

Rothamsted Research Harpenden, Herts, AL5 2JQ

Telephone: +44 (0)1582 763133 Web: http://www.rothamsted.ac.uk/

# **Rothamsted Repository Download**

PhD Thesis

Heard, S. 2014. *Plant Pathogen Sensing for Early Disease control.* PhD Thesis Rothamsted Research

The output can be accessed at: <u>https://repository.rothamsted.ac.uk/item/8wq13</u>.

© 9 February 2014, Please contact library@rothamsted.ac.uk for copyright queries.

12/03/2019 09:30

repository.rothamsted.ac.uk

library@rothamsted.ac.uk

# Plant Pathogen Sensing for Early Disease Control

A thesis submitted to the University of Manchester for the degree of Doctor in Philosophy in the Faculty of Engineering and Physical Sciences

2013

**Stephanie Heard** 

School of Electrical and Electronic Engineering

# **Table of Contents**

| Table of Contents                                                                       | 2       |
|-----------------------------------------------------------------------------------------|---------|
| List of Figures                                                                         | 10      |
| List of Tables                                                                          | 13      |
| List of abbreviations                                                                   | 16      |
| Abstract                                                                                | 18      |
| Declaration                                                                             | 19      |
| Copyright                                                                               | 19      |
| Acknowledgements                                                                        | 20      |
| Chapter 1: General Introduction                                                         | 21      |
| 1.1 The challenges of securing food for a growing global population                     | 21      |
| 1.2 The use of crop protection in agricultural systems                                  | 22      |
| 1.3 The role of fungal pathogens in agriculture                                         | 24      |
| 1.4 Fungal infection modes                                                              | 28      |
| 1.5 Technological advances in fungal pathogen forecasting systems, detection and diagno | osis in |
| agricultural systems                                                                    | 29      |
| 1.6 Detection and diagnosis of plant pathogens                                          | 30      |
| 1.6.1 DNA-based detection methods                                                       | 30      |
| 1.6.2 Immunology-based/ Antibody-based detection methods                                | 31      |
| 1.6.3 Antibodies for metabolite sensing                                                 | 33      |
| 1.6.4 Biosensor for pathogen detection                                                  | 34      |
| 1.6.4.1 Surface plasmon resonance (SPR)                                                 | 35      |
| 1.6.4.2 Electrochemical biosensors                                                      | 35      |
| 1.6.4.3 Wireless biosensor networks                                                     | 36      |
| 1.7 The SYield biosensor consortium                                                     | 38      |
| 1.8 Sclerotinia sclerotiorum: the pathogen of choice for the SYield Biosensor           | 39      |
| 1.8.1 Sclerotinia sclerotiorum: Taxonomy                                                | 39      |
| 1.8.2 Advances in the genome sequencing of Sclerotinia sclerotiorum                     | 40      |
| 1.8.3 Sclerotinia sclerotiorum: Life cycle and infection strategy                       | 40      |
| 1.8.4 Oxalic acid and its role in Sclerotinia sclerotiorum infection                    | 44      |
| 1.8.5 Biosynthesis of OA                                                                | 46      |
| 1.8.6 Sclerotinia sclerotiorum: a necrotroph, a biotroph or something in between?       | 49      |
| 1.8.7 Control of Sclerotinia sclerotiorum in the field                                  | 49      |
| 1.8.8 Forecasting systems available for S. sclerotiorum                                 | 50      |
| 1.9 Project objectives                                                                  | 51      |
| 1.9.1 Hypotheses to be tested:                                                          | 52      |
| Chapter 2: General Experimental Procedures                                              | 53      |

| 2.1 S. sclerotiorum sclerotia and ascospore production                                                   | 53               |
|----------------------------------------------------------------------------------------------------------|------------------|
| 2.2 S. sclerotiorum mycelial cultures                                                                    | 53               |
| 2.3 Bioassay to test different complex media to induce oxalic acid production by S. sclerotic ascospores | <i>rum</i><br>55 |
| 2.4 Sigma high throughput spectrophotometric determination of oxalic acid in liquid media                | 56               |
| 2.6 Calculation of the concentration of oxalic acid in samples                                           | 57               |
| 2.7 Statistical analysis                                                                                 | 58               |
| 2.8 DNA extraction                                                                                       | 58               |
| 2.8.1 Hyphae DNA extraction                                                                              | 58               |
| 2.8.2 <i>S. sclerotiorum</i> ascospores DNA extraction                                                   | 58               |
| 2.9 RNA extraction                                                                                       | 59               |
| 2.10 Amplification of DNA targets using Polymerase Chain Reaction                                        | 59               |
| 2.11 Quantitative Polymerase Chain Reaction                                                              | 60               |
| Chapter 3: The development of an electrochemically compatible biological ma                              | trix             |
| for the specific induction of S. sclerotiorum ascospore germination and oxalic a                         | acid             |
| secretion to be used within an infield automated detection biosensor                                     | 61               |
| 3.1.1 Introduction                                                                                       | 61               |
| 3.1.2 Considerations for the biological matrix design and biosensor detection success                    | 64               |
| 3.2 Experimental Procedures                                                                              | 67               |
| 3.2.1 Bioassay for the quantification of OA produced by ascospores in on solid media r                   | nade             |
| from plant extracts                                                                                      | 67               |
| 3.2.2 Preliminary experiments                                                                            | 69               |
| 3.2.2.1 Detection limits of Sigma OxOx enzymatic spectrophotometric assay                                | 69               |
| 3.2.2.2 Preliminary work to determine whether any additions to assay can inhibit enzyme activit          | y.69             |
| 3.2.2.3 Storing medium for later OA detection and electrochemical analysis.                              | 69               |
| 3.2.2.4 The effect of temperature, shaking and a flotation membrane on OA production                     | 70               |
| 3.2.3 OA production induction via Tricarboxylic Acid Cycle intermediates combined with                   | ith a            |
| baseline nutrient                                                                                        | 70               |
| 3.2.4 Complex media (Soytone and Yeast) combined with TCA cycle intermediates and their e                | ffect            |
| on OA production                                                                                         | 70               |
| 3.2.5 The influence of different glucose concentrations on OA production in a complex medium             | 71               |
| 3.2.6 TCA cycle intermediate additions                                                                   | 71               |
| 3.2.7 Comparison four electrochemical compatible media for OA induction                                  | 72               |
| 3.2.8 Limits of detection.                                                                               | 72               |

| 3.2.9 The relationship between S. sclerotiorum ascospore number, biomass and oxalic         | acid     |
|---------------------------------------------------------------------------------------------|----------|
| production                                                                                  | 72       |
| 3.2.10 Buffering Capacity of the medium                                                     | 73       |
| 3.2.11 Competition assays                                                                   | 74       |
| 3.2.12 High throughput fungicide sensitivity testing                                        | 74       |
| 3.3 Results                                                                                 | 76       |
| 3.3.1 The used of host plant extracts within a solid matrix                                 | 76       |
| 3.3.2 Liquid medium is better than solid medium for the quantification of OA                | 77       |
| 3.3.3 Preliminary experiments                                                               | 79       |
| 3.3.3.1 Detection limits of Sigma OxOx enzymatic spectrophotometric assay                   | 79       |
| 3.3.3.2 Preliminary work to determine whether any additions to assay can inhibit enzyme act | tivity   |
| $3$ 3 3 3 Storing medium for later $\Omega \Delta$ detection and electrochemical analysis   | 80<br>81 |
| 3.3.3.4 The effect of temperature, shaking and a flotation membrane on OA production        | 01<br>82 |
| 5.5.5.4 The effect of different environmental conditions on OA production                   | 02<br>02 |
| Figure 18: The effect of afferent environmental conditions on OA production                 | 02       |
| 5.5.5.5 Creating a more defined meature which induces OA secretion and is compatible with   | both     |
| the enzymatic spectrophotometric assay and the biosensor electrochemistry                   | 83<br>   |
| 3.3.5.6 OA production induction via Tricarboxylic Acia Cycle intermediates combined wi      | th a     |
|                                                                                             | 84       |
| 3.3.4 Complex media (Soytone and Yeast) combined with TCA cycle intermediates and their e   | ffect    |
| on OA production                                                                            | 86       |
| 3.3.5 The influence of glucose concentration on OA production in a complex medium           | 87       |
| 3.3.6 TCA cycle intermediate additions                                                      | 90       |
| 3.3.7 Electrochemical-compatibility of the defined medium for biosensor development         | 93       |
| 3.3.8 Comparison four electrochemical compatible media for OA induction                     | 95       |
| 3.3.9 Limits of detection                                                                   | 97       |
| 3.3.10 Verifying spore counts using DNA quantification                                      | 98       |
| 3.3.11 The relationship between S. sclerotiorum ascospore number, biomass and oxalic        | acid     |
| production                                                                                  | 99       |
| 3.3.12 Buffering Capacity of the medium                                                     | . 104    |
| 3.3.13 The effect of competing fungi on oxalic acid production                              | . 109    |
| 3.3.14.1 Competition assays                                                                 | . 109    |
| 3.3.14.2 Fungicide additions to the medium                                                  | . 111    |
| 3.4 Discussion                                                                              | . 115    |
| 3.4.1 Optimising OA secretion from ascospores in a liquid matrix                            | . 115    |
| 3.4.2 pH and Buffering of complex media to maintain OA production                           | . 116    |
| 3.4.3 The relationship between S. sclerotiorum ascospore number, biomass and oxalic         | acid     |
| production                                                                                  | . 117    |
| 3.4.4 Selectivity of the medium                                                             | . 119    |

| Chapter 4: The testing of an electrochemically compatible nutrient me                   | dium for   |
|-----------------------------------------------------------------------------------------|------------|
| detection of oxalic acid produced by S. sclerotiorum ascospores within an oilseed       |            |
| rape system                                                                             | 120        |
| 4.1.1 Introduction                                                                      | 120        |
| 4.1.2 Objectives of field trials:                                                       | 120        |
| 4.2 Experimental Procedures                                                             | 121        |
| 4.2.1 Field trial set up                                                                | 121        |
| 4.2.2 Medium testing                                                                    | 124        |
| 4.2.3 Electrochemical Measurement of oxalic acid production                             | 126        |
| 4.2.4 Daily spore counts of qPCR of field trial samples                                 | 128        |
| 4.2.5 ITS identification of other fungi present in field samples                        |            |
| 4.3 Results                                                                             | 128        |
| 4.3.1 Field trial results 2011                                                          | 128        |
| 4.3.1.1 Apothecia development and visible signs of S. sclerotiorum disease in the field | , 2011 128 |
| 4.3.1.2 OxOx spectrophotometer assay, 2011                                              | 129        |
| 4.3.1.3 Validation of S. sclerotiorum DNA using qPCR 2011                               | 129        |
| 4.3.2. Field trial Results 2012                                                         |            |
| 4.3.2.1 Apothecia development in the field 2012                                         | 132        |
| 4.3.2.2 OxOx spectrophotometer assay and electrochemical detection of OA 2012           | 132        |
| 4.3.2.3 Validation of S. sclerotiorum DNA using qPCR 2012                               | 133        |
| 4.3.2.4 Disease Assessment 2012                                                         | 134        |
| 4.3.2.5 Rooftop sampling for both field trials                                          | 138        |
| 4.3.2.6 Isolation of other fungal species present within the field samples              | 140        |
| 4.4 Discussion                                                                          | 143        |
| 4.4.1 Summary of field trials                                                           | 143        |
| 4.4.2 Fungal contaminants                                                               | 143        |
| 4.4.3 The use of an electrochemical biosensor to detect OA                              | 145        |
| 4.4.4 Positioning of sampling equipment                                                 | 146        |
| 4.4.5 Equipment failures                                                                | 146        |
| 4.4.6 Future of SYield                                                                  | 147        |
| Chapter 5: Predicting the secretome of Sclerotinia sclerotiorum to ident                | ify novel  |
| detection targets and candidate genes that play a role during infection                 | 150        |
| 5.1 Introduction                                                                        | 150        |
| 5.2 Experimental Procedures                                                             | 151        |
| 5.2.1 Bioinformatics                                                                    | 151        |
| 5.2.2 Stage 1: Predicting the total secretome                                           | 152        |
| 5.2.4 Genes coding for proteins with a known function                                   | 153        |

| 5.2.5 S. sclerotiorum genome map                                                         |               |
|------------------------------------------------------------------------------------------|---------------|
| 5.2.6 Blast2Go analysis                                                                  | 154           |
| 5.2.7 EST support                                                                        | 154           |
| 5.2.8 Multispecies Comparison                                                            | 154           |
| 5.3 Results                                                                              |               |
| 5.3.1 The predicted secretomes of <i>S. sclerotiorum</i> and <i>B. cinerea</i>           |               |
| 5.3.2 Distribution of the genes coding for the refined secretome across the S. sclerotic | orum genome   |
|                                                                                          |               |
| 5.3.3 Identifications of RxLR-dEER motifs and Y/F/WxC motifs in the S. scleroti          | orum refined  |
| secretome.                                                                               | 164           |
| 5.3.4 EST support analysis for the secretome                                             | 166           |
| 5.3.5 EST support for unannotated sequences                                              |               |
| 5.3.6 Further analysis of unannotated sequences                                          |               |
| 5.3.7 PFAM abundance within predicted secreted proteins with a potential plant c         | ell degrading |
| function                                                                                 | 170           |
| 5.3.8 Further analysis of PFAM abundance across the S. sclerotiorum refined secretom     | e173          |
| 5.3.9 Biological, functional and compartmental analysis of the S. sclerotiorum secreton  | ne 175        |
| 5.3.10 Proteome support for the refined secretome                                        | 177           |
| 5.3.11 Known virulence factors identified in the refined secretome                       | 179           |
| 5.3.12 Multispecies comparison analysis                                                  |               |
| 5.3.12.1 Uniquely secreted proteins                                                      |               |
| 5.3.12.2 Shared proteome homology between species                                        |               |
| 5.3.12.3 Multispecies comparison of gene copy                                            |               |
| 5.4 Discussion                                                                           |               |
| Chapter 6: Using the S. sclerotiorum secretome to identify uniquel                       | v secreted    |
| nertain targets for infield disease detection                                            | 102           |
| protein targets for inneru uisease detection                                             |               |
| 6.1 Introduction                                                                         |               |
| 6.2 Experimental Procedures                                                              |               |
| 6.2.1 Bioinformatics                                                                     | 195           |
| 6.2.2 GPI Anchors                                                                        |               |
| 6.2.3 Primer design used for PCR screening and RT-qPCR                                   |               |
| 6.2.4 First Strand cDNA synthesis                                                        | 197           |
| 6.2.5 Generating GFP tagged protein targets                                              |               |
| 6.2.6 Transformation of competent cells with pBluntNAT-Odc2GFP vector:                   |               |
| 6.2.7 Restriction Digests                                                                |               |
| 6.2.7.1 Verification of construct                                                        |               |
| 6.2.7.2 Restriction digest of construct template inserts                                 |               |
| 6.2.8 Primer design for construct template insert                                        |               |

| 6.2.9 Amplification of insert                                                               | 200      |
|---------------------------------------------------------------------------------------------|----------|
| 6.2.10 Ligation of the digested inserts and plasmid.                                        | 200      |
| 6.2.11 Methods for Fungal Transformation                                                    | 201      |
| 6.2.11.1 Protoplast production                                                              | 201      |
| 6.2.11.2 Transformation of S.sclerotiorum protoplasts                                       | 202      |
| 6.2.11.3 DNA extraction for southern and PCR                                                | 205      |
| 6.2.11.4 Polymerase chain reaction for verification of gene integration                     | 206      |
| 6.2.11.5 Southern Blot                                                                      | 206      |
| 6.2.11.5.1 DNA digestion                                                                    | 206      |
| 6.2.11.5.2 Probe synthesis                                                                  | 207      |
| 6.2.11.5.3 Southern blot and hybridisation                                                  | 207      |
| 6.2.11.5.4 Washing and detection                                                            | 208      |
| 6.2.11.5.5 Chemiluminescent detection film development                                      | 208      |
| 6.2.11.5.6 Film development                                                                 | 208      |
| 6.2.12 GFP fluorescence under different environmental growth conditions                     | 208      |
| 6.2.12.1 Solid growth                                                                       | 209      |
| 6.2.12.2 Liquid medium                                                                      | 209      |
| 6.2.12.3 In planta infection                                                                | 209      |
| 6.3 Results                                                                                 |          |
| 6.3.1 Bioinformatics                                                                        | 210      |
| 6.3.1.2 Gene selection method 2                                                             | 210      |
| 6.3.1.3 GPI Anchor analysis                                                                 | 211      |
| 6.3.2 Screening of isolates                                                                 |          |
| 6.3.3 EST support and relative gene expression of unique putative secreted proteins         | 214      |
| 6.3.4 RNA sequencing expression                                                             |          |
| 6.3.5 GFP transformation: construct development                                             |          |
| 6.3.6 S. sclerotiorum transformation                                                        |          |
| 6.3.7 Southern Blot                                                                         |          |
| 6.3.8 GFP fluorescence of secreted proteins under different growth conditions               |          |
| 6.3.9 Updated BlastP results                                                                |          |
| 6.4 Discussion                                                                              |          |
| 6.4.1 The use of a bioinformatics pipeline to select protein targets for pathogen detection |          |
| 6.4.2 Protein expression verification                                                       |          |
| 6.4.3 GFP as a reporter tag for secreted proteins                                           |          |
| Chapter 7: A comparative investigation into the transcriptomes of wild ty                   | pe and   |
| an oxalic acid deficient S. sclerotiorum mutant during in vitro growth and in               | ifection |
| of Arabidopsis leaves                                                                       | 235      |
|                                                                                             |          |
| /.1 INIFOQUCTION                                                                            |          |

| <ul> <li>7.2.1 Plant varieties, fungal strains and infection conditions.</li> <li>7.2.2 RNA extraction</li> <li>7.2.3 TruSeq RNA Library Construction (ICBR Experimental procedure)</li> <li>7.2.4 Illumina GAIIx Sequencing (ICBR Experimental procedure)</li> </ul> | . 236<br>. 237<br>. 238<br>. 238<br>. 238<br>. 238<br>. 238 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| <ul> <li>7.2.2 RNA extraction</li> <li>7.2.3 TruSeq RNA Library Construction (ICBR Experimental procedure)</li> <li>7.2.4 Illumina GAIIx Sequencing (ICBR Experimental procedure)</li> </ul>                                                                          | .237<br>.238<br>.238<br>.238<br>.238<br>.238                |
| <ul><li>7.2.3 TruSeq RNA Library Construction (ICBR Experimental procedure)</li><li>7.2.4 Illumina GAIIx Sequencing (ICBR Experimental procedure)</li></ul>                                                                                                           | . 238<br>. 238<br>. 238<br>. 238<br>. 238                   |
| 7.2.4 Illumina GAIIx Sequencing (ICBR Experimental procedure)                                                                                                                                                                                                         | . 238<br>. 238<br><b>. 241</b><br>. 241                     |
|                                                                                                                                                                                                                                                                       | . 238<br><b>. 241</b><br>. 241                              |
| 7.2.5 Bioinformatics Analysis                                                                                                                                                                                                                                         | <b>. 241</b><br>. 241                                       |
| 7.3 Results                                                                                                                                                                                                                                                           | .241                                                        |
| 7.3.1 Challenges with using $\Delta$ oah mutant to obtain high quality RNA                                                                                                                                                                                            |                                                             |
| 7.3.2 Calculation of the percentage of reads aligned to each reference genome                                                                                                                                                                                         | . 241                                                       |
| 7.3.3 The most abundant transcripts in each library                                                                                                                                                                                                                   | . 246                                                       |
| 7.3.4 Comparison of significant differential putative secreted protein gene expression events a                                                                                                                                                                       | cross                                                       |
| the different conditions                                                                                                                                                                                                                                              | . 248                                                       |
| 7.3.5 Expressed putative secreted proteins                                                                                                                                                                                                                            | . 249                                                       |
| 7.3.6 Comparison of significantly expressed secreted proteins during WT in vitro conditions a                                                                                                                                                                         | nd in                                                       |
| planta infection                                                                                                                                                                                                                                                      | . 251                                                       |
| 7.3.7 Comparison of significantly expressed secreted proteins during WT and $\Delta oah$ in                                                                                                                                                                           | vitro                                                       |
| conditions                                                                                                                                                                                                                                                            | . 256                                                       |
| 7.3.8 The botcinic acid biosynthesis cluster                                                                                                                                                                                                                          | . 257                                                       |
| 7.3.9 Expression of appressoria associated genes                                                                                                                                                                                                                      | . 260                                                       |
| 7.3.10 Expression of documented virulence genes                                                                                                                                                                                                                       | . 261                                                       |
| 7.3.11 Polygalacturonase expression                                                                                                                                                                                                                                   | . 263                                                       |
| 7.3.12 Genes with similar expression patterns as <i>oah</i>                                                                                                                                                                                                           | . 265                                                       |
| 7.4 Discussion                                                                                                                                                                                                                                                        | . 268                                                       |
| 7.4.1 Genes with the highest abundance                                                                                                                                                                                                                                | . 268                                                       |
| 7.4.2 Expression of the putative refined secretome                                                                                                                                                                                                                    | . 269                                                       |
| 7.4.3 Botcinic acid gene cluster expression                                                                                                                                                                                                                           | . 271                                                       |
| 7.4.4 Proposed virulence genes                                                                                                                                                                                                                                        | . 273                                                       |
| 7.4.5 Polygalcturonases expression                                                                                                                                                                                                                                    | . 276                                                       |
| 7.4.6 Genes with a similar expression pattern as <i>oah</i>                                                                                                                                                                                                           | . 277                                                       |
| Chapter 8: General Discussion                                                                                                                                                                                                                                         | 279                                                         |
| 8.1 Summary of key findings and developments                                                                                                                                                                                                                          | . 279                                                       |
| 8.2 Development of a robust method for ascospore production                                                                                                                                                                                                           | . 281                                                       |
| 8.3 Advances in Decision Support Systems for monitoring S. sclerotiorum disease outbreaks                                                                                                                                                                             | and                                                         |
| the future of the SYield biosensor                                                                                                                                                                                                                                    | . 282                                                       |
| 8.4 Advances in pathogenomics                                                                                                                                                                                                                                         | . 286                                                       |
| 8.5 Advances in the understanding of S. sclerotiorum biology through genomics                                                                                                                                                                                         | . 287                                                       |
| List of References                                                                                                                                                                                                                                                    | . 293                                                       |

# 

| ppendices                                                                               | 312    |
|-----------------------------------------------------------------------------------------|--------|
| Appendix 1: The 432 genes which make up the refined S. sclerotiorum secretome.          | 312    |
| Appendix 2: The 499 genes which make up the refined <i>B.cinerea</i> secretome          | 319    |
| Appendix 3: Secretome sequence sets mapped across the S. sclerotiorum refined secretome | e 327  |
| Appendix 4.1: Plant polysaccharide degrading proteins                                   | 329    |
| Appendix 4.2: Lipid degrading proteins                                                  | 331    |
| Appendix 4.3: Protein degrading proteins                                                | 332    |
| Appendix 5: The proteomes used in the cross species comparison                          | 333    |
| Appendix 6: The cross species comparison between the 432 protein sequences in           | the S. |
| scleroriotum refined sectrome and the homologous                                        | 336    |
| Appendix 7: Field Trials results 2011                                                   | 342    |
| Appendix 8: Field Trial results 2012                                                    | 343    |

# List of Figures

| Figure 1: Estimated disease loss in oilseed rape.                                                 | 25     |
|---------------------------------------------------------------------------------------------------|--------|
| Figure 2: The DAS-ELISA assay                                                                     | 32     |
| Figure 3: Positive and negative detection of pathogens using handheld lateral flow devices.       | 33     |
| Figure 4: The basic components of a biosensor system.                                             | 34     |
| Figure 5: The life cycle and disease strategy of S. sclerotiorum in oilseed rape systems          | 42     |
| Figure 6: A visible cloud- like puff of ascospores released from S. sclerotiorum apothecia        | 43     |
| Figure 7: The Tricarboxylic Cycle taken from Kegg.                                                | 48     |
| Figure 8: The 12 well plate used to test various liquid media for oxalic acid production          | by S.  |
| sclerotiorum ascospores                                                                           | 55     |
| Figure 9: Oxalic acid concentration determined using a high throughput spectrophotometric assay   | 57     |
| Figure 10: Schematic of the basic principles of electrochemistry used in the SYield biosensor     | 64     |
| Figure 11: The standard OA concentration agar plates.                                             | 68     |
| Figure 12: Plate set up for fungicide sensitivity assay.                                          | 75     |
| Figure 13: BPB bleaching caused by three S. sclerotiorum different spore solutions                | 77     |
| Figure 14: Different amounts of sclerotia formation on different agars containing BPB             | 77     |
| Figure 15: Detection limits of the Sigma OxOx enzymatic spectrophotometric assay.                 | 79     |
| Figure 16: Absorbance readings of known concentrations of OA in PDB media containing dif          | ferent |
| concentrations of the malate                                                                      | 80     |
| Figure 17: Storing medium for later OA detection and electrochemical analysis                     | 81     |
| Figure 18: The effect of different environmental conditions on OA production                      | 82     |
| Figure 19: The effect of different additions to minimal nutrient media on OA production.          | 85     |
| Figure 20: The effects of soytone and yeast media on OA production.                               | 86     |
| Figure 21: The effect of adding glucose to complex growth media to induce OA production           | by S.  |
| sclerotiorum ascospores                                                                           | 87     |
| Figure 22. The effect of increasing glucose concentrations on OA production.                      | 89     |
| Figure 23. The effect of adding different TCA cycle intermediates on OA production                | 92     |
| Figure 24: The effect of different media on the efficiency of the electrochemical assay           | 94     |
| Figure 25: Oxalic acid production by S.sclerotiorum ascospores in different, electrochemical comp | atible |
| media                                                                                             | 96     |
| Figure 26: The effects of different ascospore number on OA production.                            | 97     |
| Figure 27: Using qPCR to determine accurate ascospore numbers and OA production.                  | 99     |
| Figure 28: The relationship between OA production, pH change and dry biomass accumulation         | on of  |
| different ascospores dilutions                                                                    | 102    |
| Figure 29: Predicted means generated by the REML analysis.                                        | 103    |
| Figure 30: Buffering capacity of MES buffer.                                                      | 105    |
| Figure 31: Buffering capacities of HEPES and succinate buffers.                                   | 107    |
| Figure 32: The change in pH monitored in buffered media.                                          | 108    |
| Figure 33: Oxalic acid produced by different fungal species isolated from field trial samples     | 110    |

| Figure 34: The effect of fungal contaminants on oxalic acid production by two different spore d     | ilutions.      |
|-----------------------------------------------------------------------------------------------------|----------------|
|                                                                                                     | 110            |
| Figure 35: The effect of combined fungicide treatment on S. sclerotiorum fungal competitors         | 114            |
| Figure 36: Air sampling devices used during field trials                                            | 122            |
| Figure 37: Field set up for 2011 and 2012.                                                          | 123            |
| Figure 38: Pot incubation assay                                                                     | 125            |
| Figure 39: Electrochemical set up.                                                                  | 127            |
| Figure 40: Field trial results 2011.                                                                | 130            |
| Figure 41. Field trial results 2011                                                                 | 131            |
| Figure 42: Oilseed rape with S. sclerotiorum disease symptoms.                                      | 134            |
| Figure 43: Field trial 2012 field results.                                                          | 135            |
| Figure 44: Field trial result 2012.                                                                 | 136            |
| Figure 45: Disease assessment.                                                                      | 137            |
| Figure 46: Rooftop S. sclerotiorum detection.                                                       | 139            |
| Figure 47: The 2013 automated SYield device.                                                        | 148            |
| Figure 48: S. sclerotiorum secretome pipeline.                                                      | 158            |
| Figure 49: <i>B. cinerea</i> secretome pipeline.                                                    | 159            |
| Figure 50: The S. sclerotiorum refined secretome distribution across the 16 mapped chromosomer      | 3 162          |
| Figure 51: The physiological process that the proteins within the refined secretome are involved in | n 176          |
| Figure 52. The pBluntNAT-Odc2GFP construct generated at JRL                                         | 198            |
| Figure 53. Primer design of construct inserts.                                                      | 200            |
| Figure 54. The pBluntNAT-GFP construct.                                                             | 203            |
| Figure 55. Onion infection assay                                                                    | 209            |
| Figure 56. The relative quantification of putative secreted proteins.                               |                |
| Figure 57. Sequencing of the final re-ligated pBluntNAT-Odc2GFP construct                           |                |
| Figure 58. PCR verification of transformed cultures                                                 |                |
| Figure 59. Southern blot of the S. sclerotiorum transformants generated.                            |                |
| Figure 60. Transformant growth on PDA, 12 dpi                                                       | 221            |
| Figure 61. GFP fluoresence in S. sclerotiorum transformants grown on cellophane sheets over PD      | A 222          |
| Figure 62. Transformants grown in YP sucrose broth for four days.                                   | 223            |
| Figure 63. GFP fluoresence in S. sclerotiorum transformants grown on water agar                     | 224            |
| Figure 64. GFP fluoresence in S. sclerotiorum transformants grown on water agar covered w           | ith Lilly      |
| pollen                                                                                              | 225            |
| Figure 65. S. sclerotiorum transformant infection of onion epidermis                                | 226            |
| Figure 66. S. sclerotiorum transformant infection of onion epidermis, 1 day post inoculation        | 227            |
| Figure 67. Alignments of successfully integrated SP1 and SP4 protein sequences                      | 229            |
| Figure 68: Bioinformatics workflow for RNAseq alignments.                                           | 240            |
| Figure 69: A .thaliana infection with S. sclerotiorum agar plugs inoculated with WT strain an       | nd <i>∆oah</i> |
| strain                                                                                              | 243            |
| Figure 70: A. thaliana leaf infection progression over two time points.                             |                |

| Figure 71: Leaf staining of fungal infection                                                 |             |
|----------------------------------------------------------------------------------------------|-------------|
| Figure 72: Patterns of secreted protein expression.                                          |             |
| Figure 73: Botcinic acid cluster.                                                            |             |
| Figure 74: Three subgroups of putative polygalacturonases expressed in during WT in vitro an | d in planta |
| condition                                                                                    |             |
| Figure 75: Three groups of genes which exhibited similar expression profiles to <i>oah</i>   |             |
| Figure 76: Spore dispersal events of fungal pathogens.                                       |             |
| Figure 77: Comparison of in planta and in vitro infection/ growth of S. sclerotiorum         |             |

# List of Tables

| Table 1: Example of the main fungicide groups and their modes of action                                               | 7      |
|-----------------------------------------------------------------------------------------------------------------------|--------|
| Table 2: S. sclerotiorum and B. cinerea isolates used throughout this project.       5                                | 4      |
| Table 3:         Methods for detecting OA in clinical samples and for the investigation of OA production b            | y      |
| plant pathogens                                                                                                       | 6      |
| Table 4: The baseline minimal salts required for S. sclerotiorum fungal growth                                        | 3      |
| Table 5: ANOVA results for three experiments testing the effect of succinate, malate and fumarate or                  | n      |
| OA production                                                                                                         | 1      |
| Table 6: The four media selected for electrochemical compatibility       9                                            | 3      |
| Table 7: The spore counts of different spore solutions determined using qPCR                                          | 1      |
| Table 8: The REML output for the effects of spore treatment on the production of OA measured in the                   | e      |
| liquid medium over 11 days10                                                                                          | 1      |
| Table 9 : The REML output for the effects of spore treatment on pH of the liquid medium measured over         11 down | r<br>1 |
| Toble 10. The DEMI subset for the offerte of energy treatment on the S subset in the binner manifest                  | 1      |
| over 11 days                                                                                                          | a<br>1 |
| Table 11: The different fungicides tested for efficacy against fungi identified in field samples                      | 1      |
| Table 12: The concentration of fungicide required to inhibit growth and development of different funga                | ıl     |
| spores                                                                                                                | 2      |
| Table 13: A combined fungicide treatment.       11-                                                                   | 4      |
| Table 14: Batches of samples collected over field trials to be incubated with the medium being tested and             | d      |
| then tested for OA                                                                                                    | 6      |
| Table 15: OA positive events 2012.    13                                                                              | 3      |
| Table 16: The different fungal species isolated from the cyclone field samples incubated with medium                  | 1.     |
|                                                                                                                       | 1      |
| Table 17: Seven EST Libraries downloaded from the Broad         15                                                    | 4      |
| Table 18: Distribution of secreted proteins across the 16 chromosomes of S. sclerotiorum.         16                  | 1      |
| Table 19: Description of the 31 gene clusters distribution across the S.sclerotiorum refined secretome.16             | 3      |
| <b>Table 20:</b> S. sclerotiorum secretome proteins which contain an RXLR motif.       16                             | 5      |
| Table 21: S. sclerotiorum secretome protein sequences which encode Y/F/WxC motif containing                           | g      |
| proteins                                                                                                              | 5      |
| Table 22: 28 secretome genes with 40 or more EST counts in at least one EST library.       16                         | 7      |
| <b>Table 23</b> : S. sclerotiorum small, cysteine rich proteins identified in the refined secretome                   | 0      |
| Table 24: The most common PFAM domains involved in degradation of host plant substrate.         17                    | 2      |
| Table 25: Predicted secreted proteins involved in plant cell wall degradation                                         | 2      |
| Table 26: The most abundant PFAM domains within the S. sclerotiorum secretome that have non plan                      | ıt     |
| cell hydrolytic properties                                                                                            | 5      |
| Table 27: Secreted proteins involved in general Kegg Pathways.       17                                               | 6      |
| Table 28: The proteins identified in liquid medium after incubation with S. sclerotiorum for several days             | 5.     |
|                                                                                                                       | 7      |

| Table 29: The 32 proteins identified from sclerotial liquid samples that were found in the S. sclerotiorum     |
|----------------------------------------------------------------------------------------------------------------|
| refined secretome                                                                                              |
| Table 30: The proteins known in S. sclerotiorum to be required for virulence during plant infection 180        |
| Table 31: Proteins unique to the S. sclerotiorum refined secretome.         181                                |
| Table 32: Proteins unique to the B. cinerea refined secretome.    182                                          |
| Table 33: Unique S. sclerotiorum and B. cinerea proteins.    183                                               |
| Table 34: Genes found in S. sclerotiorum and B. cinerea that are also present in only a limited number of      |
| other fungi                                                                                                    |
| Table 35: Sequence characteristics for detection targets.    194                                               |
| Table 36: Primer sets desgined for the amplification of unique S. sclerotiorum protein DNA sequences.          |
|                                                                                                                |
| Table 37. PCR conditions for the different polymerase systems used to amplify the sequences of interest.       |
|                                                                                                                |
| Table 38: Primer sets designed to amplify construct inserts of putative secreted proteins                      |
| Table 39. Three sequences unique to S. sclerotiorum.    210                                                    |
| Table 40: Five sequences unique to S. sclerotiorum found that are not in the B.cinerea genome                  |
| Table 41: S. sclerotiorum sequences containing GPI anchor motifs with no homologues in the B. cinerea          |
| genome                                                                                                         |
| Table 42. Set of putative S. sclerotiorum detection targets.    213                                            |
| Table 43. The FPKM values for the 8 putative secreted protein gene sequences.         215                      |
| Table 44: NBCI BlastP result performed after transformants were made.         228                              |
| Table 45: RIN values calculated using an Agilent 2100 Bioanalyser                                              |
| Table 46: The total reads for each library aligned to both the A. thaliana and S. sclerotiorum reference       |
| genome                                                                                                         |
| Table 47: The most abundant S. sclerotiorum transcripts in each RNAseq library                                 |
| Table 48: The combined genes with the highest FPKM values from each of the five conditions analysed.           |
|                                                                                                                |
| Table 49: Four comparisons of libraries analysed and the number of statistically significant gene              |
| expression events calculated in each comparison                                                                |
| <b>Table 50:</b> The 20 genes with no annotation identified in the secretome which had expression.         249 |
| Table 51: The 68 genes with annotation identified in the secretome which had expression support 249            |
| Table 52: Forty secreted proteins identified in the S. sclerotiorum refined secretome that account for the     |
| 60 statistically significant gene expression events across the comparison of in vitro and in planta            |
| conditions                                                                                                     |
| Table 53: Four secreted proteins identified in the refined secretome with significant gene expression          |
| between the in vitro WT and <i>Aoah</i> samples                                                                |
| Table 54: The S. sclerotiorum homologue gene identified in B. cinerea which are responsible for the            |
| synthesis of botcinic acid                                                                                     |
| <b>Table 55:</b> The ortholog genes in S. sclerotiorum known to be associated with appressoria formation 260   |
| Table 56: Expression of documented virulence genes.    262                                                     |

| Table   | 57:           | Seventeen    | S.    | sclerotio  | rum    | genes | iden   | tified | in    | the  | refined   | secretome  | as    | putative   |
|---------|---------------|--------------|-------|------------|--------|-------|--------|--------|-------|------|-----------|------------|-------|------------|
| polygal | actur         | onases       |       |            |        |       |        |        |       |      |           |            |       |            |
| Table   | <b>58</b> : 1 | The expressi | on c  | of the top | p 20   | genes | with 1 | most s | simil | ar e | xpression | profiles t | o oxa | aloacetate |
| acetylh | ydrol         | ase gene acr | oss t | he five li | brarie | es    |        | •••••  |       |      |           |            | ••••• |            |
|         |               |              |       |            |        |       |        |        |       |      |           |            |       |            |

# List of abbreviations

| μg                         | microgram                                                                                      |
|----------------------------|------------------------------------------------------------------------------------------------|
| μl                         | microlitre                                                                                     |
| μΜ                         | micromolar                                                                                     |
| Avr                        | Avirulence gene                                                                                |
| BLAST                      | Basic Local Alignment Search Tool                                                              |
| cAMP                       | Cyclic adenosine monophosphate                                                                 |
| cm                         | centimetre                                                                                     |
| $CO_2$                     | Carbon dioxide                                                                                 |
| d.f.                       | Degrees of Freedom                                                                             |
| DNA                        | Deoxyribonucleic acid                                                                          |
| ETI                        | Effector triggered susceptibility                                                              |
| GFP                        | Green Fluorescent Protein                                                                      |
| GR                         | Green Revolution                                                                               |
| $H_20_2$                   | Hydrogen peroxide                                                                              |
| hpi                        | hours post infection                                                                           |
| HR                         | Hypersensitive Response                                                                        |
| hr(s)                      | hour(s)                                                                                        |
| JRL                        | Jeffrey Rollins Laboratory                                                                     |
| KEGG                       | Kyoto encyclopaedia of genes and genomes                                                       |
| km                         | kilometre                                                                                      |
| L                          | litre                                                                                          |
| М                          | Molar                                                                                          |
| mABs                       | Monoclonal antibodies                                                                          |
| MAPK                       | Mitogen Activated Protein Kinase                                                               |
| mg                         | milligram                                                                                      |
| mins                       | minutes                                                                                        |
| ml                         | millilitre                                                                                     |
| mm                         | millimetre                                                                                     |
| mМ                         | millimolar                                                                                     |
| mU                         | milliunits                                                                                     |
| ng                         | nanogram                                                                                       |
| NGS                        | Next generation Sequencing                                                                     |
| O2                         | Oxygen                                                                                         |
| OA                         | Oxalic acid                                                                                    |
| °C                         | Degrees Celsius                                                                                |
| OxOx                       | oxalate oxidase                                                                                |
| pABs                       | Polyclonal antibodies                                                                          |
| PAMP                       | Pathogen associated molecular patterns                                                         |
| PCR                        | Polymerase Chain Reaction                                                                      |
| <b>PCWDEs</b>              | Plant cell wall degrading enzymes                                                              |
| PDA                        | Potato dextrose agar                                                                           |
| PDB                        | Potato dextrose broth                                                                          |
| pg                         | picogram                                                                                       |
| PGs                        | Polygalacturonases                                                                             |
| PCWDEs<br>PDA<br>PDB<br>pg | Plant cell wall degrading enzymes<br>Potato dextrose agar<br>Potato dextrose broth<br>picogram |
| PGs                        | Polygalacturonases                                                                             |

| PTI    | PAMP Triggered Immunity     |  |  |  |  |  |  |
|--------|-----------------------------|--|--|--|--|--|--|
| qPCR   | Quantitative PCR            |  |  |  |  |  |  |
| R      | Resistance gene             |  |  |  |  |  |  |
| RNA    | Ribonucleic acid            |  |  |  |  |  |  |
| RNASeq | Ribonucleic acid sequencing |  |  |  |  |  |  |
| ROS    | Reactive oxygen species     |  |  |  |  |  |  |
| RT     | Reverse Transcriptase       |  |  |  |  |  |  |
| SDB    | Sabouraud dextrose broth    |  |  |  |  |  |  |
| secs   | seconds                     |  |  |  |  |  |  |
| seqs   | sequences                   |  |  |  |  |  |  |
| SNA    | Synthetic nutrient agar     |  |  |  |  |  |  |
| SPR    | Surface Plasmon Resonance   |  |  |  |  |  |  |
| UV     | Ultra Violet                |  |  |  |  |  |  |

## Abstract

The University of Manchester Stephanie Heard Degree of Doctor in Philosophy Thesis Title: Plant Pathogen Sensing for Early Disease Control September 2013

Sclerotinia sclerotiorum, a fungal pathogen of over 400 plant species has been estimated to cost UK based farmers approximately £20 million per year during severe outbreak (Oerke and Dehne 2004). S. sclerotiorum disease incidence is difficult to predict as outbreaks are often sporadic. Ascospores released from the fruiting bodies or apothecia can be dispersed for tens of kilometres. This makes disease control problematic and with no S. sclerotiorum resistant varieties available, growers are forced to spray fungicides up to three times per flowering season in anticipation of the arrival of this devastating disease.

This thesis reports the development of the first infield *S. sclerotiorum* biosensor which aims to enable rapid detection of airborne ascospores, promoting a more accurate disease risk assessment and fungicide spraying regime. The sensor is designed to detect the presence of oxalic acid, the main pathogenicity factor secreted during early *S. sclerotiorum* ascospore germination. Upon electrochemical detection of this analyte in the biosensor, a binary output is relayed to farmer to warm him of a disease risk. This project focused on the development of a nutrient matrix which was designed to be contained within the biosensor. The role of this matrix was to promote the growth of captured airborne *S. sclerotiorum* ascospores and induce high levels of oxalic acid secretion. The use of the designed biological matrix to promote oxalic acid production was tested during three field trials in *S. sclerotiorum* artificially inoculated fields.

This thesis describes the use of contemporary pathogenomics technologies to further investigate candidate genes involved in pathogenicity alongside the secretion of oxalic acid. A pre-described bioinformatics pipeline was used to predict the *S. sclerotiorum* secretome to identify potential effector proteins as well as explore proteins which are unique to *S. sclerotiorum* to be used as other novel targets for detection. GFP tagged constructs were designed to investigate the expression of the putative targets for *S. sclerotiorum* detection.

