’ ‘weed,’ and ‘insect pests’ within ‘crop 
protection,’ and various meteorological variables for climate.

In order to ensure recent trends in crop yield could be explored, 
only sources for which the most recent data collection occurred 
during or after 2016 were included. For data on climate variables, only 
datasets that provided data from 1990 or earlier were included. This 
additional cut-off was put in place to ensure long-term meteorological 
trends were captured within the datasets, so that models of crop yield 
developed on these datasets could feasibly be trained to potentially 
account for these effects (Intergovernmental Panel on Climate 
Change, 2014; Addy et al., 2021).

For each dataset included in this review, we  gathered and 
summarized information on variable categories and sub-categories, 
key references, access constraints, period and frequency of data 
collection, spatial coverage, crop species observed, and accessibility 
(Table 2). Coverage of datasets was described using the following 
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labels on the size of the area for which data were collected: ‘Global,’ 
‘Europe’ for datasets covering the whole of the European continent, 
‘UK’ for datasets covering the entirety of the United  Kingdom, 
‘Regional’ for datasets covering part of the United  Kingdom that 
include multiple agricultural fields and farms, and ‘Field’ for datasets 
for which data was collected from a single field or several fields at a 
single farm.

2.2. Current modeling methods

Existing crop yield models in the UK were identified using 
Scopus and Web of Science databases, and UK government open 
data records. Only models which explicitly predict crop yield for 
part or the entirety the UK, and that were published or last updated 
from 2016 onwards, were included. This latter time restriction was 
to reflect the current state of crop models with respect to 
recent trends and increased inter-annual variability in yield 

(Beza et al., 2017; Gobbett et al., 2017; Hoffmann et al., 2018; Addy 
et  al., 2020). These models were then categorized based on the 
variables they require as input using the same categories used to 
summarize the datasets based on the variables they contained 
(Table  1). This categorization system was used to help identify 
where the available datasets could be used as input variables of 
models, where gaps exist between the currently available datasets 
and the required datasets by contemporary modeling methods, and 
where datasets are available on factors that have not previously been 
integrated into crop yield models.

For each model included in this review, we  gathered and 
summarized, where applicable, information on categories and 
sub-categories of their input variable, key reference, date of publication 
or most recent update, modeling method (i.e., statistical-, process-, or 
machine learning-based), the spatiotemporal resolution of their input 
and output variables, and crop types for which they can predict yield 
(Table 3). The spatial scale of model predictions was described using the 
same labels used to describe the coverage of available datasets.

TABLE 1 Categories and sub-categories assigned to variables in reviewed datasets and required as inputs into reviewed crop models.

Category Sub-category Variables

Crop yield – Above ground yield, grain yield in tons per hectare, hectoliter weight of grain, thousand-grain weight

Crop management Crop planning Carting period, crop sequencing, cultivar, cutting period, fungicide treatment, harvest date, herbicide treatment, 

number of plants per 20 centimeters squared, last non-wheat crop, lodging, number of plants per foot, number of 

years since last fallowed, number of years since last non-wheat crop, sowing date, straw management technique, 

tillage, and variety

Crop nutrition Fertilizer or organic manure treatment, Hagberg falling number, nitrogen application rate, plant calcium content, 

plant available nitrogen, plant magnesium content, plant nitrogen content, plant phosphorous content, plant 

potassium content, plant sodium content, and plant sulfur content

Crop plant physiology Genotype Available mRNA, annotated transcriptome

Phenotype Branching angle, crop height, grain size, flower emergence, leaf emergence, number of leaves, and sentinel-2 

vegetation index

Climate Temperature Air temperature anomaly, dry bulb temperature, grass temperature, maximum air temperature, mean air 

temperature, minimum air temperature, and wet bulb temperature

Precipitation Hail type, mean rainfall, precipitable water, rainfall duration, total column water vapor, and total rainfall

Wind Wind amount, wind direction, wind force, and wind speed

Radiation Hours of sunshine, mean radiation, and total radiation

Humidity Dew point, relative humidity, and specific humidity

Snow Freeze/thaw, snow density, snow depth, and snow water equivalent

Cloud Cloud cover, specific cloud ice water content, and specific cloud liquid water content

Pressure Air pressure at mean sea level, barometric pressure, and vapor pressure

Atmospheric gas Air ch4-methane, air carbon dioxide, and air carbon monoxide

Drought Palmer drought severity index

Crop protection Disease Infected crown roots per plant, infected seminal roots per plant, level of brown rust infection, level of mildew 

infection, level of Septoria infection, level of yellow rust infection, percentage of infected plants, percentage of 

infected roots, percentage of infected straws, and take-all rating

Weed competition Appearance of weed species, herbicide treatment, and weed species present

Insect pests Pesticide treatment

Land use – Land cover class

Soil – Carbon input into soil, drainage, take-all infectivity of soil, soil heat flux, soil organic carbon, soil temperature, soil 

total nitrogen, soil type, standard soil weight, and volumetric soil water
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2.3. Heatmap comparison of datasets and 
models

Heatmaps comparing the relative proportion of datasets available 
for each variable at various spatiotemporal resolutions to the relative 
proportion of process-and statistical-based models requiring input 
data for that variable at the same spatiotemporal resolution were 
developed using the ‘pheatmap’ package (Kolde, 2019) in R 
environment (R Core Team, 2021) and presented in (Figures 1, 2) 
respectively.

The relative proportion of data to models used to shade each cell 
in the heatmap grids shown in (Figures 1, 2) was calculated as:
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where xscale is the number of available datasets containing information 
on a single variable at a single spatial and temporal resolution, x  is the 
total number of datasets identified in the literature review, yscale is the 
number of available models requiring input data at the same spatial 
and temporal resolution as xscale, and y is the total number of models 
identified in the literature review. Heatmap grid cells with a value of 
one would therefore indicate an exact match in number of available 
datasets to number of current models that require input data on the 
same variable at the same spatiotemporal scale. Values greater than 
one therefore indicates a relatively higher proportion of available 
datasets compared to models requiring input data on the same 
variable at the same spatiotemporal scale, this includes instances 
where data is available but not currently used in any current models. 
Grid cells with values less than one indicates a relative lack of available 
data compared to the proportion of models requiring data on the same 
variable at the same certain spatiotemporal scale, this includes cases 
where current models require data on a variable at a certain 
spatiotemporal scale but there are no datasets currently openly 
available at that scale. Grey grid cells indicate where there is neither 
available data nor a model requiring input data on a variable at the 
specified spatiotemporal resolution.

3. Literature review results

3.1. Available datasets

A total of 46 unique relevant datasets were identified that provide 
information on factors that could impact arable crop growth and 
could be used as inputs for crop yield models for the UK (Table 2). The 
overall majority of these datasets (40 datasets, 87%) were 
openly accessible.