The transcriptomes of wild type and oxalic acid deficient *S. sclerotiorum* strains during infection as well as during a saprotrophic stage were investigated. This study provided expression support for not only some of the unannotated genes identified in the putative secretome, but some candidate genes speculated to be involved in infection.

# Declaration

I declare that no portion of the work referred to in the thesis has been submitted in support for another degree or qualification of this or any other university or other institute of learning.

# Copyright

- i. The author, Stephanie Heard, of this thesis (including any appendices and/or schedules to this thesis) owns certain copyright or related rights in it (the "Copyright") and she has given The University of Manchester certain rights to use such Copyright including for administrative purposes.
- ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic form, may be made only in accordance to Copyright, Designs and Patents Act 1988 (as amended) and regulations issued under it or, where appropriate, in accordance with licensing agreements which the University has from time to time. This page must form part of any such copies made.
- iii. The ownership of certain Copyright, patents, designs, trade marks, and other intellectual property (the "The Intellectual Property") and any reproductions of copyright works in the thesis for example graphs and tables ("Reproductions"), which may be described in this thesis, may not be owned by the author and may be owned by third parties. Such Intellectual Property and Reproductions cannot and must not be made available for use without the prior written permission of the owner(s) of the relevant Intellectual Property and/or Reproductions.
- Further information on the conditions under which disclosure, publication and iv. commercialisation of this thesis, the copyright and any Intellectual Property and/ or Reproductions described in it may take place is available in the University IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487), in any relevant Thesis restriction declarations deposited in the University Library, the University Library Regulations (see http://www.manchester.ac.uk/library/aboutus/regulations) and in the University's policy on the Presentation of Theses.

# Acknowledgements

This Ph.D. would not have been possible without the help from many individuals over the past four years. Firstly I am grateful to my two brilliant supervisors Kim Hammond-Kosack and Jon West. Their doors were always open and they have provided constant advice, guidance, and support. Thank you to Kim for mentoring me through many complex situations throughout the project.

It was a privilege to work in a place like Rothamsted Research and I'd like to thank the numerous people in the former Plant Pathology Department who have helped along the way. These include Gail Canning for her amazing molecular biology tuition and Wing Sam-lee, Martin Urban and Neil Brown for giving their time to provide fundamental lab training and sharing their plant pathology knowledge. Many thanks to Jason Rudd, Hans Cools, Helen Carter and Helen Brewer for their assistance and willingness to help whenever I needed it. I would like to thank John Lucas for his support and manuscript preparation and to thank Leanne Freeman for her hard work during the summers. A big thank you to John Antoniw, David Hughes, Ambrose Andongabo and Keywan Hassani-Pak for their assistance during the bioinformatics analyses. I would like to thank Stephen Powers for his statistical expertise. And to the Visual Communications Unit for all their help in preparing the many posters for conferences.

I would like to extend my gratitude to John Pickett and the Society of General Microbiology for awarding the travel bursaries which allowed me to carry out a short project at the University of Florida. Thank you to Jeffrey Rollins for being such an excellent collaborator and to Xiaofei Liang who is a *S. sclerotiorum* transformation genius.

I am grateful to have worked with such a dynamic group of people on the SYield project, especially Sophie Weiss, Shradha Singh and my industrial supervisor, Sarah Perfect who all provided invaluable support and advice throughout the project. I would also like to thank my university supervisor, Bruce Grieve for his assistance.

I am grateful to my family for their unfailing encouragement. To my brilliant housemates for their humour and friendship and the Rothamsted Ph.D. students who made 11am coffee entertaining every day. And finally to Dr Jones who was there to make me smile throughout.

# **Chapter 1: General Introduction**

## **1.1** The challenges of securing food for a growing global population

The world's population is predicted to grow from the current 7.2 billion people to a staggering 9.6 billion people by the year 2050 (United Nations, 2013). The ability to sufficiently feed this number of people relies on modern agriculture increasing current production by between 60 and 110% (Tilman et al. 2011, *OECD-FAO Agricultural Outlook 2012-2021* 2012). This is a colossal challenge as there are multiple factors which will affect the global community's ability to achieve this goal. How productive our agricultural systems are is dependent on our ability to cope with factors including climate change resulting in unpredictable weather patterns and changes in pest and disease outbreaks, insufficient fertile land, availability of water and expensive and limited energy supplies. The global shift towards a meat based diet, whether land is used for food, feed or biofuel production, excessive food wastage in developed countries and uneven distribution of food across the globe add to the problem and make it difficult to assess how and where food production would be best increased.

Some studies suggest that improving crop yields will be the answer in creating sustainable, intensive agricultural systems capable of the necessary outputs while preserving valuable natural ecosystems (Matson and Vitousek 2006, Phalan et al. 2011). The Royal Society published a report in 2009 describing how 'growth in production must be achieved for the most part without the cultivation of additional land' as 'the environmental consequences of increasing cultivated areas are undesirable' (Society 2009). Other studies suggest that improving crop yields is not enough to achieve secure food supplies and the only way to achieve this is through the clearing and use of *all* suitable land for agriculture whether it is already used for production or not (Ray 2013). A study which analysed the current increase in production of the world's top four crops; maize, rice, wheat, and soybean (which are responsible for two thirds of the world's global calories), found that crop production is only increasing at 1.6%, 1.0%, 0.9%, and 1.3% per year, respectively. This is less than the projected 2.4% per year rate required to double global production by 2050. At these rates, global production in these crops would increase by approximately 67%, 42%, 38%, and 55%, respectively. This is lower than will be required to feed the population by 2050 (Ray 2013). As the population steadily grows, the clock ticks for a decision to be made on the global strategy for future food production while considering precious natural resources that are vital to the health and wellbeing of the planet.

Modern agricultural practises have changed enormously as a result of the Green Revolution (GR), which occurred between 1966 and 1985 (Pingali 2012). During this period, crop production tripled even with only a 30% increase in the use of cropable land (Pingali 2012). Gross world food production (cereals, grains, roots, tuber, pulses and oil crops) increased by 138%, from 1961 to 2007. That is an increase from 1.84 billion tonnes of food to 4.38 billion tonnes (Society 2009). This dramatic increase was a result of high rates of investment in scientific crop research to set up publicly funded crop breeding programs to develop biotic and biotic-stress tolerant plants, policy support, market development and infrastructure growth (Pingali 2012). Significant developments in synthetic fertiliser production and the discovery of chemical pesticides and herbicides changed smaller scale market garden style food production to intensive, monoculture systems used today to produce cheap food that the governments of the world promised its citizens after suffering food shortages during the war years. However, the benefits from the GR have not been seen everywhere and low income countries, mainly in sub-Saharan African countries, still experience low food productivity resulting in poverty and chronic food shortages. Food price spikes in the mid-2000s have highlighted how the pressures of unstable economies, increases in fuel prices and the effects of climate change can dramatically affect food security. As a result a call for renewed interest in agricultural investment has been a main concern for many policy makers and other stakeholders. Chemical discovery and managed pesticide resistance programs are key to improving farming systems as well as the development of precision farming equipment and sustainable energy solutions. A clear lesson learnt from the 1960's GR is that success can only be achieved with vast investment into scientific research on a global scale which will ultimately lead to innovative scientific solutions which will allow growers to secure the yields required to feed our growing population while reducing the negative effects on the environment.

## **1.2** The use of crop protection in agricultural systems.

Successful yield outputs rely heavily on a range of energy-intensive inputs into agricultural systems. Large-scale farming would not be possible without the use of synthetic nitrogen fertilisers, herbicides, pesticides and fungicides. Artificially synthesised nitrogen fertilisers improved crop yields significantly because providing there are no other limitations in soil, there is a linear relationship between available nitrogen and crop biomass accumulation (Society 2009). Application of nitrogen is essential to exploit the full genetic potential of improved crop cultivars. The ability of growers to protect large monocultures from pests, pathogens and weeds significantly improves yields. Pests (which include insects, fungal pathogens, viruses and nematodes) have been estimated to account for 50% global potential loss in wheat and 80% potential global loss in cotton production (Oerke 2006). For this reason, the global use of pesticides rose to 3 million tonnes per year in 2000. Although pesticide use has been controversial for many years, primarily because they are blamed for causing environmental damage, chemical pesticides have often been the most effective in controlling pests. However the unmanaged, overuse of chemical sprays over the last four decades has resulted in many pest species becoming resistant to pesticides, reducing the efficacy of the chemicals. Resistance is the decreased susceptibility of a pest to a pesticide. Resistance can evolve within a pest population if it is exposed to a high selection pressure, in this case the chemical pesticide. If one individual pest contains a trait which allows it to be less susceptible to that pesticide, it will survive and that trait will spread throughout the pest population rendering the chemical ineffective (FRAG-UK). It has been observed that within one to two decades of the seven major herbicides being introduced, herbicide- resistance weeds were visible in grower's fields (Palumbi 2001). Insects can often evolve resistance within one decade of exposure to a chemical, whereas bacterial pathogens evolve resistance much quicker. This can occur within 3 years of intensive exposure to antibiotics (Tilman et al. 2002) as a result of the ease of transmission of genes between bacterial species, i.e. by horizontal gene transfer. In the past, growers had no guidance or restrictions on the numbers of sprays to apply to crops. As a result resistance spread rapidly. More recently considerable research has gone into developing pesticide spraying regimes which decrease the incidence of resistance. Growers are advised not to overspray and given guidance on the time of year and the most appropriate product to apply.

As a result of the EU Directive 91/414/EEC, around 75% of some 1000 active ingredients used in pesticide products have been removed from the market since 1993 (Postnote 2009). This is because they have been tightening the cut-off criteria which chemistries must pass in order to be registered for pesticide use. This again will challenge the farming community's ability to prevent resistance developing against the ever decreasing crop protection products available. Other methods of crop protection include the use of resistant cultivars, crop rotations, the use of pest free seed or plants, attracting natural enemies to control insect pests or the use of biocontrol agents for some fungal pathogens and nematodes.

## 1.3 The role of fungal pathogens in agriculture

Fungal pathogens cause a variety of diseases within crops. Fungal pathogens use plant material as a substrate for nutrient acquisition. Different species will use specific host plant tissue to acquire nutrients. For example, Take-all disease, caused by *Gaeumannomyces graminis* var *tritici*, results in the formation of patches of blackened roots in wheat crops. This prevents the infected wheat plant from efficient removal of nutrients and water from the soil. *Botrytis cinerea* on the other hand is a broad host disease but is extremely problematic on soft fruit and causes decay which affects the quality of the produce. Fungal pathogens are difficult to control within crops because their microscopic size poses a challenge detection before symptoms appear on the crop. Usually once disease symptoms are visible, to achieve effective control is difficult. This is because many fungal pathogens have the ability to produce and disseminate millions of spores during sporulation. Fungal

pathogens in particular account for the loss of approximately 16% of yield globally (Oerke and Dehne 2004). *Septoria tritici*, (recently renamed *Zymoseptoria tritici*) a fungal pathogen which cause Septoria blotch disease of wheat was responsible for £35.5 million of economic loss globally in 1998 (Innes 2010). In the same year, Take all disease, was estimated to have caused approximately £55 million worth of damage (Oerke and Dehne 2004). Figure 1 highlights the UK yield losses to winter oilseed rape crops as a result of the main four oilseed rape fungal pathogens; *Leptosphaeria maculans* which causes phoma stem canker, *Pyrenopeziza brassicae*, the causal agent of light leaf spot, *Sclerotinia sclerotiorum*, the causal agent of stem rot and *Alternaria brassicae*, the cause of dark pod spot (Fitt et al. 2006) (Fitt et al. 1997)



Figure 1: Estimated disease loss in oilseed rape.

Figure taken from (Fitt et al. 2006). The estimated losses from diseases (phoma stem canker, light leaf spot, Sclerotinia stem rot and Alternaria pod spot) in winter oilseed rape in England and Wales for harvest years 1987-2002, calculated from disease survey data (www.cropmonitor.co.uk).

Fungal disease not only causes yield loss, many fungi also produce mycotoxins during plant infection. Mycotoxins are secondary metabolites secreted by the fungus during infection. Many of these toxins, if consumed by humans and/or animals, can cause many harmful effects including sickness and diarrhoea, gastrointestinal problems, kidney damage and in some cases are carcinogenic. Mycotoxins are produced by some fungi to assist with disease induction or pathogenicity. For example deoxynivalenol or DON mycotoxin is produced by Fusarium culmorum and F. graminearum through primary isoprenoid metabolism (Kimura et al. 2003). This toxin inhibits protein translation in eukaryotes and is required for the infection of wheat ears but not maize cobs (Hammond-Kosack and Rudd 2008). However, some phytopathogenic fungi produce toxins, but their precise function is not known (Lowe et al. 2012). Mycotoxin production can be particularly damaging postharvest. If grain for example is not stored correctly and any residual fungal spores germinate and colonise the grain, there is a risk that the stored grain may subsequently become contaminated with the mycotoxin. It is therefore of vital importance that growers are able to prevent or minimise fungal disease in their crops, to maximise the harvested yields but also to reduce losses occurring during storage or transportation.

As with insect pests, fungal pathogens are predominately controlled with the use of fungicides. Table 1 lists a few of the main fungicide groups and their modes of action.

Fungicides are classed as preventative if the chemistry prevents the pathogen from developing or curative if the chemistry interrupts the growth of an already established pathogen prior to symptom development. Fungicides can also be eradicative and will disrupting the development of a pathogen that has already established disease symptoms. However most fungicides are not curative or eradicative so it is extremly difficult to control the disease once symptoms are visible. Although fungicide applications have been shown to improve yields significantly over the last forty years, reports of fungicides becoming less effective due to resistance is now a common occurrence (FRAG-UK). In fungi there are four main mechanisms of resistance. Firstly, there is a change in the chemical target site due to a mutation in the DNA sequence at a specific location. Secondly, the organism may produce more of the target site and the chemistry becomes less effective. This has been seen in Mycosphaerella graminicola, a fungal pathogen of wheat. This pathogen has showed reduced sensityivity to fungicides as a result in an increase in the cytochrome P450 target site, Cyp51. Some resistant strains may increase the rate of removal or breakdown of the compound to detoxify the cell. Finally there may be underlying naturally resistant individuals within a population. When a chemical is sprayed repeatedly into the same environment, resistance strains will spread quickly throughout the population. Often resistance has developed as a direct result of the intensive overuse of single site mode of action fungicides (Table 1) (Russell 2005). Over the last 10 years there has been considerable research into developing strategies for reducing resistance to new fungicides in the anticipation of prolonging the effectiveness of newer compounds. Research bodies such as the Fungicide Resistance Action Group (FRAG-UK) and the HGCA (HGCA) as well as agrochemical companies work closely together to educate fungicide users about the risk of pathogen resistance and suggest specific management strategies. These include reducing the number of applications per season and applying the chemicals only at certain times or life stages of the crop. It is also essential that fungicide mixtures used must have different modes of action. Growers are encouraged to use fungicidal mixtures where possible and to use disease-resistant crop varieties to decrease selection pressure and reliance on fungicides. Growers need to be prepared to use new fungicides with different modes of action and finally longer crop rotations should be chosen.

| Fungicide                                                                                                                        | Target Site                                                                               | Mode of action                                                                                                                                                 | Target species                                                                                                                                                           | <b>Chemical structure</b>                       |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Group                                                                                                                            |                                                                                           |                                                                                                                                                                |                                                                                                                                                                          |                                                 |
| Benzimidazole<br>Fungicides<br>(Methyl<br>Benzimidazole<br>Carbamates<br>fungicide)<br>(Group 1),<br>Dicarboximide<br>Fungicides | β-tubulin<br>assembly in<br>mitosis<br>MAP/Histidine-                                     | Blocks the<br>polymerisation of<br>tubulin which<br>prevents the<br>nuclear division of<br>fungal cells.<br>Systemic<br>Prevents mycelia<br>growth and reduces | Works on a broad<br>spectrum of<br>powdery mildews,<br><i>Botrytis</i> blights,<br>leaf spots and<br>blights.(FRAG-<br>UK)<br><i>Works on a broad</i><br><i>spectrum</i> | Number: 17804-35-2                              |
| (Group 2)                                                                                                                        | Kinase in<br>osmotic signal<br>transduction<br>(os-1, Daf1)                               | spore germination. Protectant                                                                                                                                  | including Botrytis,<br>Monilinia and<br>Sclerotinia.<br>(FRAG-UK)                                                                                                        | CI<br>Vinclozolin: CAS<br>Number: 50471-44-8    |
| Sterol<br>Biosynthesis<br>Inhibitors (SBI's)<br>(formerly<br>DeMethylation<br>Inhibitors<br>DMI's)<br>Fungicides<br>(Group 3)    | C14-<br>demethylase in<br>sterol<br>biosynthesis<br>(erg11/cyp51)                         | Inhibit sterol<br>biosynthesis in<br>membranes.<br>(includes<br>pyrimidines and<br>triazoles and can<br>be curative)                                           | Broad spectrum<br>including powdery<br>mildews, rusts and<br>many leaf spotting<br>fungi including<br>apple scab.<br>(FRAG-UK)                                           | Bitertanol (triazole)<br>CAS Number: 55179-31-2 |
| Phenylamide<br>Fungicides<br>(Group 4)                                                                                           | RNA<br>polymerase I                                                                       | Inhibits nucleic<br>acid synthesis-<br>RNA polymerase 1<br>Systemic                                                                                            | Potato and tomato<br>late blight and<br>grape downy<br>mildew. (FRAG-<br>UK)                                                                                             | CAS Number: 57837-19-1                          |
| QoI or<br>Strobilurin<br>Fungicides<br>(Group 11)                                                                                | complex III:<br>cytochrome<br>bc1<br>(ubiquinol<br>oxidase)<br>at Qo site<br>(cyt b gene) | Inhibits<br>mitochondrial<br>electron transport<br>complex III<br>enzyme which<br>prevents<br>respiration.<br>Protectant                                       | Works on broad<br>spectrum<br>including <i>Septoria</i><br><i>tritici</i> and<br>Powdery mildew<br>(Bartlett et al.<br>2002)                                             | Azoxystrobin<br>CAS Number:<br>131860-33-8      |

Table 1: Example of the main fungicide groups and their modes of action

### **1.4 Fungal infection modes**

Many of the most destructive agricultural pathogens have been described as necrotrophs which are fungal pathogens which rely on killing host cells to live off the nutrients once the cell is dead. Other fungi can exhibit biotrophic lifestyles which obtain nutrients from cells without killing the cell for long periods of time and without causing problematic disease symptoms. There has been a recent re-classification of many traditional fungal necrotrophs which exhibit a biotrophic life stage before inducing necrotrophy. These have been re-defined as hemi-biotrophic fungi. Advances in sequencing technologies have made the study of pathogen genomes and the interactions between host plants and pathogens more accessible. Both experimental approaches based on sequencing are foreseen to facilitate the discovery of new targets for the control of pathogen.

In 1971, Flor and colleagues put forward the gene-for-gene hypothesis (Flor 1971). Flor hypothesised that for every dominant avirulence (Avr) gene in the pathogen, there is a matching resistance (R) gene in the host. It was assumed that a direct interaction between the products of these genes would lead to the stimulation of the host defence response including the hypersensitive response (HR) which arrests fungal growth. Since then, molecular plant pathologists have been trying to identify these Avr and R genes to understand plant-pathogen interactions. Subsequent research led to the isolation of several Avr proteins, now termed effector proteins, many of which are small secreted proteins which manipulate host cell structure and function (Birch et al. 2006, Kamoun 2003). Throughout the co-evolutionary arms race between a plant and an adapted pathogen, plant hosts have developed effector-triggered immunity (ETI) as the host R proteins are able to perceive the presence of specific effector proteins directly or indirectly. Detection by the host, forces the pathogen to mutate and develop new effectors to suppress the activation of plant defences and so the cycle continues (Stergiopoulos and de Wit 2009, Jones and Dangl 2006).

Chitin is a principle building block of fungal cell walls but it can also act as a signalling molecule to elicit plant defence if it is detected by plant cells. Chitin and other pathogen associated compounds including glycan and xylanase are known as PAMPs or pathogen associated molecular patterns. PAMPs will binds to PAMP recognition receptors (PRRs) localised on plant cell walls. The binding event will facilitate PAMP triggered immunity (PTI) and allow the plant to induce plant defence mechanisms to prevent progression of disease. In the case of chitin, the PRR have already been identified in some

plant hosts. The LysM receptor kinase CERK1 mediates bacterial perception in *Arabidopsis* by binding chitin (Gimenez-Ibanez et al. 2009). Rice requires both a LysM receptor-like kinase, OsCERK1, alongside CEBiP (chitin elicitor binding protein) to induce PTI (Shimizu et al. 2010).

Pathogens have evolved a counter attack strategy to PTI. Recently effector proteins have been discovered in a variety of bacterial and fungal pathogens which prevent PTI. Avr2 and Ecp6 (van Esse et al. 2008) secreted by the tomato pathogen *Cladosporium. fulvum* and the Mg3LysM effector secreted by wheat infecting pathogen *Mycosphaerella graminicola* (Marshall et al. 2011) act against plant chitinases or bind chitin, preventing the plant from recognising fungal chitin which would normally elicit plant defence.

# 1.5 Technological advances in fungal pathogen forecasting systems, detection and diagnosis in agricultural systems

Forecasting systems which give early warning predictions of fungal outbreaks can help growers target their sprays more efficiently. Correct targeting of fungicides will reduce the risk of fungicide resitance as it will prevent overuse of the chemistry. It will also benefit the environment and reduce the growers' costs. There are a variety of Decision Support Systems (DSS) which are based on mathematical models which incorporate meteorological data for the prediction of pathogen outbreaks (Evans et al. 2006, Magarey et al. 2005, Smith et al. 2007). Many knowledge transfer bodies such as DEFRA, the HGCA or research institutes can provide advice on which forecasting systems to follow for a particular disease. Some agrochemical companies also provide growers with free online disease forecasting systems to assess the risks of disease outbreak which may influence a grower's need for sprays. For example, Rothamsted Research has an online prediction tool which predicts the risk of light leaf spot outbreaks on different oilseed rape cultivars across the UK. The Syngenta BlightCast system is available on-line; to give potato growers and agronomists a five-day advance warning of localised blight risks caused by the oomycete *Phytophthora infestans*. This online tool was developed to enable risk based selection of appropriate fungicides and ensure application at the right time to prevent infection. However many of these forecasting systems are usually depedent on local weather conditions and cannot be used in other countries where the weather patterns may be significantly different. What could be suitable as a multi-country forecasting system is one which combines weather based predictions with real time automated monitoring of the pathogen. Some prediction systems require monitoring of certain aspects of the disease including leaf wetness, appearance of apothecia or the appearance of lesions

on leaves for example to calculate whether there is a disease risk. This can be a challenge for growers who may not be experts in disease diagnosis. As a result there have been major advances in disease diagnosis and detection which may contribute to the future of disease forecasting systems when combined with meteorological data. Detection and diagnosis of fungal pathogens are key to select the correct control meaures and forecasting is key for optimising efficiency.

#### **1.6 Detection and diagnosis of plant pathogens**

The identification of the many pathogens which may attack a crop during a growing season is a challenge for most growers. Growers do not always have the expert taxonomic skills they need to diagnose a disease symptom and this may compromise their ability to provide accurate crop protection. Rapid detection and diagnosis of plant pathogens is key to implementing correct control strategies for containment or elimination of plant diseases which would otherwise have serious economic consequences. As farms become larger and growers become more reliant on mechanised equipment, the need for automated and user friendly diagnosis tools increases. Grower- friendly methods of pathogen detection need to be practical, readily available and cost effective. They also need to be specific to a certain pathogen or ideally as multiplexed systems capable of detecting a range of pathogens accurately. The following sections will discuss the current technologies used by growers and researchers to diagnose and detect plant pathogens as well as looking to the future of this rapidly expanding sector of agricultural technology.

#### **1.6.1 DNA-based detection methods**

Advances in fungal genomics has revolutionised our ability to identify genomic sequences which can be used as unique detection targets for disease diagnosis. Polymerase Chain Reaction (PCR) has facilitated many plant disease clinics across the world to rapidly identify disease samples without the need to culture a sample for spore identification. Spore trapping devices can be used to capture air samples which contain airborne spores. The DNA can then be extracted for testing. Potentially contaminated plant tissue, soil and water samples can also be used in DNA extraction. The extracted DNA can then be used in species specific PCR to determine the species of pathogen and the amount of inoculum in the air or in other sample substrates. This has been successfully done for *S. sclerotiorum* (Rogers et al. 2009). The detection test involves the use of 7-day Burkard spore trap, which traps airborne spores on a wax film. DNA is extracted from the wax strip and the quantity of *S. sclerotiorum* determined through qPCR by amplifying a unique DNA sequence to *S.* 

*sclerotiorum*. Alongside these detection studies it has also been necessary to relate the amount of spores in the air to give an indication of disease epidemics. For example, 25-35 *Botrytis squamosa* conidia/ m<sup>-3</sup> air were found to cause 2.5 lesions per leaf (Carisse et al. 2005). It was also found that when detection of this inoculum was used to indicate disease potential, a fungicide reduction of 75% and 56% in 2002 and 2003 was documented (Carisse et al. 2005). This sort of monitoring is important for sporadic diseases such as *S. sclerotiorum* where a very low number of ascospores (12 spores/ m<sup>-3</sup>) measured by spore-trapping related to disease incidence (Rogers et al. 2009).

## 1.6.2 Immunology-based/ Antibody-based detection methods

Advances in rapid and cost effective antibody production over the last 10 years have allowed the development of antibody based detection systems for plant disease diagnosis. Antibody based diagnosis / detection systems have been designed to be used in the laboratory as well as in hand held devices at point of use. These systems are based on the use of antibodies as high affinity ligands which will bind to cell surface fragments or antigens or even whole cell substrates. Antibodies that can be used in various detection systems can be either monoclonal or polyclonal. Monoclonal antibodies (mAb) will bind to a single site or epitope of the target fragment whereas polyclonal antibodies (pAb) will bind to multiple epitopes on a single antigen allowing more specificity for target detection. mAbs and pAbs are routinely produced by the injection of the whole cell / pathogen or surface fragment into a suitable animal. Another increasingly popular production method is the use of bacterial expressed recombinant fragments which include single chain variable fragments (scFv) (Skottrup et al. 2008). These fragments are a sixth of the size of standard antibodies (Lamberski et al. 2006) and maintain high specificity to the parental mAb. Using bacterial cultures for production ensures an infinite supply of genetically stable scFvs which is cost effective, and more attractive than using animal systems.

Antibody based kits for plant disease diagnosis were originally developed in 1977 (Clark and Adams 1977) but are now commercially available for laboratory use. Most companies supply a DAS-ELISA kit (double antibody sandwich enzyme-linked immunosorbent assay) for disease diagnosis. This test involves the use of multi well microtiter plates which have a specific antibody adsorbed to the surface of the microtiter wells. A plant extract is incubated for a period of time in an extraction buffer in the well. The incubation allows the binding of the antigen to bind to the antibody. A conjugate buffer containing an enzyme-labelled antibody is then added to the wells and incubated. After a final washing step, another buffer reacts with the conjugated enzyme labelled

antibody that is bound to the target fragment. The wells which contained samples with the pathogen of interest will change colour and can be visualised using a spectrophotometer (

**Figure 2**). There are many commercial ELISA kits available for the detection of plant viruses as specific antibodies can be raised easily against such organisms, however there are fewer kits available for fungal pathogen diagnosis to a species level. This is partially because of cross reactivity between different species and in the case of most spores, due to low allergenicity of the surface coat. ELISA kits have been developed for fungi and oomycetes including, *Botrytis cinerea*, *Pythium spp*, *Phytophthora spp* and *Septoria spp* (Agdia, Bioreba, Neogen). ELISA kits will allow for quantitative and accurate diagnosis of the disease however the tests require skilled technicians and specialised equipment. There is also usually a time delay for the grower to obtain results which may limit the time window for disease treatment. ELISA technology, although not thought of as traditional biosensor technology, can be classified as a biosensing technique. This is because it transforms the biological response of the antibody binding event and relays the response optically with the use of a spectrophotometer to detect changes in chemiluminescence or fluorescence.



1. Antibody mobilised onto bottom of <u>microtitre</u> wells



2. Antibody binds to target fragment in disease plant material



 Conjugation of enzymelabelled antibody to antibody bound fragment



4. Well colour change in samples with disease

### Figure 2: The DAS-ELISA assay.

Multiwells contain antibodies which are used to bind to pathogen specific antibodies

Handheld lateral flow devices (LFD) have been developed so that growers can carry out rapid disease assessments in the field as opposed to waiting for results from a diagnostics laboratory. One step LFDs are similar to ELISA assays as they use pAbs and mAbs to bind to a fragment or antigen which is specific to a certain pathogen, however this method is not quantitative. A LFDs commercially available from Pocket Diagnostics<sup>TM</sup> (www.pocketdiagnostic.com) contains antibody-coated latex beads which will bind the specific pathogen antigen absorbed from the plant extract (Ward et al. 2004). The user will crush up and incubate the infected plant sample in a buffer. After incubation, the buffer

solution is dropped onto a release pad on the bottom of the LFD which contains specific antibody-coated latex beads which will bind to the target antigen from the plant extract. The solution containing the conjugated antibodies will migrate along an absorbent pad to a test strip where latex beads containing the bound antigen will be trapped forming a visible line on the pad. Surplus unbound antibodies migrate further along the pad and are trapped onto a second strip. This acts as a control indicating that the test worked correctly (**Figure 3**). There are a variety of LFDs which are capable of identifying a many plant viruses although some can diagnose some fungal pathogens including *B. cinerea*, oomycete pathogens such as *Pythium* and *Phytophthora sp* and bacterial pathogens including *Ralstonia solanacearum* and *Erwinia amylovora*.



Figure 3: Positive and negative detection of pathogens using handheld lateral flow devices.

#### 1.6.3 Antibodies for metabolite sensing

Plant pathogen detection devices can also target secreted metabolites rather than cell surface proteins for accurate diagnosis. A rapidly expanding example of this is the need for detection methods for fungal and bacterial toxins which are secreted into substrates. Many species of fungi including *Penicillium spp* and *Aspergillus spp* secrete mycotoxins during growth in or on food substrates. Manufactures and sellers of perishable foods have to follow strict legislation to ensure their food does not contain mycotoxin levels above a certain threshold outlined by the EU Commission Regulation (EC) No. 1881/2006). On site diagnosis kits made by companies including Neogen Europe Ltd, for many toxins including aflatoxins, ochratoxins and DON using LFD have been developed.

However more accurate laboratory based ELISA and HPLC testing is used to quantify the amounts of the different toxins more accurately.

#### 1.6.4 Biosensors for pathogen detection

Since the invention and success of the blood glucose biosensor (Clark and Lyons 1962), research into using biosensing as a way to monitor and quantify elements of biological systems at point of care (POC) has flourished in medical professions. Biosensing applications to detect plant pathogens in an agricultural system are an expanding field because there is the potential to develop devices which detect pathogens rapidly. In addition, this fully automated format can be easily used with very little technical skill. There is also the potential to combine biosensor outputs with wireless networks to enable data of detection events to be sent to a central monitoring and processing unit which can then incorporate the information into a disease forecasting system. However much of the technology is laboratory based and remains to be translated into handheld or automated devices. A biosensor takes a

biological response and translates it into an electrical signal (Turner 2000) (**Figure 4**). It is an analytical device which integrates a biological sensing element or bioreceptor within a physicochemical transducer and is required to produce an electronic signal proportional to the specific analyte that it is measuring (Nierman et al. 2005). Bioreceptors include antibodies, enzymes, whole cells and DNA. These are usually immobilised onto some form of sensor surface. The transducer, which can be optical or electrochemical, takes the biological response and changes it into an electrical signal. An example of optical transducers includes surface plasmon resonance (SPR) or fibre optics. Electrochemical transducers make use of changes in current, potential, impedance and conductance across an electrode surface for detection events (Velusamy et al. 2010).



Figure 4: The basic components of a biosensor system.

#### **1.6.4.1 Surface plasmon resonance (SPR)**

A popular technique to characterise the interactions of small molecules such as proteins, polysaccharides and nucleic acids is SPR (Skottrup et al. 2008). It is a label free, optical biosensing technique which can be used to detect molecular binding events. SPR incorporates the use of a light source which passes through a prism and impacts on a gold surface sensor chip. The light bounces off the sensor chip and is received by a detector. At a certain angle known as resonance angle, light is absorbed by the sensor film, causing electrons or surface plasmons to resonate (Skottrup et al. 2008). This causes a loss in intensity in the reflected beam and this change can be detected by a reflectivity curve (Biosensing Instrument Inc <sup>©</sup>). Antibodies can be immobilised onto sensor chip surfaces and the binding events at the sensor surface will causes a change in the refractive index, which is then monitored. This is a real-time method of detection and can also be used to calculate rates of binding events. SPR is still very much a laboratory based method of detection but has been used to detect a variety of viruses including Cowpea mosaic virus (Torrance et al. 2006) and Lettuce mosaic virus (Candresse et al. 2007). Fungal pathogens including Fusarium culmorum (Zezza et al. 2006) and Aspergillus niger (Nugaeva et al. 2007) and the oomycete *Phytophthora infestans* (Skottrup et al. 2007) have been detected by SPR in a laboratory. Many of these detection systems use a Biacore SPR sensor surface onto which species specific antibodies are immobilised. The most commonly exploited surface chemistry used to mobilise the antibodies onto the sensor surface is called CM5 (Johnsson et al. 1991). This sensor surface consists of a SiCO<sub>2</sub> base layer mobilised on top of a gold film. Long chain hydroxyalkyl thiols are also attached to the gold film. Carboxymethylated dextran (CM5) is then mobilised onto the surface which creates a hydrogel on the gold film. The CM5 has carboxylic side groups which can attach to other biomolecules. Although SPR technology has its advantages as a real time, label free detection method, the main disadvantage is that it lacks sensitivity for measuring small molecules.

## **1.6.4.2 Electrochemical biosensors**

Electrochemical transduction is a popular choice for biosensor systems and has been researched thoroughly. This form of transduction was used in the original glucose biosensor system. These biosensors can be classified into amperometric, potentiometric, impedimetric and conductometric biosensors, based on the observed factors such as current, potential, impedance and conductance, respectively (Velusamy et al. 2010). For example an amperometric biosensor will consist of an oxidoreductase enzyme which is
stabilised onto an electrode. The enzyme is specific to a particular analyte which is specific to the pathogen being detected. Upon arrival of the analyte, the enzyme will oxidise the analyte and the electrons generated in the reaction are shuttled to the electrode through artificial electron acceptors or mediators such as ferrocene or hexacyanoferrate. The mediation of electrons produces a current that is directly proportional to the concentration of the analyte (Turner 2000). Antibodies can also be stabilised onto electrode surfaces so that the binding event of target antigen to antibody can be detected. Electrochemical biosensors have been successfully used to diagnose many food borne pathogens including *E-coli* and *Salmonella* which can cause significant harm to human and animals if ingested (Muhammad-Tahir and Alocilja 2003, Muhammad-Tahir and Alocilja 2004, Yang et al. 2001). One study used an amperometric biosensor to detect S. typhimurium cells. The bacterial cells were bound by magnetic- beads which were conjugated to antibodies and then subsequently detected by an alkaline-phosphatase (AP)-labelled anti-Salmonella antibody. The AP antibody catalysed the breakdown of *para*-aminophenyl phosphate into electro-active *para*-aminophenol. This generates an electrochemical signal and measures over  $8 \times 10^3$  bacterial cells / mL (Gehring et al. 1996). Microbes have also been used for over a decade within sensors as they can be used to catalyse certain amperometric reactions. Some examples include ethanol yeast-based bio electrodes, based on the activity of alcohol dehydrogenase in yeast (Miyamoto et al. 1991). Yeast and vitamin K3 were used in the preparation of bioelectrodes sensitive to ethanol and glucose (Miki et al. 1994). This technology can be further expanded to detect crop pathogens by exploiting certain biological or metabolic reactions during pathogen growth and then using these biological signals to potentially generate an electrical signal which can measure the presence of that pathogen in a field. However for the diagnosis of plant diseases, the field is still lead by antibody based devices such as the LFD and laboratory based assays including ELISA and PCR. There is still a large need for infield diagnostics that can use the above technologies to detect pathogenic species automatically.

#### 1.6.4.3 Wireless biosensor networks

There has been a shift within agricultural industries to harness biosensor technology which was originally developed for indoor wireless sensor networks (WSN) and medical professions. Biosensor technology is being used with WSN and radio frequency identification (RFID) (Ruiz-Garcia et al. 2009). Both have promising uses in environmental monitoring, irrigation, livestock, greenhouse, cold chain control or traceability. A main advantage of the WSN technology is that it allows multiple networks to communicate whereas RFID has no cooperative capabilities. RFID can either come in an active or semi-passive form. Semi- passive RFID only has enough power to sense and record data. An active RFID system can broadcast data and communicate with other nodes in its network within a range of 100 meters. The power required for active RFID is ten times more expensive then semi-passive RFID devices. Currently semi-passive and active-RFID tags have been developed, no bigger than a credit card, which can record temperature and are used in industry (Amador 2008). Semi-passive tags to record humidity, light, shock/vibration and gas accumulation such as ethylene (which accumulates during plant stress) are also becoming commercially available. Current examples of sensors include environmental monitors in food containers which monitor the temperature and humidity of a space which can then be equated to stresses which food will undergo when being transported during the journey from the grower to the supermarket (Ruiz-Garcia et al. 2009). In greenhouse environments, WSN can also be used to monitor and control temperature, relative humidity and light (Wang 2008).

A biosensor wireless network consists of many nodes, each one comprising of a sensing, processing and communicating unit (Akyildiz et al. 2002). In a wireless network, each sensor node can change information with a gateway unit which can communicate with other sensors from other networks. Designing a wireless network has the added benefit of not requiring any wiring which makes installation much more economic and reduces any problems that wiring installation creates. Wireless network nodes have to be placed correctly in the field to ensure the data sensor devices are able subsequently to transmit through very challenging environments. Crop canopy and climatic variability may be a problem for many sensors as well as sufficient power supplies. These all add to problems of erroneous data collection and all need to be taken into account when designing a network. Packet Reception Rate which refers to how much of the recorded message is lost in a network must be evaluated in each system. It may be improved by simply increasing the number of nodes, changing the position of one or reducing the range of monitored area (Ruiz-Garcia et al. 2009).

There has been successful applications of WSN within a closed environment in the monitoring of potato blight disease caused by *Phytophthora infestans* by using temperature and humidity sensors (Baggio 2005). This network uses 150 sensor boards to be used directly in the field (Baggio 2005). These boards are equipped with sensors for registering temperature and relative humidity. The network also contains 30 nodes which act as communication relays. The sensors were placed at a range of heights (20-60 cm above ground). There are also a number of sensors measuring soil humidity. The data is collected

by nodes at the edge of the field called a 'gate-way' and transferred via Wi-Fi to a PC where the data is logged. This PC is connected to the internet and can be uploaded to a server. The data collected can be used to monitor whether the field conditions are conducive for plant infection, and allow simulations for algorithms for other WSNs.

#### 1.7 The SYield biosensor consortium

The research described in this thesis contributed to the work of a consortium that aimed to develop a network of infield biosensors for the real-time detection of airborne ascospores from the fungal pathogen *Sclerotinia sclerotiorum*. This project required an array of different disciplines including electrical engineers, computer specialists, biochemists, biologists, satellite image surveyors, mathematical modellers, field trial managers and business managers. As a result, the consortium consisted of a range of small, medium enterprises (SMEs) (Burkard Engineering, DMCii, Uniscan, and Gwent Group) and academic partners (Rothamsted Research and The University of Manchester). The consortium was led by the agrochemical company, Syngenta and was assembled in November 2010 to take on the challenge of building the biosensor. The project received approximately £1.5 million over three years from the Technology Strategy Board (TSB) and Syngenta combined.

The original biosensor network design aimed to unite local farm networks of infield biosensors which would interact all over the UK to warn oilseed rape growers of any emerging S. sclerotiorum disease threat to their crop. This early warning system is designed to help growers choose the best crop protection to reduce the risk of S. sclerotiorum disease. This enables growers to save money on fungicide inputs and produce more food from fewer inputs by developing an integrated farm management strategy. S. sclerotiorum was the chosen pathogen for detection as it causes sporadic outbreaks which are very difficult to predict. Currently farmers will spray to protect crops against the disease even when there is very little risk of outbreaks. An electrochemical detection method was chosen as a result of the electrochemical expertise available to the project and that this pathogen secretes the organic acid, oxalic acid (OA). OA is easily broken down by the oxidoreductase enzyme, oxalate oxidase (OxOx) and has similar activity to the glucose oxidase enzyme used in the blood glucose biosensor. The blood glucose technology has developed over many years of research and in theory could be easily applied to similar enzyme systems. After three years of work on the project, an automated biosensor has been developed to detect S. sclerotiorum; however the integration of a network of biosensors across the UK is still a work in progress.

#### 1.8 Sclerotinia sclerotiorum: the pathogen of choice for the SYield Biosensor

#### **1.8.1** Sclerotinia sclerotiorum: Taxonomy

S. sclerotiorum is a fungal pathogen which has a broad host range of more than 400 plant species (Boland and Hall 1994) globally, predominantly dicotyledonous. It has been estimated that this disease can cause the loss of up to 60 million dollars per year in the combined oilseed crops; sunflower, canola and soybean (Lu 2003). This pathogen poses a threat to economically important crops including sunflower, soybean, oilseed rape, chickpea, peanut, lentils, carrots, lettuce. Monocotyledonous plants such as onion and tulip are also at risk (Boland and Hall 1994). In the UK, oilseed rape, carrot and lettuce crops are the most affected (Clarkson et al. 2007). This disease has been called by a variety of other names including cottony rot, watery soft rot, crown rot, stem rot, blossom blight and white mould (Bolton et al. 2006). It was first officially described as Sclerotinia sclerotiorum de bary in 1884 (De 1884) and has been taxonomically characterised as being part of the Sclerotiniaceae fungal family, in the order Helotiales and in the Ascomycota phylum (Bolton et al. 2006). This family is associated with the production of melanised hyphal aggregates called sclerotia. From these stipitate apothecia develop and from these structures, ascospores are released. S. sclerotiorum is a homothallic fungus and so to produce ascospores from apothecia, sexual reproduction arises from self-fertilisation (Clarkson et al. 2013). This has resulted in clonal population structures across the world, with a few clones being sampled at high frequencing but more interestingly there are many different diverse clones too. This highlights that S. sclerotiorum has a very diverse population structure. DNA fingerprinting and microsatellite studies have shown that generally within a population there is one or very few clones sampled with high regularity. This has been shown in the same locations over multiple years of sampling (Clarkson et al. 2013). An example of this was evident in Canadian oilseed rape isolates which had similar DNA fingerprinting to isolates sampled from soybean in Ontario and Quebec (Hambleton et al. 2002). In many cases the DNA fingerprinting or microsatellites are closely related to mycelial compatibility groups (MCGs). MCG testing is a phenotypic, macroscopic assay which is based on the self / non self-recognition mechanism controlled by many loci within the fungal genome (Carbone et al. 1999).

#### 1.8.2 Advances in the genome sequencing of Sclerotinia sclerotiorum

The Broad Institute has sequenced the *S. sclerotiorum* genome and a comparative study of this genome and the closely related sequenced *Botrytis cinerea* genome has been conducted (Amselem et al. 2011). The *S. sclerotiorum* genome is predicted to contain 14, 522 genes. The *S. sclerotiorum* genome contains 16 linkage groups which correspond to an estimated 16 chromosomes (Amselem et al. 2011). Also available for bioinformatics analysis is an estimated 17<sup>th</sup> 'waste bin' chromosome containing the concatenated unmapped sequences. Having this resource available publically has allowed further investigation into the infection strategies and mechanisms of pathogenicity which will be further covered in this thesis.

#### **1.8.3** Sclerotinia sclerotiorum: Life cycle and infection strategy

S. sclerotiorum derives its nutrients from dead or decaying plant cells. For the purpose of this thesis and the SYield project, the infection strategy adopted by this pathogen to infect oilseed rape was studied; however infection strategies used against other host plants including carrots and lettuce are the same. S. sclerotiorum has evolved a lifecycle which is synchronous with the flowering stage of oilseed rape (Figure 5). Petals or senescing tissue play an extremely important role during the infection process as airborne ascospores which land on petal/ senescing tissue are able to obtain nutrients during early spore germination without having to combat any host plant defence mechanisms (Bolton et al. 2006, Lumsden 1979). This ascomycete fungus, produces melanised resting structures called sclerotia which can survive for several years in the soil making it particularly difficult to eradicate from fields (Hegedus and Rimmer 2005). Sclerotia which are found naturally in an area respond specifically to the environmental cues of that region. Slight differences in climates will affect the optimum germination conditions required by scelrotia of different isolates. For example, in temperate regions such as the UK, sclerotia require a period of cold conditioning (over wintering) in the soil which has a high moisture content. Sclerotia will undergo carpogenic germination which is the development of fruiting bodies or apothecia which release ascospores. Apotheicia germination will occur after a period of increased temperature during springtime, which generally coincides with oilseed rape flowering. This is because the sclerotia respond to the same environmental cues as the plant during flowering. After periods of rainfall which create a soil water potential of 100 KpA for one to two weeks coincident with increases in temperature between 25- 30 °C, the fruiting bodies or apothecia can develop. Under the surface of the mushroom shaped apothecia, rows of asci develop. These are cylindrical-sac like zygote cells which contain 8 hyaline, ellipsoid binucleate ascospores (Kohn 1979). Ascospores are released continually when pressure builds up within the asci. Clouds of ascospores are sometimes visible when there is a change in air pressure, a gust of wind or physical disturbance of the apothecia (Figure 6).

Most of the ascospores will remain in the field where they were released, however it has been shown that some ascospores can travel for several kilometres in air currents (Li et al. 1994). Continuous rainfall and dry periods allow apothecia to maintain moisture and re-release ascospores. A viable spore may be blown onto a senescing part of the host plant such as a petal. The spore will then colonise the petal and once the petal is abscised from the plant and falls onto healthy plant tissue, the fungal hyphae have sufficient energy to infect. The mode of infection involves the penetration directly through the waxy cuticle of the leaf rather than through the stomata. The apex of hyphae forms either an appressoria or a pad of short hyphae which are perpendicularly attached to the host surface by mucilage (Hegedus and Rimmer 2005). Penetration of the cuticle involves both mechanical and enzymatic digestion, most noticeably a hyphal fan which grows over the subcuticular wall of the epidermis (Hegedus and Rimmer 2005). The secretion of the organic acid; oxalic acid, cell wall degrading enzymes (CWDEs) and pectin degrading enzymes are released subsequently. Once the pathogen has scavenged all the available nutrients, hyphae begin to form sclerotia in the stem of the plant. When the stem of the plant falls to the ground, the sclerotia fall into the soil and overwinter until the conditions are correct again for apothecia development.



Figure 5: The life cycle and disease strategy of *S. sclerotiorum* in oilseed rape systems.

(Courtesy of Syngenta).



**Figure 6**: A visible cloud- like puff of ascospores released from *S. sclerotiorum* apothecia. *S. sclerotiorum* sclerotia were potted up in containers of damp vermiculite and conditioned for a period of 6 weeks in the dark in a 5 °C room. The containers were re-located into a light box with a 12hr near UV/ white light regime at 18 °C. Fruiting bodies or apothecia germinated and were kept moist in cloched boxes. Upon removal of the cloche lid, ascospores were released into the surrounding air as a result in the change in pressure.

#### 1.8.4 Oxalic acid and its role in *Sclerotinia sclerotiorum* infection

The secretion of oxalic acid during early plant infection has been described as the main pathogenicity factor for *S. sclerotiorum* (Maxwell and Lumsden 1970, Magro et al. 1984, Dutton and Evans 1996, Godoy et al. 1990, De 1884). Oxalic acid has been detected within host plant tissue during and after fungal infection. It is principally detected in its conjugate base form, oxalate which occurs when oxalic acid loses two protons. Although oxalic acid been described as a phytotoxin it also has a variety of functions during infection including the mediation of a range of pH dependent processes during the infection process (Rollins and Dickman 2001), and as a result creates optimum conditions for CWDEs (Bateman and Beer 1965). Oxalic acid also disrupts cell wall integrity by chelating calcium within the plant cell wall. It's other documented functions include deregulation of stomatal guard cell closure (Guimaraes and Stotz 2004), suppression of the induced plant oxidative burst (Cessna et al. 2000), elicitation of plant programmed cell death (Kim et al. 2008) and changing the cellular redox-status in the plant (Williams et al. 2011).

A neutral pH environment activates the secretion of oxalic acid. Bateman (1965) describes the importance of lowering the pH of the plant tissue to create a more favourable environment for enzymes such as Polygalacturonases (Bateman and Beer 1965) and pectin methylesterases which breakdown pectin within plant cells (Riou et al. 1991) thereby releasing stored starch which the fungus will then utilise. It has been shown by quantifying the expression levels of specific gene transcripts, that there is differential expression of certain genes coding for CWDEs during pathogenesis (Bolton et al. 2006). Polygalacturonases (PGs) are important enzymes that are expressed the most during the early phase of colonisation of healthy plant tissues at 36 hours post inoculation (hpi) but not during the later phase at 96 hpi (Kasza et al. 2004). RT-qPCR showed that some PG transcripts (pg6 and pg7) were detected from 24 hpi until the end of the time course experiment at 96 hpi. This highlights that different enzymes potentially have different roles at different time points following infection.

Oxalic acid production is a self-limiting mechanism. As oxalic acid accumulates, the pH decreases further and subsequent OA production is inhibited. This process is regulated by the *pac1* gene in *S. sclerotiorum* which is a pH responsive gene. The *pac1* protein, originally characterised in *A. nidulans*, is positively regulated under alkaline conditions. It actively promotes transcription of alkaline-expressed genes (Rollins 2003) and under a neutral pH may be involved in the upregulation of genes involved in

oxalic acid synthesis (Rollins 2003). *Pac1* is also involved in the regulation of sclerotia development which occurs during the final stages of infection when pH would be less acidic.

An increase in production of cyclic AMP (cAMP), an intracellular signal transducer, which activates ion channels and MAP kinases, has been linked to the increase in oxalic acid production (Jurick et al. 2004). Once the pathogen has successfully used up all the nutritional reserves from the plant, there is a decrease in cAMP production which is linked to the decrease in the amount of glucose available. This decrease in cAMP prevents the production of oxalic acid and activates sclerotial formation (Rollins 2003).

Oxalic acid is a strong chelator of divalent cations such as Ca  $^{2+}$  (Godoy et al. 1990) and it is thought that it sequesters calcium in the form of insoluble calcium oxalate crystals which disrupts cell integrity (Bateman and Beer 1965). Once the oxalate has combined with calcium ions found in the host cell wall, polygalacturonase can more readily hydrolyse pectates found in the middle lamella which thereby further enhances the tissue maceration process (Bateman and Beer 1965).

Oxalic acid has also been shown to reduce the oxidative burst within the host plant (Cessna et al. 2000). An oxidative burst involves a highly controlled localised release of reactive oxygen species (ROS) caused by the reduction of molecular oxygen into hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), superoxide radicals ( $\cdot$ O<sub>2</sub>) and hydroxyl radicals ( $\cdot$ OH) and is produced as part of the early plant defence response at the site of infection. ROS are directly toxic to fungi, by damaging membranes and proteins and also by inducing programmed cell death (PCD) in the pathogen (Hegedus and Rimmer 2005). In plants, localised PCD is frequently triggered by the detection of the presence of PAMPS/ MAMPS, effectors or other signal molecules which initiate a PTI or ETI mediated response in the host plant (Wojtaszek 1997). Once ROS are detected, a cascade of downstream signalling pathways and networks, which activate plant stress responses to combat infection, are activated. The plant oxidative burst is suppressed at low pH and when there is a decrease of Ca  $^{2+}$  ions within plant cells. It has been demonstrated that oxalate-deficient strains of S. sclerotiorum allow unrestricted H<sub>2</sub>O<sub>2</sub> production in the soybean host cells. When adding oxalic acid directly to soybean cells, there was an inhibited production of  $H_2O_2$  (Cessna et al. 2000) indicating that OA suppresses the oxidative burst. A reduction in the pH in the absence of oxalic acid production was found not to be sufficient to suppress the oxidative burst. Therefore the production of oxalic acid is required for complete suppression (Cessna et al. 2000).

S. sclerotiorum also produces a zinc-superoxide dismutase (Li et al. 2004a). This

enzyme scavenges ROS and depletes the ROS signal to reduce the impact of the plant oxidative burst to the pathogen and reduce downstream signalling within the plant.

As previously described, *S.sclerotiorum* has a very broad host range *S. sclerotiorum* which includes over 400 plant (principally dicotyledonous) species. Non-host species, for example, i.e. barley and wheat, are able to evade infection through the production of oxalate oxidase or germin which catabolises OA and so enables the plant to remove apoplastic oxalate and maintain the oxidative burst and cell integrity as well as reducing enzyme action (Cessna et al. 2000).

#### 1.8.5 Biosynthesis of OA

The biosynthesis of this compound in *S. sclerotiorum* has not been fully characterised however the principle way in which oxalic acid is produced includes the direct hydrolysis of oxaloacetate into acetate and oxalate (Lenz et al. 1976) by a relatively well characterised enzyme oxaloacetate acetylhydrolase (OAH) (EC 3.7.1.1) (Han et al. 2007). This enzyme is active during the Tricarboxylic Acid Cycle (TCA) or the Citrate Cycle (Cessna et al. 2000) which is an important aerobic pathway for the final steps during the oxidation of carbohydrates and fatty acids, which generates NADH and linked to other metabolic cycles which produce ATP (**Figure 7**).

OAH was initially purified in Aspergillus niger (Han et al. 2007) and homologues of this protein have been identified in both S. sclerotiorum (SS1G 08218) and B. cinerea (BC1G\_03473). S. sclerotiorum mutant strains deficient in this enzyme are unable to produce oxalic acid and its ability to induce disease is severely impaired (Rollins, JA unpublished, (Amselem et al. 2011)). Current research shows that oxaloacetate is also associated with other metabolic cycles including glyoxylate and dicarboxylate metabolism Oxaloacetate is also a component of Glycolysis or and pyruvate metabolism. Gluconeogenesis which is a key pathway involved in the generation of small amounts of ATP and NADH as a reducing power as well as the conversion of glucose into pyruvate (Han et al. 2007). These mechanisms vary depending on the organism. The ability to convert pyruvate to oxaloacetate by the gluconeogenic enzyme, pyruvate carboxylase (EC:6.4.1.1) will play a key role in the production of OA. Similarly the upstream conversion of acetyl-CoA to pyruvate using pyruvate dehydrogenase (EC 1.2.1.51) directly affects the amount of OA produced. An increase in flux through both these steps leads to increased OA production.

The two other suggested routes for production of oxalate in fungi (Han et al. 2007) include the oxidation of glyoxylate by Glyoxylate dehydrogenase (EC1.2.1.17) (

Culbertson et al. 2007 a & b) and glyoxylate oxidase (EC1.2.3.5). Glyoxylate dehydrogenase was crudely purified from *Sclerotinia rolfsii* (Maxwell and Lumsden 1970, Bateman and Beer 1965, Balmforth and Thomson 1984) but has not since been further studied in *S. sclerotiorum*.

Finally the production of oxalate was studied during the oxidation of glycolaldehyde by the GLOX enzyme, glyoxal oxidase. This was explored during lignin decomposition with the enzyme isolated from the white rot fungi *Phanerochaete chrysosporium* (Hammel et al. 1994).



00020 5/31/12 (c) Kanehisa Laboratories

Figure 7: The Tricarboxylic Cycle taken from Kegg. http://www.genome.jp/kegg

The TCA cycle is the principle proposed pathway that generates excess oxalic acid. However other pathways including glycolysis may also be responsible for the production of this organic acid. Green boxes highlight the ortholog enzymes identified in *S. sclerotiorum* which play a role in the TCA cycle.

#### 1.8.6 Sclerotinia sclerotiorum: a necrotroph, a biotroph or something in between?

For many years S. sclerotiorum has been described as a true necrotroph. Recently the use of bioimaging and a fluorescently labelled strain has revealed that S. sclerotiorum may exhibit a very short initial biotrophic phase. This was demonstrated by Kabbage and colleagues (Kabbage et al. 2013) who have shown an interplay between autophagy and apoptosis during the initial hours post infection. Programmed Cell Death (PCD) can determine what lifestyle S. sclerotiorum is exhibiting at different infection stages. PCD is an intrinsic programme for cell suicide. These cell programmes sense and monitor multiple internal and external cues and instruct the cell to eliminate itself from the organism for the overall survival of the animal, plant or microbe. Cells can undergo apoptosis which is characterised by a cascade of tightly controlled checks which are successfully negotiated prior to reaching a point-of-no-return life. Or they can undergo autophagy which is a catabolic process in which proteins and damaged organelles are engulfed and sequestered in characteristic double membrane vesicles termed autophagosomes. Kabbage and colleagues hypothesised that the type of induced host PCD is important in determining resistance or susceptibility to a fungal pathogen. They compared infection of Arabidopsis thaliana plants, transformed with a C. elegans CED-9 anti-apoptotic gene, with a wild type S. sclerotiorum strain (WT) and an oxalic acid deficient mutant strain (A2). WT infection resulted in a resistant phenotype and disease formation was completely inhibited. The authors concluded that the WT strain induces a runaway apoptotic cell death in the host plant whereas the oxalate deficient strain induces autophagy cell death which is responsible for the restricted growth phenotype of the mutant fungus. They showed that during the initiation of pathogenesis, the WT fungus hyphae do not kill cells; there is also no evidence for oxidative stress and fungal growth is observed in living plant tissue. S. sclerotiorum then switches to a necrotrophic lifestyle inducing apoptosis to induce disease formation when the hyphae live off dead plant cells. The authors also identified an effector-like protein in S. sclerotiorum called SsCm1 that has strong similarity (structural and functional) to the Ustilago maydis effector Cmu1, which codes for a secreted chorismate mutase. Cmu1 serves to maintain biotrophy during the establishment of smut infections in maize leaves, by maintaining low levels of salicylic acid at the site of infection (Djamei et al. 2011). A similar function is speculated for SsCm1(Kabbage et al. 2013).

#### 1.8.7 Control of Sclerotinia sclerotiorum in the field

Many methods recommended for *S. sclerotiorum* control involve prophylactic fungicide spraying. The HGCA provides advice on the use of a combination of prochloraz,

tebuconazole, azoxystrobin, prothiaconazole, iprodione and boscalid fungicides which can all provide effective control against S. sclerotiorum. However there have now been cases of resistance to MBC chemistry (Table 1) in France and so this needs to be addressed with better spray programmes and integrated pest management strategies. The Canola Association of Australia (CAA) (Australia 2008) also recommend that as well as fungicide use other measures can be taken to protect the oilseed rape crop against S. sclerotiorum. This includes the use of good quality seed during sowing, using sufficiently long crop rotations and avoiding planting susceptible crops in or around infected fields. The CAA also insists that growers use a range of fungicides and carry out the right number of sprays per season. There is also a biocontrol product which is commercially available called Constans. This product incorporates the fungal mycoparasite Coniothyrium minitans into a spray which is applied to the soil prior to the growing of high value vegetable crops (de Vrije et al. 2001). Once the inoculum has built up within soil, the biocontrol agent is very effective in breaking down the sclerotia in the soil which prevents further apothecia formation and reduces disease incidence significantly.

#### 1.8.8 Forecasting systems available for S. sclerotiorum

Sporadic fungal disease outbreaks are difficult to forecast as they rely heavily on very particular environmental conditions. There are some forecasting methods developed for predicting outbreaks of S. sclerotiorum in economically important crops such as peanut, lettuces and oilseed rape (Clarkson et al. 2007, Smith et al. 2007, Twengstrom and Sigvald 1996, Twengstrom and Sigvald 1993, Twengstrom et al. 1998). BASF (agrochemical company) and ADAS (agricultural and environmental agency) have combined forces to implement a Sclerotinia germination tool for UK based growers. This tool is based on the direct observations of sclerotia at sclerotial depots and is monitored on a weekly basis throughout June to August. This helps gauge the germination pattern of natural sclerotia within carrots buried in areas which have been previously affected by the disease. Growers are advised to continually check published information on the website to be ready to take action against disease outbreaks. A predictive model for carpogenic germination of sclerotia to forecast sclerotinina disease on lettuce has also been developed. Again this model is dependent on on the close observation of apothecia development from sclerotia found in the soil of previously contaminated fields, soil moisture temperature, climatic temperature and canopy density of the crop (Clarkson et al. 2007). The monitoring of apothecia development can be difficult due to the small size of the mushroom-like structures. The predictive model may also vary as the temperature at which sclerotia germinate is based on a particular climate and temperature ranges cited vary from 16 °C to 30 °C (Clarkson et al. 2007). One study showed 20 isolates from different regions which all required different temperatures for germination (Huang and Kozub 1991). This makes it difficult to generate prediction models for an outbreak during a season across different climates. Soil water content measurements also differ between studies. One study used theta probes which measure the top 6cm of soil and then convert the measurement to soil water potential. This is a challenge as these values vary greatly within a single field and this makes it difficult to gauge accurate readings across even a single farm.

One way to monitor *S. sclerotiorum* inoculum in a field is to use semi-selective agar plates. This method involves placing the agar plates, open, under the canopy to allow *S. sclerotiorum* ascospores to drop onto the plates (Steadman et al. 1994). The semi-selective agar contains a bromophenol blue pH indicator dye which will change from blue to yellow as *S. sclerotiorum* ascospores germinate and secrete oxalic acid. Sclerotia production on the plate is then monitored for confirmation of species. This method may be effective for studying whether *S. sclerotiorum* is present in a field but it does not give a rapid enough result as to whether the disease is present or not before an outbreak will occur.

Disease models are extremely important in generating predictions to help forecast disease risks and they are an important life line for growers who are trying to implement good pest control management strategies. More automated ways to monitor the arrival of the disease in combination with the already useful prediction models available would be a significant improvement in controlling this and other fungal pathogens.

#### **1.9 Project objectives**

This project is very much focused on the development of an automated infield biosensor to detect the presence of the fungal pathogen *S. sclerotiorum*, in particular the selective growth surface or the biological matrix within the biosensor that *S. sclerotiorum* ascospores will be sampled into. The matrix will need to induce rapid growth for specifically this species of fungi and induce secretion of an analyte (oxalic acid) to be quantified and detected with an electrochemical assay. This project also aims to investigate other important aspects of pathogen biology so that information from these investigations can contribute to the development of an accurate detection system. Methods to investigate the biology and the underlying molecular mechanisms of infection included the use of RNA sequencing to look at the transcriptome during infection processes as well as using

bioinformatics tools to predict the suit of proteins secreted during early infection. This will not only help identify potential effector candidates but also potential protein targets which can be applied to other diagnostic techniques.

### **1.9.1 Hypotheses to be tested:**

- 1. The number of *S. sclerotiorum* ascospores is positively correlated with OA concentrations after incubation in an appropriate medium.
- 2. A biological matrix which is conducive to the growth of *S. sclerotiorum* can be used in combination with an electrochemical assay for OA to detect the presence of ascospores.
- 3. The use of a bioinformatics pipeline to predict secreted proteins can be used to identify potential new nucleotide or protein targets for the detection of *S. sclerotiorum*.
- 4. The lack of oxaloacetate acetylhydolase secretion by a mutant strain of *S. sclerotiorum* compromises the expression of other genes important for disease development.

### Chapter 2: General Experimental Procedures 2.1 *S. sclerotiorum* sclerotia and ascospore production

To obtain *S. sclerotiorum* ascospores throughout this PhD, it was necessary to obtain large sclerotia that would produce large numbers of apotheica. Sclerotia were generated using carrot agar as this was observed to generate the largest sclerotia. Carrot agar was prepared by boiling and then blending 400 g of carrots in 400 ml of deionised  $H_2O$  and subsequently increasing the final volume to 1L with deionised  $H_2O$  before adding 20 g/L of agar to prepare the solid media. Plates were poured after autoclaving liquid medium under a sterile flow hood. *S. sclerotiorum* sclerotia for apothecia production were generated by inoculating carrot agar plates with a 6 mm<sup>2</sup> *S. sclerotiorum* mycelial plug placed in the centre of the plate. The plates were incubated at 18 °C for 3 weeks until mature black sclerotia had formed at the edge of the plates. Plate lids were removed and sclerotia air dried for two days. Sclerotia were picked off the plate and the same isolates consolidated. Harvested sclerotia were surface sterilised in 10 % sodium hypochlorite and 95% ethanol an washed with sterile water. Sclerotia were dried under a sterile flow hood. Sclerotia were stored in bags placed in boxes with silica gel at 5 °C.

The following apothecia production protocol was adapted from the method used by Dr. John Clarkson, University of Warwick. Containers were filled with medium sized particle vermiculite and soaked thoroughly with water. The sclerotia were buried in the containers and a fine layer of vermiculite placed on top. The pots were soaked once more. The containers were kept at 5 °C for 8 weeks and then kept for 4 weeks at 18 °C under near UV and white light in cloched containers until they produced apothecia. Cloched lids were lifted from boxes and ascospores harvested from apothecia by vacuuming the spores onto sterile filter paper on a daily basis.

Ascospore suspensions were made by placing a section of spore-coated filter paper into sterile water and shaking vigorously from time to time over a period of several minutes. A 20  $\mu$ l 0.1% Tween solution was added to 1ml of ascospore solution to prevent spore clumping. Ascospore numbers were estimated using a haemocytometer. 10  $\mu$ l of spore solution was placed under the cover slip of a haemocytometer and observed under a Leica 20x compound light microscorpe . Ascopsores were counted and the ascospore solution calculated.

#### 2.2 S. sclerotiorum mycelial cultures

Sterilised sclerotia were halved using a sterile scalpel under a flow hood. The sclerotia halves were placed face down onto PDA plates. Plates were incubatd in the dark at 18° C for 2 days. Agar plugs were taken from the advancing hyphal edge.

| Species                 | Isolate name    | Plant host    | Origin                                      |
|-------------------------|-----------------|---------------|---------------------------------------------|
| S. sclerotiorum         | L2003           | Lettuce       | John Clarkson, Warwick, UK                  |
| S. sclerotiorum         | L6              | Lettuce       | John Clarkson, Warwick, UK                  |
| S. sclerotiorum         | L17             | Lettuce       | John Clarkson, Warwick, UK                  |
| S. sclerotiorum         | L44             | Lettuce       | John Clarkson, Warwick, UK                  |
| S. sclerotiorum         | GFW 1           | OSR           | Rothamsted, UK                              |
| S. sclerotiorum         | GFW 2           | OSR           | Rothamsted, UK                              |
| S. sclerotiorum         | GFW 3           | OSR           | Rothamsted, UK                              |
| S. sclerotiorum         | GFW 6           | OSR           | Rothamsted, UK                              |
| S. sclerotiorum         | GFR 1           | OSR           | Rothamsted, UK                              |
| S. sclerotiorum         | GFR 2           | OSR           | Rothamsted, UK                              |
| S. sclerotiorum         | GFR 3           | OSR           | Rothamsted, UK                              |
| S. sclerotiorum         | GFR 4           | OSR           | Rothamsted, UK                              |
| S. sclerotiorum         | GFR 10          | OSR           | Rothamsted, UK                              |
| S. sclerotiorum         | GFR 11          | OSR           | Rothamsted, UK                              |
| S. sclerotiorum         | GFR 12          | OSR           | Rothamsted, UK                              |
| S. sclerotiorum         | GFU1            | OSR           | Rothamsted, UK                              |
| S. sclerotiorum         | BF              | OSR           | Rothamsted, UK                              |
| S. sclerotiorum         | BF1             | OSR           | Rothamsted, UK                              |
| S. sclerotiorum         | BF3             | OSR           | Rothamsted, UK                              |
| S. sclerotiorum         | BF4             | OSR           | Rothamsted, UK                              |
| S. sclerotiorum         | BF7             | OSR           | Rothamsted, UK                              |
| S. sclerotiorum         | 81(A)           | OSR           | Rothamsted, UK                              |
| S. sclerotiorum         | M1/448          | OSR           | Rothamsted, UK                              |
| S. sclerotiorum         | M448            | OSR           | Rothamsted, UK                              |
| S. sclerotiorum         | b1/31 1992      | OSR           | Rothamsted, UK                              |
| S. sclerotiorum         | 1992B           | OSR           | Rothamsted, UK                              |
| S. sclerotiorum         | S14             | Lettuce       | Bristol, UK                                 |
| S. sclerotiorum         | S4              | Lettuce       | Bristol, UK                                 |
| S. sclerotiorum         | SS Polish LL15  | OSR           | Poland, UK                                  |
| S. sclerotiorum         | SS Polish Sco50 | OSR           | Poland, UK                                  |
| S. sclerotiorum         | US 1980         | Nebraska bean | Jeffrey Rollins, Broad sequenced strain, US |
| Sclerotinia trifoliorum | R316            | Grass         | Rothamsted, UK                              |
| Botrytis cinerea        | 181038          | Soft fruit    | Rothamsted, UK                              |
| Botrytis cinerea        | 967             | Soft fruit    | UK, Syngenta                                |
| Botrytis cinerea        | 978             | Soft fruit    | UK, Syngenta                                |
| Botrytis cinerea        | 1305            | Soft fruit    | UK, Syngenta                                |
| Botrytis cinerea        | 1430            | Soft fruit    | UK, Syngenta                                |

**Table 2:** S. sclerotiorum and B. cinerea isolates used throughout this project.

# 2.3 Bioassay to test different complex media to induce oxalic acid production by *S*. *sclerotiorum* ascospores

Different liquid media were tested for improved secretion of oxalic acid by *S. sclerotiorum* ascospores in 12 well plates (**Figure 8**). Media was made up according to manufacturer's instructions. Additions to media including Glucose, malate, fumarate, succinate and buffers including MES (2-(*N*-morpholino) ethanesulfonic acid) and HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) (Sigma Aldrcih, UK) were made up to the required concentrations and filter sterilised before adding to the medium. Media pH was altered using a pH meter and probe (Hanna Instruments, USA). pH of solutions was adjusted using 1M NaOH or HCL. Media were autoclaved before use. Wells were filled with 2 ml of the medium of choice for testing and then seeded with ascospore solutions. Three wells were used for three biological replicates. Three wells per plate were used as control wells which were seeded with water. Plates were incubated in the dark, on the bench top at 20 °C.



**Figure 8:** The 12 well plate used to test various liquid media for oxalic acid production by *S. sclerotiorum* ascospores.

Each well within the twelve well plate was dosed with 2 ml of the liquid medium being tested for o determine its ability to induce oxalic acid production by *S.sclerotiorum* ascospores which were seeded into the medium. Nine wells contain ascospores which have been incubated for 4 days. Three wells were used as control wells which were seeded with sterile water to ensure the medium contained no oxalic acid or was contaminated.

# 2.4 Sigma high throughput spectrophotometric determination of oxalic acid in liquid media.

This assay was optimised with the help of Prof. Nicola Tirelli and Dr. Cong Duan-Vo at the University of Manchester. Solution A was made up with 50 mM Succinate buffer (Sigma Prod. No. S-7501), 0.79 mM N,N Dimethylaniline (Sigma Prod. No. D-8509) and 0.11 mM 3-Methyl-2- Benzothiazolinone Hydrazone MBTH (Sigma Prod. No. M-8006) which were dissolved in 100 ml of deionised water. The pH was adjusted to pH 3.8 at 37°C with 1 M NaOH. 100 mM Ethylenediaminetetraacetic Acid Solution (EDTA) was made up in deionised water (Sigma Stock No. ED2SS). 1 mg / ml aliquots of Horseradish Peroxidase (HRP) (Sigma Prod. No. P-8375) was made up in cold deionised water immediately before use. A 0.25 - 0.50 unit/ml aliquot of Oxalate Oxidase (OxOx) (Sigma/ Syngenta in house production) was dissolved in cold deionised water immediately before use. A master mix solution containing 12.6 ml Solution A, 0.5 ml 100 mM EDTA, 1 mg / ml HRP, 0.35 unit / ml OxOx and 1.5 ml water was mixed together.

In a 96-well flat-bottom tissue culture plate (TPP®), 10 µl of liquid medium to be tested for OA concentration was pipetted into a single well. At least two technical replicates per sample were used. 10 µl of un-inoculated medium was used as blank. A set of standards included a ranged of OA concentrations (0, 25, 50, 100, 200, 400, 1000, 1500, 2000, 2500, 3000 µM) were set up on each plate to generate a standard curve to enable prediction of the oxalate concentrations. These standards were usuThese were made from the 100 mM stock oxalic acid concentration and using a dilution factor 14 to ensure the correct working concentration in the final sample volume (150 µl) and also made up in the same medium being tested. A 140 µl aliquot of the master mix was pipetted into each well of a 96 well and incubated at 37°C for 5 hr (**Figure 9**). The plates were read in a Varioskan Flash spectral scanning multimode reader (Thermo Scientific<sup>TM</sup>) at 590nm (light path 1cm,  $37^{\circ}$ C). The plate was read at time 0 and then 5hrs later.



Figure 9: Oxalic acid concentration determined using a high throughput spectrophotometric assay.

A 96-well flat-bottomed tissue culture plate used to quantify oxalic acid concentration of media samples. Ten microliter of medium was added to 140  $\mu$ l of the master mix solution. Increasing oxalic acid concentrations of solutions can be observed with increasing purple intensity in the wells. The absorbance of each aliquot was read in a plate Varioskan spectrophotometer.

#### 2.6 Calculation of the concentration of oxalic acid in samples

The results from the Varioskan software were imported into Microsoft Excel and the value of OA determined using the Genstat asymptote script written by Stephen Powers based at the Rothamsted Statistics department. The script was based on the following equation:

$$y = a + bR^{conc}$$

This script predicted the OA values using the equation used to fit the known standard concentrations of OA to an asymptotic curve. The OA concentration average of the three biological replicates which contained known concentrations of OA was used to create the concentration bar graphs. Absorbance values greater than the standard concentration could not be estimated. In this case the test had to be repeated by either increasing standard concentrations or by diluting the 10  $\mu$ l sample with water.

Script used in Genstat to determine OA concentrations by applying the equation to known absorbance values of the known concentrations of OA:

```
express e1; valu=!e(y=a +b*R**Conc)
model Absorb;fit=y
rcyc a,b,R; init=0.932,-0.6926,0.99;step=*,*,*
fitn [calc=e1;print=s,e,m,mon]
rgraph Conc
scalar abs1
read abs1
value xxxx
scalar C1
variate [nv=1; val=*] se1
express e2; valu=!e(C1=log((abs1-a)/b)/log(R))
rfunc [calc=e2;se=se1] C1
vari CforANOVA; valu=!(#C1)
vari SEforANOVA;valu=!(#se1)
print CforANOVA,SEforANOVA
```

#### 2.7 Statistical analysis

General ANOVA analysis was done to assess whether there was any significant difference between the effects of different treatments of media on the amount of OA produced in the different experiments. GenStat 2011, version 14, (c) VSN International, Ltd, Hemel Hempstead, UK was used for the analysis.

#### 2.8 DNA extraction

#### 2.8.1 Hyphae DNA extraction

DNA extraction was done by growing up a range of fungal isolates either in PDB liquid medium for 1 week or on sterile cellophane discs on top of PDA plates. Cultures were vacuum filtered and freeze dried to remove excess liquid. A Plant DNeasy mini kit (Qiagen, Manchester UK) was used to extract DNA. The manufacturer's protocol was followed.

#### 2.8.2 S. sclerotiorum ascospores DNA extraction

An ascospore solution made up in 2 ml tubes. The tubes were frozen at -20 °C and freeze dried to remove any moisture. Alternatively Burkard wax tape strips were cut into strips corresponding to a single day of airsampling. The strips were coiled into 2 ml screw cap tubes. One scoop of ballotini beads (0.5 g x 400-455  $\mu$ m diameter) we placed in the same 2 ml tubes. 440  $\mu$ l of Extraction Buffer consisting of; 400 mM Tris-HCl; 50 mM

EDTA pH 8; 500 mM sodium chloride; 0.95 % sodium dodecyl sulphate (SDS); 2 % polyvinylpyrrolidone and 5 mM 1,10-phenanthroline monohydrate, was added to each tube. 0.1% β-mercaptoethanol was added to each 2 ml tube. The tubes were processed in a FastPrep machine. They were shaken 3 times at 6.0 m/s for 40 sec, with a 2 minute cooling period between each cycle. During this period, the tubes were placed on ice. After shaking, 400 µl of 2 % SDS was added to each tube. The tubes were inverted several times and incubated at 65 °C in a water bath for 30 mins. Eight hundred microlitres of the bottom phase of phenol: chloroform (1:1) was added to each tube and then vortexed. Tubes were centrifuged at 4 °C at 13 krpm for 10 mins. In a 1.5ml flip-top Eppendorf tube, 30 µl of 7.5 M ammonium acetate and 480 µl of isopropanol was added. The top layer of the supernatant from the original tube was pipetted up carefully and placed into the 1.5 ml Eppendorf tube containing the ammonium acetate mixture. The tubes were inverted several times and centrifuged at -20 ° at 13 krpm for 30 mins. The supernatant was removed leaving a DNA pellet. The pellet was washed with 200 µl of 70 % ethanol and the tube centrifuged again at 13 krpm for 15 mins. The ethanol was removed and the pellet dried. The pellet was re-suspended in 30 µl of sterile deionised water and mixed. All DNA was stored in a freezer at -20 °C.

#### 2.9 RNA extraction

To obtain RNA from *S. sclerotiorum* ascospores grown in vitro, ascospores were germinated in 1 ml PDB in Eppendorf tubes for 5 days. Material was collected by centrifuging the tubes for 2 min at 4°C. The supernatant was pipetted off. The mycelium was washed with RNase free water and snap frozen in liquid nitrogen. The mycelium was then freeze dried to remove moisture.

To obtain RNA from *S.sclerotiorum* infected leaf tissue, leaves were collected into 2 ml tubes and immediately frozen in liquid nitrogen. The tubes were freeze dried to remove moisture.

In both instances, RNA was extracted using a RNeasy Plant mini kit (Qiagen, Manchester UK) following the manufacturer's instructions. RNA/ DNA quantified on a NAnodrop ND-1000 spectrophotometer (NanoDrop Technologies).

### 2.10 Amplification of DNA targets using Polymerase Chain Reaction

Polymerase Chain Reaction (PCR) amplification was performed with REDTaq readymix (Sigma-Aldrich). For each 25  $\mu$ l reaction; a total of 10 mM of each primer and 25-100 ng of DNA template was used. 12.5  $\mu$ l REDTaq ready mix and 10  $\mu$ l sterile water, were added. Sterile water was used in place of DNA templates as a negative control. A

GS4 thermocycler (G-storm, Somerset, UK) was used for the PCR. Cycling parameters included a denaturing step of 95 °C for 2 mins followed by 35 cycles of 95°C for 30 secs, 55°C for 30 secs, 72°C for 45 secs and a final extension step of 72°C for 5 mins. PCR products were run on a 0.8% molecular biology grade agarose (Fisher Scientific, Loughborough, UK) gel with 1 X TBE buffer (0.89 M Tris Borate, 20mM Na<sub>2</sub>EDTA). Gels were stained with ethidium bromide (Sigma-Aldrich, UK) at a final concentration of 0.78 µg ml<sup>-1</sup>. Typically, 10 µl of PCR product and 4 µl of 1 kb or 100 bp Gene Ruler ladder (Fermentas, Thermo scientific, UK) were loaded onto gels. Gels were electrophoresed at 120V for 20 – 40 mins. DNA fragments were visualised under a 302 nm transilumminator (Syngene, MD, USA) using the Gene Genius BioImaging System.

# 2.11 Quantitative Polymerase Chain Reaction for the specific identification of *S. sclerotiorum*.

A high throughput Roche Taqman qPCR protocol for the specific identification S. sclerotiorum DNA was optimised by Jon West and Gail Canning (method pending publication; Calderón-Ezquerro et al. Molecular Detection Of Airborne Sclerotinia Sclerotiorum Spores On Mexican Crops). ABGENE 96 well plates were used for the assay. A master mix was prepared with 10 µl 2x FastStart universal probe ROX Master mix (Roche Diagnostics GmbH)., 0.04 µl Taqman Probe (100 µM) (TCG TAC CTT GGC AAC ACC TAC TTC) (Applied Biosystems), 0.75µl Carman Ss Forward Primer (100µM) (TGT CAG AAA TAA TGA GAT CAA AAG), 0.25µl Carmen Ss Reverse Primer (100µM) (CCG ACC TCT ATT CAT ACC CT), 4.96µl dH<sub>2</sub>O. Standard concentrations of S. sclerotiorum DNA were used to generate a standard curve (0.00005-5 ng/ µl) on each plate. 4  $\mu$ l DNA template or dH<sub>2</sub>O (non-template control) was pipetted into the wells 3 technical replicate wells per sample were used. before the master mix was added. Plates were sealed and centrifuged in a SpeedVac. A Mx3000P (Startagene) qPCR machine was used. Thermal cycling parameters: 95°C 10mins and 40 cycles of 95°C for 15 secs, 56°C for 45 secs and 72°C for 45secs. Spore number can be calculated as 1 spore is the approximate of 0.1 pg DNA detected.

Chapter 3: The development of an electrochemically compatible biological matrix for the specific induction of *S. sclerotiorum* ascospore germination and oxalic acid secretion to be used within an infield automated detection biosensor.

#### **3.1.1 Introduction**

Chapters 3 and 4 report an investigation into the development of an infield automated biosensor for the detection of the fungal pathogen *S. sclerotiorum* in oilseed rape fields, the first of its kind in the world. The SYield consortium which was assembled in November 2010 to take on this challenge, received three years of funding from the Technology Strategy Board (TSB) and Syngenta. The consortium consists of a range of small, medium enterprises (SMEs) and academic partners.

*S. sclerotiorum* was the pathogen of choice for this project as a result of its sporadic lifestyle which makes it difficult to predict. Outbreaks only occur every few years but when they do, they can be severe, reducing yield by up to 50%. There are some climate based forecasts to predict potential outbreaks for this pathogen, however as they are predominantly weather based, they only work on a regional scale and some rely on being able to identify the fruiting bodies in the field or by physically monitoring petal stick (Clarkson et al. 2007, Parker et al. 2009). Both methods remain a challenge for many growers because of the need to provide such continuous monitoring for a single disease. Currently growers can spray fungicide protectants up to three times per flowering season to protect crops being infected with *S. sclerotiorum* even though there may be no risk of disease. This may also increase the selection pressure for resistance to develop in other pathogen populations. For example, Boscalid a SDHI fungicide, is not only used to control *S. sclerotiorum* but is used against *Alternaria sp, Botrytis cinerea, Blumeria graminis* and *Rhizoctonia solani* in leafy vegetables. Overuse of this single fungicide without using other chemistries with different modes of action, could lead to less resistance fungal populations.

*S. sclerotiorum* ascospores are released from apothecia which develop from sclerotia found in the soil. The ascospores are wind dispersed upon release. Although most ascospores are dispersed locally, they can be moved tens of kilometres from the source. This poses a potential disease threat to host crops within a large area in the vicinity of the inoculum source. The aim of this project is to detect the presence of *S. sclerotiorum* ascospores within a field and combine this information with climatic information, to provide a more accurate disease risk assessment. This will provide a more accurate spray window for growers. This will potentially benefit the environment, reduce selection

pressures for resistance and help growers save thousands of pounds per growing season if they can avoid applying a second or third spray each growing season if this detection system can accurately determine that there is no disease risk.

The basic design of this detection system combines an air sampling unit which actively draws air into the device and deposits the air particles onto a biological matrix which is attached to an electrochemical biosensor. The electrochemical biosensor consists of an enzyme which is stabilised onto a carbon electrode. The enzyme is specific to a particular analyte which is specific to the pathogen being detected. Upon arrival of the analyte, the enzyme will hydrolyse the analyte. The products of this reaction will then physically react with the electrode causing a change in potential across the matrix which is then detected using a potentiostat. This detection event can then be transmitted wirelessly to the end user.

This chapter focuses on the development of the biological matrix within the biosensor which is a selective nutrient liquid medium which actively encourages *S. sclerotiorum* ascospores which are sampled from the air into the device, to germinate and grow within the matrix. As previously described, *S. sclerotiorum* produces oxalic acid (OA) during development. The secretion of this organic acid regulates a whole range of virulence functions. OA was chosen as the analyte to be detected within the biosensor as firstly it is secreted at an early stage of ascospores germination and secondly, oxalate oxidase (OxOx), readily hydrolyses OA to release carbon dioxide (CO<sub>2</sub>) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>).

$$0xalic acid + 0_2 \xrightarrow{oxox} 2CO_2 + H_2O_2$$

Once the ascospores have been incubated with the liquid medium and secreted oxalic acid, the liquid will then be applied to a carbon electrode which contains two enzyme, OxOx and horse radish peroxidise (HRP). The detection of *S. sclerotiorum* will actually based on a coupled enzyme reaction. During this process OxOx will hydrolyse any OA present in the liquid medium, releasing hydrogen peroxide and carbon dioxide. Hydrogen peroxide will then be hyrdrolysed by HRP and measured using an electrochemical process described as cyclic voltammetry. This technique involves the application of a potential to an electrode which is ramped linearly between two voltage points at a scan rate of 0.05 V/s. The measurement starts with a specific condition, for example everything in the sample is fully reduced. As the potential changes from the starting conditions, the active chemical species in the sample will become oxidised. The detection principle in this biosensor is based on the electrochemical oxidation of hydrogen

peroxide which is generated from the activity of OxOx (**Figure 10**). This system is based on the blood glucose biosensor which was invented in 1962 and originally determined the glucose concentration by applying a negative potential to a platinum cathode containing stabilised glucose oxidase (Gox). The reductive detection of the oxygen consumption which was released from the breakdown of glucose was then measured (Clark and Lyons 1962). The electrochemistry used in the SYield biosensor was optimised and fixed to measure only the release of hydrogen peroxide and not any other electrochemical-active chemical species that may be in the matrix. This part of the project was carried out by Dr. Sophie Weiss at the University of Manchester. The positive detection of OA (termed 'a positive event') will be relayed through a network as a wireless signal to be picked up by a central processing unit. The positive event will then be integrated with climatic information and fed into a real time disease prediction model. If a risk is predicted then the farmer will be notified and advised to spray his crop to protect against *S. sclerotiorum*.