Data on climate for areas under cultivation was found to be most 
abundant in the current literature, with 27 (59%) datasets reporting on 
climate variables. The most abundant sub-categories of climate variables 
in the current literature were (a) temperature, which was included in 19 
(41%) datasets, (b) precipitation, which was included in 16 (35%) 
datasets, (c) atmospheric gas and wind which were both included in 10 
(22%) datasets. Combinations of temperature, precipitation, and 
atmospheric gas variables were commonly reported within the same 
dataset, with six (13%) datasets reporting measures of all three.

Overall, climate data was equally available at global and field 
scales, with 10 datasets providing information on climate data at 
each spatial resolution. Of the most well represented variable 
sub-categories, temperature data was equally available at global 
and field scales with six datasets providing data for each of spatial 
scales. Similarly, precipitation data were available in six and seven 
datasets at global and field scales, respectively. Atmosphere data 
were predominantly available at global scale (eight datasets), in 
which, one of them were providing a dataset covering Europe and 
one of them at field scale.

Climate data were available for a wide range of years, with data 
collected from the years 1700 to 2021 and were most commonly 
available at monthly intervals, with 15 datasets providing data at this 
temporal resolution. Finer temporal scale climate data were also often 
available, with 12 datasets providing measurements at a daily 
resolution and six datasets at a sub-daily resolution (i.e., hourly).

Ten relevant datasets containing information on soil properties 
were identified, comprising 22% of total datasets. The majority (six 
datasets) of these datasets containing information on soil properties 
also contained climate metadata with the same coverage, spatial and 
temporal resolution. Four datasets provided coverage for the entirety 
of Europe, three provided soil information at field scales, and one 
dataset (Terraclimate) provided global coverage (Abatzoglou et al., 
2018). Datasets related to the soil conditions were available between 
years 1853 and 2021, with global, European, and field scale data all 
available between years 1958 and 2016. Soil data was predominantly 
available at sub-daily resolution in four available datasets (Table 2). 
Three datasets were available at both daily and yearly resolution, and 
one of them provided monthly data.

Six datasets (13% of total relevant datasets) contained information 
on crop management practices. Four datasets included annual data on 
both crop planning and crop nutrition for wheat crops at field scale, 
and two datasets provided information on crop nutrition only, with 
data available from 1968 to 2020.

Seven crop plant physiology datasets (15% of total datasets) were 
identified, six of which provided data on phenotypic variables. Yearly 
data on phenotype traits were available and openly accessible at field 
scale for wheat crops between 1974 and 2018 and for a wider range of 
crops at a coarser grain across the UK for 2020–2022. Image datasets 
from which phenotypic traits of individual plants could be extracted 
were also available but not openly accessible.

Five relevant crop protection datasets (11% of total datasets) were 
also included, with four of these datasets containing information on 
disease and two containing data on both weed competition and insect 
pests. Yearly disease and insect pest data were available at field scale 
for wheat crops between 2004 and 2019, while yearly data on weed 
competition were available at field scale between 1991 and 2019 for 
wheat, maize, oats, and potatoes. Data on disease, weed competition 
and insect pests were also at a coarser grain level with UK wide 
coverage for a range of crop species between 2012–2022.

Only two datasets (4% of total datasets) included data on 
drought and land use, and a single dataset was identified with 
information on genotype variables. Drought and land use data was 
available at a global scale and monthly temporal resolution 
between 1850 and 2018. Additional annual land use was available 
at UK wide scale from 2015 to 2021. In terms of genotypic data, 
annotated transcriptomes for oilseed rape plants were found to 
be available.
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TABLE 2 Summary of available datasets on factors affecting crop yield in the UK.

ID Name Reference Open 
access

Variable 
category

Variable 
sub-
category

Years 
collected

Temporal 
resolution

Coverage Crop 
species

URL

1 AgERA5 Copernicus (2022) Yes Climate Atmospheric gas 1979–2021 Sub-daily, daily, 

monthly

Global N/A https://cds.climate.copernicus.

eu/cdsapp#!/dataset/10.24381/

cds.6c68c9bb?tab=overview

2 Agriculture and 

Horticulture Development 

Board (AHDB)

Agriculture and 

Horticulture 

Development Board 

(2020)

Yes Crop management Crop nutrition, 

crop planning

2020–2022 Seasonal UK Spring barley, 

spring oats, 

spring linseed, 

spring oilseed 

rape, spring 

wheat, winter 

barley, winter 

oats, winter 

oilseed rape, 

winter rye, 

winter triticale, 

winter wheat

https://ahdb.org.uk/knowledge-

library/recommended-lists-for-

cereals-and-oilseeds-rl-harvest-

results-archive
Crop plant 

physiology

Phenotype Yearly

Crop protection Disease

Crop yield N/A

Soil N/A

3 Agriculture in the 

United Kingdom

Department for 

Environment, Food, 

and Rural Affairs 

(2020)

Yes Crop yield N/A 1973–2019 Yearly UK Barley, beans, 

cereals, linseed, 

oats, oilseed 

rape, peas, sugar 

beet, wheat

https://www.gov.uk/government/

statistics/farming-statistics-final-

crop-areas-yields-livestock-

populations-and-agricultural-

workforce-at-1-june-2019-uk

4 Annual Mean Air 

Temperature Anomaly at 

Rothamsted 1878–2019

Perryman et al. 

(2020a)

Yes Climate Temperature 1878–2019 Monthly, yearly Field N/A http://www.era.rothamsted.

ac.uk/Met/met_open_access_

res_matempanomaly

5 Berkeley Earth Surface 

Temperatures (BEST)

Cowtan and National 

Center for 

Atmospheric 

Research Staff (2019)

Yes Climate Temperature 1700–2019 Daily, monthly Global N/A http://berkeleyearth.org/data/

6 Brassica Transcriptome 

Dataset

National Centre for 

Biotechnology 

Information (2020)

Yes Crop plant 

physiology

Genotype N/A Static Individual plant Oilseed rape https://trace.ncbi.nlm.nih.gov/

Traces/sra/?run=SRR10317724

7 Broadbalk Crop Nutrient 

Content

Perryman and 

Wilmer (2021)

Yes Crop management Crop nutrition 1968–2017 Seasonal Field Wheat Contact Rothamstead Electronic 

Research Archive Curator (era@

rothamsted.ac.uk).