Figure 10: Schematic of the basic principles of electrochemistry used in the SYield biosensor.

a) The biological matrix (liquid medium) contains the analyte to be detected, OA. b) The electrode contains OxOx stabilised enzyme which hydrolyses OA in the biological matrix, releasing hydrogen peroxide, which directly reacts with the electrode. c) A potentiostat is connected to the working and reference electrodes and monitors the change in current as the hydrogen peroxide becomes oxidised. d) The output of the change in current can be monitored and reported using software connected to the potentiostat. The change in current increases as the amount of OA in the biological matrix increases.

#### 3.1.2 Considerations for the biological matrix design and biosensor detection success

There were certain challenges which required consideration throughout the development of the biological matrix to ensure that the detection of *S. sclerotiorum* ascospores was as accurate as possible. It was of paramount importance that the matrix was able to:

- Induce rapid growth of fungal hyphae post ascospore germination.
- Induce rapid secretion of OA.

- Induce high levels of OA production.
- Be selective for *S. sclerotiorum* growth and not the many other fungi which may be present in the air sample which either produce OA themselves or could out-grow the *S. sclerotiorum* hyphae.
- Detect low ascospore numbers.
- Must be compatible with the electrochemistry and not inhibit any of the chemistry within the sensor system

Other fundamental questions to be solved during the formulation of the matrix for accurate sensor development included:

- Does the change in pH of the biological matrix have an effect on the pathogen growth or biosensor performance?
- What is the effect of temperature on fungal growth and enzyme activity?
- Is oxalic acid quantifiable in the biosensor and how does this relate to spore number?
- Does the OA level correlate to disease risk in the field?
- Does the sensor rapidly detect early germ tube growth post spore germination to maximise the window of opportunity for successful crop protection?

This chapter reports the development stages of the nutrient matrix that will address the above considerations and questions. There have been other studies in the past exploring how to optimise OA production from *S. sclerotiorum*. However all these previous investigations have only explored OA production from mycelial plug inoculations and not ascospores which makes this work novel. OA secretion from a range of plant pathogens has been investigated previously however no previous studies have investigated the compatibility of a nutrient matrix coupled to an electrochemical for the detection of *S. sclerotiorum* ascospores. Other OA detection methods have been previously used in medical studies which use quantification of OA in human urine to monitor kidney stone development (**Table 3**).

The investigations into developing a nutrient medium began with the use of host plant extracts to germinate the ascospores and initiate hyphal growth. However a more defined medium was eventually developed that was compatible with the electrochemical assay. The effect of different glucose concentrations and other additions/ subtractions to the medium was investigated as well as the buffering capacity. Investigations into the typical fungal community which may be present within the biosensor air sample were also undertaken. Other fungal competitors were identified and medium specificity was addressed through the use of fungicidal additions. Chapter 4 will report how the biological matrix developed in this chapter performed during field trials. **Table 3**: Methods for detecting OA in clinical samples and for the investigation of OA production by plant pathogens.

| Detection methods for OA in urine as an indicator for kidney stones                       | Detection methods for OA in fungal<br>pathogens/host plants                          |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| High-performance liquid chromatography (Holloway et al.1989)                              | KMnO <sub>4</sub> titration (Bateman and Beer 1965)                                  |
| Gas chromatography (Gelot et al. 1980)                                                    | Thin-layer chromatography (Vega et al. 1970)                                         |
| Ion chromatography (Schwille et al. 1989)                                                 | Enzymatic detection in a HPLC eluate (Rassam and Laing 2005)                         |
| Spectrophotometric methods based on oxalate oxidase (Kohlbecker and Butz 1981)            | Bromophenol blue, quenching reaction.<br>Absorbance measured (Durman et al.<br>2005) |
| Oxalate decarboxylase (Beutler et al.1980)                                                |                                                                                      |
| pH-electrode determination coupled with an enzymatic reaction ( <b>Boer et al. 1984</b> ) |                                                                                      |
| Chemiluminescence detection ( <b>Balion and Thibert 1994</b> )                            |                                                                                      |

#### **3.2 Experimental Procedures**

## **3.2.1** Bioassay for the quantification of OA produced by ascospores in on solid media made from plant extracts.

Various host plant extracts were used to make different solid agar media to test the best medium for the quickest, most reliable oxalic acid induction from *S. sclerotiorum* ascospores:

| PDA (Potato    | 20 g potato dextrose agar (Difco) added per 500 ml deionised water                                    |
|----------------|-------------------------------------------------------------------------------------------------------|
| Dextrose Agar) | and autoclaved.                                                                                       |
| Carrot Agar    | 400 g of chopped fresh carrots autoclaved in 400 ml deionised                                         |
|                | water. Carrots blended. Carrot solution made up to 500 ml with                                        |
|                | deionised water and mixed with 10 g agar before re-autoclaving.                                       |
| V8 juice       | 0.8 g CACO <sub>3</sub> , 8 g agar and 80 ml V8 juice mixed (company add)                             |
|                | with 320 ml deionised water and autoclaved.                                                           |
| Sunflower      | 25 g sunflower seeds were pulverised in a blender. The seeds were                                     |
| Seed agar      | boiled in 500 ml deionised water for 30 mins. The seed extract was                                    |
|                | cooled and filtered through gauze. The filtrate was mixed with 5 g                                    |
|                | glucose and 7.5 g agar. The solution was made up to 500 ml with                                       |
|                | distilled water and autoclaved.                                                                       |
| SNA (Synthetic | 20 x stock solution of made up using 0.1 % KH <sub>2</sub> PO <sub>4</sub> , 0.1 % KNO <sub>3</sub> , |
| nutrient poor  | 0.1 % MgSO <sub>4</sub> x7 H <sub>2</sub> O, 0.05 % KCl, 0.02 % glucose, 0.02 %                       |
| agar)          | saccharose, 2 % Agar. 20 ml 20 X SNA stock added to 500 ml                                            |
|                | deionised water.                                                                                      |

Bromophenol blue pH indicator dye was added to the different plant extract agars. A stock solution of bromophenol blue was made up by diluting 0.1 g powder in 4 ml 95 % ethanol. A 1 ml aliquot of this stock solution was added to 500 ml liquid agar media. Bromophenol blue will change a substrate from blue to yellow during the acidification of the substrate. Sodium succinate (56 mM) which has been previously shown to increase OA production in S. sclerotiorum cultures, was added to duplicate bottles of all media. All the media was titrated to pH 6 using hydrochloric acid or sodium hydroxide before autoclaving the solution. Three replicate plates for each treatment were used. Three ascospore solutions (L6 isolate) were made up using ascospore covered filter paper. Sixteen spots of 20 µl ascospore solution were pipette onto each plate in sterile conditions. The plates were stored in 18 °C incubator and regularly checked for signs of bleaching or mycelia growth. Yellowing circles around growing colonies were compared to known concentrations and volumes of OA dropped onto the same type of plate (Figure 11).



### Figure 11: The standard OA concentration agar plates.

Plates used to quantify OA secreted by *S. sclerotiorum* ascospores grown on different plant extract agars. Agar contained a bromophenol blue pH dye which changes the agar colour from blue to yellow during acidification of the agar, during the release of OA. Each type of agar tested had 5, 10 and 50 µl of different solutions containing different concentrations of OA dropped onto the different plates. Colour changes in carrot and V8 agars were difficult to assess due to lack of blue colour change.

For details on how ascospore solutions were made up for testing and how bioassays for media testing were carried out refer to General Experimental Procedures (Chapter 2).

#### **3.2.2 Preliminary experiments**

#### 3.2.2.1 Detection limits of Sigma OxOx enzymatic spectrophotometric assay

Preliminary experiments were completed to determine the OA detection limits of the enzymatic spectrophotometric tests. Twenty six wells of a 96 well plate were filled with 20  $\mu$ l potato dextrose broth (PDB) (Sigma Aldrich, 24g/L). The wells were then spiked with different OA concentrations to achieve working OA concentrations of 0, 2, 5, 10, 15, 20, 25, 50, 100, 200, 400, 500 and 800  $\mu$ M. The absorption of two replicates per concentration was measured using the spectrophotometric assay (see Chapter 2) and the experiment was repeated twice.

# **3.2.2.2** Preliminary work to determine whether any additions to assay can inhibit enzyme activity.

A second experiment was completed to determine whether different chemical additions to the medium, for example; malic acid, succinic acid and fumarate, could affect the activity of the OxOx and HRP enzymes or inhibit theses enzyme used in the optical enzymatic assay and as a result affect the accuracy of the absorbance readings and oxalate concentrations calculated with the use of the standard curves. These additions are intermediates of the Tricarboxylic acid cycle which has been described as the principal OA biosynthesis pathway (Culbertson et al. 2007). They were chosen as they had been previously used to induce OA secretion (explained in detail later on). OA standards were made up with the addition of different concentrations of malate in PDB medium. Two replicates for each concentration were tested.

#### 3.2.2.3 Storing medium for later OA detection and electrochemical analysis.

The wells of a 12 well plate were filled with 2 ml of PDB. The PDB was spiked with 100 mM stock solution of oxalic acid to reach a working concentration of 140  $\mu$ M or 100  $\mu$ M oxalic acid. 12 replicates per concentration were used. Six replicates for each concentration were frozen at either -20°C or -80°C. The concentration of OA was measured using the spectrophotometer assay (see Chapter 2) after 7 days of being in the respective freezers.

# **3.2.2.4** The effect of temperature, shaking and a flotation membrane on OA production.

PDB was made up following manufactures instructions and adjusted to pH 5 before autoclaving. Six wells of eight 12 well plates were filled with 2 ml of PDB. Three wells per plate were seeded with 100  $\mu$ l ascospore solution (approximately 45 000 *S. sclerotiorum* L6 ascospores per well). 3 wells on the plate were used as a negative control and were seeded with 100  $\mu$ l water. Four of the plates were kept at 20 °C and the other 4 plates were kept at 25 °C. A disc of sterile miracloth (Merck Millipore, UK) was placed into the wells of two plates incubated at 20 °C and the wells of two plates incubated at 20 °C and the wells of two plates with and without miracloth discs were either shaken at 150RPM or kept still under both temperatures. All experiments were carried out in the dark. The plates were incubated for 4 days and the OA concentrations calculated using the spectrophotometer assay (see Chapter 2).

## **3.2.3** OA production induction via Tricarboxylic Acid Cycle intermediates combined with a baseline nutrient

Media were made by adding 25 mM malate, 25 mM succinate, 25mM ammonium acetate, 1% pectin, 25mM glucose or PDB (24 g/ L) to the baseline minimal salts (Culbertson et al 2007). The wells of a 12 well plate were filled with 2 ml of different media. Each treatment was replicated using 3 wells. 100  $\mu$ l ascospore solutions (4000 spores / well) of L6 and L2003 *S. sclerotiorum* isolates were added to the each well and incubated in the different growth media for six days. Negative control wells were seeded with 100  $\mu$ l sterile spectrophotometer assay (see Chapter 2)water. The OA concentrations calculated using the spectrophotometer assay (see Chapter 2).

## **3.2.4** Complex media (Soytone and Yeast) combined with TCA cycle intermediates and their effect on OA production.

1% Soytone medium(Fisher Scientific) and 1% Yeast medium (Sigma-Aldrich) were made up with baseline nutrient salts (Culbertson et al 2007). The media were adjusted to pH 5 before autoclaving. 2 ml of each medium was added to the wells of 12 well plates. 1M stock solutions of glucose, malic acid, ammonium acetate or succinate were sterile filtered and added to each type of media, and adjusted to make a working concentration of 25 mM glucose, malic acid, ammonium acetate or succinate . Each individual treatment was replicated in three wells. An L6 isolate *S. sclerotiorum* ascospore solution was made up in sterile water. 100  $\mu$ L spore solution was added to each well (approximately 3000)

spores). 100  $\mu$ L sterile water was added to negative control wells. The plates were incubated for 4 days. The OA concentration of each well was calculated using the spectrophotometer assay (see Chapter 2).

## **3.2.5** The influence of different glucose concentrations on OA production in a complex medium.

1% Soytone medium was made up with baseline nutrient salts and adjusted to pH 5. The wells of 12 well plates were filled with 2 ml of medium. A stock solution of 500 mM glucose solutions was sterile filtered and added to each well to make media with either 0, 25, 50 or 100 mM additional glucose concetrations. Each treamtment was replicated 3 times in 3 wells. A *S. sclerotiorum* L6 ascospore solution was made. Approximately 2900 ascospores were added to each well. Negative control wells contained no ascospores. The plates were incubated for 4 days at 20 °C in the dark. The OA concentration of each well was calculated using the spectrophotometer assay (see Chapter 2).

One three separate occasions lower glucose concentrations (0, 5, 10, 15, 20, 25 mM) were also tested with 1% soytone medium as described above on three. The first experiment 900 *S. sclerotiorum* L6 isolate ascospores were used per well. The second repeat of the experiment used varying numbers of L6 isolate ascospores ranging from 175, 750, 1050, 2100 and 7500 ascospores per well. The third repeat experiment used a single ascospore dose per well of 175 L6 *S. sclerotiorum* isolate ascospores. All treatments were repeated in three wells. Plates were incubated for 7 days at 20 °C in the dark.

#### 3.2.6 TCA cycle intermediate additions

TCA cycle intermediates were tested for their effect on OA production in a similar format to how the effects of different glucose concentrations on OA production was investigated. 1% soytone medium was made up with baseline nutrient salts and 25 mM glucose and adjusted to pH 5 before autoclaving. 2 ml of the medium was added to the wells of a 12 well plate. 1M stock solutions of fumarate, malate and succinate were made up with sterile water and sterile filtered. Working concentrations of 0, 5, 15 and 25mM of the intermediates were added to the wells separately. Three replicate wells were used per treatment. The experiment was repeated on 3 separate occasions. There The OA concentration of each well was measured at day 3, 4 and 7 of incubation using the spectrophotometer assay (see Chapter 2). Ascospore concentrations used for each separate experiment were approximately 1750, 900 and 4860 ascospores per well of the L6 *S. sclerotiorum* isolate. Sterile water was added to wells for a negative control. Plates were incubated for 7 days at 20 °C in the dark.
### 3.2.7 Comparison four electrochemical compatible media for OA induction

The four electrochemical compatible media were tested for their ability to promote OA production from *S. sclerotiorum* L6 isolate ascospores. 1% Potato dextrose broth, 1% Yeast Nitrogen base with no added amino acids (Sigma Aldrich), 1% Sabouraud Dextrose Broth (Sigma-Aldrich) and 1% Czapeks Dox (Oxoid, Thermo Scientific) media were made up separately with baseline nutrient salts and adjusted to pH 5. Sterile filtered 25mM glucose was added to a second batch of the same media after autoclaving. In each well of a 12 well plate, 2 ml of the medium was added. Six wells were used for each type of medium. Three wells contained ascospores and 3 wells acted as negative controls with no ascospores added. Approximately 9250 ascospores were added to each well. Plates were incubated for 7 days at 20 °C in the dark and the OA concentrations of each well checked on day 3, 4, 5 and 6 of incubation.

#### **3.2.8 Limits of detection.**

1% Sabouraud Dextrose Broth (SDB) was made up with minimal baseline salts and adjusted to pH 5 before autoclaving. 500  $\mu$ l plastic field pots were cleaned with 95 % Ethanol and dried in sterile conditions. Each single pot was placed in a single well of a 12 well plate so that the pots remained under sterile incubation conditions. 400  $\mu$ l of the medium was pipette into each pot. Three spore dilutions were tested to determine the lowest number of ascospores that could be detected by the amount of OA measured. 0, 4, 16, 67, 135, 543, 1087, 4350 S. *sclerotiorum* L6 isolate ascospores were added to separate pots. Three pots were used per ascospore dilution. The plates were incubated in the dark at 20 °C and the OA concentrations of each pot measured after 3, 4 and 5 days incubation in sterile conditions by using the spectrophotometer assay (see Chapter 2).

### 3.2.9 The relationship between *S. sclerotiorum* ascospore number, biomass and oxalic acid production

1% SDB medium was made up with baseline salts and adjusted to pH5 before autoclaving. 2 ml of the medium was added to the wells of 12 well plates. Three *S. sclerotiorum* L6 isolate ascospore dilutions were made up in sterile water so that each well contained either a high spore dose of 2366 spores, a medium spore dose of 291 spores or a low spore dose of 50 spores. Each spore dose was replicated in three wells. Negative control wells contained no spores. The plates were incubated in the dark at 20 °C for 11 days The plates were set up so that at days 1, 2, 3, 4, 5, 6 and 11 incubation, three wells of each spore dose were destructively sampled. These samples were used to measure the average biomass of the fungal cultures growing for each spore dose. All liquid and any

visible fungal biomass from these wells was pipetted into a pre-weighed 2ml tube. The tube was frozen at -20 °C and freeze dried to remove any liquid. The tubes were then re-weighed and the difference between the pre and post weight calculated.

Over 11 days of incubation, the pH of the liquid medium was tested using a micro pH probe (Hanna Instruments, UK) which is capable of measuring volumes as small as 100  $\mu$ l as the medium volume decreases significantly after 11 days incubation. The OA content of the wells were also measured on day 1, 2, 3, 4, 5, 6 and 11 of incubation.

As a result of the destructive sampling structure of the experiment and the repeated measures aspect of the experiment, the method of Residual Maximum Likelihood (REML) was used to fit a linear mixed model to the pH and oxalate data, accounting for the design of the experiment (plates, wells within plates and time points within wells) as random terms in the model. As part of this structure, the effect of the correlation over time for the wells was accounted for. The overall effect of treatment compared to control and then the effects of low, medium and high treatment, nested within this comparison were taken as fixed terms in the model, along with the main effect of time and the interaction of time with these other terms. The GenStat (2011, version 14, (c) VSN International, Ltd,Hemel Hempstead, UK) was used for the analysis.

The model used was based on the following equation:



(Where terms in the model are a stated and with E as the error term)

### **3.2.10 Buffering Capacity of the medium**

50 mM MES (2-(N-morpholino)ethanesulfonic acid), 50 mM Succinate and 50 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) were added to separate bottles of 1% SDB. SDB was also tested without an additional buffer. Separate buffered media were adjusted to pH 4, 5, 6 or 7 and then autoclaved. 2 ml of each treatment was added to 9 wells. A low ascospore dose was added to 3 wells, a high ascospore dose added to 3 wells and the final three wells were used as negative control wells with no ascospores added. The low *S. sclerotiorum* L6 isolate ascospore dose was 290 ascospore per well. The low *S. sclerotiorum* L6 isolate ascospore dose used in the HEPES ad Succinate buffered

media was 38 ascospores and the high dose was 2366 ascospores per well. The plates were incubated in the dark, 20 °C for 5 to 11 days. The OA concentration and the pH was measured for each well on day 1, 2, 3, 4, 5, 6, 7 and 11.

#### **3.2.11** Competition assays

*Trichoderma, Botrytis, Alternaria* and *Epicoccum* species isolated from the field (See Chpater 4) were cultured on PDA plates to obtain spores. Spore solutions were obtained for each fungal species by pipetting 1ml sterile water onto the surface of the plate. Using a an L-shaped spreader, the spores were mixed with the water. Water and spore solution was pipette off the plate. *S. sclerotiorum* ascospore solution (L6 isolate) was made as mentioned previously.

To test whether any of these species secreted oxalic acid within the medium, the wells of 12 well plates were filled with 2 ml SDB medium, pH. All fungal spore solutions were adjusted so that 1000 spores were added to each well. Each fungal spore type was repeated in 3 wells. The plates were incubated over 7 days in the dark at 20 °C and the OA concentration of each well measured on day 4, 5 and 7 of incubation.

To determine the competition between different fungal species, the wells from 12 well plates were filled with 2 ml SDB, pH 5. *Botrytis* and *Trichoderma* spores were germinated separately and together with high and low doses of *S. sclerotiorum* L6 isolate ascospores. The high spore dose was adjusted so that 290 ascospores were added to each well and the low dose added to the well was 30 ascospores. 100 spores of *Botrytis* and *Trichoderma* were added to each well separately. Each species of fungal spore was incubated individually too. Each treatment was replicated in three wells. The plates were incubated over 5 days in the dark at 20 °C and the OA concentration of each well measured on day 3, 4 and 5 of incubation. Observations of fungal growth were also recorded on these days.

### 3.2.12 High throughput fungicide sensitivity testing

Fungicide sensitivity assays were adapted from the methods published by Pijls et al (1994) (Pijls et al. 1994). Dimethylsulfoxide (DMSO) or acetone was used to dissolve fungicide powders to make stock concentrations of fungicides. Potato dextrose broth (2X) was amended with decreasing concentrations of fungicides to ensure that a final working concentration across the columns of the plates of each fungicide in the medium was determined at 60, 30, 15, 7.3, 3.75, 1.875, 0.9375, 0.469, 0.234, 0.117, 0.059, 0  $\mu$ g ml<sup>-1</sup>. A 100  $\mu$ l aliquot of fungicide amended PDA was added to each well of a flat bottomed 96 well microtitre plate (**Figure 12**). The 100  $\mu$ l aliquot of ascospore suspension (1 x 10<sup>6</sup>) of each fungal isolate was added to each well. Plates were incubated in the dark, at room

temperature. After three days of incubation, fungal growth was measured using a FLUOstar OPTIMA microplate reader (BMG Labtech, Offenburg, Germany) in end point mode. The optical density of colonies was measured at 630nm. The concentration of fungicide which inhibited growth was measured.



Figure 12: Plate set up for fungicide sensitivity assay.

A single fungal isolates was applied to each row of the plates. The different fungicide concentrations increased across the rows.

### **3.3 Results**

### 3.3.1 The used of host plant extracts within a solid matrix

Host plant extracts including potato dextrose agar (PDA), carrot agar, sunflower seed extract and V8 juice agar (pureed tomatoes and carrots), were initially chosen for testing in a solid agar form to investigate the best medium for OA secretion from *S. sclerotiorum* ascospores. These substrates were selected as it was hypothesised that host plants would contain substrates that would induce rapid OA secretion. Bromophnol Blue (BPB), a pH indicator dye was added to the solid agar to monitor OA secretion by monitoring the change from blue to yellow upon acidification of the medium (**Figure 11**). A second set of plates contained bromophenol blue and sodium succinate as it has previously been shown that succinate can increase OA production (Pierson and Rhodes 1992). Three different spore solutions were tested per treatment. After four days of incubation, the highest spore dilutions on the PDA and sunflower seed plates were the first plates to show yellowing of the dye indicating OA was being produced and secreted.

This method provided a time scale of OA production however determining the amount of OA produced was extremely challenging. Areas of bleaching and the bleaching intensity were compared to plates of media with known concentrations and volumes of OA. It was difficult to compare inoculated plates with the OA standard plates as bleached areas of the plate would soon fade after addition of the oxalic acid standards. The different colours of the media also affected the bleaching intensity. Another challenge with this method was that the yellowing could be caused by any secreted acid which lowered the substrate pH and so was not specific to OA.

Although OA could not be accurately quantified from this experiment, these experiments did demonstrate that the sunflower seed and potato dextrose agars promoted the quickest OA production out of all the media as yellowing in these two media was seen first (**Figure 13**). It also highlighted that carrot agar was the best medium for sclerotia production as the sclerotia were consistently the largest on this type of medium (**Figure 14**). This method for producing sclerotia was adopted throughout the Ph.D.



**Figure 13**: BPB bleaching caused by three *S. sclerotiorum* different spore solutions. Ascospores grown on different media for four days. Bleaching first seen in PDA and sunflower agar plates (a,b). No bleaching was observed in SNA plates (c) and less bleaching was observed in carrot and V8 agars (d, e).



SNA agar V8 agar Carrot agar PDA **SSEA** 

**Figure 14**: Different amounts of sclerotia formation on different agars containing BPB. Carrot agar induced the largest sclerotia which are the black stone-like structures visible on the plates. SNA agar did not support / supported the smallest sclerotia formation.

### 3.3.2 Liquid medium is better than solid medium for the quantification of OA

The purpose of the next strategy was to increase the accuracy of OA quantification from germinating *S. sclerotiorum* ascospores. An optical enzymatic assay used to detect OA using spectrometry was found to be commercially available (Sigma-Aldrich, UK) (See Chapter 2). This assay has been utilised in medical professions to monitor oxalic acid in urine as an indicator of kidney stones (Kohlbecker and Butz 1981). This assay was optimised with the help of Prof. Nicola Tirelli and Dr. Cong Duan-Vo at the University of Manchester. This assay was used to measure the amount of OA in liquid aliquots of media. Initially the PDB (the liquid form of PDA) and liquid sunflower seed extract were tested in for successful OA induction by *S. sclerotiorum* ascospores. The sunflower seed extract promoted OA production however oxalate concentrations varied as a result of the solid seed particles in the medium which interfered with the spectrophotometer readings (data not shown). In addition, during the testing of this medium in the pre-optimised electrochemical assay, the particles in the sunflower seed medium burnt onto the electrode. From this point onwards it was decided to choose a more defined medium that would allow reproducible oxalate production from ascospores. Also the medium was required to be compatible with both the spectrophotometer and the electrochemical assay being developed at the University of Manchester. PDB induced OA secretion and was compatible with the Sigma high throughput optical enzymatic assay and as a result was used as a control medium to determine whether other media were better inducers of OA secretion by *S. sclerotiorum* ascospores.

### 3.3.3 Preliminary experiments

### 3.3.3.1 Detection limits of Sigma OxOx enzymatic spectrophotometric assay

Preliminary experiments were completed to determine the OA detection limits of the enzymatic spectrophotometric tests. Two millimetre aliquots of potato dextrose broth (PDB) were spiked with different OA concentrations to achieve working OA concentrations of 0, 2, 5, 10, 15, 20, 25, 50, 100, 200, 400, 500 and 800  $\mu$ M. The absorption of two replicates per concentration was measured and the experiment was repeated twice. The results highlight that below 25  $\mu$ M, there is a lot of background noise which prevents an accurate quantification of OA. Therefore any measurements made below this concentration were not quantifiable (**Figure 15**)



Figure 15: Detection limits of the Sigma OxOx enzymatic spectrophotometric assay.

a) Two biological replicates used to test a range of OA concentrations within the optical spectrophotometric assay and to determine the lowest level of OA detectable. Constant values can be read above 25  $\mu$ M, anything below this will be considered a negative OA event. b) The enlarged area standard OA values from 0-50  $\mu$ M which highlight the noise in readings below 25  $\mu$ M.

### **3.3.3.2** Preliminary work to determine whether any additions to assay can inhibit enzyme activity

A second experiment was completed to determine whether different chemical additions to the medium, for example; malic acid, succinic acid and fumarate, could affect the activity of the enzymes or inhibit the enzyme used in the optical enzymatic assay and as a result affect the absorbance readings of the standard curves. These additions are intermediates of the Tricarboxylic acid cycle which has been described as the principal OA biosynthesis pathway (Culbertson et al. 2007). They were chosen as they had been previously used to induce OA secretion (explained in detail later on).

OA standards were made up using different concentrations of malate in PDB medium. Two replicates for each concentration were tested. The results highlight that the absorbance readings for media containing different malic acid concentrations were markedly lower than the medium which contained PDB only with no additional malate (0 mM malic acid) (**Figure 16**). This highlights that the malate may inhibit the activity of some component of the enzymatic assay. As a result a separate set of standards were generated for the specific type of medium being tested.





The absorbance values for those containing malate are similar compared with the absorbance values of those samples with 0mM malate. This highlights the need for standards to be made up in the same medium to the samples being tested.

### 3.3.3 Storing medium for later OA detection and electrochemical analysis

Freezing appears to have an effect on the detectable concentration of OA (**Figure 17**). In both instances the OA measurements were between 10 and 21 % lower post freezing.



Figure 17: Storing medium for later OA detection and electrochemical analysis.

The OA levels in spiked PDB samples measured before and after freezing highlighted that there was an effect of freezing at both temperatures. Bars represent the average OA production of six biological replicates.

# 3.3.3.4 The effect of temperature, shaking and a flotation membrane on OA production

PDB was used to establish whether other environmental effects could affect OA production. These included external temperature, aerating the culture by shaking and whether a floating miracloth membrane would make a difference to OA production. The membrane was tested to determine whether it supported the mycelia network which forms following ascospore germination. All the experiments were carried out in the dark because previous studies have shown that exposure to UV light can inhibit of OA production (Rollins and Dickman 2001). Furthermore, when the samples are incubated in the biosensor device, this will be in an enclosed environment with no light allowed to filter through. Unfortunately two treatments were missing from the results due to bacterial contamination of the cultures. The data set lacks the results for the plates kept still at 25 °C because these plates were contaminated after 2 days growth. After four days of incubation, samples kept at 20 °C induced higher levels of OA compared with at 25 °C, regardless of the presence of a membrane or whether the culture was shaken (Figure 18). It was decided for future medium testing, experiments would be maintained at room temperature in the dark, with no membrane or no shaking. In the final biosensor, having to shake the sample would require a large amount of energy.





Oxalic acid production by *S. sclerotiorum* L6 ascospore after four days growth under different environmental conditions. Ascospores added to 12 multi well plates with each well containg 2ml PDB. Bars represent the average OA production of three biological replicates. Ascospore concentration: 45 000 spores/well.

### 3.3.3.5 Creating a more defined medium which induces OA secretion and is compatible with both the enzymatic spectrophotometric assay and the biosensor electrochemistry

Fungi have relatively simple nutritional requirements in comparison to larger, more complex animal systems however they still require a range of macro elements which include carbon, nitrogen, oxygen, hydrogen, sulphur and phosphate which are significant for carbohydrate, lipid and protein assimilation. Other micro-elements which are still vital for fungal development but required in much small amounts, include calcium, zinc, copper, iron and manganese. Micro and macro-elements are key components of any medium used to culture fungi. Culbertson et al (2007a&b) has defined a baseline nutrient medium which can be used as the main source of micronutrients for *S. sclerotiorum* growth (Culbertson et al. 2007a, Culbertson et al. 2007b). This baseline was used as the basis of the defined medium (**Table 4**).

Table 4: The baseline minimal salts required for *S. sclerotiorum* fungal growth. Defined by Culbertson et al 2007

| Micro nutrient                                       |                                     | Company obtained       | Mg /<br>litre |
|------------------------------------------------------|-------------------------------------|------------------------|---------------|
| (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub>      | Ammonium sulphate                   | Sigma Aldrich A4418    | 1000          |
| KH <sub>2</sub> PO <sub>4</sub>                      | Potassium phosphate                 | Sigma Aldrich P9791    | 500           |
| NaCl                                                 | Sodium chloride                     | Sigma Aldrich S7653    | 450           |
| MgSO <sub>4</sub> .7H <sub>2</sub> O                 | Magnesium sulfate<br>heptahydrate   | Sigma Aldrich 230391   | 250           |
| FeCl <sub>3</sub> .6H <sub>2</sub> O                 | Iron (III) chloride, hexahydrate    | Sigma Aldrich          | 0.5           |
| C <sub>6</sub> H <sub>9</sub> NO <sub>6</sub>        | Na nitrilotriacetate                | Sigma Aldrich          | 5             |
| CuSO <sub>4</sub> . 5H <sub>2</sub> O                | Copper sulphate                     | Sigma Aldrich C1297    | 1             |
| ZnCl <sub>2</sub>                                    | Zinc chloride                       | Sigma Aldrich 96468    | 1             |
| MnSO <sub>4</sub> .H <sub>2</sub> O                  | Manganese (II) sulphate monohydrate | Sigma Aldrich<br>M7634 | 1             |
| Na <sub>2</sub> MoO <sub>4</sub> . 2H <sub>2</sub> O | Sodium molybdate dehydrate          | Sigma Aldrich 71756    | 1             |

# **3.3.3.6 OA production induction via Tricarboxylic Acid Cycle intermediates combined with a baseline nutrient**

Once the essential micro nutrients required by *S. sclerotiorum* were selected (Culbertson et al. 2007a, Culbertson et al. 2007b), other nutrient additions were tested to see if single additions to the baseline medium would instantly induce OA secretion. OA biosynthesis or oxalogenesis, is believed to be predominantly formed in fungi via the Tricarboxylic Acid Cycle through the hydrolysis of oxaloacetate into oxalic acid and acetate (Han et al. 2007). The TCA cycle is an essential aerobic pathway during the oxidation of carbohydrates and fatty acids. This cycle has been exploited in fungi to produce excess citric acid as a bi-product of the pathway which can then be used in many food and beverage industries. Intermediates which are considered to feed into the Tricarboxylic Acid Cycle (TCA), for example glucose, malate and succinate have been previously tested to determine whether OA production can be optimised through the addition of these intermediates (Culbertson et al. 2007a, Culbertson et al. 2007b).

In this investigation glucose, malate and succinate were combined with the basic baseline nutrient medium to test whether OA production could be induced in germinating ascospores of two different *S. sclerotiorum* isolates (L6 and L2003). An ammonium nitrate source and pectin source were also tested to see if these could induce OA just in combination with the basic salt mixture as these have been shown to induce OA production (Culbertson et al. 2007a, Culbertson et al. 2007b). The effect of these compounds combined with the baseline salts was compared to the OA production in PDB as it was established as a good OA inducer. The medium was adjusted to pH 5. The effect of pH will be discussed later on in the chapter.

The results indicate there was no OA induction by ammonium nitrate, malic acid, pectin and succinate (**Figure 19**). PDB induced the highest amount of OA from the spores and glucose also had some effect. These results highlight that a complex medium as well as potentially an addition of a simple sugar such as glucose are required for ascospore germination, hyphal growth and high OA induction.



**Figure 19**: The effect of different additions to minimal nutrient media on OA production. 25 mM malate, succinate, ammonium acetate, pectin, glucose or PDB were combined with the baseline micronutrients. L6 (a) and L2003 (b) isolates were incubated in the different growth media for six days. Ascospores were grown in 12 multi well plates, each well containing 2 ml medium. Ascospore concentration: 4000 spores/ well. The bars represent the average OA production of three biological replicates. a) OA production by L6 *S. sclerotiorum* isolate. b) OA production by *S. sclerotiorum* isolate L2003.

## **3.3.4** Complex media (Soytone and Yeast) combined with TCA cycle intermediates and their effect on OA production.

Many of the off-the-shelf media used to culture fungi can be described as complex media because they contain a rich mix of carbohydrates, amino acids and fatty acids. Culbertson et al (2007) studied the effect of different complex media including soytone (pancreatic enzyme digest of soybean, which is a *S. sclerotiorum* plant host), tryptone (a peptide mixture obtained from the digestion of casein by the protease trypsin) and yeast extract. In previous experiments (Culbertson et al. 2007a, Culbertson et al. 2007b) mycelial plugs were used to inoculate flasks containing different complex media with the addition of glucose and other TCA cycle intermediates. In this study the OA concentrations of ascospores germinated in 1% soytone and 1% yeast complex carbohydrate media along with intermediates of the TCA were compared. In all cases the soytone medium out-performed the yeast media except in the presence of the ammonium nitrate source. The addition of 25mM glucose to the soytone appeared to be the best inducer of OA (**Figure 20**).





Oxalate production by *S. sclerotiorum* from ascospore derived hyphae grown in 1% soytone and yeast extract media. Each medium contains the baseline salt, pH 5. OA was measured after 4 days of growth. Bars represent the average OA production of three biological replicates. Ascospore concetration 3000 spores/ biological replicate.

### 3.3.5 The influence of glucose concentration on OA production in a complex medium.

The 25 mM glucose combined with 1% Soytone medium was investigated further to determine if additional OA could be induced . Initially it was hypothesised that larger glucose additions to the medium would increase OA production however this was not the case. The 1% Soytone media was combined with 0, 25, 50 and 100 mM glucose (**Figure 21**) and incubated with ascospores for four days. Additions of glucose above 25 mM appeared to have a detrimental affect and inhibited the production of OA. An ANOVA was performed to determine if there was any statistical significance between different treatments. There was no significant difference between the the treatments (P= 0.074, df=3).



**Figure 21**: The effect of adding glucose to complex growth media to induce OA production by *S. sclerotiorum* ascospores.

Oxalic acid production from *S. sclerotiorum* L6 isolate ascospore seeded cultures grown in 1 % soytone with increasing concentrations of glucose. OA concentration measured after 4 days of growth. Bars represent the average OA production of three biological replicates. Ascospore conctration: 2900 spores/biological replicate.

OA production after a longer incubation period was investigated . A range of glucose concentrations, from 0-100 mM (**Figure 22a**) was then tested up to seven days post incubation. This revealed that the higher glucose concentrations (50-100mM) appear to be utilised after four days of growth, whereas the lower glucose concentrations made a greater difference to OA production at 4 days of growth. However there was no significant differences between the different glucose concentrations on any particular day (P=0.117, df= 6). The ANOVA revealed no significant interaction of treatment and day (P=0.14, df=12). There was a highly significant difference with regards the affect of different day which was expected (P<0.001, df=2) as OA production is significantly upregulated between day 3 and 4.

Glucose concentrations were further investigated to determine if low levels of glucose increased OA secretion at 4 days of incubation (**Figure 22b, c**). Different concentrations of spores were tested on separate occasions in the same basline medium (1% soytone with minimal salts, pH 5). There was a significant difference between all the different treatment structures (Glucose treatment, p<0.001, df= 5; spore treatment, p<0.001, df=4; glucose.spore p<0.001, df= 20). However it is very difficult to determine whether any changes to the glucose concentration made a considerable difference to the OA production. In this experiment, it was also observed that the different spore dilutons did not correspond to OA secretion, for example the highest starting ascospore dose did not result in the highest OA level. This suggests that OA production is extremely variable and certain additions to the medium cannot be guaranteed to increase OA production.

The effect of glucose concentrations lower than 25mM on OA production measured over several days of incubation (Figure 22c) showed some significance differences between glucose concentrations (p=0.05, df=5) and was very significant between OA measurements on different days (p<0.001, df=2). When the interaction between glucose concentration and day were evaluated there was a significant difference (p=0.014, df=10). Although there are significant statistical differences, as in previous experiments, there is no considerable visual difference between the glucose concentrations. At day 7 there was no difference in OA production between the 20 mM glucose and 0 mM additions. However at day 4 the lower glucose concentrations do increase OA production compared with the 0mM. For the purpose of the biosensor development, the samples will be tested for OA at a maximum of 4 days post sample incubation. Therefore with the defined complex medium (1% soytone and base nutrient source), a 5-25 mM addition of glucose may assist in promoting OA production from ascospores within this medium.





**a**) Oxalic acid production of *S. sclerotiorum* L6 isolate ascospores grown in 1% soytone and baseline minimal salts with increasing concentrations of glucose, all media at pH5. **a**) OA concentration measured at 3, 4 and 7 day intervals. The spore dose used was 900 spores / biological replicate. Bars represent the average OA production of three biological replicates. **b**) OA production after four days incubation. Different ascospore numbers grown in 1% soytone and baseline minimal salts with decreasing glucose concentrations. Bars represent the average OA production of three biological replicates. **c**) Oxalic acid production of ascospores grown in 1% soytone and baseline minimal salts with decreasing concentrations of glucose. OA concentration measured at 3, 4 and 7 day intervals. The spore dose used was 175 spores / biological replicate. Bars represent the average OA production of three biological replicate.

### 3.3.6 TCA cycle intermediate additions

After determining the complex defined medium (25 mM glucose, 1 % Soytone, minimal baseline salts, pH5), the effect of adding different TCA intermediates was addressed once more. Fumarate, malate and succinate are all considered as potential OA inducers and all are pre-cursors of oxaloacetate within the TCA cycle (See Chapter 1). The effect of adding malate, fumarate and succinate at different concentrations to the 1% soytone medium with glucose, was investigated on three separate occasions. When used within the biosensor system, this medium will be used to test OA production within a 4 day incubation range, therefore OA amount measured on day 4 of incubation was the main focus to match the needs of the field measurements. There was little, if any after 3 days of incubation in all three experiments (data not shown).

Analysis of the first experiment (**Figure 23a**) revealed statistical significance for all levels of treatments, including the concentration of TCA cycle intermediate, the type of treatment and the day of measurement (**Table 5**). At day 4, 5mM and 15mM fumarate and malate were the best OA inducing treatments.

The second experimental repetition (**Figure 23b**) showed no statistical significance between different treatments and the different concentrations. There was a large affect between the different days (p<0.001, df=2) as well as between the interaction between the concentration of the TCA cycle intermediate and the different days (p=0.033, df=6). The standard error between the different types of treatments (succinate, malate or fumarate) overlaps with the 0mM treatments. This suggests again that the additions did not give repeatable OA induction. However, 15mM fumarate again showed the greatest mean OA induction at 4 days incubation, but had a very large standard error.

The experiment was repeated a third time (**Figure 23c**) and OA production was measured at 3, 4 and 5 days of incubation. 15 mM and 5 mM fumarate had the greatest induction for OA at day 4, but was only marginally larger than the 0 mM fumarate treatment. The concentration of the TCA cycle intermediates was significant (p<0.001, df=2) as was the interaction between the different day and the different concentrations (p=0.002, df=4) (**Table 5**). At day 5, OA levels for all treatments had increased to similar concentrations. There was little difference between the different treatments compared to the OA levels in just the baseline medium (0 mM). Even though the differences were only very slight there has been some statistical significance that fumarate does increase OA levels at day 4 of incubation. As a result, a 15 mM fumarate addition to the medium was considered for future medium testing. The OA levels for this experiment were much higher than for the first experiment even though the spore concentration was lower. This

highlights once again that an increasing ascospore number cannot be directly correlated with an increase in OA concentration. This could be accounted for because of the viability of spores or the accuracy of calculating spore number in the solution.

**Table 5:** ANOVA results for three experiments testing the effect of succinate, malate and fumarate on OA production.

| 1 <sup>st</sup> Experiment | d.f. | F pr. | 2 <sup>nd</sup> Experiment | d.f. | F pr. | 3rd Experiment | d.f. | F pr. |
|----------------------------|------|-------|----------------------------|------|-------|----------------|------|-------|
| ANOVA                      |      |       | ANOVA                      |      |       | ANOVA          |      |       |
| Sample stratum             |      |       |                            |      |       |                |      |       |
| Treatment                  | 2    | <.001 | Treat                      | 2    | 0.08  | Treat          | 3    | 0.003 |
| Conc                       | 3    | <.001 | Conc                       | 3    | 0.341 | Conc           | 2    | <.001 |
| Treat.Conc                 | 6    | <.001 | Treat.Conc                 | 6    | 0.656 | Treat.Conc     | 6    | 0.135 |
| Residual                   | 24   |       | Residual                   | 24   |       | Residual       | 24   |       |
| Sample Day stratu          | ım   |       |                            |      |       |                |      |       |
| Day                        | 2    | <.001 | Day                        | 2    | <.001 | Day            | 2    | <.001 |
| Day.Treatment              | 4    | <.001 | Day.Treat                  | 4    | 0.303 | Day.Treat      | 6    | 0.091 |
| Day.Conc                   | 6    | <.001 | Day.Conc                   | 6    | 0.033 | Day.Conc       | 4    | 0.002 |
| Day.Treat.Conc             | 10   | <.001 | Day.Treat.Con              | 12   | 0.814 | Day.Treat.Conc | 12   | 0.349 |
| Residual                   | 42   |       | Residual                   | 40   |       | Residual       | 47   |       |



**Figure 23**. The effect of adding different TCA cycle intermediates on OA production. Three independent biological experiments to assess the effect of succinate, malate and fumarate on OA production from ascospores measured at different time intervals. All media contains 1% Soytone, 25mM Glucose, baseline salts, pH 5 and the additional intermediate. Bars represent the average OA production of three biological replicates. The estimations for 15mM fumarate and malate OA values were outside the standard concentrations used, so predictions made in Genstat have no standard error. The ascospore concentrations used to seed each biological replicated were (a) 1750 ascospores, (b) 900 ascospores and (c) 4860 ascospores.

### **3.3.7 Electrochemical-compatibility of the defined medium for biosensor development**

Up to this point in the development of the medium (1 % soytone, 25 mM glucose, baseline minimal salts at pH 5) the electrochemical biosensor had not been fully optimised. Therefore no medium samples had been tested for compatibility with the electrochemical assay prior to the fungal growth experiments. When the electrochemical assay had been optimised by Dr. Sophie Weiss, at the University of Manchester, the soytone medium was tested and found not to be compatible with the system. Known amounts of OA were spiked into the 1% soytone medium and pipetted onto the electrode containing the stabilised OxOx. However there was no enzymatic activity and no OA detected (Figure 24a). This result highlighted one or several components in this medium inhibited some part of the electrochemical assay. To find a medium with suitable electrochemical compatibility before the second field trials, a range of standard laboratory media samples were sent to the University of Manchester to be tested for compatibly with the electrochemistry, by Dr Weiss (Figure 24b). The media were testd at pH 3.8 as this is the predicted after 4 days incubation with S. sclerotioeum ascospores. Four of the 13 samples tested were electrochemically compatible. These four media were tested for the growth of ascospores and to determine whether suitable levels of OA could still be detected using both optical and electrochemical methods of OA detection (Table 6).

| Medium compatible with electrochemistry | Component of medium                                                                                             |  |  |  |  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1% Potato dextrose broth                | Potato Starch (from 200g Potato infusion)<br>Dextrose                                                           |  |  |  |  |
| 1% Yeast nitrogen base                  | Yeast base to which carbon and amino acid source can be added.                                                  |  |  |  |  |
| 1% Sabouraud dextrose broth             | Peptic Digest of Animal Tissue<br>Pancreatic Digest of Casein (phosphoproteins)<br>Dextrose                     |  |  |  |  |
| 1% Czapeks dox liquid                   | Saccharose, Sodium Nitrate, Dipotassium Phosphate<br>Magnesium Sulfate, Potassium Chloride, Ferrous<br>Sulfate. |  |  |  |  |

**Table 6:** The four media selected for electrochemical compatibility



| Legend | Growth media tested                                   |
|--------|-------------------------------------------------------|
| E45    | 50mM succinic acid 100mM KCl pH 3.8                   |
| E57    | 1% potato dextrose broth minimal media pH 3.8         |
| E58    | 1% yeast nitrogen base without a minimal media pH 3.8 |
| E60    | 1% Sabouraud dextrose broth medium min media pH 3.8   |
| E61    | 1% Czapeks dox liquid medium in minimal media pH 3.8  |
| E59    | 1% YPD broth in minimal media pH 3.8                  |
| E43    | 1% soytone in minimal media pH 3.8                    |
| E62    | 1% yeast tryptone broth in minimal media pH 3.8       |
| E63    | 1% LB lennox broth in minimal media pH 3.8            |
| E64    | 1% yeast extract in minimal media pH 3.8              |
| E65    | 1% mycological peptone in minimal media pH 3.8        |
| E66    | 1% tryptone soya broth in minimal media pH 3.8        |
| E67    | 1% beef extract in minimal media pH 3.8               |
| E68    | 1% granulated tryptone in minimal media pH 3.8        |

Figure 24: The effect of different media on the efficiency of the electrochemical assay.

a) The lack of compatibility of the soytone medium with electrochemical assay. b) Activity of OxOx in 1% nutrient media electrolyte tested in 13 different growth media. E57, E58, E60 and E61 show the greatest changes in current with increasing OA concentration. Soytone (E43) by comparison has no activity within this assay. Samples tested at pH 3.8 as this is the optimum working pH for OxOx. Data courtesy of Dr. Sophie Weiss, University of Manchester.

### 3.3.8 Comparison four electrochemical compatible media for OA induction

Ascospores were grown in each of the four electrochemically compatible media to determine their abilities to induce high OA production from *S. sclerotiorum* L6 isolate ascospores. This experiment was repeated on three separate occasions with consistent results for each experiment. Only one set of experimental results is shown to reduce repetition (**Figure 25**). The highest OA standards used in the calibration curve for this experiment was 3000  $\mu$ M. Some wells contained more than 3000  $\mu$ M OA after 6 days of incubation and therefore the actual OA content could not be calculated. These samples were plotted at 3000  $\mu$ M and no standard variation could be calculated. Sabouraud dextrose broth (SDB), containing minimal salts with no glucose addition, was the most consistent OA inducer with high levels of OA detected at day 3 (**Figure 25b**). Soytone and PDB also promoted oxalic acid at day 3 but at significantly lower levels. The addition of glucose had no significance on oxalic acid production. The yeast base medium induced OA production but only much later in the time course and only with the glucose addition. SDB with baseline minimal salts, pH5 was used from this point on to carry out further testing.





Ascospores incubated in different media over 6 days. Bars represent the average OA production of three biological replicates. 9250 spores/ biological replicate. a) OA production over 6 days. b) OA production at day 3 of incubation. c) OA production at day 4.

### 3.3.9 Limits of detection.

During biosensor sampling within a field environment, air will be sampled directly into the pots which will contain the medium to induce OA production. Therefore, it was necessary to test whether the ascospores would germinate and produce oxalic acid within a smaller medium volume and within a bespoke 400  $\mu$ l pot made of a different plastic to the previously used 12 well plates. It was also necessary to determine the lowest number of spores which could be sampled that would still grow and produce detectable levels of OA.

Different ascospore concentrations were incubated in 400  $\mu$ l of SAB medium. After 3 days of incubation, all spore dilutions had secreted OA (**Figure 26**). Statistically, there is a significant difference between some of the spore dilutions (p= 0.002, d.f.= 6) and the different days (p< 0.001, d.f.= 2) as well as the interaction between day and ascospore dilution (p< 0.001, d.f.=12). Visually it is difficult to pick out a trend especially on day 4 when most of the ascospore dilutions are secreting high OA amounts. What is noticeable is the lowest spore doses (67, 16, 4 spores per pot) have a longer time lag until they produce their highest amounts of oxalic acid compared with higher ascospore doses. OA concentrations are most likely higher than previously tested because of the smaller volume of liquid which the spores are grown in, which would concentrate the OA in the pots.



Figure 26: The effects of different ascospore number on OA production.
Oxalic acid production from different ascospore dilutions over 5 days of incubation in 400 μl SAB and minimal base salts, pH5. Spore solution LSD: 688, Day LSD: 450, Residual: 42.

### 3.3.10 Verifying spore counts using DNA quantification

Quantitative PCR was used to check whether the ascospore numbers calculated with the aid of a haemocytometer could be verified by quantifying S. sclerotiorum DNA within the spore doses being used to inoculate the SDB medium (Figure 27) (see General Experimental Procedures). DNA from three replicates per spore dose was extracted and were tested. The qPCR spore counts were much lower than the haemocytometer counts (Figure 27b). However, the qPCR counts were still dropping by 50% per dilution and this confirms that even though the ascospore counts were doubling (i.e the original count of 4 spores, was by PCR analysis now considered to be 8 spores), the OA concentrations were still not positively correlated with ascospore number. This discrepancy in spore number could be a result of the filter paper particles which are present in all spore solutions after the filter paper is added to sterile water to make up the spore solution. This could easily cause spore clumping, even though a 0.1% tween solution was added to the spore solution before spore counts were taken. Solutions were also vortexed vigorously to break up clumps. As previously noted, lower spore solutions resulted in the production of similar amounts of oxalic acid comparable with the higher spore numbers at day 3, 4 and 5. As a recommendation from these pot testing experiments, the limit of detection for this assay can be set at 10 spores in up to 500µl of medium.



**Figure 27**: Using qPCR to determine accurate ascospore numbers and OA production. a) OA production from different spore dilutions incubated for 5 days in 500ul SAB, minimal salts, pH5. b) Comparison of the spore counts from a heamocytomer counted under a light microscope (20X) and the number of spores in the same volume calculated using qPCR.

### **3.3.11** The relationship between *S. sclerotiorum* ascospore number, biomass and oxalic acid production

Previous experiments have demonstrated that there is no consistent positive correlation between the number of *S. sclerotiorum* ascospores and an increasing amount of OA measured during incubation tests. It was hypothesised that there may be an initial starting biomass required to initiate OA production and this initial biomass may be influenced by the initial spore number. An experiment which monitored the relationship between ascospores number (high (2366), medium (291), low (50) ascospore), biomass, OA and pH carried out over 11 days (**Figure 28**). The average ascospore concentration per spore dose was calculated using qPCR (**Table 7**).

Once again it was observed that lower spore doses (below 1000 spores per replicate) produced OA at four days of incubation, whereas the higher spore doses produced OA during the third day of incubation. To perform the REML analysis these data required log transformation as it ensured a normal distribution for the data. There were a few negative values of OA for the control sample so to adjust the values for transformation, 9.6 was added to all oxalate values. The control oxalate values were nested within the treatment (spore dilution) so that all values for each ascospore dilution and the control were compared against each other (**Figure 29**). The REML model creates a predicted table of means which fits the model. The measure of fit was then used to calculate whether there is any statistical significance of the effect of treatment. The output from the REML model indicates that there is a highly significant interaction between treatment (spore dilution) nested within control vs. treatment and time. This translates that on a particular day, there was an effect of spore dilution on oxalate production (**Table 8**). This can be seen on day 3 where OA is positively correlated with higher spore numbers, but at day 5 the higher spore concentration is negatively correlated with OA production.

The overall change in pH followed a similar pattern across the three ascospore dilutions however the higher spore dose exhibited a more rapid pH drop between day 2 and 5 compared with the medium/low ascospore doses which exhibited this change between day 3 and 6. By day 6 the higher spore dilutions had reached their lowest pH and began to increase once more. A day later the medium and low spore dilutions followed this pattern. Once more, the REML analysis showed a highly significant interaction between the treatment of spore dilution nested within the control vs the treatment and time, highlighting that there is a significant effect of spore dose treatment on pH of the sample (**Table 9**).

The biomass did not differ greatly between larger and smaller spore doses but the higher spore dose was marginally higher at day 3 compared with the two other spore doses. This could possibly account for the early increase in OA production by this spore dose at this time point. This experiment was repeated a second time and the results are comparable suggesting that it is not biomass only that accounts for the increase in OA, there may be other factors. The REML output indicates that there was no significant effect of spore dose on the biomass but there was a main effect of time only (**Table 10**). It is important to note that by 11 day of incubation there was significantly reduced liquid medium in the culture pots.

**Table 7:** The spore counts of different spore solutions determined using qPCR. The spore number is the average of 3 biological replicates.

| Spore dose<br>treatment | Average of 3<br>biological replicates | Standard<br>error |  |
|-------------------------|---------------------------------------|-------------------|--|
| High spore              | 2366                                  | 150               |  |
| Medium spore            | 291                                   | 25                |  |
| Low Spore               | 50                                    | 29                |  |

**Table 8**: The REML output for the effects of spore treatment on the production of OA measured in the liquid medium over 11 days.

|                         | ,             | (      |             |        |            |
|-------------------------|---------------|--------|-------------|--------|------------|
| Fixed term (OA)         | Waldstatistic | n.d.f. | F statistic | d.d.f. | F pr       |
| Time_day                | 3332.38       | 7      | 459.84      | 118.0  | < 0.001*** |
| CvsT                    | 96.22         | 1      | 96.22       | 80.2   | < 0.001*** |
| Time_day.CvsT           | 3221.07       | 7      | 444.51      | 118.2  | < 0.001*** |
| <b>CvsT.Treatment</b>   | 11.34         | 2      | 5.67        | 18.3   | 0.012      |
| Time_day.CvsT.Treatment | 425.90        | 14     | 29.26       | 156.4  | < 0.001*** |

CvsT= control (with no spores) versus treatment (with spores).

**Table 9 :** The REML output for the effects of spore treatment on pH of the liquid medium measured over 11 days.

| Fixed term (pH)         | Wald statistic | n.d.f. | F statistic | d.d.f. | F pr       |
|-------------------------|----------------|--------|-------------|--------|------------|
| Time_day                | 13067.46       | 7      | 1803.38     | 118.3  | < 0.001*** |
| CvsT                    | 209.82         | 1      | 209.82      | 66.6   | < 0.001*** |
| Time_day.CvsT           | 4441.23        | 7      | 612.91      | 118.3  | < 0.001*** |
| CvsT.Treatment          | 23.09          | 2      | 11.54       | 14.3   | 0.001***   |
| Time_day.CvsT.Treatment | 600.62         | 14     | 41.27       | 157.0  | < 0.001*** |

CvsT= control (with no spores) versus treatment (with spores).

**Table 10**: The REML output for the effects of spore treatment on the *S. sclerotiorum* biomass monitored over 11 days.

| Fixed term (Biomass) | Waldstatistic | n.d.f. | <b>F</b> statistic | d.d.f. | F pr        |
|----------------------|---------------|--------|--------------------|--------|-------------|
| Treatment            | 0.38          | 2      | 0.19               | 1.8    | 0.841       |
| Time_day             | 194.72        | 7      | 24.85              | 19.5   | < 0.001 *** |
| Treatment.Time_day   | 9.55          | 14     | 0.61               | 20.0   | 0.828       |

CvsT= control (with no spores) versus treatment (with spores).

\*\*\* Statistical significance





*S. sclerotiorum* L6 isolate ascospores incubated in 2 ml SDB with minimal salts. Bars represent the average OA production of three biological replicates. pH values the average of the three biological replicates. The values are untransformed. High ascospore: 2366 spores/ biological replicate. Medium ascospore: 291 spores/ biological replicate. Low ascospores: 50 spores / biological replicate.





The values are generated by fitting a linear fixed model to the pH, OA and biomass values. The OA original data was increased by adding 9.6 to eliminate negative values and then log transformed.

### **3.3.12 Buffering Capacity of the medium**

The environmental pH has been shown to be important for the induction of OA. Secreted OA decreases the pH of the surrounding environment which in turn creates the optimal pH for secreted polygalacturonase and other acid acting enzymes required during infection. Rollins and Dickman (2001) reported that OA production may be a self-limiting mechanism, so that increasing OA levels decreases pH which restricts further OA secretion and so OA levels may actually fall after a period of time. Culbertson et al (2007) reported a trend of decreasing OA levels after 5 days incubation with mycelia plugs incubated in media in flasks. Medium pH was observed to increase after 5 days incubation. There is speculation that the increasing pH could be the result of a proton-consuming reaction, where secreted oxalate decarboxylase catalyses the breakdown of oxalate into formate and carbon dioxide which may increase the medium pH if the formate is subsequently secreted into the medium (Magro et al. 1984).

Different additions to the medium may also act as buffers to prevent the medium pH dropping rapidly. Culbertson hypothesised that the intrinsic buffering capacity of each medium will affect the amount of OA secreted. If the pH drops too much this inhibits OA production (Rollins and Dickman 2001) however oxalate production could possibly be maintained if the medium was kept above pH 3.5 (Maxwell and Lumsden 1970, Culbertson et al 2007a & b).

To investigate whether the SDB medium could be buffered to increase OA production within the biosensor, three routinely used biological buffers were tested to measure whether the medium can be buffered sufficiently over at least 4 days of incubation and whether maintaining a higher pH stimulates further oxalic acid production (**Figure 30**).

Initially, MES (2-(N-morpholino)ethanesulfonic acid) buffer (50 mM) was used to make up the SDB at pH 4, 5, 6 and 7. Two ascospore doses were used to see if there was any difference between the amount of ascospores and the ability to buffer a medium. The media buffered at pH 5 had the highest oxalic acid concentrations for both spore dilutions at day 4 (**Figure 30a**). The pH dropped rapidly in samples with the higher OA concentrations. Media with a starting pH of 7 contained less OA and exhibited less of a pH drop. It is interesting that there is minimal oxalic acid production at day 2 and 3, compared to previous experiments when oxalic acid production was measured at least at day 3. This could be an effect of the MES buffer. The pH measurements indicate that there was no buffering of the medium.



Figure 30: Buffering capacity of MES buffer.

a) Oxalic acid production by two spore dilutions of ascospores grown in SDB medium at different pH over five days. Media buffered using MES buffer. Bars represent the average OA concentration of three biological replicates. High spore: 290 spore/replicate. Low spore: 30 spore/well. b-c) The change in medium pH over the time course for the two different spore dilutions. c) The control medium which was non-inoculated.

Succinate (50 mM) and HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) (50 mM) buffers were then tested for medium buffering abilities (**Figure 31**). The buffers were added to SDB at a range between pH 4.9 - 6.5. A pH above pH 7 was not included as the previous experiment highlighted that lower OA was induced when ascospores were grown in media at this pH. The succinate buffer reduced the oxalic acid output considerably (**Figure 31 e,f**). The HEPES buffer did promote oxalic acid production compared with the SDB control but only at later stages in the time course, day 6 and 7 (**Figure 31 c,d**). The control SDB had the highest oxalic acid concentrations at the earliest time points (**Figure 31 a,b**) which for the biosensor would be the most appropriate time points to assess. The highest OA production was observed in the SBD control at day 4 which will be the date for measuring samples in the biosensor in the field. It is difficult to determine what the best pH would be required as low spore dose have a better OA output when the environment is at pH5, whereas for higher spore dose pH 5.9 was a better OA inducer.

The pH of media was measured over time (**Figure 32**). Both HEPES and succinate have some ability to buffer the medium with higher ascospore doses when compared with the un-buffered control medium. However, the lower spore doses incubated in both buffered media showed a similar change in pH to the un-buffered control. The two spore dilutions generally followed a similar pH drop, however the lower spore dose lagged behind by 1 day.

For all three treatments, high ascospore doses produced oxalic at day 3 and low ascospore doses produced oxalic acid at day 4. At day 4 the levels of oxalic acid between the two ascospore doses are comparable. The OA concentrations did decrease after 6 days, which suggests the OA was broken down/ re-metabolised and after this point the pH values do begin to increase which is in keeping with what has been observed for mycelial plug inoculations previously (B. J. Culbertson et al. 2007, Bryan J. Culbertson et al. 2007)





Oxalic acid production by two spore dilutions of ascospores grown in buffered SDB media over 11 days. a,c,e) high ascospore dilution: 2366 spores / biological replicate. b,d,f) low ascospore dilution: 38 spores/ biological replicate. Bars represent the average OA production per 3 biological replicates. a-b) control SDB medium with no buffer addition. c-d) 50 mM HEPES buffer in SDB. e-f) 50 mM succinate in SDB.


Figure 32: The change in pH monitored in buffered media.

4day

5day

0

24hr

48hr

72hr

Time course over 11 days of ascospores incubation. Values are the average pH of three biological replicates. a) High ascospore dilution: 2366 spores / biological replicate. b) low ascospore dilution: 38 spores/ biological replicate

6day

7day Day 11

•• pH 6.1 50mM Succinate Low

# 3.3.13 The effect of competing fungi on oxalic acid production

Once an electrochemically compatible medium had been identified (SDB, base minimal salts, pH5), it was necessary to investigate the effects of other fungal species which may be sampled into the biosensor along with *S. sclerotiorum* ascospores. Other fungi sampled into the medium may out-compete *S. sclerotiorum* or secrete oxalic acid which would potentially generate false positives. During field testing of the medium, other fungal species which were isolated from media which had been used to incubate air samples from the field were investigated (Chapter 4). These species included a variety of *Trichoderma spp* and *Epicoccum nigrum* which have been reported as bio control agents of *S. sclerotiorum* (Elad 2000, Inbar et al. 1996, Huang et al. 2000, Zhou et al. 1991). Both groups of fungi could be responsible for false negatives in the biosensor if they prevented *S. sclerotiorum* from growing and /or producing OA. *Botrytis cinerea* which is also documented to secrete oxalic acid was isolated from the field samples (Blanco et al. 2006). It was therefore necessary to investigate the effects of these fungi on the ability of *S. sclerotiorum* to produce OA and test a range of fungicides which may prevent the growth of these species.

#### **3.3.14.1** Competition assays

During two field trials (Chapter 4), a variety of fungal species were isolated and identified from air samples which were incubated with the medium. Attempts were initially made to optimise published qPCR methods for the detection of *Trichoderma sp, E. nigrum* and *B. cinerea*. This would enable the accurate quantification of spore numbers in the air samples to identify the potential risk. However all three methods continually amplified *S. sclerotiorum* DNA as well as the other fungi. Subsequently, this area of research had to be abandoned due to time constraints.

Growth competition assays were developed to see how detrimental these other fungal species could be for the biosensor system. *Trichoderma, Botrytis, Alternaria* and *Epicoccum* species isolated from the field were cultured to obtain spores. Spores were grown in SDB either independently or mixed in with *S. sclerotiorum* ascospores and OA concentrations were measured every day for 7 days (**Figure 33**). Oxalic acid was produced by *S. sclerotiorum* and *B. cinerea* when grown independently or together in the medium. However, when *S. sclerotiorum* was mixed with *Trichoderma, Alternaria* and *Epicoccum* isolates, OA production was significantly impaired. It is very difficult to know how the distribution of the other species spores will change in the field and how this will affect *S. sclerotiorum* oxalic acid production.



Figure 33: Oxalic acid produced by different fungal species isolated from field trial samples.

The spores from different species were grown with and without *S.sclerotiorum* spores in SDB medium over 7 days. Bars represent the average OA production of three biological replicates. 1000 spores / biological. Ss: *S. sclerotiorum*. Trich: *Trichoderma sp.* 



Figure 34: The effect of fungal contaminants on oxalic acid production by two different spore dilutions.

Ascospores incubated over 5 days in 2 ml SDB medium. Bars represent the average OA production of three biological replicates. High Ss ascospore spore dilution: 290 spores / biological replicate. Low ascospore spore count approximately 30 spores / biological replicate. *Botrytis* and *Trichoderma* spore counts were diluted to 100 spores / biological replicate. Ss: *S. sclerotiorum*. Trich: *Trichoderma sp.* 

The number of *S. sclerotiorum* ascospores present in the biosensor assay may affect whether other species can outcompete it or not. A high and low *S. sclerotiorum* spore dose was used in another competition assay just with *Trichoderma sp* and *B. cinerea* (Figure 34). At day 4, *Trichoderma sp* had significantly suppressed *S. sclerotiorum* oxalate production. *B. cinerea* produced equivalent amounts of oxalic acid to *S. sclerotiorum* in this assay. Both could pose a significant risk in the field but this risk will vary depending on how frequent spores from these other pathogens are sampled into the biosensor. This is still unknown.

# **3.3.14.2** Fungicide additions to the medium

To create a selective medium that will encourage the growth of only *S*. *sclerotiorum*, a range of fungicides were tested for their activity against the identified competing fungi. A variety of fungicides were tested to find a discriminatory dose of chemistry that would supress all other fungi except *S.sclerotiorum* (**Table** 11). These fungicides were chosen as they were the chemicals available in the laboratory. These fungicides were tested at different concentrations using a high throughput fungicide sensitivity assay to determine whether there is any fungicide which may make the medium selective for the target species.

 Table 11: The different fungicides tested for efficacy against fungi identified in field samples

| Mixed Fungicide Groups          | DMI Group- effects Sterol | MBC Group- effects β-       |
|---------------------------------|---------------------------|-----------------------------|
|                                 | biosynthesis in membranes | tubulin assembly in mitosis |
| Chlorothalonil (Chloronitriles- | Prochloraz                | Thiabendazole               |
| Multi-site contact activity)    |                           |                             |
| Etridiazole (AH-fungicides-     | Prothioconazole           | Thiophanate-methyl          |
| Lipid synthesis and membrane    |                           |                             |
| integrity)                      |                           |                             |
| Iprodione (Dicarboximides-      | Propiconazole             | Zoxamide                    |
| MAP/Histidine-kinase in         |                           |                             |
| osmotic signal transduction)    |                           |                             |
| Pentachloronitrobenzene         | Imazalil                  | Fuberidazol                 |
| (PCNB)                          |                           |                             |
|                                 |                           | Diethofencarb               |
|                                 |                           | Carbendazim (used to        |
|                                 |                           | control S. sclerotiorum)    |
|                                 |                           |                             |

**Table 12**: The concentration of fungicide required to inhibit growth and development of different fungal spores. Twelve serial dilutions of the different fungicides were dosed into 100 ml 2 x medium across the rows of 96 well plates. The density of the fungal biomass assessed using an optical spectrophotometer after 24hrs incubation. Ss= *S. sclerotiorum*. BC = *B. cinerea*. Tri= *Trichoderma sp.* 

| Fungal                     |                |                                      |             | Fungicide conc | centration (ug /ml                                                                                                  | ) required to | kill the path       | nogen             |          |           |          |                 |
|----------------------------|----------------|--------------------------------------|-------------|----------------|---------------------------------------------------------------------------------------------------------------------|---------------|---------------------|-------------------|----------|-----------|----------|-----------------|
| species                    | Chlorothalonil | Etridiazole<br>PCNB<br>Diethofencarb | Carbendazim | Thiabendazole  | Thiophanate-<br>methyl                                                                                              | Prochloraz    | Prothiocon<br>azole | Propico<br>nazole | Imazalil | Iprodione | Zoxamide | Fuberi<br>dazol |
| SS1 L44                    |                | >60                                  | No growth   | 0.1            | 1.9                                                                                                                 |               |                     |                   |          |           |          |                 |
| SS2 GFR10                  |                | >60                                  | 0.1         | 0.2            | 1.9 (0.9)                                                                                                           |               |                     |                   |          |           |          |                 |
| SS3 US                     |                | >60                                  | 0.1         | 0.2            | 1.9                                                                                                                 |               | 3.6                 | 0.9               | 0.5      | 0.9       |          | 0.5             |
|                            | 73.15849       |                                      |             | 21.5           | 15.7                                                                                                                | 0.6           | 1.6                 |                   | 0.7      | 0.5       |          |                 |
| Ss GFW5                    |                |                                      |             |                | 0.9                                                                                                                 |               | 1.9                 | 1.9               | 3.8      | 0.9       | 0.9      | 0.5             |
| SS1 L6                     | 0.19540        |                                      |             | 0.1            | 1.1                                                                                                                 | 155           | 0.1                 | 0.0               | 0.6      | 0.5       |          | 0.6             |
| SS2 GFR1                   | 0.00361        |                                      |             | 0.2            | 40                                                                                                                  | 88.3          | 0.3                 | 1.2               | 1.0      | 0.4       |          | 0.7             |
| BC 1 B798                  | 7.5            | >60                                  | 0.1         | 0.2            | 0.9                                                                                                                 | 0.2           | 7.5                 | 0.9               | 1.9      | 0.9       | 1.9      | 1.9             |
|                            | 0.25131        |                                      |             | 0.1            | 1.3                                                                                                                 | 0.04          | 0.8                 | 0.001             | 0.7      | 0.3       |          | 0.5             |
| BC2 18 1038                |                | >60                                  | 0.1         | 0.2            | 0.9                                                                                                                 | 0             | 15                  | 1.9               | 7.5      | 0.9       | 1.9      | 1.9             |
|                            | 0.00011        |                                      |             | 0.1            | 0.4                                                                                                                 | 0.5           | 0.1                 | 0.2               | 0.0      | 0.1       |          | 0.1             |
| Tri1 T.koningii            | 15             | >60                                  | 0.5         | 0.5            | 15                                                                                                                  | 0.1           | 15                  | 15                | 15       | 7.5       | >120     | 3.8             |
| C2729                      | 0.58012        |                                      |             | 0.1            | 10                                                                                                                  | 0.02          |                     | 0.3               | 1.8      | 1.3       |          | 1.5             |
| Tri2 Field                 | 15             | >60                                  | 0.2         | 0.2            | 15                                                                                                                  | 1.9           | 15                  | 60                | 60       | 15        | >120     | 7.5             |
| isolate K -//b             | 0.43237        |                                      |             | 0.1            | 11.3                                                                                                                | 1             |                     | 2.9               | 5.8      | 1.1       |          | 1.5             |
| Tri 3 T.<br>harzianum 72.1 | >60            | >60                                  | 0.2         | 0.5            | 15                                                                                                                  |               |                     |                   |          |           |          |                 |
| Tri 4 T.                   | >60            | >60                                  | 0.5         | 0.9            | 60 <x<120< td=""><td>3.8</td><td>15</td><td>60</td><td>&gt;120</td><td>7.5</td><td>&gt;120</td><td>30</td></x<120<> | 3.8           | 15                  | 60                | >120     | 7.5       | >120     | 30              |
| narzianum<br>C2679         | 0.43535        |                                      |             | 0.2            | 18                                                                                                                  | 0.4           |                     | 58.51             | >120     | 1.5       |          | 3.4             |

After testing a range of concentrations of the listed fungicides, it was extremely difficult to determine the concentration of fungicides to add to the medium that would kill other fungal contaminants but allow *S. sclerotiorum* ascospores to continue to germinate and produce oxalic acid. This is principally because the *Trichoderma spp* requires a much higher concentration of all the fungicides tested to inhibit growth compared to *S. sclerotiorum* (**Table 12**)The concentrations required to inhibit *S. sclerotiorum* growth vary between different isolates so it would be a risk to set the highest fungicide concentration tested which still allows spore germination as some isolates might be sensitive and inhibit growth.

A fungicide mixture combining the most effective fungicides against the competing fungi was developed by mixing in the doses of fungicide which had not inhibited *S. sclerotiorum* growth in the previous assay (**Table 13**). *Trichoderma sp, S. sclerotiorum* and *B. cinerea* ascospores were added to the SDB medium with and without the fungicide mix. The species were mixed as well as incubated individually. The oxalic acid concentration was measured over 7 days to assess whether *S. sclerotiorum* could withstand the fungicide treatment (**Figure 35**). The oxalic acid produced by *B. cinerea* and *S. sclerotiorum* was seriously reduced when grown in the presence of fungicides compared to the medium without. Little growth of *S. sclerotiorum* and *B. cinerea mycelium* was visible. *Trichoderma sp* growth was also reduced when treated with this fungicide mixture however not as severely as the two fungi.

The results highlight that it may not be feasible to kill *Trichoderma spp* effectively using appropriate fungicides without inhibiting growth of *S. sclerotiorum* ascospores in the medium. Therefore a better strategy would be to focus on trying to inhibit *B. cinerea* spore germination because this fungus will cause an increased risk of false positives. Thiophanate-methyl and Fuberidazol could potentially be used in the medium as most of the *S. sclerotiorum* isolates tested were able to continue to grow in higher concentrations of these fungicides compared with *B. cinerea*.

 Table 13: A combined fungicide treatment.

Amounts of fungicide based on the lowest doses of fungicides required to inhibit *S. sclerotiorum* ascospore growth was mixed in SDB. *Trichoderma spp, S. sclerotiorum* and *B.cinerea* ascospores were grown separately and together in the medium and the growth and oxalate concentration of the medium measured over 7 days.

| Fungicide           | Non-lethal dose to Ss ug/ml | Added to 20ml Sabouraud medium (ul) |
|---------------------|-----------------------------|-------------------------------------|
| Prochloraz          | 0.47                        | 189 (106x dilution)                 |
| Prothioconazole     | 3.75                        | 1.5ml (13.3diltuion)                |
| Propiconazole       | 0.9375                      | 426 (46x dilution)                  |
| Imazil              | 0.47                        | 189 (106x dilution)                 |
| Iprodione           | 0.9375                      | 426 (46x dilution)                  |
| Fuberidazol         | 0.469                       | 189 (106x dilution)                 |
| Chloranothil        | 0.47                        | 189 (106x dilution)                 |
| Thionphanale-methyl | 0.95                        | 426 (46x dilution)                  |
| Thiabendazole       | 0.117                       | 49 (427x dilution)                  |



**Figure 35**: The effect of combined fungicide treatment on *S. sclerotiorum* fungal competitors. *Trichoderma sp, S.sclerotiorum* and *B.cinerea* ascospores were incubated with and without the fungicide mixture. OA production was measured over 7 days of growth. Bars represent the average OA of 3 biological replicates. Spores were grown in 2 ml of medium with fungicide mix. Fungicide= the medium contains the mix of fungicides.

#### **3.4 Discussion**

#### **3.4.1 Optimising OA secretion from ascospores in a liquid matrix**

The use of a liquid based matrix as opposed to a solid based matrix has shown to be more suitable for the induction of OA and quantification of OA from germinating ascospores. The use of a defined media induced more reliable and reproducible OA production from ascospores compared with host plant extracts which is necessary for accurate detection of this pathogen within the biosensor. Sabouraud dextrose broth was not only the best inducer of OA which has been tested but is also electrochemically compatible with the biosensor which has been optimised to detect the presence of OA.

Previously published studies have shown that additions of TCA cycle intermediates to a carbon source can optimise OA secretion by S. sclerotiorum ascospores (Culbertson et al. 2007, Maxwell and Lumsden 1970, Godoy et al. 1990). However, the results presented in this chapter did not always support these conclusions. Additions of succinate to the minimal baseline medium or to a complex medium consistently induced lower OA production from ascospores compared with a complex medium such a PDB. This is different to other studies that reported an increase in OA production after the addition of succinate. Additions of other TCA cycle intermediates such as 5-15 mM malate and fumarate to complex media were observed to increase OA amounts secreted by ascospores, but only at a later point during incubation, after 4 days incubation. It is questionable whether S. sclerotiorum is actually capable of metabolising succinate directly from exogenous substrates. There is no evidence that external sources of succinate, malate or fumarate are bioavailable organic acids which filamentous fungi will uptake directly. There are no reports of any succinate, malate or fumarate receptors within fungal extracellular membranes, however if these could be broken down by secreted enzymes, then the products may be re-absorbed. Other fungal secreted organic acids such as citric acid can be re-metabolised as they act as siderophores which help to make essential nutrients principally iron bioavailable by chelating to free iron in the surrounding environment. The chelated iron is then are transported into the cell (Plessner et al. 1993). However this is not the case for the three TCA cycle intermediates tested within this study. The use of ascospores rather than mycelial plugs which were used in all other studies and the use of different isolates may also account for the differences seen in the effects of TCA cycle intermediates between the different studies

Additions of glucose to the baseline minimal nutrients did increase OA production, but it was continually the use of a complex medium which contains a high carbohydrate and protein content which induced the highest OA induction. Higher amounts of glucose additions to complex media induced lower OA secretion during incubation under 4 days but after this point the higher glucose levels induced marginally higher OA production. This supports other studies which have shown that OA and growth of mycelial plugs of S. sclerotiorum are dependent on the availability of simple and complex carbohydrates. (Maxwell and Lumsden 1970, Vega et al. 1970, Marciano et al. 1989, Rollins and Dickman 2001). It is more likely that the availability of suitable carbohydrate sources which can be broken down into simple sugars by the plethora of fungal enzymes and then utilised in the glyoxylate pathway to provide the intermediates for the TCA cycle will affect OA production. Glucose transport in Saccharomyces cerevisiae has been well studied and two glucose uptake systems have been defined. One system is a constitutive low-affinity system and the second is a glucose- repressed high-affinity system (Lagunas 1993). Other similar glucose transport systems have been defined for the ascomycetes Neurospora crassa and Trichoderma harzianum (Scarboro.Ga 1970a, Scarboro.Ga 1970b, Schneide and Wiley 1971, Delgado-Jarana et al. 2003). If there are two glucose affinity systems in S. sclerotiorum, this could account for the higher glucose concentrations only making a difference later on in the incubation time course, when the available carbon sources would become more depleted. This may induce a putative high affinity glucose system, however this is a speculation and requires further investigation.

One way in which this work and the previous published studies could be improved is by radioactively labelling the intermediates added to the media to determine whether they are directly taken up by the fungus. Without this information it is very difficult to determine whether the intermediate or other compounds within the complex media are affecting OA production. The expression of genes involved in transport of exogenous nutrients into the fungal cell and the enzymes involved in different metabolic cycle could also be investigated to determine which pathway(s) may be the most critical for maximising OA production.

# 3.4.2 pH and Buffering of complex media to maintain OA production

Environmental pH has been shown to be important for regulating OA production by *S. sclerotiorum* ascospores. Principally pH substrates above pH 5 have been shown to induce OA production (Maxwell and Lumsden 1970, Rollins and Dickman 2001, Culbertson et al. 2007). This was observed when SDB was buffered at pH 5 there was a reduction in the amount of OA produced and as a result pH 5 was chosen as the optimum starting pH for the medium used within the biosensor.

pH has been shown to strongly regulate the *pac* homologue gene in *S. sclerotiorum* which in turn regulates a range of pH dependent developmental genes in the fungus. The more oxalic acid secreted, the lower the pH which activates many developmental genes. However once a certain acidic pH is reached, oxalic acid production is inhibited (Rollins and Dickman 2001). It has been suggested that by buffering the medium, prolonged OA could be achieved. This was certainly observed for the 50mM HEPES buffer added to SDB which had prolonged high levels of OA production (**Figure 31 c-d**). At day 6 and 7, the OA amounts were nearly double that of the control SDB for both high and low spore dilutions. However for the biosensor, 6 days for sample incubation is too long a period and instead 4 days is a better incubation time frame to allow a suitable fungicide spray window for growers. At day 4 there was very little difference between the amounts of OA produced in the control SAB medium or the HEPES buffered medium. As a result, no buffer was added to the final medium.

# 3.4.3 The relationship between *S. sclerotiorum* ascospore number, biomass and oxalic acid production.

In this series of experiments, no evidence was obtained that ascospore number positively correlated to increases in OA concentration or biomass. This finding supports other published studies, where the highest biomass of a mycelial plug inoculated culture did not correspond to the highest amount of OA measured (Culbertson et al. 2007). Instead it was observed in this study that a baseline biomass was required before OA production was induced. This is observed as the lower ascospore doses only reached this required biomass a day later compared with the highest ascospore doses and only then was OA secreted. It is important to note that biomass did not differ significantly between the three spore doses and this is most likely because once the spores germinate, the wells can only support so much biomass as there is a limited nutrient supply, principally the glucose supply, which was not replenished. The 2 ml of medium will only support the growth and development of a finite number of fungal cells and it was also observed that by 11 days there was very liquid remaining in the wells. In addition, it was difficult to assess out of the 2000 spores, for example, how many were actually viable.

Biomass reduced later on during the infection course probably due to a combination of pH environmental signals and reduced availability of nutrients for biomass growth. By 11 days growth, the pH had increased and cultures began to synthesise sclerotia, a process which is linked to gene regulation by the alkaline dependent *pac1* gene. This gene actively promotes transcription of alkaline-expressed genes (Rollins 2003). This occurs when pac1 recognises alkaline expressed genes which contain multiple copies of a 5'GCCARG-3'binding site situated in a zinc finger DNA-binding domain (Espeso et al. 1997). Under alkaline conditions this gene is activated and so ensures that only pH responsive genes are activated under the right pH conditions (Espeso et al. 1997). The production of sclerotia may account for the decrease in biomass in the older colonies as the fungus potentially recycles biomass to make the sclerotia.

Obtaining accurate biomass measurements was a challenge during this experiment as it was not possible to gather 100% of the biomass from the plastic wells for freeze drying which will make the data more variable.

During the first few days of incubation, the OA concentration increased for all three ascospore doses and the pH dropped which was an expected result. The OA concentrations eventually reduced in all spore concentrations which correlated with an increase in pH. This could be a result of putative oxalate decarboxylase enzymes which are secreted into the medium, and hydrolyse OA into formate and carbon dioxide. Secretion of formate oxidases may then be involved in the breakdown of formate. Formate oxidases have been shown to be part of glucose-methanol-choline oxidoreductase family (Doubayashi et al. 2011). Two putative oxalate decarboxylase enzymes as well as ten putative secreted glucose-methanol-choline oxidoreductase family proteins were predicted in the refined *S. sclerotiorum* secretome (Chapter 5). These genes could be investigated for further extracellular function. Another possibility is that *S. sclerotiorum* may possess oxalate:formate transporters which are present in other fungi including *Saccharomyces cerevisiae and Aspergillus fumigatus* (Cheng et al. 2007, Nierman et al. 2005). These may assist in the efflux of oxalate and influx of formate but this has not been identified yet and so requires further information.

From the above experiments there remains little understanding about why the OA concentrations vary so much between different ascospore doses and different biomasses. For the purpose of the biosensor this is not a problem as even the smaller amounts of ascospores captured within the sensor will be able to produce detectable levels of OA. From an academic perspective it may be interesting to repeat this experiment but monitor the expression of pH-dependent genes to determine at which point specific genes are expressed and how these might further induce growth.

# **3.4.4 Selectivity of the medium**

The medium designed for testing during field trials (Chapter 4) did not contain any fungicides because the experimental data generated in this chapter did not identify either a single fungicide agent or a fungicide mixture which could control other potential competitors without killing *S. sclerotiorum. Trichoderma sp* were particularly difficult to control with fungicides. Routine antibiotics were added to the medium to reduce contamination from bacteria. Field results show that this medium, without the use of fungicides was still able to encourage oxalate production from *S. sclerotiorum* ascospores. However, further fungicide testing could be carried out test find a fungicide that could kill *B. cinerea* without inhibiting *S. sclerotiorum* growth.

In conclusion, this chapter has shown the successful development of a liquid biological matrix which is able to promote the germination of approximately 10 to over 2000 spores and induce detectable levels of secreted OA after four days of incubation. The OA in this medium can be successfully detected by both a commercially available high throughput spectrophotometric enzymatic OA detection assay as well as an optimised electrochemical OA detection biosensor.