(Continued)
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TABLE 2 (Continued)

ID Name Reference Open 
access

Variable 
category

Variable 
sub-
category

Years 
collected

Temporal 
resolution

Coverage Crop 
species

URL

8 Broadbalk Disease Pradhan and 

Glendining (2021)

Yes Crop management Crop nutrition, 

crop planning

2016 Seasonal Field Wheat Contact Rothamstead Electronic 

Research Archive Curator (era@

rothamsted.ac.uk).Crop plant 

physiology

Phenotype

Crop protection Disease Yearly

Crop yield N/A

9 Broadbalk Grain Quality Atkinson et al. (2008) Yes Crop management Crop nutrition, 

crop planning

1974–2018 Seasonal Field Wheat Contact Rothamstead Electronic 

Research Archive Curator (era@

rothamsted.ac.uk).Crop plant 

physiology

Phenotype Yearly

Crop yield N/A

10 Broadbalk mean long-

term winter wheat yields

Rothamsted Research 

(2017)

Yes Crop management Crop nutrition, 

crop planning

1968–2020 Yearly Field Wheat Contact Rothamstead Electronic 

Research Archive Curator (era@

rothamsted.ac.uk).Crop yield N/A

11 Broadbalk Weeds Hull et al. (2021) Yes Crop protection Weed competition 1991–2019 Yearly Field Maize, oats, 

potatoes, wheat

Contact Rothamstead Electronic 

Research Archive Curator (era@

rothamsted.ac.uk).

12 CEH Land Cover plus 

Crops

Morton et al. (2021) No Land use Land cover class 2015–2021 Yearly UK Beans, barley, 

maize, oilseed, 

potatoes, wheat

https://www.ceh.ac.uk/data/

ceh-land-cover-plus-crops-2015

13 CEH Land Cover plus 

Pesticides

Osório et al. (2019) No Crop protection Disease, insect 

pests, weed 

competition

2012–2017 Yearly UK Beans, barley, 

maize, oilseed, 

potatoes, wheat

https://www.ceh.ac.uk/services/

ukceh-land-cover-plus-

fertilisers-and-pesticides

14 CEH Land Cover plus 

Fertilisers

Jarvis et al. (2020) No Crop management Crop nutrition 2010–2017 Seasonal UK Beans, barley, 

maize, oilseed, 

potatoes, wheat

https://www.ceh.ac.uk/services/

ukceh-land-cover-plus-

fertilisers-and-pesticides

15 Climate Forecast System 

Reanalysis (CFSR)

Saha et al. (2010) Yes Climate Atmospheric gas, 

precipitation, 

temperature

1979–2017 Monthly Global N/A https://rda.ucar.edu/datasets/

ds093.2/#!access
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16 Climate hydrology and 

ecology research support 

system meteorology 

dataset (CHESS-met)

Robinson et al. 

(2020)

Yes Climate Humidity, 

precipitation, 

pressure, radiation, 

temperature, wind

1961–2017 Daily UK N/A https://catalogue.ceh.ac.uk/

documents/2ab15bf0-ad08-415c-

ba64-831168be7293

17 Crop Precision Yield 

Measurements

UK Centre for 

Ecology and 

Hydrology (2022)

No Crop yield N/A 2011–2021 Yearly Regional - Great 

Britain

Barley, beans, 

linseed, maize, 

oats, oilseed, 

peas, rye, soy, 

sunflower, wheat

Contact rfp@ceh.ac.uk

18 Cross-Calibrated Multi-

Platform Wind Vector 

Analysis (CCMP)

Wentz et al. (2015) Yes Climate Atmospheric gas, 

wind

1987–2016 Sub-daily Global N/A http://www.remss.com/

measurements/ccmp/

19 CT Scanner Images N/A No Crop plant 

physiology

Phenotype N/A Static Individual Plant Oilseed, wheat https://www.plant-phenomics.

ac.uk/index.php/contact/

20 Daily and sub-daily 

hydrometeorological and 

soil data

Stanley et al. (2021) Yes Soil N/A 2013-2019 Daily, sub-daily UK N/A https://catalogue.ceh.ac.uk/

documents/b5c190e4-e35d-40ea-

8fbe-598da03a1185

21 Daily Rothamsted weather 

data for schools

Scott (2014) Yes Climate Precipitation, 

radiation, 

temperature, wind

1990–2021 Daily Field N/A Contact Rothamstead Electronic 

Research Archive Curator (era@

rothamsted.ac.uk).

22 E-OBS Cornes et al. (2018) Yes Climate Atmospheric gas, 

precipitation, 

temperature

1950–2019 Daily Europe N/A https://surfobs.climate.

copernicus.eu/dataaccess/access_

eobs.php

23 ERA-Interim Dee et al. (2014) Yes Climate Atmospheric gas, 

precipitation, 

temperature

1979–2019 Sub-daily, daily, 

monthly

Global N/A https://climatedataguide.ucar.

edu/climate-data/era-interim

24 Global Historical 

Climatology Network 

Daily Temperatures 

(GHCN-D)

Menne et al. (2012) Yes Climate Atmospheric gas, 

precipitation, 

temperature

1879–2016 Daily Global N/A https://www.ncdc.noaa.gov/

ghcnd-data-access

(Continued)
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25 Gridded Precipitation and 

Other Meteorological 

Variables Since 1901

Harris and Jones 

(2017)

Yes Climate Atmospheric gas, 

cloud, 

precipitation, 

temperature

1901–2019 Monthly Global N/A doi:10.5285/D0E1585D-3,417-

485F-87AE-4FCECF10A992

26 Hadley Centre Central 

England Temperature 

(HadCET)

Parker et al. (1992) Yes Climate Temperature 1722–2021 Daily, monthly Regional (Central 

England)

N/A https://www.metoffice.gov.uk/

hadobs/hadcet/data/download.

html

27 HIRLAM–ALADIN 

Research on Mesoscale 

Operational NWP in 

Euromed (HARMONIE)

de Rooy et al. (2017) Yes Climate Cloud, humidity, 

pressure, snow, 

temperature, wind

1961–2017 Sub-daily Europe N/A https://apps.ecmwf.int/datasets/

data/uerra-harmonie-v1/

levtype=sfc/stream=oper/

type=an/Soil N/A

28 Large and Small Plant 

Platform Images

N/A No Crop plant 

physiology

Phenotype N/A Daily Individual Plant Oilseed https://www.plant-phenomics.

ac.uk/index.php/contact/

Climate Humidity, 

radiation, 

temperature

Soil N/A

29 Maps of Indicators of Soil 

Hydraulic Properties for 

Europe

European Soil Data 

Centre (2016)

Yes Soil N/A 2016 Yearly Europe N/A https://esdac.jrc.ec.europa.eu/

content/maps-indicators-soil-

hydraulic-properties-europe

30 Mean Annual 

Temperature at 

Rothamsted

Perryman et al. 

(2020b)

Yes Climate Temperature 1878–2019 Yearly Field N/A http://www.era.rothamsted.ac.

uk/Met/met_open_access_res_

matemp_v2

31 Mean Monthly Rainfall at 

Rothamsted

Perryman et al. 

(2018)

Yes Climate Precipitation 1986–2017 Monthly, Yearly Field N/A http://www.era.rothamsted.ac.

uk/Met/rmsMMR10850917

32 Mean Monthly Rainfall at 

Rothamsted March 1853–

July 2018 

(RMMRAIN5318)

Perryman et al. 

(2018)

Yes Climate Precipitation 1853–2018 Monthly Field N/A http://www.era.rothamsted.ac.

uk/Met/RMMRAIN5318

(Continued)
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33 Mean Monthly 

Temperature at 

Rothamsted October 

1985–September 2017

Perryman et al. 

(2020c)

Yes Climate Temperature 1986–2017 Monthly, Yearly Field N/A http://www.era.rothamsted.ac.

uk/Met/rmsMMT10850917

34 Palmer Drought Severity 

Index (PDSI)

Dai (2017) Yes Climate Drought 1850–2018 Monthly Global N/A https://rda.ucar.edu/datasets/

ds299.0/Land use Land cover class

35 Precipitation 

Reconstruction over Land 

(Prec/L)

Chen et al. (2002) Yes Climate Atmospheric gas, 

precipitation

1948–2020 Monthly Global N/A https://psl.noaa.gov/data/

gridded/data.precl.html

36 Public Rothamsted 

meteorological records

Perryman et al. 

(2019)

Yes Climate Precipitation, 

radiation, 

temperature, wind

1918–2021 Daily Field N/A Contact Rothamstead Electronic 

Research Archive Curator (era@

rothamsted.ac.uk).

37 Root Phenotyping Images N/A No Crop plant 

physiology

Phenotype N/A Daily Individual Plant Oilseed, wheat https://www.plant-phenomics.

ac.uk/index.php/contact/

38 Rothamsted 

Meteorological Station 

Data

Perryman et al. 

(2019)

Yes Climate Cloud, humidity, 

precipitation, 

pressure, radiation, 

snow, wind

1853–2021 Sub-Daily, Daily Field N/A Contact Rothamsted Electronic 

Research Archive Curator (era@

rothamsted.ac.uk).

Soil N/A

39 Self-Calibrating PDSI 

Over Europe & North 

America (CRU SC-PDSI)

Barichivich et al. 

(2021)

Yes Climate Drought 1901–2019 Monthly Europe N/A https://crudata.uea.ac.uk/cru/

data/drought/

40 Terraclimate Abatzoglou et al. 

(2018)

Yes Climate Atmospheric gas, 

precipitation, snow, 

temperature, wind

1958–2018 Monthly Global N/A https://data.nkn.uidaho.edu/

dataset/monthly-climate-and-

climatic-water-balance-global-

terrestrial-surfaces-1958-2015Soil N/A

(Continued)
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41 Topsoil Physical 

Properties for Europe

Ballabio et al. (2016) Yes Soil N/A 2016 Yearly Europe N/A https://esdac.jrc.ec.europa.eu/

content/topsoil-physical-

properties-europe-based-lucas-

topsoil-data

42 UKCP18 Regional 

Projections on a 12 km 

grid over the UK for 

1980–2080 (CHESS-

SCAPE)

Met Office Hadley 

Centre (2018)

Yes Climate Humidity, 

precipitation, 

pressure, radiation, 

snow, temperature, 

wind

1980–2080 Monthly Europe N/A https://catalogue.ceda.ac.uk/uuid

/589211abeb844070a95d061c8cc

7f604

43 Unified Gauge-Based 

Analysis of Global Daily 

Precipitation

Xie et al. (2007) Yes Climate Atmospheric gas, 

precipitation

1928–2021 Daily Field N/A https://ftp.cpc.ncep.noaa.gov/

precip/CPC_UNI_PRCP/

44 Unified Model Data Borsche et al. (2015) Yes Climate Cloud, humidity, 

pressure, snow, 

temperature, wind

1979–2016 Sub-Daily Europe N/A https://apps.ecmwf.int/datasets/

data/uerra-um-4dvar/

levtype=sfc/stream=oper/

type=an/

45 Wheat Genetic 

Improvement Network 

(WGIN) Diversity Trial

Rothamsted Research 

(2019)

Yes Crop yield N/A 2004–2019 Yearly Field Wheat https://rrescloud.rothamsted.ac.

uk/index.

php/s/7I4jNYDMy9rvUqL
Soil N/A

Crop protection Disease, insect 

pests

46 Woburn meteorological 

records

Watts and 

Glendining (2017)

Yes Climate Cloud, humidity, 

precipitation, 

pressure, radiation, 

snow, temperature, 

wind

1928–2021 Daily Field N/A Contact Rothamstead Electronic 

Research Archive Curator (era@

rothamsted.ac.uk).

Soil N/A

Soil N/A

Crop yield N/A
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Seven datasets (15% of total relevant datasets) included 
measurements of crop yield. Four of these datasets reported annual 
wheat yield at field scale, with the remaining three datasets reporting 
annual yield of various crops (barley, beans, cereals, linseed, maize, 
oats, oilseed rape, peas, rye, soy, sunflower, sugar beet, and wheat) for 
the entirety of Great Britain or the United Kingdom.

3.2. Current modeling methods

Twenty-seven relevant models were identified in the literature 
review (Table 3), 17 of which were process-based models (Figure 1) 
and 10 of which were statistical models (Figure 2), including two 
models with machine learning-based components. As indicated in 
Table 3, for nine out of 10 statistical models openly accessible data on 
all input data was available at the required spatiotemporal resolution, 
while openly accessible data at the required spatiotemporal resolution 
for all input variables was only available for 10 out of 17 process-based 
models. The majority of models (22 models, 81%) predicted crop yield 
for wheat. Other crops for which yield was frequently predicted were 
maize (9 models, 33%), oilseed rape (8 models, 30%), potatoes (7 
models, 26%), barley (7 models, 26%), and sugar beet (6 models, 
22%). Crop yields were also predicted for beans, soy, rice, millet, peas, 
sorghum, peanut, sugarcane, sunflower, oats, tomato, onions, and 
quinoa with five or fewer models.

Most models (21 models, 78%) required input data at field scale, 
and all but one of these models produced crop yield predictions at 
field scale (20 models, 74%). Three models that required input data 
and predicted crop yield at field scale were also used to predict crop 
yield at other scales: the ECOSSE model at UK scale, the WOFOST 
model at regional scale, and the AquaCrop model at global scale 
(Steduto et  al., 2009; Richards et  al., 2017; De Wit et  al., 2019). 
Additionally, three models that required input data at field scale only 
have been used to predict crop yield at a larger scale: The APSIM and 
DSSAT models at global scale, and the ORCHIDEE crop model for 
the entirety of Europe (Jones et al., 2003; Holzworth et al., 2014; Wu 
et al., 2016).

Climate data was used to predict crop yield in all process-based 
models but was used to predict crop yield in only three of the 10 
statistical models identified in the literature review. The climate 
variables most often included as input data were temperature which 
was required by 17 models (63%), and precipitation which was 
required by 16 models (59%). All but one model that required 
precipitation data also required input data on temperature. Input data 
on the remaining climate variables (cloud, humidity, pressure, snow, 
radiation, wind, and drought) was required in less than half of the 
identified models of UK crop yield. The PEPIC model was the only 
model identified that did not require input data on temperature or 
precipitation, and instead factored data on humidity, radiation, and 
wind into predictions (Liu et al., 2016). Climate input data was most 
often needed at daily scale (18 models, 67%) for predicting seasonal 
or annual crop yields.