# Chapter 4: The testing of an electrochemically compatible nutrient medium for detection of oxalic acid produced by *S. sclerotiorum* ascospores within an oilseed rape system.

# 4.1.1 Introduction

An electrochemically compatible biological matrix was developed to be used within the SYield biosensor for the detection of oxalic acid (OA) secreted from germinated S. sclerotiorum ascospores (Chapter 3). The matrix comprised a liquid nutrient medium consisting of baseline minimal salts, Sabouraud Dextrose Broth and antibiotics, at pH 5. In a laboratory environment, the medium was able to induce high amounts of OA secretion from viable S. sclerotiorum ascospores. OA secreted from spore doses above approximately 1000 spores per liquid aliquot was detected at three days of incubation however OA secreted from lower spore doses could be detected only after four days of incubation. It was necessary to test the liquid medium ability to detect specifically S. sclerotiorum secreted OA from field air samples which could potentially contain a range of other fungal spores, dust and other organisms. These 'dirty' air samples have the potential to inhibit S. sclerotiorum growth and in doing so, reduce the positive OA detection events. Another possibility is that there are other fungal species in the 'dirty' air samples which also secrete OA and would induce false positives. To ensure that ascospores were present within a field environment for testing the SYield biosensor, sclerotia were artificially buried within an oilseed rape field to allow natural production of apothecia and ascospores release during the flowering stage of the oilseed rape. A variety of air sampling equipment was then used to sample the air for ascospores to test for OA production as well as to extract DNA to verify that S. sclerotiorum was responsible for OA detection events.

## 4.1.2 Objectives of field trials:

Two out of the three field trials which have been carried out to test the SYield biosensor at different developmental stages are described in this chapter. The objectives of these field trials were to:

- investigate whether the OA inducing liquid media described in Chapter 3 can be used to induce *S. sclerotiorum* ascospores in 'dirty' field air samples to secrete detectable levels of OA.
- investigate the use of the optimised electrochemical assay to detect OA accurately in the liquid medium.

- determine whether the OA detection events can be verified by the presence of *S*. *sclerotiorum* DNA sampled on the same days as the OA positive events.
- observe apothecia development in the field to ensure that this coincides with OA detection events and the detection of *S. sclerotiorum* DNA.
- test the efficiency of new air sampling machinery that is to be used with the biosensor.
- gather climatic data which will be incorporated into a disease prediction model.
- understand how the positioning of air sampling equipment may affect the sampling of ascospores.
- assess the power requirements of the sampling equipment.
- carry out disease assessments of the oilseed rape.
- correlate the OA detection events to disease incidence in the field.

# **4.2 Experimental Procedures**

## 4.2.1 Field trial set up

Two sets of independent field trials over two field seasons were carried out to test the efficiency of the biological matrix reported in Chapter 3 (**Figure 37**). In the September of both 2010 and 2011, sclerotia of four UK isolates (L6, L44, L17 and RRes mixed, see Chapter 2 for sclerotia production method) were buried approximately 1-2 cm deep in the soil of oilseed rape fields; New Zealand (2011) and Geescroft (2012) situated on the Rothamsted farm. This allowed the sclerotia to undergo a period of winter conditioning so that they produced apothecia during the following flowering season. The field sampling period was from the 11 April to 28 June in 2011 (78 days) and the 21 March - 6 June 2013(77 days) which coincided with the flowering period of oilseed rape. The aim was for the apothecia to develop from the buried sclerotia and the ascospores to be released in synchrony with the flowering oilseed rape. This occurred in 2012 field trials however the 2011 field was very dry and the sclerotia had to be artificially watered to induce apothecia formation.

Within the area of buried sclerotia, different spore sampling systems were used to sample the ascospores released into the air from the apothecia. The set up for 2011 and 2012 are represented in **Figure 36 d-e**. During the two field sampling seasons, two cyclone samplers and two Burkard 7 day air samplers where placed in the middle of the inoculated site. The cyclone sampler captured air into a sterile 1.5 ml Eppendorf tube (**Figure 36b**) and the Burkard sampler impacted air samples onto a wax-coated plastic strip which was

then used to extract DNA and assess, the amount of *S. sclerotiorum* DNA sampled per day using qPCR (**Figure 36a**). In the 2012 field trial, a new sampling device developed by Burkard, called a SYield Virtual Impactor (SVI) which sampled air into 500  $\mu$ l pots was tested (**Figure 36c**). A modified version of this pot system would be used in the automated biosensor which was developed for the 2013 field trials. The different samplers collected air continuously from 8 am to 8 pm on a daily basis, with the cyclone Eppendorf tubes and wax strip changing position every 24 hrs so that daily air samples were obtained. A meteorological station was also placed alongside samplers in both field trials to collect data on the hourly rainfall amount, wind speed and direction and atmospheric temperature. A soil temperature meter was also buried in the centre of the inoculated sites.



Figure 36: Air sampling devices used during field trials.

Burkard 7 day air samplers for DNA extraction. b) Cyclone air sampler, sampled air into 1.5 ml Eppendorfs. c) SYield Virtual Impactor (SVI) air sampler which sampled air into 500  $\mu$ l pots. The air volume that each sampler can sample is as follows: Burkard 7 day = 10L/min (collection is very efficient for particles above 2 microns) Cyclone = 24L/min (collection efficiency about 25% for particles above 2 microns) SYield automated = 20L/min (collection efficiency about 80% for particles above 2 microns)



Figure 37: Field set up for 2011 and 2012.

a) The field trial set up in the Rothamsted 'New Zealand' oilseed rape field, 2011. Air sampling equipment including two cyclones and two Burkard 7 day air samplers were placed in the centre of four sclerotial burial sites. At each burial site, four different isolates were buried: 1- L6, 2- L17, 3- L44, 4- RRes mixed. Top right picture demonstrates the size of apothecia germinating during flowering of the oilseed rape. e) The field trial set up in the Rothamsted 'Geescroft' oilseed rape field, 2012. Air sampling equipment including

two cyclones, two Burkard 7 day wax strip samplers and two SVI samplers were placed in the centre of a ring of 16 sclerotial burial sites, a pattern of L6, L17, L44 and RRes mixed isolates.

#### 4.2.2 Medium testing

Samples were collected weekly from the field cyclone samplers (2011,2012) and daily from the SVI samplers (2012 only). All samples were stored at 4 °C until a batch of approximately 10-20 samples for each sampler had been collected (**Table 14**). In 2011, the 1 % soytone medium with glucose and baseline salts was tested by pipetting 1 ml of the medium into the cyclone Eppendorfs. In 2012, 400 µl or 1 ml of SDB medium (Sabouraud Dextrose Broth, baseline minimal salts and 150 mg / L PenStrep antibiotics) was added to the SVI pots or 1.5 ml cyclone Eppendorf tubes respectively. All samples were incubated with the media at room temperature (approx. 20 °C) in the dark (Figure 38). In 2011 the samples were tested for oxalic acid production after day 3, 4 and 7 days of incubation using the high throughput OxOx spectrophotometer assay (see General Experimental Procedures). As two cyclones and SVI's were used, there were two samples for each day (A and B). In 2012, the A and B samples for the cyclones as well as SVI pots were tested with both the high throughput OxOx spectrophotometer assay (see General Experimental Procedures) and the optimised electrochemical measurements after 4 days of incubation. For all batches, a set of controls were included in the testing. One positive control consisted of the same medium being tested in the field seeded with known S. sclerotiorum ascospores to ensure that the medium would induce ascospore growth if ascospores were present in the dirty field air samples. A second control included the medium inoculated with water to ensure the medium itself was not giving any OA readings.



b)

514 B 614 6 /4 614 B

Figure 38: Pot incubation assay.

a)

a) The Eppendorf tubes collected from the cyclone samplers in the field which were filled with medium and incubated in the dark at 20 °C. b)The SVI pots collected from the field SVI samplers and incubated with SDB medium in the laboraroty.

**Table 14:** Batches of samples collected over field trials to be incubated with the medium being tested and then tested for OA.

2011 cyclone samples were tested at day 3, 4 and 7 of incubation using the OxOx spectrophotometer assay 2011. 2012 cyclone and SVI samples were tested for OA after 4 days of incubation using the OxOx spectrophotometer assay and electrochemical assay.

| Batch | Sample Number | Date 2011     |
|-------|---------------|---------------|
| Α     | 1-23 A/B      | 11/04- 03/05  |
| В     | 24-45 A/B     | 04/05 - 25/05 |
| С     | 46-71 A/B     | 26/05- 20/06  |
| D     | 72- 79 A/B    | 21/06 -28/06  |

| Batch | Cyclone  | Sampling date | SYield virtual impactor | Sampling date 2012 |
|-------|----------|---------------|-------------------------|--------------------|
| Α     | C1-C28   | 21/03 - 17/-4 | S1-S14                  | 04/04 - 17/04      |
| В     | C29-C42  | 18/04 - 01/05 | S15-S32                 | 18/04 - 05/05      |
| С     | C43- C56 | 02/05 - 15/05 | S33-S44                 | 06/05 - 17/05      |
| D     | C57-C63  | 16/05 - 22/05 | S45-S59                 | 15/05 - 01/06      |

#### 4.2.3 Electrochemical Measurement of oxalic acid production

Electrochemical measurements were performed by Dr. Sophie Weiss. Two 40  $\mu$ l aliquots from the SVI sample pots were tested during batch testing sessions. One aliquot was used on a carbon electrode with oxalate oxidase (OxOx) and horseradish peroxidase (HRP) enzyme stabilised onto the surface of an electrode (**Figure 39**). The HRP is used to reduce hydrogen peroxide released from the breakdown of oxalic acid by OxOx. The second 40  $\mu$ l aliquot was used on a Prussian Blue (PB) electrode. PB electrodes have both the stabilised OxOx on the surface and ferric hexacyanoferrate which will catalyse the oxidation of hydrogen peroxide when the PB is in an oxidised form. Both cyclic voltammetry and chronoamperometric measurements were performed with the two electrodes. Liquid aliquots were incubated on the electrode surface for 2 mins before a measurement was taken using a potentiostat connected to the electrode with crocodile clips.



<image><image>



Figure 39: Electrochemical set up.

127

a) Crocodile clips connected to the working and reference electrodes. Liquid medium aliquots were placed onto the centre of the electrode mesh, under which the stabilised enzymes were contained. b) Crocodile clips connected to a potentiostat. c) The potentiostat was connected to a computer with the software to monitor the change in current during oxidation of the electrode.

# 4.2.4 Daily spore counts of qPCR of field trial samples See General Experimental Procedures (Chapter 2)

To determine how many spores were sampled daily into the Burkard 7 day air sampler, the wax tapes from the spore trap were cut into daily strips, 48 mm x 20 mm and then subdivided longitudinally into two subsections, each 48 mm x 10 mm. These (a working subsample and a duplicate) were each placed into 2 ml screw cap tubes and frozen at -20°C by a summer student, Leanne Freeman.

# 4.2.5 ITS identification of other fungi present in field samples

After testing the liquid for oxalic acid incidence, the fungal biomasses from both the cyclone and SVI samples were cultured on PDA plates to isolate out individual species to identify what other fungi are captured in the air samples. Steph Heard (2011) and Leanne Freeman (2012) performed the rounds of culturing and sub culturing to obtain pure cultures on PDA plates. Mycelium obtained from pure cultures was freeze dried and DNA extracted using a QIAGEN PLANT DNeasy mini plant kit. The manufacturer's protocol was followed. ITS5 F (GGA AGT AAA AGT CGT AAC AAG G) and ITS4 R (TCC TCC GCT TAT TGA TAT GC) (White et al. 1990) primers were used to amplify the ITS region using RedTaq ready mix and thermal cycling parameters described in General Experimental Procedures, Chapter 2. Sequences were sent off to MGW Operon for sequencing analysis. Returned sequences were blasted in NBCI for species identification at a Genus level.

#### 4.3 Results

# 4.3.1 Field trial results 2011

# **4.3.1.1** Apothecia development and visible signs of *S. sclerotiorum* disease in the field, 2011

This field season was extremely dry and warm. Initial apothecia development was observed in the inoculation sites on the 13 May 2011. As a result of the lack of rain throughout the field season, sclerotia inoculation sites required artificially watered to

induce apothecia development. Apothecia were kept damp for prolonged spore release by light watering throughout the sampling period. Three weeks after the field sampling, the oilseed rape surrounding the sclerotia burial sites was assessed for disease symptoms. Symptoms were observed only in plants directly near where the apothecia had developed.

# 4.3.1.2 OxOx spectrophotometer assay, 2011

In total, 200 samples were retrieved from the cyclone A and B samplers. These samples were incubated with the 1% soytone medium. These included A and B samples 1.5 ml Eppendorf tubes collected from the two cyclones. All samples were tested for OA production at 3, 4 and 7 days incubation using the OxOx spectrophotometer assay. Any measurements below 25  $\mu$ M were considered as negative oxalate events due to the insensitivity of the assay to define a concentration of OA accurately below this threshold. In total, 9 samples across both A and B samples tested positive for OA (**Figure 40a**). The biomass from these 9 samples was freeze dried and the DNA extracted. qPCR identified 5 out of the 9 OA positive sample contained *S. sclerotiorum* DNA (**Figure 41**).

### 4.3.1.3 Validation of S. sclerotiorum DNA using qPCR 2011

DNA was extracted from the daily tape sections obtained from the Burkard 7 day wax strip sampler and qPCR analysis carried to detect the presence of *S. sclerotiorum* ascospores for each day during the sampling period. These data were obtained by Gail Canning and Jon West. In total *S. sclerotiorum* DNA was detected on 52 days of the 78 day sampling period in at least one of the two Burkard samplers (**Figure 40b**). Of these 52 *S. sclerotiorum* DNA positive samples, only four of the corresponding medium incubated cyclone samples tested positive for OA (Appendix 7). The last two OA positive samples could not be verified using the spore trap qPCR because these traps did not sample during this time due to mechanical failure. The other 3 OA positive OA events measured by the spectrophotometer could have been induced by other OA producing fungi.

The wax tape samples collected on the same day as the five OA positive samples did not contain *S. sclerotiorum* DNA, although 3 of these events were verified by the qPCR of the medium incubated tube contents. It is also important to note that there was some mechanical failure of the Burkard spore traps which means there is no qPCR data for some of the days.



Figure 40: Field trial results 2011.

a) Cyclone samples incubated in 1% soytone medium which tested positive for oxalic acid positive. All samples were tested at day 3, 5 and 7 post incubation. Only 9 tested positive for OA b) Two Burkard 7 day wax strip samples (A and B) which tested positive for S. sclerotiorum DNA. 0.1 pg DNA corresponds to 1 ascospore.



# Figure 41. Field trial results 2011.

Non-quantitative combined positive events for the detection of DNA using qPCR from both Burkard 7 day air samplers and the positive OA events from the cyclone medium incubated samples. Each block represents a positive event rather than quantification. Rainfall (mm) during this period is denoted on the left scale bar (mm). Apothecia were first observed on the 10/5/2011. Mechanical failures for the Burkard traps were noted between the 8/6/2011 - 21/6/2011.

# 4.3.2. Field trial Results 20124.3.2.1 Apothecia development in the field 2012

This field season was much wetter compared with 2011, with a maximum 38 mm of rainfall being measured on a single day compared with the maximum being 12 mm on a single day in 2011. On most rainy days there was above 2mm of rain per day measured. The beginning of apothecia development in the burial sites in Geescroft was observed in one isolate (Mixed RRes) on the 18 April 2012. The 3 other isolates were later in development and were only observed on the 3 May 2012. There was no need for artificial watering due to frequent rain showers.

# 4.3.2.2 OxOx spectrophotometer assay and electrochemical detection of OA 2012

The cyclone air sampler has been described as having a lower particle capture efficiency (25%) compared with the Burkard and SVI traps with have about 80% capture efficiency. As a result the cyclone OA results were not compared to the SVI results. One hundred and twenty sample pots from the A and B SVI samplers, were collected over the field trial from the 4 April to the 6 June 2012. After 12 hrs of air being sampled into the two SVI pots (A and B), the pots were collected from the field and in the laboratory 400 µl SDB medium pipetted into to the pots. Pots were incubated for 4 day. Aliquots of liquid were tested for OA concentration using both the OxOx spectrophotometer assay and the electrochemical assay. Electrochemical measurements were made with two different electrodes, HRP and PB electrodes. Overall, there were 20 positive OA events detected by both A and B samplers for both the electrochemical detection (both type of electrode) and spectrophotometer detection of OA detection (Figure 43, Appendix 6). All 20 events were detected after the 3 May, when most of the apothecia had developed. Individually over the sampling period, the Prussian Blue electrode detected 24 OA positive events in one or both of the samplers, the Horseradish Peroxidase enzyme detected 28 positive OA events in one or both of the samplers and finally the spectrophotometer assay detected 25 positive OA events. The PB electrode gave similar OA readings compared with the HRP electrode and the spectrophotometer assay.

**Table 15**: OA positive events 2012.

The number of positive OA events detected in the SVI pots by both electrodes and the spectrophotometer methods.

| Measurement type  | SVI sampler A events                     | Positive OA                   | SVI sampler B Positive OA events         |                               |  |
|-------------------|------------------------------------------|-------------------------------|------------------------------------------|-------------------------------|--|
|                   | Pre observed<br>apothecia<br>development | Post apothecia<br>development | Pre observed<br>apothecia<br>development | Post apothecia<br>development |  |
| All 3             | 0                                        | 15                            | 0                                        | 9                             |  |
| HRP electrode     | 3                                        | 21                            | 0                                        | 12                            |  |
| PB electrode      | 6                                        | 29                            | 1                                        | 15                            |  |
| Spectrophotometer | 0                                        | 19                            | 0                                        | 12                            |  |

# 4.3.2.3 Validation of S. sclerotiorum DNA using qPCR 2012

*S. sclerotiorum* DNA was detected on 74 days (21 March - 6 June, 77 days) over the sampling period in one or both of the Burkard 7 day traps (A and B) (**Figure 44**). However the SVI sampler started sampling at a later date taking the sampling period down to 61 days. Out of these 61 days, *S. sclerotiorum* DNA was detected on 59 days in either one or both Burkard 7 day traps. The DNA results were compared to OA positive events detected using the spectrophotometer data. There were 24 positive OA positive events (41 %) which overlapped with the DNA positive events. 27 (46%) and 23 (39%) positive OA events detected with the HRP and PB electrode respectively overlapped with the presence of *S. sclerotiorum* DNA (**Appendix 7**). This means that during the sampling period roughly 96% of the OA positive events were correlated with the presence of that *S. sclerotiorum* ascospores which were in the air. There was one day when there was a positive OA event (30 April) for both the electrode assays and the spectrophotometer data which could have been a potential false positive as there was no *S. sclerotiorum* DNA detected.

#### 4.3.2.4 Disease Assessment 2012

A disease assessment was undertaken to monitor any *S. sclerotiorum* disease. In 2012, there were more visible disease symptoms in the inoculated field sites compared with the 2011 field site but nationally it was not a bad S. sclerotiorum year probably as a result of the heavy rainfall during apothecia development. This would probably prevent ascospores travelling as far and prevent any colonised petal tissue from sticking on leaf tissue to induce disease.

In 2012, two weeks after the last date of burkard spore trap sampling, disease symptoms were clearly visible in oilseed rape directly by the sclerotia burial sites as well as further away (**Figure 45**). Sclerotia could be seen developing in the stems of some infected plants (

Figure 42). Approximately 8 infections per  $m^2$  were observed directly around the burial sites. Disease incidence tailed off to 1 infection per  $m^2$  approximately 30 m away from the burial sites (Fig). Two weeks after this observation, the visible symptoms observed had doubled (data not shown).



Figure 42: Oilseed rape with *S. sclerotiorum* disease symptoms.

Visible symptoms of *S. sclerotiorum* infection on the stems of oilseed rape. Stems appear white and on some stems, sclerotia are visible.



#### Figure 43: Field trial 2012 field results.

The OA concentrations measured by spectrophotometer OxOx assay (Abs) and both HRP and PB electrode types for both SVI samplers, A (a) and B (b). Initial apothecia were observed on the 18 April, with all isolates forming apothecia by the 3 May.



#### Figure 44: Field trial result 2012.

a) The OA concentrations measured by both HRP and PB electrodes for both SVI samplers. b) The daily *S. sclerotiorum* DNA sampled by the Burkard 7 day traps, A and B. The daily rainfall was measured with a weather station.





Disease was assessed by looking *S. sclerotiorum* infection on all stems within a  $1m^2$  area along 30 m transect in a north, south, east and westwards from the sclerotia burial sites in the RRes Geescroft oilseed rape field.

# **4.3.2.5** Rooftop sampling for both field trials.

For both field trials, a Burkard 7 day sampler was placed on the roof of a 3 storey building (8 m height), approximately 1-2 km from the field testing sites. The positioning of these samplers on a rooftop allowed the assessment of how much *S. sclerotiorum* DNA could be detected at a larger distance from the site of ascospore inoculum. Overall, as expected, the roof top sampler detected a much lower amount of DNA on the roof compared with the samplers at the field sites (**Figure 46**). In 2011, the rooftop sampler shows a similar pattern of DNA detection as the field site but diluted by about 1/20th. In 2012, the rooftop sampler, detected DNA in a similar pattern and also diluted by about 1/20th, however the largest peak of DNA detect in the field, was not really detected on the rooftop. There was reduced DNA levels in 2012 in both the field and on the roof primarily because of the wet summer which probably kept the ascospores from moving as far as they would have done.



Figure 46: Rooftop S. sclerotiorum detection.

a) Comparison of the quantity of *S. sclerotiorum* DNA detected in the RRes New Zealand Fields by both A and B Burkard samplers and the DNA detected on the roof in 2011. b) Comparison of the quantity of *S. sclerotiorum* DNA detected in the RRes Geescroft fields, with both Burkard A and B and the DNA detected with the Burkard sampler on the roof in 2012. 0.1 pg DNA corresponds to 1 ascospore.

# **4.3.2.6** Isolation of other fungal species present within the field samples

During both field trials, the fungal biomass which had grown in the cyclone Eppendorfs incubated with liquid media was cultured on PDA plates to isolate other species that may be growing alongside *S. sclerotiorum*. After several rounds of subculturing, a range of pure fungal cultures containing 1 species were isolated. The DNA from the culture was extracted and a second plate of the same culture was sent to the fungal taxonomist Dr. Hanna Kwasna, Department of Forest Pathology, University of Life Sciences in Poznań, Poland for identification. The DNA from the ITS4/5 region was amplified and sent for sequencing. The identification by Dr. Kwasna and the identification of the ITS region was similar but it was difficult to define species level with the IT analysis (Table 16). Some of the fungi isolated included *Trichoderma, Epicoccum, Alternaria* which are all common genera and have all been used as biocontrol agents against other plant pathogens. The only isolated fungus capable of secreting OA was *B. cinerea. Rhizopus spp* was also identified on some plates but this was not cultured due to the ease of it contaminating other plates.

**Table 16:** The different fungal species isolated from the cyclone field samples incubated with medium.Cultures were identified by sequencing the ITS4/5 region of extracted DNA for each species and sending plates to Dr. Kwasna for identification at the University of Poland.

| Taxon                       | Lifestyle                                                                                                                      | Photograph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Taxon                                      | Lifestyle                                                | Photograph |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------|------------|
| Trichoderma<br>fasciculatum | Resides in soil and woody material.<br>Biocontrol agent of many plant soil<br>pathogens.                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Epicoccum<br>nigrum                        | Saprophytic<br>ascomycete potential<br>biocontrol agent. | 6          |
| Aureobasidium<br>pullulans  | Yeast-like fungus. Epiphtye occurring in many environments.                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Myceliophthora<br>thermophila              | Thermophilic phaeoid<br>fungus found in soils.           |            |
| Botrytis cinerea            | Ubiquitous broad spectrum necrotroph found, infects most fruits.                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Trichoderma sp                             | Potential biocontrol agent.                              | 3          |
| Sclerotinia<br>sclerotiorum | Appearance is very close to <i>B.cinerea</i> however there are no asexual spores (conidia) in <i>S. sclerotiorum</i> cultures. | in the second se | <i>Trichoderma fasciculatum</i><br>Bissett | Potential biocontrol agent.                              | -          |

# Continuation of Table

| Taxon                         | Lifestyle                                                   | Photograph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Taxon                         | Lifestyle                                                               | Photograph  |
|-------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------|-------------|
| Penicillium<br>brevicompactum | Ubiquitous ascomycete saprophyte.                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phoma<br>glomerata            | Plant pathogen.                                                         | CAND S SHIP |
| Humicola grisea               | Found in soils and plant material.                          | and the second s | Alternaria sp                 | One of the most<br>abundant plant<br>necrotrophs found in<br>the field. |             |
| Fusarium sp                   | Plant Pathogen of wheat (previous crop in field was wheat). |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Myceliophthora<br>thermophila | Thermophilic phaeoid fungus found in soils.                             |             |
| Geotrichum                    | Plant pathogen causing rot on various                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                                         |             |
| candidum                      | fruits and is used in cheese making.                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                                                                         |             |

#### **4.4 Discussion**

| 4.4.1 Summary | of | field | trials |
|---------------|----|-------|--------|
|---------------|----|-------|--------|

| 2011                                    | 2012                               |
|-----------------------------------------|------------------------------------|
| OxOx spectrophotometer assay            | OxOx spectrophotometer assay       |
|                                         | Electrochemical assay              |
| Manual sample collection                | Manual sample collection           |
| 9 positive oxalic acid events           | 20 positive oxalic acid events     |
|                                         | detected by all spectrophotometer  |
|                                         | and electrochemical assays         |
| Oxalic acid event at day 7 incubation   | Oxalic acid event day 4 incubation |
| Very dry                                | Mix of wet and dry                 |
| Late apothecia development and required | Apothecia during flowering         |
| artificial watering                     |                                    |
| No disease                              | Disease symptoms                   |

The field trial results for 2011 and 2012 show a clear progression and improvement in the choice of medium for the induction of OA secretion by *S. sclerotiorum* ascospores sampled within oilseed rape fields. In 2012, not only were the weather conditions conducive for disease progression in the oilseed rape fields, but the improved medium used to incubate the field samples demonstrated an improvement in OA detection after a significantly reduced incubation period. The rainfall data also demonstrated the importance in frequent rain showers and short drier periods for apothecia formation and maintenance as well as continued ascospore release. It is not enough just to detect the arrival of ascospores within the field, but it is essential that this information is combined with the collected climatic data so that an accurate risk of disease can be made.

#### **4.4.2 Fungal contaminants**

There were concerns that the contaminating species isolated in the 2011 field samples had outcompeted *S. sclerotiorum* ascospore growth and reduced the amount of OA positive events. There were further concerns that *B. cinerea* which is ubiquitous in most environments may generate false positive OA signals. It was considered that this could again be a problem in
the 2012 field trial. B.cinerea and competing species such as Trichoderma spp, Epicoccum spp and Alternaria spp were isolated again in the 2012 field trial samples, however it is assumed that these other fungal species did not cause significant problems as there was an increase in OA positive detection events which coincided with the development of S. sclerotiorum apothecia. If B. cinerea had caused false OA events then there would have been higher amounts of OA observed before the development of the apothecia in the field. Instead most of the positive detection events are after the majority of apothecia were developed and during a drier period after rain showers which is the perfect climatic conditions for ascospores release. These data suggests that the ascospores were not outcompeted by other fungi, as there was good correlation between the detection of S. sclerotiorum DNA (96%) and high levels of OA detected on the same days as well as the higher peaks of DNA been detected after the formation of most apothecia. It is still curious that there were low levels of S. sclerotiorum DNA being detected before the visual observation of the apothecia. This could be accounted for by the sampling of ascospores from further afield, however this was not picked up by our OA detection assay. One possibility for this result is that it is only on the sampling of larger gusts of ascospores is there capture of ascospores. A second result is that there needs to be a threshold for the DNA/ spore number before it is considered a positive DNA detection event. However previous work in the lab (Chapter 3) has revealed that as low as 10 ascospores can generate measureable levels of OA after incubation for 4 days in the medium. It is very difficult to determine the abundance of the other fungal species within the liquid samples without carrying out an optimised qPCR for each of the species isolated in the field samples. This makes it difficult to speculate the extent these other species may pose a risk to S. sclerotiorum growth. The isolation was carried out on PDA plates which is a different environment to liquid and so may have encouraged the growth of species that may have grown differently in a liquid environment. This may also have skewed the representation of which species pose a risk within the growth medium. The amount of *Trichoderma* spores, for example, being sampled into the biosensor compared to a potential disease causing gust of S. sclerotiorum ascospores would most likely be relatively low. Therefore if there is likely to be any disease caused by the S. sclerotiorum ascospores then it could be proposed that there would be many viable ascospores being sampled into the medium which would outcompete other fungi. To ensure that there are no false positive OA detection events, further work should be carried out to address the use of fungicides to inhibit *B. cinerea* growth rather than the other fungal species which could differ from field to field.

#### 4.4.3 The use of an electrochemical biosensor to detect OA

The electrochemical detection assay proved to detect the presence of OA successfully. On 22 days during the field trial, both the electrochemical and spectrophotometer tested positive for OA. All of these coinciding detection events were after the development of apothecia. The low levels of OA detection by predominately the Prussian blue electrode before apothecia formation is thought to be simply background noise. It is therefore important to determine the background level noise for each assay. Based on the 2012 field trial data, it was decided that the HRP electrodes would be selected for the 2013 field trials as most of the optimisation work was done with this type of electrode and there were more positive events detected with this electrode. From the result it was also decided to set a threshold for OA detection for the HRP electrode as well as setting a range of low, medium and high values which corresponds to different amounts of OA so that the levels of OA being detected during future field trials could be semi quantitative. It was determined in Chapter 3 that OA cannot be correlated with spore number, however it would still be useful to have some quantification of OA levels being detected in future field trials in order to adjust detection sensitivity. Further investigation is required to determine whether we can get this semi-quantitative measurement to work with the wireless signalling. The following current thresholds have been set for future OA detection upon by the electrochemist Dr. Sophie Weiss:

| Detection level of OA | Amp reading                              | OA amount from 2012 field trials                                                                                                              |
|-----------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Negative              | readings less than -1.5e-6 Amps          |                                                                                                                                               |
| Low                   | readings greater than -1.5e-6<br>Amps    | corresponds to roughly to<br>700uM oxalic acid .<br>Roughly 50% of positive<br>field trial samples ranged<br>from 550uM-750uM oxalic<br>acid) |
| Medium                | readings greater than -5.75E-<br>06 Amps | 700- 1400 μM                                                                                                                                  |
| High                  | Readings approx -1.48E-<br>05 Amps       | 1500 $\mu$ M the highest HRP value we recorded)                                                                                               |

#### 4.4.4 Positioning of sampling equipment

The field results for all sampling devices highlight that samplers a maximum of 2 m apart may not yield the same results even though there were hundreds of apothecia releasing ascospores only a couple of meters from the equipment. This was evident for the 2012 SVI pots, which had fewer OA positive events from sampler pot B than A. This was the same for 2011, for the cyclone samplers, as a Positive OA event in tube A did not necessarily mean there was a positive OA detection in tube B for the same day. This highlights the need for multiple nodes in one area. All samplers had wind veins to turn the sampling head into the wind, however there may have been one part of the inoculated ring releasing ascospores and not another part of the site.

The DNA results obtained from the Burkard 7 day sampler placed on the rooftop, highlight that DNA can still be detected at a height but at much lower levels. Unlike the Burkard 7 day traps placed in the field by the buried sclerotia, DNA for *S.sclerotiorum* was also detected in small amounts on the roof before the apothecia were observed in the field. In particular , it is thought that although air sampled on a rooftop is more diluted from local sources, it is also more well-mixed and therefore comprises spore production from many fields upwind in the local region. Therefore the rooftop sample may be a more robust indication of spore presence at a regional scale. This highlights that the rooftop sampler may be capturing air samples containing ascospores from natural inoculum sources further afield. The smaller amounts of DNA may still be detectable using the growth medium and OA detection as even just 10 spores would produce detectable amount of OA and because 0.1 pg DNA corresponds to 1 ascospore, there are still tens of spores beings detected at this height. Combining biosensors on the roof as well as in the field may give a good overview of *S. sclerotiorum* ascospore on a large scale. This requires further testing.

#### **4.4.5 Equipment failures**

A serious setback for the field trials was the incidence of mechanical failures which occurred for most of the sampling equipment at some point during sampling. Although the samplers were set up in pairs during both field trials, mechanical failures would prevent some samples being collected on a certain day. This makes it difficult to analyse the data, however this is something which cannot be rectified however having more than two of the same samplers in one site sight may be an option in the future.

#### 4.4.6 Future of SYield

Since the field trials in 2012, the SYield consortium has developed an automated infield sampling unit which is capable of measuring OA from S. sclerotiorum airborne ascospores. The unit which was predominantly built by Burkard and combines the SVI air sampling device, sealed, medium-prefilled pots and the electrochemical OA detection biosensor in one box which can be left in the field and requires no manhandling (Figure 47). The device works by sampling air in the field with the SVI sampler. Air is sampled directly into pots which are pre- filled with 400 µl SDB medium which is described in Chapter 3. After 12 hours of air being sampled into the pot, the pot is then moved along an incubation track for 4 days which is heated at 20 °C. At the end of incubation, the pot is punctured and the liquid contents drain over an electrode which has the OxOx and HRP enzymes stabilised onto the surface. The potentiostat in the unit is connected to the electrode as well as a central processing unit. Upon making a measurement, a signal is then relayed wirelessly to a mobile phone. The signal will either read negative if there was no OA detected, or have low to high readings if OA was detected. The unit can hold up to 60 pots, which will allow a daily sample to be made for 60 days which will cover the flowering stage of most oilseed rape crops. From 15 May to 17 June 2013, the automated unit was tested within S. sclerotiorum artificially inoculated oilseed rape fields at Rothamsted as well as on the rooftop. After a series of mechanical problems, the units were able to work without interference and did detect the presence of OA and send these messages directly back to the user. Hourly met data was also sent by the same mobile phone signal. The DNA data collected in Burkard 7 day samplers alongside these biosensors are still being analysed.



Figure 47: The 2013 automated SYield device.

a) The components of the SYield detection device. b) SYield exhibiting at Cereals 2014.

The biosensor was exhibited at Cereals 2013 (Figure 47), the largest Arable cereal exhibition event in Europe and was received positively by the farming community however there are many challenges that this sampling device needs to overcome before it will be a utilised as an accurate farming tool. Firstly the incidence of oxalic acid detected by the biosensor still needs to be linked to disease risk. The amount of OA detected cannot be linked to the number of spores sampled into the device. So there is no way of knowing if the OA measured is a result of a single spore or thousands of spores. This is mainly because by day 4 of incubation, the ascospores will have germinated and formed a multi cellular colony of significant biomass as was shown in Chapter 3. It has been discussed that if there are multiple positive detection events from multiple nodes and on a few days consecutively then that could be a good disease risk indicator. Although as mentioned previously the success of S. sclerotiorum disease incidence relies on optimal weather conditions which include periods of rainy showers and dry periods to allow spore release and dispersal. Another important factor is whether petals colonised with ascospores will actually fall and stick onto healthier plant tissue to allow the disease to spread to the rest of the plant. The ability to measure this factor automatically is very difficult but is an important part of the disease epidemiology due to complete disease escape if infected petals do not stick. Therefore this is a multifactor disease and an accurate disease risk model does not just rely on the detection of OA but needs to incorporate all these levels. Finally it is crucial that more field trials are carried out with this equipment to determine the correct height to locate the unit nodes as well as how many nodes are required in an area for accurate detection of ascospores. The rooftop DNA data suggests that nodes placed at considerable height with track incoming spores from a larger distance, however this will require further testing.

# Chapter 5: Predicting the secretome of *Sclerotinia sclerotiorum* to identify novel detection targets and candidate genes that play a role during infection.

#### **5.1 Introduction**

Commercially available fungal pathogen diagnostic systems are based primarily on the use of antibodies to detect pathogen specific antigens. Other systems use nucleic acid detection targets for example in qPCR based diagnostic methods. The SYield biosensor described in Chapters 3 and 4 is based on the detection of the organic acid, oxalic acid, which is secreted during early *S. sclerotiorum* ascospore germination. However oxalic acid is not completely specific to *S. sclerotiorum*. Other fungi including *B. cinerea* and some wood decaying fungi also secrete oxalic acid (Dutton and Evans 1996). *B. cinerea*, a close relative to *S. sclerotiorum*, is a ubiquitous opportunistic pathogen in the environment. Chapter 3 reported that *B. cinerea* conidia were able to produce significant levels of OA when seeded in the same liquid medium as *S. sclerotiorum*. This could potentially cause false positives within the sensor system which would reduce the effectiveness of the disease risk model.

For future development of a truly species specific *S. sclerotiorum* detection system, this Chapter and Chapter 6 reports the use of a pre-existing bioinformatics pipeline to explore the *S. sclerotiorum* genome to identify the suite of proteins which are secreted extracellularly. This set of genes is defined as a fungal secretome. This set of genes can be explored to identify those unique, putative, secreted proteins which if actually expressed extracellularly during early ascospore germination could potentially be used as novel detection targets in an adapted biosensor system.

Bioinformatics tools allow scientists to explore the genome of a pathogen to identify those sequences which have a specific gene profile and a high probability being translated into a protein which may have effector functionality. Previously published studies (Brown et al. 2012, do Amaral et al. 2012) combine several bioinformatics software to create a pipeline workflow which is able to predict fungal secretomes. Classified effector proteins including the Mg3LysM protein in *M. graminicola* and SNODPROT 1 homologues potentially required for virulence in *Fusarium graminearum* were identified in the recently published secretomes of these pathogens (Brown et al. 2012, do Amaral et al. 2012). In this study, a similar bioinformatics pipeline was used to identify the secretome of *S. sclerotiorum* and compared with the predicted secretome of *B. cinerea* to ensure that the gene targets selected in *S. sclerotiorum* were not present in *B. cinerea*. In addition the publically downloadable

proteomes of 115 other fungi and oomycetes were compared to the *S. sclerotiorum* secretome to ensure the exclusivity of the target.

Not only does this analysis permit the detection of potentially novel targets but additional aspects of *S. sclerotiorum* infection can be investigated. The mechanism of how this pathogen infects such a wide range of plant hosts has been investigated for over 40 years. Central to its pathogenicity strategy is the secretion of oxalic acid during infection (Chapter 1). Although the organic acid oxalic acid is the key player during this infection cycle, several proteins have been identified alongside this metabolite to contribute to pathogenicity. By investigating the arsenal of proteins secreted by this pathogen, a greater understanding of this process may be gained and potential effector candidates may be identified.

This chapter reports the use of a bioinformatics analysis to define and investigate the secretome of the necrotroph *S. sclerotiorum*. The same pipeline was used to look at a close relative of this pathogen, *B. cinerea*, which shares many genomic similarities although their infection strategy slightly differs. A cross species comparison was also undertaken to compare the proteomes with this plant pathogen.

#### **5.2 Experimental Procedures**

#### **5.2.1 Bioinformatics**

For the first stage of the analysis the total secretome was predicted for the two fungi, *S. sclerotiorum and B. cinerea*, by Rothamsted Research bioinformatician John Antoniw with the previously used listed software (Brown et al. 2012, do Amaral et al. 2012). The second stage of analysis was done by myself to define the refined secretome by carefully sorting and interrogating John Antoniw's predictions and then identifying the candidate genes which are unique to both species with no homology in other species. In addition, the interspecies distribution of the genes present within the entire refined secretome defined by John Antoniw in a 115 species comparison was further explored by myself.

Both the *S. sclerotiorum* (WT1980) and *B. cinerea* (B05.10) genomes used in this investigation were downloaded from the Broad Institute. *Sclerotinia sclerotiorum* and *Botrytis cinerea* Sequencing Project, Broad Institute of Harvard and MIT.

(http://www.broadinstitute.org/annotation/genome/sclerotinia\_sclerotiorum/MultiHome.html) (http://www.broadinstitute.org/annotation/genome/botrytis\_cinerea/MultiHome.html).

#### **5.2.2 Stage 1: Predicting the total secretome**

The first stage of the analysis followed the method described by *Amaral et al* (2012) (do Amaral et al. 2012) which is described here for clarity. An automated pipeline based on the original secretome prediction procedure described by Muller et al (2008) (Mueller et al. 2008) using Bash shell, awk and python scripts on a PC running Red Hat Enterprise Linux 5.2.

Initially all proteins from downloaded genomes with a Target P Loc = S (TargetP v1.1; <u>http://www.cbs.dtu.dk/cgi-bin/nph-sw\_request?targetp</u>) or a Signal P D-score = Y (SignalP v3.0; <u>http://www.cbs.dtu.dk/cgi-bin/nph-sw\_request?signalp</u>) were combined (Emanuelsson et al. 2007, Emanuelsson et al. 2000) to predict the refined secretome. These were then scanned for transmembrane (TM) spanning regions using TMHMM (TMHMM v2.0; <u>http://www.cbs.dtu.dk/cgi-bin/nph-sw\_request?tmhmm</u>) and all proteins with 0 TMs or 1 TM, if located in the predicted N-terminal signal peptide, were retained.

**GPI-anchor proteins** were predicted by big-PI (<u>http://mendel.imp.ac.at/gpi/cgi-bin/gpi\_pred\_fungi.cgi</u>) (Eisenhaber et al. 2004). ProtComp was also used to predict localisation of the remaining proteins using the LocDB and PotLocDB databases (ProtComp v8.0; <u>http://www.softberry.com</u>).

**WoLF PSORT** analysis was done using "runWolfPsortSummaryfungi" in the WoLF PSORT v0.2 package, which estimates where proteins are located after secretion with a sensitivity and specificity of approximately 70% (Horton et al. 2007).

**PFAM analysis** was done using the PFAM database

(ftp://ftp.ncbi.nih.gov/pub/mmdb/cdd/) and the rpsblast program in the NCBI blast+ software package (<u>ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/</u>). <u>http://pfam.sanger.ac.uk/</u> was also accessed for direct inspection of protein domains.

The number of cysteine residues within the mature peptide and the search for degenerative YFWxC and RXLR motifs were computed using custom python scripts. The number of internal sequence repeats was found using RADAR

(http://www.ebi.ac.uk/Tools/Radar/) (Heger and Holm 2000).

The detection of RNA transcripts for the *S. sclerotiorum* genes of interest was explored by BLASTN analysis (e-100) of the 7 designated EST libraries available from the Broad website:

(http://www.broadinstitute.org/annotation/genome/sclerotinia\_sclerotiorum/MultiDownloads.h tml).

All nucleotide and amino acid sequences were aligned in Geneious Pro5.5.6 created by Biomatters. Available from <u>http://www.geneious.com/</u>. ClustalW and MUSCLE alignments were used for the analysis.