Twenty-one models (78%) required input data on crop 
management, including 88% of process-based models and 70% of 
statistical models. For all these models, data on crop planning was 
required, while data on crop nutrition was needed to predict crop 
yield with 17 models (63% of total models). Models most often 
required crop management input data at a seasonal scale, with 17 

models (63%) using seasonal crop planning or crop nutrition data to 
predict seasonal or annual crop yield. Soil data was included as input 
in 13 (48%) of the identified models, including 11 process-based and 
two statistical models. The majority of models incorporating soil data 
(9 models, 50% of all total relevant models) required a single static 
measurement of all soil properties incorporated into crop 
yield predictions.

Six models (22%) included data on crop plant physiology, 
including three process-based and three statistical models. Of the 
process-based models, the Yield-SAFE model used a static 
measurement of initial biomass at field scale, the CLM model included 
monthly data on leaf area index at field scale, and the DailyDayCent 
model included constants reflecting the potential growth and drought 
or nutrient stress sensitivity of specific plants (Begum et al., 2017). For 
the statistical models, measurements of phenotypic traits were 
collected at daily or 5-daily intervals from experimental plants or from 
images of plants taken by on-ground sensors or satellites (Okom et al., 
2017; Ozalp, 2020; Florence et al., 2021).

Two models (7%) included data on land use, the ECOSSE model 
which included static land classes and the Roth-CNP model which 
factored 20-and 50-year changes in land use into seasonal or annual 
crop yield estimates (Muhammed et  al., 2018). One model (4%) 
incorporated data on disease into predictions of crop yield, using 
seasonal, field scale measurements of Septoria tritici to predict field 
scale wheat yield (van den Bosch et al., 2022). None of the models 
identified in the literature review used input data on crop 
plant genotype.

4. Discussion

This literature review demonstrated that data required as inputs 
by current models for predicting UK crop yield is considerably less 
diverse in terms of variables, spatial scale, and temporal resolution 
than the data and associated metadata that is available for UK crops 
from the year 1990 up to the year 2022. This is indicated in Figures 1, 
2 by the relatively high proportion of data available at various scales 
compared to current models which utilize data at these scales as input. 
In line with the previous review of crop models conducted by Silva 
and Giller (2021), most models identified in the literature review rely 
on temperature, precipitation, crop planning, crop nutrition, and soil 
data to predict crop yield, whereas recent available datasets report 
measures of a wider range of weather, plant physiology and crop 
protection variables. Also similar to the findings of the Silva and Giller 
(2021) review, current models of crop yield predominantly require 
input and produce predictions at field scale, but our literature review 
revealed that relevant data is available on most variables at larger 
scales. This suggests that upscaling current methods to predict crop 
yield at a coarser scale across the UK may be feasible by integrating 
the available large-scale data temperature, precipitation, and soil 
variables (Manivasagam and Rozenstein, 2020; Peng et  al., 2020; 
Chen et al., 2021). These coarse scale predictions could then be used 
to inform development of agricultural policy and decisions for 
managing crops at a regional or national scale (Manivasagam and 
Rozenstein, 2020; Peng et al., 2020; Chen et al., 2021).

However, it is important to consider whether current models 
developed based on observations from a limited number of fields 
can be used to predict a response in yield for crops grown under 
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TABLE 3 Summary of current models for predicting crop yield in the UK.

ID Name Reference Year 
published/
updated

Modeling 
method

Input 
variable 
category

Input 
variable 
sub-
category

Input 
temporal 
resolution

Input 
scale

Prediction 
scale

Crop 
species

All input data 
openly 
available?

1 Agricultural 

Production Systems 

Simulator (APSIM)

Holzworth et al. 

(2014)

2018 Process-based Climate Precipitation, 

radiation, 

temperature

Daily Field Field, global Barley, beans, 

cotton, hemp, 

maize, millet, 

oilseed, peanut, 

peas, sorghum, 

soy, sugarcane, 

sunflower, wheat

No

Crop management Crop nutrition, 

crop planning

Soil N/A Yearly, Static

2 AquaCrop Steduto et al. (2009) 2017 Process-based Climate Precipitation, 

temperature

Daily, 10 Day Field, global Field, global Maize, potato, 

quinoa, rice, soy, 

sugar beet, 

wheat

No

Crop management Crop nutrition, 

crop planning

Seasonal

Soil N/A Seasonal

3 Community Land 

Model (CLM)

Lawrence et al. 

(2019)

2019 Process-based Climate Humidity, 

temperature, wind

Sub-Daily, Daily Global Global Maize, soy, 

wheat

No

Crop management Crop nutrition, 

crop planning

Seasonal

Crop plant 

physiology

Phenotype Monthly

4 DailyDayCent Begum et al. (2017) 2017 Process-based Climate Precipitation, 

temperature

Daily Field Field Wheat Yes

Crop management Crop nutrition, 

crop planning

Seasonal

Crop plant 

physiology

Phenotype Static

Soil N/A

5 Decision Support 

System for 

Agrotechnology 

Transfer (DSSAT)

Jones et al. (2003) 2019 Process-based Climate Cloud, 

precipitation, 

snow, temperature, 

wind

Daily Field Field, global Beans, maize, 

millet, peanut, 

peas, potatoes, 

rice, sorghum, 

soy, tomato, 

wheat

Yes

Crop management Crop nutrition, 

crop planning

Seasonal

Soil N/A Static

(Continued)
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ID Name Reference Year 
published/
updated

Modeling 
method

Input 
variable 
category

Input 
variable 
sub-
category

Input 
temporal 
resolution

Input 
scale

Prediction 
scale

Crop 
species

All input data 
openly 
available?

6 DNDC95_NH3 Dubache et al. 

(2019)

2019 Process-based Climate Atmospheric gas, 

precipitation, 

temperature, wind

Daily, Yearly Field Field Barley, oilseed, 

oats, wheat

No

Crop management Crop nutrition, 

crop planning

Seasonal

Soil N/A Static

7 Dynamic Global 

Vegetation Model 

with managed Land 

(LPJmL4)

Schaphoff et al. 

(2018)

2018 Process-based Climate Precipitation, 

radiation

Daily Global Global Soy, wheat Yes

8 Estimation of 

Carbon in Organic 

Soils – Sequestration 

and Emissions 

(ECOSSE)

Richards et al. (2017) 2016 Process-based Climate Precipitation, 

temperature

Monthly Field, UK Field, UK Oilseed, sugar 

beet, wheat

Yes

land use Land cover class Static

Soil N/A Static

9 HUME-OSR Bottcher et al. (2020) 2020 Process-based Climate Radiation, 

temperature

Daily Field Field Oilseed No

Crop management Crop planning

10 ORCHIDEE_CROP Wu et al. (2016) 2016 Process-based Climate Atmospheric gas, 

precipitation, 

pressure, 

radiation, 

temperature, wind

Daily, Yearly Field Field, Europe Maize, wheat Yes

Crop management Crop nutrition, 

crop planning

Seasonal

11 Python-based 

Environmental 

Policy Integrated 

Climate (PEPIC)

Liu et al. (2016) 2016 Process-based Climate Humidity, 

radiation, wind

Monthly Global Global Maize, rice Yes

Crop management Crop nutrition, 

crop planning

Seasonal

(Continued)

TABLE 3 (Continued)
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TABLE 3 (Continued)

ID Name Reference Year 
published/
updated

Modeling 
method

Input 
variable 
category

Input 
variable 
sub-
category

Input 
temporal 
resolution

Input 
scale

Prediction 
scale

Crop 
species

All input data 
openly 
available?

12 SIRIUS Wheat 

Simulation Model

Lawless et al. (2005) 2021 Process-based Climate radiation, 

temperature

Daily Field Field Wheat Yes

Crop management Crop nutrition, 

crop planning

Seasonal

Soil N/A Static

13 World Food Systems 

Model (WOFOST)

De Wit et al. (2019) 2019 Process-based Climate Precipitation, 

snow, temperature, 

wind

Daily Field, 

regional

Regional Barley, beans, 

maize, millet, 

oilseed, 

potatoes, rice, 

sorghum, sugar 

beet, sugarcane, 

sunflower, wheat

Yes

Crop management Crop nutrition, 

crop planning

Seasonal

Soil N/A Static

14 Rothamsted 

Landscape Model

Coleman et al. 

(2021)

2021 Process-based Climate Precipitation, 

pressure, 

radiation, 

temperature, wind

Daily Field Field Barley, beans, 

maize, oats, 

oilseed, onions, 

potato, sugar 

beet, wheat

Yes

15 Roth-CNP Muhammed et al. 

(2018)

2018 Process-based Climate Atmospheric gas, 

humidity, 

precipitation, 

pressure, 

radiation, 

temperature, wind

Daily, Monthly, 

10 Year, 20 Year

UK UK Potato, wheat No

Crop management Crop nutrition, 

crop planning

Seasonal

Land use Land cover class 20 Yearly, 50 Yearly

Soil N/A Static

(Continued)
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ID Name Reference Year 
published/
updated

Modeling 
method

Input 
variable 
category

Input 
variable 
sub-
category

Input 
temporal 
resolution

Input 
scale

Prediction 
scale

Crop 
species

All input data 
openly 
available?

16 SUBSTOR-Potato Haro-Monteagudo 

et al. (2018)

2018 Process-based Climate Drought, 

precipitation, 

temperature

Daily, Monthly Field Field Potato Yes

Crop management Crop nutrition, 

crop planning

Seasonal

Soil N/A Static

17 Yield-SAFE Palma et al. (2018) 2018 Process-based Climate Precipitation, 

radiation, 

temperature

Daily Field Field Beans, peas, 

wheat

No

Crop management Crop planning Static

Crop plant 

physiology

Phenotype

Soil N/A

18 Addy et al. 2020 

Model

Addy et al. (2020) 2020 Statistical Climate Precipitation, 

temperature

Monthly Field Field Barley, wheat Yes

Crop management Crop nutrition, 

crop planning

19 Florence et al. 2021 

Model

Florence et al. (2021) 2021 Statistical, Machine 

Learning

Crop management Crop nutrition, 

crop planning

Seasonal Field Field Wheat Yes

Crop plant 

physiology

Phenotype

20 van Grinsven et al. 

2022 Model

van Grinsven et al. 

(2022)

2022 Statistical Crop Management Crop nutrition, 

crop planning

Seasonal Field Field Barley, maize, 

wheat

Yes

21 Kendall et al. 2017 

Model

Kendall et al. (2017) 2017 Statistical Crop management Crop planning Seasonal UK UK Oilseed Yes

22 Macholdt et al. 2020 

Model

Macholdt et al. 

(2020)

2020 Statistical Crop management Crop nutrition, 

crop planning

Seasonal Field Field Wheat Yes

23 Mądry et al. 2017 

Model

Mądry et al. (2017) 2017 Statistical Crop management Crop nutrition, 

crop planning

Seasonal Field Field Wheat Yes

TABLE 3 (Continued)

(Continued)
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varying conditions not captured within the field scale data on which 
the models were originally parameterized. More specifically, data 
used to parameterize current field scale models does not include 
observations covering the full range of scenarios (including various 
combinations of different weather and soil conditions, management 
practices, and crop protection strategies) under which crops are 
grown throughout the entire extent of the UK. It is therefore 
unknown whether the uncertainty around the prediction for any 
particular scenario will be too large to enable differences between in 
crop yield response between scenarios to be  discriminated. The 
current parameters of field scale models may also not be valid for 
predicting crop responses in larger spatial parcels. It is recommended 
that further research be  undertaken to compare yield estimates 
resulting from the application of current field scale models to data 
that is upscaled or derived from novel areas to actual observed yield 
values from these areas to investigate the limits of their current 
parameters and identify sources of uncertainty (Manivasagam and 
Rozenstein, 2020; Peng et al., 2020; Chen et al., 2021). It would also 
be worthwhile exploring where introduce aggregation into current 
modeling methods, as it is unknown whether producing predictions 
at smaller scales and then aggregating the predictions to a larger 
scale grid reduces or increases uncertainty than using aggregated 
large-scale data as model inputs.

Most models identified in our literature review predicted yield of 
wheat, which was in line with the findings of Silva and Giller (2021). 
Data on wheat is also most readily available. This includes crop 
management practices and protection information for which relatively 
little data for crops other than wheat is available. The large amount of 
data that is available on wheat, combined with the fact that wheat is 
the dominant arable crop grown globally, may explain the proliferation 
of models centered around predicting yields of wheat (Frich et al., 
2002; Slater et al., 2021). This may also partially explain why previous 
studies have demonstrated that yield prediction accuracy is relatively 
high for wheat compared to other crops (Iizumi et al., 2013; Doi et al., 
2020). As a wide variety of other crops are grown in the UK, the 
relative scarcity of available data and crop yield models developed to 
predict yield of other crops is a major limiting factor of current 
modeling methods and could potentially hinder the ability of the UK 
agri-food industry to prepare for and adapt to the potential effects of 
climate change (Doi et al., 2020).