#### **5.2.3 Stage 2: The refined secretome**

The second stage analysis generated the refined secretome for both species from which uniquely secreted proteins for both genomes could be identified. A comparison between the refined genomes was made to explore the relatedness and evolution of the two pathogens. Initially only sequences starting with a methionine were selected. Then sequences predicted with an extracellular WolF-PSORT score of 18 and above were kept in the final secretome dataset. This selection 'cut-off' point has been tested using a range of experimentally verified secreted fungal proteins from other pathogens including *F. graminearum* (Brown et al. 2012) and *M. graminicola* (do Amaral et al. 2012). Any mature proteins shorter than 20 amino acids were removed and sequences with 1TM were excluded from the refined set. A comparison between those sequences containing a PFAM domain were analysed and the protein family for each domain identified using <u>http://pfam.sanger.ac.uk</u>.

#### 5.2.4 Genes coding for proteins with a known function

Those genes identified in the refined secretome with a PFAM domain were inspected for gene function and grouped into the four CAZY classes; glycoside hydrolases, glycosyl transferases, polysaccharide lyases and carbohydrate esterases listed on the Carbohydrate-Active EnZymes database (CAZy) (http://www.cazy.org/) (Cantarel et al. 2009). Enzyme identification was carried out using the Kegg database (<u>http://www.kegg.jp/</u>) and Brenda (http://www.brenda-enzymes.info/).

#### 5.2.5 S. sclerotiorum genome map

A genome map for *S. sclerotiorum* was generated by John Antoniw using the free software, OmniMapFree (<u>http://www.omnimapfree.org</u>) (Antoniw et al. 2011). This allowed easy mapping of different gene groups to inspect visually the distribution of genes across the chromosomes. This was not done for *B. cinerea* due to time constraints.

#### **5.2.6 Blast2Go analysis**

The refined secretome protein set was analysed using Blast2Go to explore whether any very recent extra gene annotation existed (<u>http://www.blast2go.com/b2glaunch</u>)(Conesa et al. 2005). From this tool, the InterPro website was accessed to further explore the IPO entries discovered (<u>http://www.ebi.ac.uk/interpro/</u>) (Hunter et al. 2012, Quevillon et al. 2005).

#### 5.2.7 EST support

Seven *S. sclerotiorum* EST libraries were downloaded from the Broad Institute online database to explore whether there was also expression data to support the gene models of interest (**Table 17**). The gene models were derived from the following biological materials and culture conditions:

| Library name | Material used to make library        | cDNA library source         | Library size |
|--------------|--------------------------------------|-----------------------------|--------------|
| G781         | Developing sclerotia                 |                             | 11.6 MB      |
| G786         | Growing mycelia tissue at neutral pH | Jeffrey Rollins, University | 12.9 MB      |
| G787         | Developing apothecia                 | of Florida                  | 14.8 MB      |
|              |                                      |                             |              |
| G865         | Infected Brassica leaf               | Dave Edwards , Adrienne     | 1.0 MB       |
| G866         | Infection cushion/ appressoria       | Sexton and Barbara Howlett  | 306.5 KB     |
|              |                                      | (University of Melbourne in |              |
|              |                                      | Australia)                  |              |
| G2118        | Sclerotinia tomato leaf infection    | (http://www.broadinstitute. | 3.2 MB       |
| G2128        | Sclerotinia oxidative stress         | org/annotation/genome/scle  | 3.3 MB       |
|              |                                      | rotinia_sclerotiorum/Multi  |              |
|              |                                      | Downloads.html)             |              |
|              |                                      |                             |              |

Table 17: Seven EST Libraries downloaded from the Broad

#### 5.2.8 Multispecies Comparison

A multispecies cross comparison was done between the refined secretome of *S.sclerotiorum* and the genomes of 115 proteomes from other fungal, oomycete, plant pathogenic nematode and plant infecting aphid species. The species were chosen based on the diverse range of lifestyles and host ranges. Genomes were downloaded (November 2012) from

the Broad, JGI and other websites which are used primarily by the research community for the species in question (Appendix 5). Conservation, absence or expansion of the homologous genes from the total secretome for *S. sclerotiorum* and *B. cinerea* were found in the other species using BLASTP analysis. The levels of confidence used were  $p < e^{-5}$  or  $p < e^{-100}$ . The multispecies cross comparison allowed the identification of unique proteins in both species that were not found in any other species. These genes were then inspected for a cysteine number greater than 5, a Wolf P-SORT score of 18 or greater and no PFAM or other annotation.

#### **5.3 Results**

#### 5.3.1 The predicted secretomes of S. sclerotiorum and B. cinerea

The first stage of the analysis combined SignalP and TargetP softwares to predict first the total unrefined secretome for both pathogens (**Figure 48a, Figure 49a**). All the possible secreted proteins with signal peptides were included in stage 1 of the secretome analysis (1,430 *S. sclerotiorum* seqs (9.8% of total genome), 1,640 *B. cinerea* seqs (9.9% of total genome sequences). Within this set, 75 of the *S. sclerotiorum* and 82 *B. cinerea* proteins were predicted to contain GPI anchors. The remaining mature proteins which contained one or more transmembrane domains (TM) were removed. Only proteins with a TM in the signal peptide sequence or just beyond it were kept for further analysis. A ProtComp analysis screened those proteins which are predicted not to be located in the extracellular space, these sequences were removed. This predicted a total secretome size of 1,060 proteins for *S. sclerotiorum* (7.3% of total genome) and a total secretome size of 1,262 proteins for *B. cinerea* (7.7% of total genome). The sequences containing GPI anchors are included in these figures.

The second stage of the analysis identified the 'refined secretome' for both species which were selected using more rigorous prediction tools (**Figure 48b, Figure 49b**). These sets included only those sequences which started with a methionine. All *S. sclerotiorum* 1,060 sequences were retained whereas 3 sequences were removed from the *B. cinerea* sequence set (BC1G\_16273, BC1G\_16321, BC1G\_16430). WolF-PSORT software was then used to predict the eventual location of this subset of proteins. This stringent search selects only those proteins with a score of 'extr 18' or greater which are predicted to be truly secreted extracellularly. This identified 472 sequences and 565 sequences had a predicted value of 'extr 18' or greater for *S. sclerotiorum* and *B. cinerea*, respectively. Any mature proteins shorter

than 20 amino acids with a WolF-PSORT score 18 or greater were removed from the set (BC1G\_15835 and SS1G\_08160). The remaining sequences with TM=0 were included in the final sequence set (432 *S. sclerotiorum* seqs, 499 *B. cinerea* seqs). These final sets of sequences were defined as the refined secretomes. Out of 14 522 proteins predicted within the *S. sclerotiorum* genome, 3% of the proteome is predicted to be truly secreted. The *B. cinerea* refined secretome comprises 3.03% of the entire predicted proteome.

The original secretome pipeline was carried out a few months in advance of the full multispecies secretome analysis. For completeness, the set of refined secretome *S. sclerotiorum* genes was analysed using Blast2Go to retrieve updated annotations for the *S. sclerotiorum* predicted proteins (e<-<sup>5</sup>). The Blast2Go search analysis revealed 310 protein sequences (72%) that have some form of annotation, including an InterPro (IPO) entry, Gene3D, SUPERFAMILY or PFAM entry. 122 sequences had no recognised InterPro entry (no IPS) or PFAM domain. The 122 sequences will be classified as the unannotated refined secretome. As a comparison, the *B. cinerea* refined secretome contains secretome 328 sequences with some form of functional annotation, i.e. PFAM, CDD domain. The other remaining 171 proteins had no functional annotation assigned. These unannotated sequences are predicted to be hypothetically secreted proteins that have not previously been analysed for gene function.

### 5.3.2 Distribution of the genes coding for the refined secretome across the *S. sclerotiorum* genome

The *S. sclerotiorum* genome contains 16 linkage groups which correspond to an estimated 16 chromosomes (<u>Amselem et al. 2011</u>). Also available for bioinformatics analysis is an estimated 17th 'waste bin' chromosome containing the concatenated unmapped sequences. The distribution of the refined secretome genes, unannotated genes, gene families and all other S. sclerotiorum gene groups investigated during this analysis, were mapped across the 16 chromosomes and 17th pseudochromosome using the OmniMapFree software (Table 18, Figure 50). The refined secretome showed no obvious spatial pattern of distribution. The genes appear to be evenly spaced across all chromosomes. There was a single gene found within the unmapped 'wastebin' chromosome, SS1G\_14515, a unique hypothetical protein consisting of 494 nucleotide base pairs with no functional annotation. Most chromosomes have a very similar refined secretome gene density in the range 10.66 to13.76 secreted genes per MB (Table 18). The overall density on chromosome 8 and 9 appeared to be slightly lower than on the other chromosomes, while chromosome 12 had the lowest observed density.



Figure 48: S. sclerotiorum secretome pipeline.

The bioinformatics pipeline used to predict the total secretome (A) and the refined secretome (B) of S. sclerotiorum.





The bioinformatics pipeline used to predict the total secretome (A) and the refined secretome (B) of *B.cinerea*.

There is a larger number of *S. sclerotiorum* unique genes coding for secreted proteins on chromosome 2 however there is no clustering of these four genes as they are evenly distributed across the chromosome

The refined secretome gene distribution pattern was inspected more closely to identify small gene clusters where two or more sequences were located directly next to each other or within a three gene proximity. In the Basidiomycete maize infecting pathogen *Ustilago maydis* and in the Ascomycete cereal infecting pathogen *Fusarium graminearum* small gene clusters coding for secreted proteins have previously been reported (Mueller et al. 2008, Brown et al. 2012). When entire clusters were deleted in *U. maydis*, virulence was affected in five cases indicating the importance of identifying small secreted proteins to understand fungal pathogenesis (Mueller et al. 2008). In total, 31 small gene clusters were identified across the genome map (**Figure 5, Table 19**). Most of these predicted proteins were also of a considerable size > 200 amino acids. Interestingly, five clusters were located in close proximity to the ends of the chromosomes (clusters 003, 025, 028, 030 and 031) and a further two were located in the sub-telomeric regions (008 and 015).

The nucleotide sequences making up these 31 clusters were aligned to determine whether the genes were related or duplicated. Nucleotide sequences were aligned using ClustalW alignments in Geneious. None of the nucleotide alignments shared more than 45% identity indicating that the clusters did not consist of duplicated genes. Common PFAM domains were found in two gene clusters. SS1G\_12499 and SS1G\_12500 in cluster 017 both contain a serine carboxypeptidase domain (PF00450) which indicates these proteins are involved in cleaving peptide bonds. SS1G 00891 and SS1G 00892 both have endoglucanase annotation. Both proteins are part of glycoside hydrolase families and contain the same carbohydrate binding module (PF00734). Both have EST support in the tomato infection library suggesting they may be co-ordinately regulated under these infection conditions. Six other gene clusters had EST support in the same libraries suggesting that under the same environmental conditions and / or during a specific physiological process, gene expression is upregulated simultaneously for all these genes. The predicted genes SS1G\_01426 and SS1G\_01428 in gene cluster 002 had very strong EST support in the developing apothecia library (G787) associating these proteins with this reproductive process. No S. sclerotiorum unique secreted proteins were found in the 31 clusters.

| Chromosome | Size (nt) |           | Proteins |          | Secreted | Anno  | otation | of secreted    |
|------------|-----------|-----------|----------|----------|----------|-------|---------|----------------|
|            |           |           |          |          | proteins | prote | eins    |                |
|            |           | Predicted | Gene     | Secreted | per Mb   | Yes   | No      | Unique to      |
|            |           | genes     | density  | proteins |          |       |         | S.sclerotiorum |
|            |           |           | per      |          |          |       |         |                |
|            |           |           | MB       |          |          |       |         |                |
| 1          | 3964102   | 1479      | 373.1    | 44       | 11.10    | 27    | 17      | 1              |
| 2          | 3702977   | 1365      | 368.6    | 42       | 11.34    | 30    | 12      | 4              |
| 3          | 3347368   | 1278      | 381.8    | 40       | 11.95    | 33    | 7       | 0              |
| 4          | 2886255   | 1077      | 373.1    | 32       | 11.09    | 20    | 10      | 0              |
| 5          | 2826797   | 1040      | 367.9    | 30       | 10.61    | 23    | 7       | 0              |
| 6          | 2472283   | 908       | 367.3    | 25       | 10.11    | 17    | 10      | 1              |
| 7          | 2321737   | 876       | 377.3    | 27       | 11.63    | 20    | 7       | 0              |
| 8          | 2121402   | 800       | 377.1    | 20       | 9.43*    | 15    | 5       | 1              |
| 9          | 2098208   | 780       | 371.7    | 20       | 9.53*    | 15    | 5       | 1              |
| 10         | 2058163   | 773       | 375.6    | 24       | 11.66    | 17    | 6       | 0              |
| 11         | 1876643   | 696       | 370.9    | 20       | 10.66    | 14    | 6       | 1              |
| 12         | 1840947   | 684       | 371.5    | 14       | 7.60*    | 8     | 6       | 0              |
| 13         | 1812400   | 668       | 368.6    | 22       | 12.14    | 14    | 8       | 1              |
| 14         | 1774723   | 649       | 365.7    | 24       | 13.52    | 14    | 6       | 0              |
| 15         | 1431160   | 549       | 383.6    | 14       | 9.78     | 15    | 4       | 0              |
| 16         | 2398866   | 892       | 371.8    | 33       | 13.76    | 28    | 5       | 0              |
| 17**       | 54754     | 8         | 146.1    | 1        | 18.26*   | 0     | 1       | 1              |
| Total      | 38988785  | 14522     | 373.1    | 432      |          | 310   | 122     | 11             |

Table 18: Distribution of secreted proteins across the 16 chromosomes of S. sclerotiorum.

\* Denotes those chromosomes which have above or below average number of secreted proteins per Mb.

\*\* 17 chromosome is a pseudochromosome



**Figure 50**: The *S. sclerotiorum* refined secretome distribution across the 16 mapped chromosomes. Numbers correspond to the 31 gene clusters investigated for duplications and relatedness.

| Cluster | Genes      | Description from<br>Blast2Go                  | Cluste<br>r | Genes      | Description from Blast2Go                        | Cluster | Genes      | Description from<br>Blast2Go                                    |
|---------|------------|-----------------------------------------------|-------------|------------|--------------------------------------------------|---------|------------|-----------------------------------------------------------------|
| 1       | SS1G_09841 | PP                                            | 11          | SS1G_00772 | HP similar to LysM domain-<br>containing protein | 22      | SS1G_07656 | GHF 61 protein                                                  |
| 1       | SS1G_09844 | PP                                            | 11          | SS1G_00773 | ankyrin repeat domain-<br>containing protein 44  | 23      | SS1G_07836 | acidic protease                                                 |
| 2       | SS1G_01426 | PP                                            | 12          | SS1G_00891 | endoglucanase III                                | 23      | SS1G_07837 | PP                                                              |
| 2       | SS1G_01428 | pan domain protein                            | 12          | SS1G_00892 | exoglucanase-6A                                  | 24      | SS1G_08889 | glutaminase                                                     |
| 3       | SS1G_01081 | catalase                                      | 13          | SS1G_01003 | PP                                               | 24      | SS1G_08892 | PP                                                              |
| 3       | SS1G_01083 | GHF 31 protein                                | 13          | SS1G_01005 | alpha-glucosidase precursor                      | 24      | SS1G_08894 | alpha beta-hydrolase                                            |
| 3       | SS1G_01086 | PP                                            | 14          | SS1G_02345 | PP                                               | 25      | SS1G_09129 | 6-phospho-beta-<br>galactosidase                                |
| 4       | SS1G_13035 | PP                                            | 14          | SS1G_02347 | alphaglucanase mutanase                          | 25      | SS1G_09130 | CHP                                                             |
| 4       | SS1G_13036 | multicopper oxidase                           | 15          | SS1G_12057 | polygalacturonase 1 precursor                    | 26      | SS1G_09248 | hydrophobin                                                     |
| 5       | SS1G_04662 | alpha-galactosidase A precursor               | 15          | SS1G_12059 | HP similar to endoglucanase<br>B                 | 26      | SS1G_09250 | iron-sulfur cluster-<br>binding rieske family<br>domain protein |
| 5       | SS1G_04664 | cell surface spherulin<br>4-like protein      | 16          | SS1G_12262 | allergen Asp f 4 precursor                       | 26      | SS1G_09251 | HP similar to endoglucanase II                                  |
| 6       | SS1G_04786 | CHP                                           | 16          | SS1G_12263 | carboxypeptidase                                 | 27      | SS1G_09363 | -                                                               |
| 6       | SS1G_04790 | acid phosphatase                              | 17          | SS1G_12499 | Serine carboxypeptidase                          | 27      | SS1G_09365 | glucan 1,3-beta-<br>glucosidase precursor                       |
| 7       | SS1G_12721 | PP                                            | 17          | SS1G_12500 | carboxypeptidase                                 | 27      | SS1G_09366 | beta-glucosidase                                                |
| 7       | SS1G_12724 | CHP                                           | 18          | SS1G_07183 | PP                                               | 28      | SS1G_13385 | actin patch protein 1                                           |
| 8       | SS1G_12930 | glucan 1,3-beta-<br>glucosidase precursor     | 18          | SS1G_07184 | GHF 32 protein                                   | 28      | SS1G_13386 | cutinase                                                        |
| 8       | SS1G_12937 | glycosyl hydrolase                            | 19          | SS1G_05449 | carboxypeptidase cpdS                            | 29      | SS1G_10165 | CE family 8 protein                                             |
| 8       | SS1G_12938 | extracellular proline-<br>serine rich protein | 19          | SS1G_05454 | chitotriosidase-1                                | 29      | SS1G_10167 | polygalacturonase 1                                             |
| 9       | SS1G_00501 | endoglucanase A                               | 20          | SS1G_05493 | tannase and feruloyl esterase family protein     | 30      | SS1G_03610 | CHP                                                             |
| 9       | SS1G_00505 | СНР                                           | 20          | SS1G_05494 | wsc domain-containing protein                    | 30      | SS1G_03611 | CFEM domain protein                                             |
| 10      | SS1G_00513 | PP                                            | 21          | SS1G_08644 | lipase 5 precursor                               | 31      | SS1G_11700 | chitinase 1 precursor                                           |
| 10      | SS1G_00514 | GHF 26 protein                                | 21          | SS1G_08645 | fad binding domain-<br>containing protein        | 31      | SS1G_11703 | GPI transamidase                                                |
| 11      | SS1G_00768 | PP                                            | 22          | SS1G_07655 | subtilisin-like protein                          | 31      | SS1G_11706 | CHP                                                             |

**Table 19**: Description of the 31 gene clusters distribution across the *S.sclerotiorum* refined secretome.

\*CHP: Conserved hypothetical protein, PP: Predicted Protein, GHF glycoside hydrolase family CE carbohydrate esterase

### 5.3.3 Identifications of RxLR-dEER motifs and Y/F/WxC motifs in the S. sclerotiorum refined secretome.

The *S. sclerotiorum* refined secretome was inspected for protein sequences containing RxLR dEER motifs. It has been demonstrated that the presence of this signature motif enables proteins in oomycete pathogens to cross the host plant plasma cell membrane autonomously and then to supress host defence once inside the host cell (Tyler 2009). In total 21 protein sequences from the refined secretome were found to contain RxLR motifs. The positioning of the motifs was then examined for proximity to the N-terminal of the signal peptide. Four sequences containing a RxLR motif within 55 base pairs of the N-terminal of the signal peptide warranted further inspection. These were SS1G\_00624 a predicted aspartate protease, SS1G\_03160, a predicted triglyceride lipase, SS1G\_03653; no IPS entry and SS1G\_14321 a predicted dioxygenase (**Tabe 20**). When these four sequences were inspected for the presence of dEER motifs downstream of RXLR domain, no direct motif matches were identified. None of these genes were found in the clusters across the genome map.

Powdery mildew and rust fungi have been shown to secrete effector proteins which contain a Y/F/WxC motif which enables the protein to be transported across the plant cell-derived extrahaustorial membrane where they then suppress plant cell defence (Godfrey et al. 2010). Eight protein sequences from the refined secretome were found to contain Y/F/WxC motifs within 16 base pairs of the N-terminal of the signal peptide (**Table 21**). These mature proteins all vary in length, ranging from 232 to 1020 amino acids. Each sequence contains 6 or more cysteines. Six of the sequences were annotated. The 2 unannotated proteins (SS1G 02025 and SS1G\_03268) are discussed in more detail below. The 6 annotated proteins consist of different enzymes including, glycoside hydrolases which are involved in plant polysaccharide degradation (GH45), an aspartate protease which cleave bonds in peptides and a histidine acid phosphatase which has a conserved catalytic core centring on a histidine that becomes phosphorylated during the course of reaction (Rigden 2008). Of these SS1G\_04662, an alpha-galactosidase, was found in gene cluster 005 (**Table 19**).When mapped across the genome, there were no genes coding for proteins containing either a RxLR or Y/F/WxC motifs found on chromosomes 11, 12, 13 and 14.

| No. | Gene ID     | position | motif | PFAM          | Function                         |
|-----|-------------|----------|-------|---------------|----------------------------------|
| 1   | SS1G_00624* | 53       | RRLR  | 26            | Aspartate protease               |
| 2   | SS1G_01811  | 397      | RNLR  | 732, 5199     | glucose-methanol-choline         |
|     |             |          |       |               | oxidoreductase family;           |
| 3   | SS1G_02399  | 147      | RLLR  | 295           | GHF 28                           |
| 4   | SS1G_02553  | 135      | RGLR  | 295           | GHF 28                           |
| 5   | SS1G_03160* | 82       | RRLR  | 1764          | Triglyceride lipase              |
| 6   | SS1G_03420  | 278      | RSLR  | -             | -                                |
| 7   | SS1G_03653  | 36       | RMLR  | -             | -                                |
| 8   | SS1G_04725  | 536      | RNLR  | 264           | Tyrosinase                       |
| 9   | SS1G_04934  | 159      | RVLR  | -             | -                                |
| 10  | SS1G_05368  | 793      | RDLR  | 00933, 1915   | GHF 3                            |
| 11  | SS1G_05784  | 501      | RGLR  | 3659          | GHF 71                           |
| 12  | SS1G_06235* | 202      | RMLR  | 295           | GHF 28                           |
| 13  | SS1G_07847  | 685      | RQLR  | 00734, 00933, | carbohydrate-binding module, GHF |
|     |             |          |       | 1915          | 3                                |
| 14  | SS1G_08229  | 150      | RILR  | 295           | GHF 28                           |
| 15  | SS1G_09366  | 179      | RELR  | 00933,        | GHF 3                            |
| 16  | SS1G_12499  | 562      | RELR  | 450           | Serine carboxypeptidase          |
| 17  | SS1G_12724  | 355      | RYLR  | -             | -                                |
| 18  | SS1G_14321* | 75       | RSLR  | 775           | Dioxygenase                      |

Table 20: S. sclerotiorum secretome proteins which contain an RXLR motif.

\*Gene amino sequences inspected for dEER downstream of RXLR domain, however no direct motif matches were identified.

 Table 21: S. sclerotiorum secretome protein sequences which encode Y/F/WxC motif

 containing proteins.

|   |            | Signal<br>Length | position | motif<br>after<br>signal | Y/F/Wx<br>C | PFAM         | Function                        |
|---|------------|------------------|----------|--------------------------|-------------|--------------|---------------------------------|
| 1 | SS1G_01828 | 21               | 33       | 12                       | WDC         | 00734, 02015 | GHF 45 protein                  |
| 2 | SS1G_02025 | 20               | 35       | 15                       | FSC         | -            | candidate effector 5 protein    |
| 3 | SS1G_03268 | 21               | 30       | 9                        | FSC         | -            | adhesin protein mad1            |
| 4 | SS1G_03941 | 20               | 28       | 8                        | YAC         | 00026        | eukaryotic aspartyl protease    |
| 5 | SS1G_04662 | 25               | 40       | 15                       | FMC         | 00652, 02065 | alpha-galactosidase A precursor |
| 6 | SS1G_09959 | 18               | 34       | 16                       | YYC         | 00328        | histidine acid<br>phosphatase   |
| 7 | SS1G_12263 | 21               | 29       | 8                        | WYC         | 10287, 10290 | protein tos1 precursor          |
| 8 | SS1G_13860 | 20               | 32       | 12                       | WDC         | 02015        | GHF 45 protein                  |

#### 5.3.4 EST support analysis for the secretome

The seven EST libraries downloaded from the Broad *S. sclerotiorum* database (**Table 17**) were inspected to identify those genes in the refined secretome which had EST support (in file S1, Tab 6). Out of the 432 genes in the refined secretome, 58 genes (13%) had at least one in hit in G781 library, 66 genes had hits in G786 library, 95 genes in G787, 20 genes in G865, 21 genes in G866, 146 genes in G2118 and 118 genes in G2128. SS1G\_03361 was the only gene with EST support identified in all 7 libraries and codes for, a conserved hypothetical protein which contains the PF05577 domain corresponding to a serine carboxypeptidase S28. Carboxypeptidases have diverse functions which range from protein maturation to metabolism. Therefore expression of this during many physiological processes might be anticipated (Skidgel and Erdos 1998). Collectively, this EST analysis revealed that 246 genes present in the refined secretome (57%) had EST support.

Protein sequences with hits above 40 in any of the EST libraries were investigated further to determine which genes were the most expressed proteins under the seven different conditions explored. Twenty eight genes were identified with 40 or more hits in at least one EST library (**Table 22**). For comparison, sspg1 (SS1G\_10167) a documented secreted virulence protein with polygalacturonase activity (Dallal Bashi et al. 2012) had a count of 76 EST hits in the Tomato infection library (G2118). Fifteen of the predicted protein sequences have PFAM annotation. SS1G\_00730, a protein with a glucose-methanol-choline oxidoreductase domain had EST support only in library G2128 highlighting its potential role in oxidative stress. SS1G\_03326, had 97 EST hits in the sclerotia development library (G781). This protein is part of the CAP protein family (cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 protein). This protein family has been shown to have many roles in regulation of extracellular matrix, branching morphogenesis and cell wall loosening, potentially as either proteases or protease inhibitors which have possible antifungal activity (Niderman et al. 1995). All of these described physiological processes would occur during sclerotia formation.

SS1G\_03611, only had EST support in the plant infection libraries G865, G2118 and the Infection cushion library G866. This gene was found in gene cluster 030. This predicted protein has a CFEM domain which is a specific cysteine rich domain found in some proteins with proposed roles in fungal pathogenesis or conserved fungal effector domain (Kulkarni et

al. 2003). SS1G\_03611is predicted to encode a mature protein of 101 amino acids in length with 7.93% cysteine residue content.

|    | Broad Gene<br>ID | G781 | G786 | G787 | G865 | G866 | G211<br>8 | G212<br>8 | Gene description                  |
|----|------------------|------|------|------|------|------|-----------|-----------|-----------------------------------|
| 1  | SS1G_00263*      | 0    | 1    | 0    | 2    | 0    | 61        | 3         | PP                                |
| 2  | SS1G_00730       | 0    | 0    | 0    | 0    | 0    | 0         | 55        | choline dehydrogenase             |
| 3  | SS1G_01426*      | 3    | 0    | 113  | 0    | 0    | 0         | 0         | PP                                |
| 4  | SS1G_01428       | 0    | 0    | 90   | 0    | 0    | 0         | 0         | pan domain containing protein     |
| 5  | SS1G_02250*      | 17   | 2    | 0    | 0    | 1    | 39        | 49        | PP                                |
| 6  | SS1G_02345*      | 0    | 0    | 54   | 0    | 0    | 0         | 0         | PP                                |
| 7  | SS1G_03181       | 5    | 0    | 4    | 8    | 8    | 87        | 18        | aspartic endopeptidase pep1       |
| 8  | SS1G_03326       | 97   | 2    | 9    | 0    | 0    | 4         | 3         | YFW12 protein                     |
| 9  | SS1G_04196       | 40   | 0    | 0    | 0    | 0    | 0         | 0         | laccase-1 precursor               |
| 10 | SS1G_04725       | 0    | 0    | 46   | 0    | 0    | 0         | 0         | tyrosinase 2                      |
| 11 | SS1G_04857*      | 45   | 2    | 4    | 0    | 0    | 0         | 53        | PP                                |
| 12 | SS1G_05337       | 8    | 66   | 6    | 0    | 0    | 2         | 10        | malate dehydrogenase              |
| 13 | SS1G_05794       | 0    | 0    | 3    | 0    | 0    | 0         | 42        | beta-propeller-like<br>protein    |
| 14 | SS1G_05917*      | 186  | 0    | 0    | 0    | 0    | 0         | 4         | PP                                |
| 15 | SS1G_06412*      | 0    | 0    | 96   | 0    | 0    | 0         | 0         | PP                                |
| 16 | SS1G_07554       | 43   | 0    | 0    | 2    | 0    | 14        | 2         | subtilisin-like protein           |
| 17 | SS1G_07655       | 60   | 0    | 4    | 0    | 15   | 18        | 0         | tripeptidyl-peptidase 1           |
| 18 | SS1G_07836       | 0    | 0    | 0    | 0    | 0    | 83        | 8         | acidic protease 1                 |
| 19 | SS1G_08110*      | 2    | 4    | 0    | 7    | 0    | 404       | 6         | PP                                |
| 20 | SS1G_09232*      | 0    | 2    | 1    | 4    | 0    | 44        | 24        | PP                                |
| 21 | SS1G_10167       | 0    | 0    | 0    | 3    | 1    | 76        | 4         | polygalacturonase 2               |
| 22 | SS1G_11239       | 60   | 0    | 0    | 0    | 0    | 2         | 0         | WSC domain-<br>containing protein |
| 23 | SS1G_11468       | 0    | 2    | 0    | 0    | 174  | 0         | 4         | protein similar to ASG1           |
| 24 | SS1G_12262*      | 13   | 13   | 49   | 0    | 3    | 10        | 17        | PP                                |
| 25 | SS1G_12361*      | 2    | 4    | 0    | 7    | 0    | 405       | 6         | PP                                |
| 26 | SS1G_12500       | 13   | 5    | 55   | 4    | 0    | 12        | 18        | carboxypeptidase<br>KEX1          |
| 27 | SS1G_13599*      | 675  | 2    | 0    | 2    | 2    | 5         | 20        | PP                                |
| 28 | SS1G_14133       | 10   | 13   | 1    | 0    | 9    | 25        | 60        | FG-GAP repeat protein             |

**Table 22:** 28 secretome genes with 40 or more EST counts in at least one EST library.

(PP: Predicted protein).

\*Those proteins sequences with no protein domains or other annotation

#### 5.3.5 EST support for unannotated sequences

Across the secretome, those proteins with hits above 40 counts in any of the EST libraries were investigated to determine whether any hypothetical proteins with no current annotation can be assigned further information regarding their role during secretion. Twelve sequences with 40 or more hits in an EST library were found to have no PFAM domains or IPS entry (**Table 22**). Of these 12, SS1G\_00263, SS1G\_08110, SS1G\_09232, SS1G\_12361 had very high EST counts in the tomato infection library (G2118) suggesting their increased activity during infection of some but not all host species and /or a specific phase of infection. By contrast, the genes SS1G\_01426, SS1G\_02345, SS1G\_06412 and SS1G\_12262 had no EST support in the plant infection libraries but are were present in high abundance in the apothecia development library (G787). SS1G\_06412 is of specific interest as this gene is unique to *S. sclerotiorum* and only had EST support in in the apothecia development library (G787). Possibly the function of this protein is specific to *S. sclerotiorum* apothecia development. SS1G\_13599 had 675 EST hits in the developing sclerotia library G781. This extremely high hit count is highly suggestive of a role in this process.

#### **5.3.6 Further analysis of unannotated sequences**

No recognised PFAM domains or IPS entries were identified in 122 and 171 sequences in *S. sclerotiorum* and *B. cinerea* refined secretomes respectively. The unannotated *S. sclerotiorum* sequences were mapped across the genome. No obvious distribution patterns were observed (**Appendix 3**).

Further inspection of *S. sclerotiorum* unannotated sequences found only one sequence, SS1G\_03653, with a RxLR motif close to the signal peptide sequence, however this protein currently has no EST support (**Table 20Table 20**). As previously noted, 2 unannotated sequences contain a Y/F/WxC motifs; SS1G 02025 and SS1G\_03268 (**Table 21**). SS1G \_02025 may be of interest as it is 232 amino acids in length, so it is a relatively small protein and although it has no PFAM domain, IPS entry or EST support, it shares homology with candidate effector proteins in other fungal pathogens including the apple scab fungus *Venturia inaequalis* (E=1.88897E-44) and the grapevine dieback pathogen *Eutypa lata* (E= 3.03625E-75) (Bowen et al. 2009). SS1G\_03268, has some homology with adhesin protein MAD1 found in other fungi such as *B. cinerea* (E=1.68152E-119). Adhesin proteins have been shown to contribute to fungi adhere to insect and plant surfaces (Wang and St. Leger

2007). This predicted S. sclerotiorum protein had 12 EST hits in the G781 developing sclerotia library suggesting its role in adhesion which is plausible as sclerotia do stick to necrotic plant material. Both sets of unannotated sequences were inspected for small (smaller than 200 amino acids), cysteine rich proteins (5% or greater), a sequence profile that has previously been used to predict candidate effector genes (Bolton et al. 2008b, do Amaral et al. 2012). Effectors previously discovered which fit this sequences profile include CfECP6, an effector which binds chitin during C. fulvum plant infection and prevents PAMP triggered recognition by the plant chitin receptors (Bolton et al. 2008b). Three putative homologues were found in the wheat infecting fungus Mycosphaerella graminicola (Marshall et al. 2011). In the S. sclerotiorum refined secretome, 38 genes were found with a 5% or more cysteine content in the mature amino acid sequence. Out of this group, 22 are less than 200 amino acids in length and have 6 or more cysteine residues in the mature protein (Table 23). None of these small cysteine rich proteins were found to contain either an RxLR or Y/F/WxC motif. Eighteen of these proteins have no annotation. When all 22 S.sclerotiorum cysteine rich proteins were mapped to the genome, no genes were present on chromosomes 10, 11, 12, 13 and 15 (Appendix 3) a similar distribution pattern to that of the RxLR and Y/F/WxC motif containing The genes coding for the cysteine rich proteins SS1G\_01003, SS1G\_02345, proteins. SS1G\_03611 and SS1G\_09248 were found in gene clusters 013, 014, 030 and 026, respectively. For comparison the predicted *B. cinerea* refined secretome contains 26 protein sequences rich in cysteine residue content (>5%) that are smaller than 200 amino acids.

|    | Broad ID   | Length | No.<br>Cysteine | %C        | WoLFP-<br>SORT | PFAM/<br>IPRO | Function                              |
|----|------------|--------|-----------------|-----------|----------------|---------------|---------------------------------------|
| 1  | SS1G_00534 | 91     | 8               | 8.79      | extr=20        | -             | predicted protein                     |
| 2  | SS1G_01003 | 89     | 8               | 8.99      | extr=25        | IPR010<br>636 | predicted protein                     |
| 3  | SS1G_01226 | 144    | 10              | 6.94      | extr=27        | -             | predicted protein                     |
| 4  | SS1G_01867 | 102    | 6               | 5.88      | extr=23        | -             | predicted protein                     |
| 5  | SS1G_02068 | 146    | 8               | 5.48      | extr=26        | -             | predicted protein                     |
| 6  | SS1G_02345 | 124    | 7               | 5.65      | extr=27        | -             | hypothetical protein                  |
| 7  | SS1G_02800 | 57     | 6               | 10.5<br>3 | extr=20        | -             | predicted protein                     |
| 8  | SS1G_03611 | 101    | 8               | 7.92      | extr=21        | PFAM<br>05730 | predicted protein                     |
| 9  | SS1G_03897 | 106    | 8               | 7.55      | extr=26        | -             | predicted protein                     |
| 10 | SS1G_04618 | 137    | 8               | 5.84      | extr=22        | -             | predicted protein                     |
| 11 | SS1G_04857 | 122    | 8               | 6.56      | extr=26        | -             | hypothetical protein                  |
| 12 | SS1G_05103 | 83     | 6               | 7.23      | extr=22        | -             | hypothetical protein                  |
| 13 | SS1G_06068 | 73     | 10              | 13.7      | extr=27        | -             | predicted protein                     |
| 14 | SS1G_08128 | 71     | 11              | 15.4<br>9 | extr=21        | -             | predicted protein                     |
| 15 | SS1G_08163 | 69     | 8               | 11.5<br>9 | extr=22        | -             | signal peptide-<br>containing protein |
| 16 | SS1G_09175 | 108    | 10              | 9.26      | extr=22        | -             | predicted protein                     |
| 17 | SS1G_09248 | 76     | 8               | 10.5<br>3 | extr=19        | PFAM<br>06766 | hydrophobin                           |
| 18 | SS1G_10956 | 96     | 5               | 5.21      | extr=25        | -             | protein                               |
| 19 | SS1G_11673 | 108    | 7               | 6.48      | extr=18        | IPR003<br>609 | predicted protein                     |
| 20 | SS1G_11706 | 59     | 5               | 8.47      | extr=26        | -             | predicted protein                     |
| 21 | SS1G_12648 | 134    | 8               | 5.97      | extr=26        | -             | predicted protein                     |
| 22 | SS1G_13126 | 129    | 8               | 6.2       | extr=20        | -             | hypothetical protein                  |

 Table 23: S. sclerotiorum small, cysteine rich proteins identified in the refined secretome.

## 5.3.7 PFAM abundance within predicted secreted proteins with a potential plant cell degrading function

Out of the 432 gene sequences which make up the refined secretome for *S. sclerotiorum* and the 499 *B.cinerea* refined secretome gene sequences, 289 and 302 protein sequences respectively contain at least 1 PFAM domain. A total of 114 PFAM domains are common to both species. The most abundant PFAM domains were identified in enzymes involved in the breakdown of host plant cell walls.

A large portion of any fungal secretome will consist of enzymes which are vital for the degradation of host substrate. Glycoside hydrolase protein families are extremely important as

proteins with these domains are usually involved in hydrolysing the glycosidic bond between two or more carbohydrates (CAZY). There are key enzymes involved in the degradation of polysaccharides, specifically cellulose, hemicellulose and pectin. In the *S. sclerotiorum* refined secretome, 29 glycoside hydrolase families were identified in 94 genes (22% of refined secretome) (**Appendix 4.1**). In comparison, 25 glycoside hydrolase families were found in 92 gene sequences in the *B.cinerea* refined secretome (18% of refined secretome). When all genes containing glycoside hydrolase domains were mapped to the *S. sclerotiorum* chromosome map, the distribution was evenly spread across the genome.

One of the most abundant PFAM domains in both secretomes was the glycoside hydrolase family 28 (PF00295). This domain was found in 17 protein sequences in both refined secretomes. These 17 proteins all have polygalacturonase activity and so are heavily involved in the degradation of cell wall polysaccharides. One of these proteins (SS1G\_10167) with the PF00295 domain is the characterised pathogenicity factor (sspg1). A *S. sclerotiorum* mutant strain lacking this gene was showed to exhibit a significantly reduced virulence phenotype (Dallal Bashi et al. 2012, Li et al. 2004b).

Further investigation into degradative enzymes revealed that the *S. sclerotiorum* refined secretome contains 30 genes involved in lipid degradation (Appendix 4.2) and 37 genes involved in protein degradation (Appendix 4.3), the same number of plant cell degrading proteins found in the *Fusarium graminearum* secretome (Brown et al. 2012). The most abundant PFAM domain implicated in lipid degradation is Carboxylesterase, type B (PF00135) (**Table 24**). This domain was more abundant in the *B.cinerea* refined secretome with 18 protein sequences containing the domain compared to 10 sequences in the *S.sclerotiorum* refined secretome. This is a family of esterases which act on carboxylic esters and have lipase activity (Donaghy and McKay 1992). The most abundant protein degrading PFAM is Peptidase S53, propeptide (PF09286) of which 8 copies were found in both fungal refined secretomes (**Table 24**). This enzyme has an acidic pH optimum which is necessary if it is to maintain activity within the extremely acidic environment generated by the secretion of oxalic acid (Amselem et al. 2011).

| PFAM  | Ss | Bc | Description                                                                        | PFAM  | Bc | Ss | Description                                                                   |
|-------|----|----|------------------------------------------------------------------------------------|-------|----|----|-------------------------------------------------------------------------------|
| 00295 | 17 | 17 | Glycoside hydrolase, family 28                                                     | 00135 | 18 | 8  | Carboxylesterase, type B                                                      |
| 00734 | 17 | 6  | Carbohydrate-binding<br>module (associated with<br>glycoside hydrolases)           | 00295 | 17 | 17 | Glycoside hydrolase family 28                                                 |
| 00150 | 9  | 6  | Glycoside hydrolase, family 5                                                      | 01915 | 9  | 5  | Glycoside hydrolase family 3                                                  |
| 01915 | 8  | 9  | Carboxylesterase, type B                                                           | 00933 | 8  | 5  | Glycoside hydrolase family 3                                                  |
| 09286 | 8  | 8  | Peptidase S53, propeptide                                                          | 07519 | 8  | 2  | Tannase and feruloyl esterase                                                 |
| 00082 | 7  | 2  | Peptidase S8/S53 domain                                                            | 09286 | 8  | 8  | Peptidase S53                                                                 |
| 03443 | 7  | 7  | Glycoside hydrolase, family 61                                                     | 14310 | 8  | 5  | Fibronectin type III-like<br>domain (associated with<br>glycoside hydrolases) |
| 00026 | 6  | 7  | Peptidase A1                                                                       | 00026 | 7  | 6  | Glycoside hydrolase family 28                                                 |
| 00450 | 6  | 7  | Peptidase S10                                                                      | 01083 | 7  | 4  | Cutinase                                                                      |
| 00657 | 6  | 2  | Lipase, GDSL                                                                       | 03443 | 7  | 7  | Glycoside hydrolase family 61                                                 |
| 00933 | 5  | 8  | Glycoside hydrolase, family 3,<br>N-terminal                                       | 00150 | б  | 9  | Glycoside hydrolase family 5                                                  |
| 14310 | 5  | 8  | Fibronectin type III-like domain<br>(coupled with glycoside<br>hydrolase family 3) | 00734 | 6  | 17 | Carbohydrate-binding<br>module (associated with<br>glycoside hydrolases)      |

**Table 24:** The most common PFAM domains involved in degradation of host plant substrate. Domains identified in both *S. sclerotiorum* and *B. cinerea* refined secretomes.

In total, 94 *S. sclerotiorum* secreted enzymes found to be directly involved in degrading plant cell walls were identified (**Table 25**). Twenty genes had good EST support in both the infected Brassica library (G865) and the Tomato infection library (G2118) compared to 11 genes which had only low EST support in the neutral pH mycelia library (G786). This result highlights the possible specific role of these 20 proteins in plant infection rather than just fungal growth and development.