Measurements of temperature and precipitation are the climate 
variables most often used to predict crop yield in the UK in the 
identified models. Many datasets reporting measurements of these 
variables are available at both global and field scales, though there was 
still a relative lack of field scale data compared to the number of 
stastical models requiring this data input as indicated by the low 
relative proportion value indicated in Figure 1. This abundance of data 
and the strong associations between increased temperature, increased 
precipitation and increased crop growth may account for these 
variables being widely incorporated into current crop yield models 
(Slater et al., 2021). However, there has been a significant increase in 
yield volatility for major UK crops such as wheat in recent years which 
can only be partially explained by seasonal variation in temperature 
and precipitation (Iizumi and Ramankutty, 2016; Hunt et al., 2019; 
Slater et  al., 2021). Therefore, the extension of current models to 
explicitly account for other climate variables may provide insight into 
the drivers of yield volatility and enable UK farmers to better adapt to 
extreme and changing climate conditions (Arnell and Freeman, 2021; T
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Slater et al., 2021; Zhu et al., 2022). Data on the effect of excessive 
precipitation, which may cause waterlogging of soil, could also 
potentially be integrated into crop models to better account for future 
climate conditions that are likely to be  more extreme (Ploschuk 
et al., 2018).

In particular, it may be advantageous to explore the effects of 
air relative humidity, wind, and atmospheric gas variables for 
which recently published data is available. Higher levels of carbon 

dioxide have been associated with increased growth of crops, 
including wheat, and may therefore provide further explanation for 
recently observed increases in inter-annual yield variability (Addy 
et al., 2021), and increased atmospheric ozone concentration has 
been demonstrated to have an adverse effect on crop yield 
(Emberson et al., 2018). Increased air relative humidity has been 
found to increase crop yield in simulation or controlled 
experimental studies but could also be beneficial in predicting the 

FIGURE 1

Heatmap displaying relative proportion of available data on each variable at each temporal resolution and geographic scale compared relative 
proportion of process-based models requiring input data on that variable at the same temporal resolution and geographic scale.
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effects of disease pressure on crops as more humid conditions are 
likely to support increased growth of fungal pathogens leading to 
yield loss (Velásquez et al., 2018; Romero et al., 2022). Similarly, 
incorporating available wind data into crop models may also allow 
better accounting for disease pressure on crops as higher wind 
speed may aid the dispersal of fungal spores (Rieux et al., 2014; 
Mukherjee et al., 2021).

Soil data was also found to be relatively widely available and used 
to predict crop yield in over half of the identified models at field scale 
and for the whole of Europe, resulting in a relatively even proportion 
of available data to models as indicated in Figures 1, 2. However, all 
models integrating soil data included static measurements of soil 
properties such as starting soil carbon or classification of soil type, 
while data are available on fluctuating soil properties, including soil 

FIGURE 2

Heatmap displaying relative proportion of available data on each variable at each temporal resolution and geographic scale compared relative 
proportion of statistical models requiring input data on that variable at the same temporal resolution and geographic scale.
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temperature and moisture at yearly, daily, and sub-daily resolutions. 
Explicitly incorporating a variable related to soil properties into 
models of UK crop yield may allow for more accurate predictions of 
future crop growth. However, it should be also noted here that due to 
the high amount of rainfall over UK and high rates of soil moisture 
during crop growth seasons, the soil moisture deficit might not 
significantly add information in crop yield prediction models. On the 
other hand, other variables related to droughts, such as heat waves 
would be more beneficial in such applications. Examination of direct 
and indirect effects of climate change and heat waves have been 
demonstrated to result in heat stress to plants and negatively impact 
yield (Asseng et  al., 2011; Zhao et  al., 2016, 2017). Previous crop 
models have also failed to capture the effects of soil properties related 
to soil fertility, such as adequate concentration of essential nutrients 
in plant-available forms in soil, soil pH, and presence of micro-
organisms that may aid in or hinder plant growth (Jones et al., 2017). 
The increased availability of soil data identified in the literature review 
may help to address this current critical limitation of crop yield 
modeling methods (Jones et al., 2017).

Relatively few datasets are available on crop planning and crop 
nutrition despite crop management variables being required as inputs 
into models of crop yield more often than data of any other variable 
category. This is indicated by the relatively low proportion of data to 
models evident in Figures 1, 2, particularly for field scale as well as 
seasonal resolution data. A large number of current modeling 
methods required data on fertilizer treatment, nitrogen application 
rate, and plant available nitrogen but only five datasets provided data 
on fertilizer, predominantly at field scale, and no datasets contained 
explicit information on nitrogen available or applied to plants. Similar 
to the overall trend in the datasets, most available data is on 
management of wheat crops. This relative lack of crop management 
data, particularly for crops other than wheat, could be a major limiting 
factor for current models of UK crop yield as many current models 
assume potential yield losses due to disease, pests, and weed 
competition will be controlled through management practices (Jones 
et al., 2017). Inadequate data on management practices can therefore 
lead to inaccurate predictions of crop yield, with many models 
predicting higher yields than are actually observed due to a failure to 
account for poor or ineffective management (Jones et al., 2017). Many 
models also assume homogeneity across fields for which crop yields 
are predicted when crop planning and nutrition practices often vary 
between fields (Jones et al., 2017; Afshar et al., 2021).

More available data on management practices for a wider variety 
of UK crops could improve our understanding of the effects of disease, 
pests and weeds on crop yield and better account for between-fields 
variability in predictions (Challinor et  al., 2018). The challenge, 
however, lies in how more abundant and varied data on crop 
management for UK crops other than wheat could be obtained. One 
way to overcome to this issue is to use remote sensing datasets and 
retrievals related to nutrition and other management practices (Afshar 
et  al., 2021; Mandel et  al., 2022). Grey literature, such as reports 
generated by UK-based independent agricultural consultancies could 
also be  investigated as a possible sources of additional crop 
management data. Further investment should also be  put into 
furthering collaborations between researchers and farmers to directly 
source data on crop management practices (e.g., sowing date, amount 
of nutrition, irrigation timing) that could be used to validate remote 
sensing observations. However, the need to ensure anonymity for data 

providers from the agricultural industry may pose challenges to 
developing open and reproducible models, and there may be a self-
selection bias in that larger farms with more access to advanced 
machinery capable of automatically logging yield data might be more 
likely to contribute (Challinor et al., 2018).

Only a small number of models explicitly incorporate input data 
on plant phenotype into predictions of crop yield, as indicated by 
relatively high proportion of available data to models indicated in 
Figures 1, 2 at scales for which phenotype data or models requiring 
phenotype data as inputs existed. Process-based models including this 
type of data do so by incorporating data on variables measured once 
at the start of the growing season, such as initial biomass in the Yield-
SAFE model (Palma et al., 2018) or that can be measured at field scale 
using remote sensing observations as well, such as leaf area index in 
the Community Land Model (Lawrence et al., 2019). This may be due 
to the relatively low amount of available data on crop plant phenotype 
that was found to be available through the literature review. However, 
in recent years, there have been significant advancements in 
technology for high-throughput plant imaging platforms which have 
led to collection of large, high-resolution time-series image datasets 
of crop plants from which detailed data on dynamic phenotypic traits 
could be  collected, though these datasets are often not openly 
available, particularly in their native, high-resolution (Choudhury 
et al., 2019). Extracting data from these datasets currently poses a 
significant bottleneck as manual analysis tends to be  very time 
consuming and requires high expertise, whereas automated analysis 
methods using computer vision could be applied to image datasets to 
potentially extract phenotype data more accurately and efficiently (Lee 
et al., 2018; Yang et al., 2020). Integrating automatically extracted 
phenotype data into models of crop yield could then help to account 
for gaps between yield predicted with current models and actual 
observed yields by allowing identification of plant traits that increased 
growth and tolerance to stresses caused by changing climate 
conditions, in turn aiding farmers in selecting and breeding more 
resilient cultivars (Lee et al., 2018; Yang et al., 2020).

No identified models explicitly take genotype data into account 
when predicting crop yield and no relevant datasets on the genetics of 
crop plants grown in the UK were found to be openly available. A 
small number of models indirectly account for some degree of within-
species variation in crop yield by examining the difference between 
cultivars, which can be empirically represented as differing based on 
genotype-specific parameters (GSPs) estimated from laboratory or 
field study data (Begum et al., 2017; Addy et al., 2020). Integrating data 
on cultivars or GSPs has been found to improve yield predictions, 
however the assumptions made by current modeling approaches may 
not reflect the full complexity of genotype-by-environment 
interactions which may lead to gaps between predicted and observed 
yields (Acharya et  al., 2017; Oliveira et  al., 2021). For instance, 
different gene combinations may lead to different responses to varying 
temperatures, while current models assume all genotypes will respond 
in the same way (Acharya et  al., 2017; Oliveira et  al., 2021). The 
integration of explicit and detailed genotype data into crop models, 
possibly by substituting a genetics-based module component for the 
dynamic module component that is encapsulated in many current 
crop yield models, could allow more within-species variation in yield 
to be included in predictions (Hwang et al., 2017). Grey literature such 
as official registration documents for annual variety assessment and 
data from genetic progress trials that compare varietal differences at 
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various times of registrations could also be  explored to better 
understand the impact of changing population genotypes on crop 
yield over long time periods.

Crop protection data was only considered in one model, which 
coincides with the findings of Silva and Giller (2021). Recently 
published openly accessible data was found to be available for the 
impacts of insect pests, weed competition and disease on wheat crops. 
As previously mentioned, many current models of UK crop yield to 
fail to account for crop losses resulting from poor crop protection and 
elevated levels of disease, pests and/or weeds, often leading to 
overestimates of predicted yield (Jones et al., 2017; Velásquez et al., 
2018; Raza and Bebber, 2022; Romero et al., 2022). These errors in 
yield estimates can be exacerbated by the fact that weather conditions 
favorable for plant growth may also lead to increased growth of 
invasive weeds, pests, and pathogens (Jones et al., 2017). Integrating 
explicit data on crop protection variables may prove difficult as 
injuries and damages to crops caused by weeds, pathogens, and insect 
pests tend to be very complex, multifaceted interactions (Jones et al., 
2017; Velásquez et al., 2018; Raza and Bebber, 2022; Romero et al., 
2022) However, there is potential for the available datasets on these 
biotic factors to be used to correct or adjust yield predictions as a post-
processing step in order to assist in addressing gaps between current 
yield predictions and observed trends in yield. Due to the availability 
of data it may be  logical to begin developmental of these post-
processing steps to account for the complex pressures of disease, insect 
pests and weeds for predictions of wheat yield in the UK.

5. Conclusion

A major limitation identified in current modeling methods for 
crop yield for the UK was that majority of models were driven by 
inputs that cannot be predicted in advance without uncertainty such 
as weather and soil conditions, which is likely to introduce added 
uncertainty into crop yield predictions that may undermine the value 
of these predictions to make decisions regarding crops. Machine 
learning models including random forest, neural network, or 
convolutional neural network models could prove useful in improving 
predictions of crop yield under varying near-term climate conditions, 
as a high degree of prediction accuracy has been achieved for major 
crops such as maize and soybean in the US and other non-UK regions 
when trained on at least 30 years of historical weather data (Crane-
Droesch, 2018; Russello, 2018; Ansarifar et al., 2021). Collection and 
integration of data on extreme weather events into models of 
meteorological impacts on UK crops could also improve the accuracy 
of crop yield predictions as increased frequency of extreme weather 
events is expected under many future climate scenarios (Konduri 
et al., 2020).

This limitation of the unpredictability of climate and soil data ties 
into another key finding of this literature review, which was that the 
relative lack of openly accessible data on crop management, crop 
protections, and crop physiology poses a significant challenge to 
improving current models of crop yield in the UK. The scarcity of data 
on these variables may at least partially explain why contemporary 
models predominantly input data on factors that are beyond our 
ability to directly control, such as weather, as opposed to those that 
we can such as management and crop protection practices. Strategies 
such as increased collaboration with farmers or agricultural industry 
stakeholders to collect and anonymize data, and machine-learning 

based methods for automated analysis of high-throughput plant image 
datasets could potentially address these gaps.

This literature review also highlights the untapped potential to 
extend current crop models by integrating openly accessible data 
available for UK crops. In particular, two key avenues for future 
research that could lead to improved predictions of crop yield to 
inform more effective management practices for growing climate 
change resistant crops were identified. Firstly, scaling up of current 
models to predict crop yield at a coarse-grain scale for the whole of 
the UK using recently published datasets on weather and soil variables 
with global and European coverage should be explored. Secondly, 
models should be extended to explicitly integrate available data on 
crop protection, including data on disease, insect pests and weed 
competition. Incorporating data on these crop protection factors into 
post-processing corrections to model predictions could allow for a 
more nuanced, holistic understanding of the complex crop growth 
‘ecosystem’ and contribute to explaining yield gaps. It is possible that 
the aforementioned strategies for improving crop yield model 
predictions may also be of benefit if applied to model for crops from 
regions outside the UK, such as temperate parts of Europe and the US 
that have historically exhibited similar long-term trends of climate, 
pathogens and pest on crop growth. It is also possible that existing 
process-based models which account for environmental impacts on 
crop growth, but which have not previously been used to model crop 
growth in the UK, could be applied to data from UK crops (Roberts 
et al., 2017; Manivasagam and Rozenstein, 2020; Weih et al., 2022). 
However, it remains uncertain how the parameters of current crop 
models may limit their application to data from different crop species 
or from areas of different sizes or with different environmental and 
management conditions. It is therefore important that research 
be undertaken to quantify and uncover possible source of uncertainty 
surrounding predictions made using current models using data from 
novel contexts and scales before using these predictions to inform 
crop management and policy decisions.
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