**Table 25:** Predicted secreted proteins involved in plant cell wall degradation.

|                       | No putative secreted proteins |
|-----------------------|-------------------------------|
| Glycoside hydrolases  | 80                            |
| Pectate lyases        | 4                             |
| Carbohydrate esterase | 4                             |
| Lipases               | 6                             |

#### 5.3.8 Further analysis of PFAM abundance across the S. sclerotiorum refined secretome

To explore other expanded gene families within the *S.sclerotiorum* refined secretome that are not involved in the direct degradation of plant polysaccharides, proteins or lipids, PFAM domains with copy numbers greater than 2, not implicated in plant substrate hydrolysis were investigated (**Table 26**). A glucose-methanol-choline (GMC) oxidoreductase domain (PF00732) was present in 10 and 12 proteins in the *S. sclerotiorum* and *B. cinerea* secretomes, respectively. These proteins catalyse the transfer of electrons from one molecule to another and are involved in a range of processes (Cavener 1992). SS1G\_00730 which contains a PF00732 domain had 55 hits in the oxidative stress library suggesting its key role during this process. There are 5 multi copper oxidases in *S. sclerotiorum* and 3 copies in *B. cinerea*. These enzymes have laccase activity and are involved in the oxidation of phenolic lignin units (Levasseur et al. 2010). These proteins may also have other function during fungal development, melanin synthesis and detoxification, and human and plant pathogenesis.

There are 6 FAD linked oxidase, N-terminal domains (PF01565) within the *S. sclerotiorum* secretome. These enzymes use FAD as a co-factor and are mainly oxygendependent oxidoreductases (IPR006094). Oxidoreductases are a large protein family generally involved in the catalysis of oxidation-reduction reactions but are involved in many processes. For example, SS1G\_01116 which contains this domain is homologous to isoamyl alcohol oxidase in *Aspergillus fumigatus* (E=0) which catalyses the formation of isovaleraldehyde (Yamashita et al. 2000). GO ontology from the Blast2Go analysis describes 29 of the *S. sclerotiorum* refined secretome proteins to be involved in oxidation- reduction processes (sup table). A Berberine-like domain was found with 3 of the FAD linked oxidase genes as it is involved in the biosynthesis of numerous isoquinoline alkaloids (Kutchan and Dittrich 1995).

Tyrosinase domain (PF00264), another enzyme involved in oxidation reactions, is found in 3 genes in *S. sclerotiorum* refined secretome. In fungi, this enzyme is involved in many processes including the formation and stability of spores, in defence and virulence mechanisms, and in browning and pigmentation, mainly melanin production (Halaouli et al. 2006, SolerRivas et al. 1997). SS1G\_01576, a tyrosinase has 7 hits in the sclerotia development library (G781) and SS1G\_04725 had 46 EST hits in the developing apothecia library (G787). During both processes browning pigments such as melanin would be made and strengthen cell walls and aid survival.

The histidine phosphatase (PF00328) superfamily, clade-2 domain is present in 5

proteins within the secretome. Phosphatases are responsible for the process of dephosphorylation, or the removal of phosphate groups from an organic compound. This family of histidine phosphatases have a conserved His residue in the catalysis centre which is transiently phosphorylated during the catalytic cycle (Rigden 2008).

Three copies of Chloroperoxidase (PF01338) were identified in the *S. sclerotiorum* secretome. Two of the genes with this domain (SS1G\_05925, SS1G\_12609) have EST support in the oxidative stress library (G2128). This protein is a heme-containing glycoprotein that is secreted by various fungi (IPR000028) and performs a range of diverse functions including facilitating the decomposition of hydrogen peroxide to oxygen and water and catalysing chloroperoxidase P450-like oxygen insertion reactions (IPR000028). These enzymes have also been described to have lignin degradation activity as they are potential chlorinators of lignin (Islam et al. 2012, Ortiz-Bermudez et al. 2003).

Two copies of the necrosis inducing protein (PF05630) were found in both secretomes. This secreted protein is a known virulence protein secreted by *Phytophthora sojae*, an oomycete that causes stem and root rot on soybean plants(Qutob et al. 2002). SS1G\_11912 which contains this domain has 8 EST hits in the Tomato infection library highlighting it potential role in plant necrosis.

Two copies of the cupin domain (PF00190) were found in both secretomes. These domains are present in the two oxalate decarboxylase enzymes which are crucial for the degradation of oxalic acid which is secreted at very high levels by both fungi and could be potentially toxic if this enzyme was not secreted to hydrolyse this pathogenicity metabolite (Khuri et al. 2001, Dutton and Evans 1996, Magro et al. 1988). The degradation of oxalic acid is important for the regulation of pH dependent genes which need to be expressed during a later stage of the infection process.

A single hydrophobin domain (PF06766) was found in one gene in both the *S. sclerotiorum* (SS1G\_09248) and *B. cinerea* (BC1G\_01012) secretomes. A second copy was found in the *S. sclerotiorum* genome (SS1G\_01214). These proteins both belong to the small, cysteine rich sub-class of secreted proteins (<200 amino acids, >5 % cysteine residues). This is typical of most hydrophobins which are unique to filamentous fungi and are hydrophobic proteins usually involved in spore coat formation (Bayry et al. 2012).

**Table 26:** The most abundant PFAM domains within the S. sclerotiorum secretome that have non plant cell hydrolytic properties.

| No. | PFAM domain         | Gene co<br>number<br>refined<br>secretor | opy<br>r in<br>mes | Description                                             |
|-----|---------------------|------------------------------------------|--------------------|---------------------------------------------------------|
|     |                     | Ss                                       | Bc                 |                                                         |
| 1   | 00732, 05199        | 10                                       | 12                 | Glucose-methanol-choline oxidoreductase,                |
| 2   | 328                 | 5                                        | 4                  | Histidine phosphatase superfamily, clade-2              |
| 3   | 1565                | 6                                        | 7                  | FAD linked oxidase, N-terminal                          |
| 4   | 00394, 07731, 07732 | 5                                        | 3                  | Multicopper oxidase                                     |
| 5   | 1822                | 5                                        | 3                  | Carbohydrate-binding WSC                                |
| 6   | 187                 | 4                                        | 1                  | CBM Chitin-binding, type 1 (coupled with other domains) |
| 7   | 264                 | 3                                        | 3                  | Tyrosinase                                              |
| 8   | 1328                | 3                                        | 5                  | Chloroperoxidase                                        |
| 9   | 8031                | 3                                        | 4                  | Berberine/berberine-like                                |
| 10  | 1476                | 3                                        | 0                  | LysM                                                    |
| 11  | 5730                | 2                                        | 0                  | Extracellular membrane protein, CFEM domain             |
| 12  | 24                  | 2                                        | 0                  | PAN-1 domain                                            |
| 13  | 149                 | 2                                        | 0                  | Metallophosphoesterase domain                           |
| 14  | 188                 | 2                                        | 2                  | CAP domain                                              |
| 15  | 190                 | 2                                        | 2                  | Cupin 1 (oxalate carboxylase)                           |
| 16  | 5630                | 2                                        | 2                  | Necrosis inducing protein                               |

#### 5.3.9 Biological, functional and compartmental analysis of the S. sclerotiorum secretome

The refined *S. sclerotiorum* secretome was subjected to a Blast2Go analysis to assess on a general level the biological processes covered by this set of proteins and their principal molecular functions using GO annotation. Most of the sequences are involved in some form of catalytic activity which encompasses the many hydrolysing enzymes and oxidases which are present in high numbers. Apart from carbohydrate, peptide and lipid catabolism which is associated with hydrolysis and plant cell degradation, there are other vital biological processes which may be associated with plant infection including protein associated with oxidative stress and dephosphorylation (**Figure 51**).

Enzymes in the secretome were selected for their roles in different general metabolic pathways (**Table 27**). The starch and sucrose metabolism pathway and the pentose and glucuronate pathways contained the most enzymes from the secretome. Again this is expected

as these enzymes primarily act on different polysaccharide substrates which these pathogens are required to breakdown and incorporate into required sugars and amino acids.



Figure 51: The physiological process that the proteins within the refined secretome are involved in.

Process categorised using GO annotation levels.

| Table 27: Secreted | l proteins in | volved in | general | Kegg F | athways. |
|--------------------|---------------|-----------|---------|--------|----------|
|--------------------|---------------|-----------|---------|--------|----------|

| Metabolism                                  | No. Seqs in Pathway |
|---------------------------------------------|---------------------|
| Starch and sucrose metabolism               | 35                  |
| Pentose and glucuronate inter-conversions   | 22                  |
| Glycine, serine and threonine metabolism    | 8                   |
| Methane metabolism                          | 6                   |
| Aminobenzoate degradation                   | 6                   |
| Riboflavin metabolism                       | 6                   |
| Amino sugar and nucleotide sugar metabolism | 5                   |
| Other glycan degradation                    | 5                   |

#### **5.3.10** Proteome support for the refined secretome

The predicted *S. sclerotiorum* refined secretome was compared to two studies which used ESI-q-TOF MS/MS and LC–MS/MS to identify secreted *S. sclerotiorum* proteins. Yajima (2006) (Yajima and Kav 2006) investigated the proteins secreted by *S. sclerotiorum* in liquid culture and Liang and colleagues (2010) (Liang et al. 2010) identified protein exudates found in the sclerotial liquid which encases immature sclerotia. Out of the 14 protein exudates identified in the liquid culture, 10 proteins were identified in the refined secretome (71 %) (**Table 28**). The later Liang proteomics study classified 56 proteins in the sclerotial liquid, 32 of these were sequences predicted in the refined secretome (57%) (**Table 29**). The predicted refined secretome so far contains 46 proteins that have been experimentally confirmed to be secreted.

**Table 28**: The proteins identified in liquid medium after incubation with S. sclerotiorum for several days.

| Spot | Protein function from<br>Yajima 2006 article                    | GI number    | Broad ID       | E value in<br>Broad blast | Found in<br>refined<br>secretome |
|------|-----------------------------------------------------------------|--------------|----------------|---------------------------|----------------------------------|
| 1    | Neutral endopolygalacturonase                                   | gi)20453991  | SS1G_10167     | 0                         | Y                                |
|      | SSPG1d                                                          |              | SS1G_04177     |                           |                                  |
|      |                                                                 |              | SS1G_01009     |                           |                                  |
| 13   | Endopolygalacturonase                                           | gi)2196886   | SS1G_10698     |                           |                                  |
| 10   | Zhuoponjgalactaronase                                           | 81)=1) 00000 | SS1G_11057     |                           |                                  |
| 3    | Exopolygalacturonase                                            | gi)32454433  | SS1G_04207     | 0                         | Y                                |
| 5    |                                                                 | gi)1483221   | SS1G_05832     |                           |                                  |
| 10   |                                                                 |              |                |                           |                                  |
| 6    | Hypothetical protein Y41D4A<br>(glutamyl-trna amidotransferase) | gi)14574316  | SS1G_00271     | 2.4E-11                   | Y                                |
| 11   | Cellobiohydrolase 1 catalytic                                   | gi)20986705  | SS1G_09020     | 0                         | Y                                |
|      | domain                                                          |              | SS1G_04945     |                           | Y                                |
|      |                                                                 |              | SS1G_02334     |                           | Y                                |
| 12   | Aspartyl proteinase                                             | gi)12002205  | SS1G_03181     | 0                         | Y                                |
| 14   | Pectin methyl esterase                                          | gi)12964194  | SS1G_03286     |                           | Y                                |
|      |                                                                 |              | SS1G_10165     |                           | Y                                |
| 16   | Acid protease                                                   | gi)6984107   | SS1G_07836     | 0                         | Y                                |
| 18   | Cyclohex-1-ene-1-carboxylate<br>CoA ligase                      | gi)39932995  | SS1G_12801     | 2.74E-22                  | N                                |
| 4    | Alpha-L-arabinofuranosidase                                     | gi)11991221  | SS1G_02462     | 0                         | N                                |
| 2    | Unnamed protein product                                         | gi)49650592  | SS1G_12749     | 0                         | Ν                                |
| 9    | Isopropylmalate/homocitrate/citra malate synthases              | gi)23470424  | SS1G_14205     | 0                         | N                                |
| 7    | Unnamed protein product                                         | gi)49651714  | no homology fo | ound in S.sclerotioru     | <i>m</i> genome                  |

**Table 29:** The 32 proteins identified from sclerotial liquid samples that were found in the S.
 sclerotiorum refined secretome.

|    | Gene ID    | Spot | Description                                        | Function                          |  |
|----|------------|------|----------------------------------------------------|-----------------------------------|--|
| 1  | SS1G_00458 | 21   | endo-betaglucanase precursor                       | Carbohydrate Metabolism           |  |
| 2  | SS1G_01576 | 16   | tyrosinase protein                                 | Amino Acid Metabolism             |  |
| 3  | SS1G_01776 | 15   | glycoside hydrolase family 13<br>protein           | Carbohydrate Metabolism           |  |
| 4  | SS1G_02014 | 45   | chitin- domain 3 protein                           | Unkown                            |  |
| 5  | SS1G_03181 | 22   | aspartic endopeptidase pep1                        | Amino Acid Metabolism             |  |
| 6  | SS1G_03602 | 7    | alpha-l-arabinofuranosidase a                      | Carbohydrate Metabolism           |  |
| 7  | SS1G_03629 | 17   | aspartyl partial                                   | Amino Acid Metabolism             |  |
| 8  | SS1G_04085 | 27   | extracellular cellulase allergen asp<br>f7-        | Carbohydrate Metabolism           |  |
| 9  | SS1G_04200 | 3    | alphamannosidase family protein                    | Carbohydrate Metabolism           |  |
| 10 | SS1G_04468 | 10   | glycoside hydrolase family 47 protein              | Carbohydrate Metabolism           |  |
| 11 | SS1G_04473 | 8    | extracellular serine-rich protein                  | Unknown                           |  |
| 12 | SS1G_04541 | 6    | alpha-l-rhamnosidase                               | Carbohydrate Metabolism           |  |
| 13 | SS1G_04857 | 19   | hypothetical protein SS1G_04857                    | Unknown                           |  |
| 14 | SS1G_05337 | 27   | malate dehydrogenase protein                       | Energy                            |  |
| 15 | SS1G_06037 | 17   | glucan 1,3-beta-glucosidase<br>precursor           | Carbohydrate Metabolism           |  |
| 16 | SS1G_07162 | 2    | beta-glucosidase 1 precursor                       | Carbohydrate Metabolism           |  |
| 17 | SS1G_07393 | 4    | glycoside hydrolase family 55 protein              | Carbohydrate Metabolism           |  |
| 18 | SS1G_07639 | 14   | acid phosphatase                                   | Lipid and Secondary<br>Metabolism |  |
| 19 | SS1G_07655 | 19   | subtilisin-like protein                            | Amino Acid Metabolism             |  |
| 20 | SS1G_07863 | 1    | cellobiose dehydrogenase                           | Carbohydrate Metabolism           |  |
| 21 | SS1G_08110 | 2    | binding protein                                    | Unknown                           |  |
| 22 | SS1G_08645 | 14   | fad binding domain-containing protein              | Unknown                           |  |
| 23 | SS1G_08889 | 6    | glutaminase                                        | Amino Acid Metabolism             |  |
| 24 | SS1G_09143 | 13   | amidohydrolase 2                                   | Hydrolysis                        |  |
| 25 | SS1G_09270 | 28   | hydrophobic surface binding protein a protein      | Unknown                           |  |
| 26 | SS1G_09965 | 10   | sphingomyelin phosphodiesterase                    | Lipid and Secondary<br>Metabolism |  |
| 27 | SS1G_10096 | 9    | epl1 protein                                       | Lipid and Secondary<br>Metabolism |  |
| 28 | SS1G_11912 | 25   | necrosis and ethylene inducing peptide 2 precursor | Carbohydrate Metabolism           |  |
| 29 | SS1G_12017 | 10   | betaglucanosyltransferase                          | Carbohydrate Metabolism           |  |
| 30 | SS1G_12917 | 19   | uncharacterized serine-rich protein                | Unknown                           |  |
| 31 | SS1G_12930 | 26   | glycoside hydrolase family 17 protein              | Carbohydrate Metabolism           |  |
| 32 | SS1G_14133 | 23   | fg-gap repeat                                      | Signal Transduction               |  |

#### 5.3.11 Known virulence factors identified in the refined secretome

Three proteins, Sscuta, sspg1 and a novel hypothetical protein, ssv263, which have been documented as virulence factors during S. sclerotiorum infection were identified in the refined secretome (Table 30). Four proteins containing a LysM domain were identified in the S. sclerotiorum genome. Three of these were identified in the refined secretome, one of which (SS1G\_00772) was also found in gene cluster 011 across the genome map and has some EST support in the sclerotia and apothecia development libraries. SS1G\_12509 and SS1G\_12513 LysM domain containing proteins are also located quite closely together on chromosome 6. Interesting SS1G 12509 sits next to a chitinase which may be important as LysM domain containing effector proteins are involved in suppressing chitin-mediated plant defences. SS1G 12509 which has a single EST hit in the developing sclerotia (G781) and two hits in the developing apothecia library (G787). SS1G\_03535, was identified in the total secretome but not the refined secretome as it has a Wolf-P-SORT score of extracellular, 12 which is lower than the cut off score of 18. This protein has been described as similar to the cfECP6 effector protein (Bolton et al. 2008b). There are no studies on the function of these 4 LysM proteins identified in the refined secretome and there is very little EST support for these predicted proteins either.
Table 30: The proteins known in *S. sclerotiorum* to be required for virulence during plant infection.

| Broad ID                                              | Gene<br>name                  | Function                                                                                                                                                                                                        | Virule<br>nce<br>decrea<br>sed? | Refined<br>secretom<br>e | Reference                                                           |
|-------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------|---------------------------------------------------------------------|
| SS1G_07355                                            | pac 1                         | Development and maturation of sclerotia.                                                                                                                                                                        | Y                               | N                        | Rollins JA.<br>2003                                                 |
| SS1G_00699                                            | SsSod1                        | Cu/Zn superoxide: detoxification of reactive oxygen species during host-pathogen interactions                                                                                                                   | Y                               | N                        | Xu L, Chen W.<br>2013                                               |
| SS1G_01788                                            | cna1                          | Calcineurin, a Ser/Thr phosphatase<br>linked to several signal-transduction<br>pathways, the regulation of cation<br>homeostasis, morphogenesis, cellwall<br>integrity, and pathogenesis in fungi.              | Y                               | N                        | Harel A,<br>Bercovich S,<br>Yarden O. 2006                          |
| SS1G_14127                                            | Ss-ggt1                       | Enzyme involved in glutathione<br>recycling during key developmental<br>stages of the <i>S.sclerotiorum</i> life cycle.<br>Not required for host colonization and<br>symptom development.                       | N                               | N                        | Moyi Li,<br>Xiaofei Liang,<br>Jeffrey A.<br>Rollins. 2011           |
| SS1G_00263                                            | ssv263                        | Hypothetical protein unique to <i>S.sclerotiorum</i> and <i>B.cinerea</i>                                                                                                                                       | Y                               | Y                        | Liang and<br>Yajima et al.<br>2013                                  |
| SS1G_07661                                            | Sscuta                        | Cutinase enzyme                                                                                                                                                                                                 | Y                               | Y                        | Dallal Bashi,<br>Zafer. 2012                                        |
| SS1G_10167                                            | sspg1                         | Polygalacturonase                                                                                                                                                                                               | Y                               | Y                        | Dallal Bashi,<br>Zafer .2012                                        |
| SSIG_05917                                            | Ss-S12                        | Involved in sclerotial development of <i>S. sclerotiorum</i>                                                                                                                                                    | N                               | Ν                        | Yu, Jiang, et<br>al.2012                                            |
| SS1G_02462                                            | abx                           | arabinofuranosidase/beta-xylosidase                                                                                                                                                                             | Y                               | Ν                        | Yajima et al.<br>2009                                               |
| SS1G_08218                                            | OAH                           | Enzyme catalysing the breakdown of oxaloacetate into oxalic acid, the main pathogenicity factor for <i>S. sclerotiorum</i>                                                                                      | Y                               | N                        | no publication currently                                            |
| SS1G_03535<br>SS1G_00772*<br>SS1G_12509<br>SS1G_12513 | LysM<br>domain                | Contains a LysM domain (e=0.024)<br>(similar to<br>ECP6- but WolfPsort= ext12 in total<br>secretome)<br>Contains a LysM domain (e=0.0028)<br>Contains a LysM domain (e=0.12)<br>Contains a LysM domain (e=0.03) | -                               | N<br>Y                   | Bolten et al<br>2008 Reported<br>to be similar to<br>ECP6 currently |
| SS1G_07626                                            | Velvet                        | Contains a Velvet domain- homologue<br>to BC1G_02977, Bcvel1 involved in<br>Bc sclerotial development and oxalic<br>acid production.                                                                            | Y                               | N                        | no publication<br>currently                                         |
| SS1G_10796<br>SS1G_08814                              | oxalate<br>decarboxy-<br>lase | Involved in the breakdown of oxalate during infection                                                                                                                                                           | Y                               | Y                        | no publication<br>currently                                         |

\* SS1G\_00772 identified in cluster 011

## 5.3.12 Multispecies comparison analysis

A multispecies comparison was done to explore the relatedness of the predicted refined secretome of *S. sclerotiorum* to the predicted proteomes of 115 other species including other plant pathogens, Oomycetes, and animal pathogens and some free living eukaryotic organisms (Appendix 5).

# **5.3.12.1 Uniquely secreted proteins**

The 115 species proteomes were compared to the refined secretomes for *S. sclerotiorum* and *B. cinerea*. Eleven protein sequences are found only in the *S. sclerotiorum* secretome (**Table 31**) and 31 protein sequences were found to be unique to the *B. cinerea* secretome (**Table 32**). The BlastP results were determined based on protein sequences with  $e<^{-5}$  value similarity. All genes had only single copies in the genomes except BC1G\_12747 which had two copies. There were no significant PFAM domains in any of these protein sequences. Three of the unique *S. sclerotiorum* proteins had EST support. As mentioned previously, SS1G\_06412 had 96 gene reads in the EST library for developing apothecia. SS1G\_12961 had one hit in the mycelial EST library and SS1G\_13126 had 5 hits in the sclerotia developmental EST library. SS1G\_13126 is also a small cysteine rich protein. None of these unique genes were found in the 31 gene cluster across the *S. sclerotiorum* genome. Six of the 32 proteins sequences unique *B. cinerea* also had small, cysteine rich protein profiles.

| Broad ID   | Protein length amino | Cysteines | WoLF P SORT | PFAM |
|------------|----------------------|-----------|-------------|------|
|            | acids                |           |             |      |
| SS1G_01325 | 30                   | 1         | extr=23     | -    |
| SS1G_03537 | 88                   | 3         | extr=26     | -    |
| SS1G_04611 | 127                  | 4         | extr=21     | -    |
| SS1G_06412 | 237                  | 7         | extr=18     | -    |
| SS1G_07230 | 63                   | 0         | extr=25     | -    |
| SS1G_10581 | 82                   | 2         | extr=19     | -    |
| SS1G_11065 | 190                  | 5         | extr=18     | -    |
| SS1G_12927 | 151                  | 3         | extr=21     | -    |
| SS1G_12961 | 78                   | 0         | extr=18     | -    |
| SS1G_13126 | 129                  | 8         | extr=20     | -    |
| SS1G_14515 | 45                   | 0         | extr=20     | -    |

**Table 31:** Proteins unique to the S. sclerotiorum refined secretome.

| Broad ID    | Protein length amino | Cysteines | WoLF PSORT | PFAM |
|-------------|----------------------|-----------|------------|------|
|             | acid                 |           |            |      |
| BC1T_00514  | 121                  | 3         | extr=18    | -    |
| BC1T_00958  | 148                  | 0         | extr=20    | -    |
| BC1T_01077* | 180                  | 11        | extr=19    | -    |
| BC1T_01886  | 61                   | 2         | extr=18    | -    |
| BC1T_02388  | 174                  | 6         | extr=20    | -    |
| BC1T_02701  | 147                  | 6         | extr=25    | -    |
| BC1T_03065  | 293                  | 1         | extr=26    | -    |
| BC1T_03412  | 30                   | 0         | extr=21    | -    |
| BC1T_04280  | 137                  | 2         | extr=26    | -    |
| BC1T_04347  | 371                  | 0         | extr=27    | -    |
| BC1T_05590* | 68                   | 8         | extr=22    | -    |
| BC1T_05976  | 11                   | 0         | extr=25    | -    |
| BC1T_07477  | 163                  | 4         | extr=25    | -    |
| BC1T_07778* | 200                  | 7         | extr=18    | -    |
| BC1T_08414  | 28                   | 0         | extr=19    | -    |
| BC1T_08580  | 41                   | 0         | extr=24    | -    |
| BC1T_08904  | 203                  | 8         | extr=23    | -    |
| BC1T_08911* | 117                  | 10        | extr=22    | -    |
| BC1T_09968  | 41                   | 3         | extr=21    | -    |
| BC1T_10445  | 71                   | 0         | extr=18    | -    |
| BC1T_10861  | 40                   | 1         | extr=19    | -    |
| BC1T_11606  | 153                  | 4         | extr=26    | -    |
| BC1T_12450  | 261                  | 0         | extr=24    | -    |
| BC1T_12732  | 33                   | 0         | extr=21    | -    |
| BC1T_12747  | 142                  | 2         | extr=24    | -    |
| BC1T_12766  | 457                  | 7         | extr=25    | -    |
| BC1T_13846  | 37                   | 1         | extr=19    | -    |
| BC1T_13879* | 140                  | 7         | extr=23    | -    |
| BC1T_14014  | 70                   | 3         | extr=24    | -    |
| BC1T_14418  | 95                   | 4         | extr=22    | -    |
| BC1T_15646* | 86                   | 8         | extr=25    | -    |

Table 32: Proteins unique to the *B. cinerea* refined secretome.

\* Small, cysteine rich protein profile

# 5.3.12.2 Shared proteome homology between species

*S. sclerotiorum* and *B. cinerea* secretomes were compared against all 115 proteomes to identify those proteins that are common and have a high level of sequence similarity across a wide taxonomic distribution. The *S. sclerotiorum* and *B. cinerea* refined secretomes contain at least one gene homologue ( $e^{-100}$ ) in 110 and 111 of the 115 species' proteomes, respectively.

When the *S. sclerotiorum* refined secretome was compared to all other proteomes at a lower level of stringency ( $e^{-5}$ ) (Appendix 5), the *B. cinerea* proteome shared the highest number of common protein sequences (92%). This result was anticipated because these two

species share 84% of their total proteomes (Amselem et al. 2011). The entire multispecies dataset was explored for unique *S. sclerotiorum* and *B. cinerea* proteins not found in the other species proteomes using a threshold of e<sup>-5</sup>. This revealed 30 proteins uniquely shared by these two species (**Table 33**). Four of the *S. sclerotiorum* proteins are small, cysteine rich proteins identified earlier (SS1G\_02068, SS1G\_03897, SS1G\_09175 and SS1G\_12648). Most genes had single copies within the genomes except SS1G\_00263, SS1G\_01086, and SS1G\_04312 where 2 copies are found in both species. SS1G\_09841 and SS1G\_01086 were in the identified gene clusters 001, 003 and 011 respectively (**Table 19**).

To explore further the 30 *S. sclerotiorum* proteins potentially shared with *B. cinerea* a BlastN search was done using the 30 *S. sclerotiorum* gene nucleotide sequences to find the homologous gene in the *B. cinerea* genome. The predicted amino acid sequences for the two IDs were then aligned to ensure that these were gene homologues. Six proteins had maximum identity values above 40% and 24 genes had a maximum identity value above 50%. This is a confident level of homology between the two protein sequences to ensure they are homologues.

## Table 33: Unique S. sclerotiorum and B. cinerea proteins.

Thirty genes identified in the S. *sclerotiorum* refined secretome which are unique to *S. sclerotiorum* and *B. cinerea*. The *S. sclerotiorum* nucleotide sequences were blasted within the Broad *B. cinerea* genome Browser. The amino acid sequences were then aligned to assess homology.

|    |                            |                               | Identity betw<br>nucleotide se<br>(BlastN) | Identity between two<br>nucleotide sequences<br>(BlastN) |          | veen<br>cid |
|----|----------------------------|-------------------------------|--------------------------------------------|----------------------------------------------------------|----------|-------------|
|    | S. sclerotiorum<br>gene ID | <i>B. cinerea</i><br>ortholog | e value                                    | max ID                                                   | e value  | max<br>ID   |
| 1  | SS1G_00263                 | BC1G_00896                    | 3.00E-74                                   | 76%                                                      | 3.00E-75 | 73%         |
| 2  | SS1G_00768                 | BC1G_02060                    | 1.00E-09                                   | 82%                                                      | 2.00E-29 | 41%         |
| 3  | SS1G_01086                 | BC1G_12867                    | 4.00E-86                                   | 80%                                                      | 9.00E-78 | 78%         |
| 4  | SS1G_01107                 | BC1G_12892                    | 3.00E-113                                  | 77%                                                      | 1.00E-74 | 75%         |
| 5  | SS1G_01235                 | BC1G_03977                    | 2.00E-90                                   | 76%                                                      | 1.00E-92 | 75%         |
| 6  | SS1G_01966                 | BC1G_02670                    | 4.00E-105                                  | 77%                                                      | 1.00E-60 | 76%         |
| 7  | SS1G_02068*                | BC1G_02834                    | 2.45E-43                                   | 51%                                                      | 2.00E-56 | 55%         |
| 8  | SS1G_02690                 | BC1G_05658                    | 2.00E-20                                   | 66%                                                      | 2.00E-17 | 63%         |
| 9  | SS1G_02714                 | BC1G_05632                    | 0                                          | 100%                                                     | 7.00E-41 | 44%         |
| 10 | SS1G_03897*                | BC1G_04521                    | 3.00E-24                                   | 76%                                                      | 3.00E-25 | 64%         |
| 11 | SS1G_04312                 | BC1G_12229                    | 0                                          | 89%                                                      | 0        | 69%         |
| 12 | SS1G_05013                 | BC1G_09803                    | 4.00E-26                                   | 77%                                                      | 2.00E-78 | 49%         |
| 13 | SS1G_06747                 | BC1G_03293                    | 0.035                                      | 69                                                       | 9.00E-07 | 76%         |
| 14 | SS1G_06890                 | BC1G_14733                    | 4.00E-26                                   | 92%                                                      | 6.00E-25 | 58%         |

| 15 | SS1G_07027  | BC1G_08442 | 7.00E-157 | 87% | 3.00E-110 | 88% |
|----|-------------|------------|-----------|-----|-----------|-----|
| 16 | SS1G_07224  | BC1G_05097 | 1.00E-71  | 75% | 1.00E-110 | 53% |
| 17 | SS1G_07571  | BC1G_14520 | 1E-45     | 75% | 5.00E-37  | 53% |
| 18 | SS1G_09175* | BC1G_01059 | 1.00E-57  | 77% | 6.00E-53  | 68% |
| 19 | SS1G_09693  | BC1G_16071 | 1.5       | 91% | 2.00E-39  | 46% |
| 20 | SS1G_09841  | BC1G_08638 | 4.00E-65  | 70% | 3.00E-93  | 62% |
| 21 | SS1G_10082  | BC1G_12529 | 3.00E-34  | 71% | 1.00E-41  | 66% |
| 22 | SS1G_10266  | BC1G_08459 | 1.00E-32  | 87% | 2.00E-37  | 44% |
| 23 | SS1G_11120  | BC1G_08106 | 2.00E-86  | 70% | 3.00E-105 | 67% |
| 24 | SS1G_11202  | BC1G_09789 | 3.00E-21  | 89% | 8.00E-20  | 66% |
| 25 | SS1G_12648* | BC1G_04660 | 1.00E-90  | 79% | 8.00E-88  | 81% |
| 26 | SS1G_13394  | BC1G_06376 | 8.00E-04  | 68% | 8.00E-31  | 42% |
| 27 | SS1G_13682  | BC1G_14145 | 0         | 71% | 4.00E-121 | 59% |
| 28 | SS1G_13965  | BC1G_14535 | 1.00E-89  | 80% | 5.00E-61  | 85% |
| 29 | SS1G_14007  | BC1G_11588 | 8.00E-36  | 81% | 1.00E-17  | 68% |
| 30 | SS1G_14041  | BC1G_03205 | 3.00E-123 | 77% | 2.00E-79  | 76% |

\* Small, cysteine rich protein profile

Many ascomycete plant pathogens which infect different mono and dicotyledonous plants were in the top most homologous proteome's (Appendix 5). These species were investigated to look at the range of homology between their proteomes and the *S. sclerotiorum* refined secretome. The ascomycete plant pathogens, share between 42% and 76% of their proteome's with the *S. sclerotiorum* refined secretome. Curiously, alongside these homologous plant pathogen proteome's, there is a single plant saprobe which shares many proteins with the *S. sclerotiorum* refined secretome. *Hysterium pulicare*, a dothideomycete found to live in decaying woody material shares 319 proteins (73%). A second saprophyte, *Rhytidhysteron rufulum*, shares 308 proteins (71%) with the *S. sclerotiorum* secretome alongside other true monocotyledonous infecting pathogens such as *Fusarium verticillioides*, *Pyrenophora tritici-repentis* and *Gaeumannomyces graminis*. This is interesting as both *S. sclerotiorum* and *B. cinerea* are predominately dicotyledonous infecting pathogens.

The *S. sclerotiorum* refined secretome shares approximately 67% homology with *Aspergilli* and 75% *with Fusarium oxysporum* proteomes. *F. oxysporum* is an opportunistic invaders of immuno-compromised animal hosts and *Aspergillus* species can cause allergy and disease in healthy animal hosts. These lifestyles are very different to the lifestyle of *S. sclerotiorum*. Although *Aspergilli* and *Fusarium oxysporum* produce oxalic acid in large quantities *in vitro* (Dutton and Evans 1996), similarly to *S. sclerotiorum* and *B. cinerea*, the role of this secreted metabolite in animal pathogenicity is unclear in these animal pathogens (Ruijter et al. 1999). There was no relationship between the homology of the proteomes between other oxalic acid producing fungi and the *S. sclerotiorum* and *B.cinerea*, refined

secretomes.

Other phyla of fungi including basidiomycetes share much less homology with *S. sclerotiorum* (less than 60%). The chromalveolata phyla which contain Oomycete plant pathogens such as *Phytophthora spp* share no greater than 36% proteome homology with the *S. sclerotiorum* refined secretome.

A comparison between the refined secretome of *S. sclerotiorum* and the proteome's of *Alternaria brassicicola* and *Leptosphaeria maculans* was made to explore putative secreted proteins common to only these three fungal species which are all economically important pathogens of oilseed rape. No proteins unique to only these three species were found. A second specific investigation was made to explore plant pathogens that infect numerous dicotyledonous s and monocotyledonous species. No gene set to this entire group could be identified.

Although no specific genes associated with a specific fungal lifestyle could be found, three unique genes in the initial *S. sclerotiorum* and *B. cinerea* intercomparison were subsequently detected only in a limited number of other fungi (**Table 34**).

**Table 34:** Genes found in *S. sclerotiorum* and *B. cinerea* that are also present in only a limited number of other fungi.

| Gene       | Function           | Species containing            | Lifestyle          | Host       |
|------------|--------------------|-------------------------------|--------------------|------------|
|            |                    | orthologue protein sequence   |                    |            |
| SS1G_00849 | Conserved          | Chaetomium globosum           | Sord-sap/animal    | Woody/soil |
|            | hypothetical       | Colletotrichum graminicola    | Sord-plant path    | Dicot      |
|            | protein            | Colletotrichum higginsianum   | Sord-plant path    | Dicot      |
|            |                    | Magnaporthe oryzae            | Sord-plant path    | Monocot    |
|            |                    | Magnaporthe poae              | Sord-plant path    | Monocot    |
|            |                    | Magnaporthe grisea            | Sord-plant path    | Monocot    |
|            |                    | Fusarium spp                  | Sord-plant path    | Mono/Dicot |
| SS1G_09196 | Hypothetical       | Colletotrichum higginsianum   | Sord-plant path    | Dicot      |
|            | protein similar to | Fusarium graminearum          | Sord-plant path    | Mono/Dicot |
|            | enoyl- hydratase   |                               |                    |            |
|            | isomerase          |                               |                    |            |
| SS1G_12262 | Allergen Asp f 4   | Blastomyces dermatitidi       |                    |            |
|            | precursor          | Histoplasma capsulatum        | Saprophyte/ animal | pathogen   |
|            |                    | Paracoccidioides brasiliensis |                    |            |
|            |                    | Penicillium chrysogenu        |                    |            |

# 5.3.12.3 Multispecies comparison of gene copy

The 115 species intercomparison revealed 47 genes with at least 10 or more gene copies in the *S. sclerotiorum* proteome at  $e^{-5}$ . The genes with the most copies were gmc

oxidoreductase, polygalacturonases and beta-glucosidases and other enzymes which are integral to cell wall degradation. Species which had either 1 or none of these gene types include; *Batrachochytrium dendrobatidis* (the *Chytrid* fungus), *Caenorhabditis elegans* (a non-pathogenic nematode), *Meloidogyne spp* (a plant parasitic root-knot nematode), *Candida spp* (a human pathogen), *Saccharomyces cerevisiae*, *Allomyces macrogynus*, *Spizellomyces punctatus and Schizosaccharomyces cryophilus*. These species have very different lifestyles to *S. sclerotiorum* and a need for such specialised secreted enzymes for their free living and /or pathogenic lifecycles is unlikely.

The gene SS1G\_06534 which encodes for a trypsin serine protease (pfam00089), has one copy in the *S. sclerotiorum* secretome however it was present in high copy number in *Drosophila melanogaster* (291 copies), *Myzus persicae* (67 copies), *Phytophthora infestans* (23 copies) and *Pythium ultimum* (15 copies). These species are either in the Animalia or Chromalveolata Kingdoms. The gene SS1G\_09060, a single gene in *S. sclerotiorum* coding for another type of secreted serine protease, a subtilase (PF00082) was also found above 15 copies found in *Aspergillus oryzae, Gaeumannomyces graminis, Neurospora tetrasperma, Magnaporthe grisea, and Melampsora laricis-populina and Pythium ultimo.* 

#### **5.4 Discussion**

The identification and analysis of a plant pathogen secretome is now an essential tool to further our understanding of how the fungal infection process is regulated and how pathogens can evade host plant defence systems. Many secreted proteins have already been identified and shown to act as effector proteins which manipulate host plant machinery for a range of fungal and Oomycete pathogens (Bolton et al. 2008b, Bowen et al. 2009, Godfrey et al. 2010, Marshall et al. 2011, Mueller et al. 2008, Tyler 2009). Not only is this a fundamental area of research but the scientific community anticipates that the identification of these candidate proteins and their function will ultimately lead to the discovery of new targets for detection and control of economically destructive pathogens including *S. sclerotiorum* and *B. cinerea*.

The use of a powerful bioinformatics pipeline as described here and in previous studies (Brown et al. 2012, do Amaral et al. 2012) allows the stringent selection of putative secreted proteins which can be further investigated *in silico*. Analyses such as these allow more informed choices to be made when selecting effector protein candidates to be tested in the laboratory, a process that can be costly and time consuming. Although the secretion of oxalic acid has been championed as the principal infection strategy for *S. sclerotiorum*, an in-depth analysis of all other putative secreted proteins was undertaken to reveal other candidate proteins potentially important in the infection process. The secretome for the closely related fungus, *B. cinerea* was investigated alongside *S. sclerotiorum* to investigate similarities and any contrasts amongst the secreted protein profiles.

A refined secretome size of 432 proteins for *S. sclerotiorum* and 499 proteins for *B. cinerea* was predicted using the bioinformatics pipeline described. Both the secretomes make up approximately 3% of their total predicted genomes. This figure is relatively small compared with the secretome size of the wheat infecting pathogens *Fusarium graminearum* and *Mycospahaerella graminicola* which represents approximately 4.1% and 4.46% of their total genomes respectively (Brown et al. 2012, do Amaral et al. 2012). Approximately, 310 and 328 protein sequences within the *S .sclerotiorum* and *B. cinerea* secretomes respectively contain some form of annotation. This highlights that approximately 30% of both secretomes require further functional investigation and some of these proteins are likely to be involved in pathogenesis.

Several notable results were identified during the analysis. Firstly the *S. sclerotiorum* secretome was evenly distributed across the 16 chromosomes and although small clusters of

secreted proteins were found, they were never found in clusters containing more than 3 genes unlike the clusters of small secreted proteins identified across the *U. maydis* genome (Kaemper et al. 2006). The clusters did not consist of any duplicated genes and in only two cases did the clusters contain similar protein families (cluster 012 & 017). There was no evidence that the documented secreted virulence associated proteins found in the *S. sclerotiorum* secretome (including Sscuta, sspg1, ssv263pac1), are found in clusters across the *S. sclerotiorum* genome either. However 2 of the LysM domain containing proteins sit very close to one another on chromosome 6 and sandwiched in between is a chitinase (SS1G\_12510). The expression of this group of genes requires further investigation to demonstrate whether they have any known effector function such as the cfECP6 or MGLysM3 protein effectors (Bolton et al. 2008b, Marshall et al. 2011). The other known *S. sclerotiorum* virulence factors such as *pac1* and *ssSod1* were not identified in the secretome protein set. An explanation for this is that although they are essential for virulence, they may not actually be secreted extracellulary but instead are required for intracellular gene regulation.

Secondly, the multispecies comparison confirmed that the *B. cinerea* proteome shared closest homology with the *S. sclerotiorum* secretome across all 432 proteins. This was an expected result as it is well documented that these two pathogens are closely related (Amselem et al. 2011) however it is interesting as these two fungi do have slightly different infection strategies. *S. sclerotiorum* secretes primarily oxalic acid at very high levels during infection whereas *B. cinerea* secretes oxalic acid (van Kan 2005) as well as botcinic acid, a highly substituted lactone (Cutler et al. 1993) and botrydial acid, a tricyclic sesquiterpene (Colmenares et al. 2002). It is tempting to assume there may be a larger difference between the two secretomes to account for the difference in infection strategy, however the *B. cinerea* proteome shares 92% of the *S. sclerotiorum* secretome.

A third interesting result is that while the multispecies analysis highlighted that there are 30 seemingly unique proteins found in only *S. sclerotiorum* and *B. cinerea*, no putative unique secreted proteins were associated with groups of fungal pathogens with specific hosts or lifestyles including oilseed rape infecting fungi or more generally ascomycete plant pathogens of dicotyledonous plants. This is unlike the *M. graminicola* secretome analysis in which nine unique proteins were identified only in fungal pathogens infecting wheat (*Triticum spp*) or other cereals (do Amaral et al. 2012). One explanation could simply be that not enough oilseed rape or dicot infecting plant pathogens were compared within this study. A second

explanation could be due to the host diversification of the plant pathogens compared. Many of the dicotyledonous plant infecting fungal pathogens investigated have wide host ranges and so may require a general set of proteins for infection which may be conserved between a range of pathogens with the ability to infect both monocots and dicots. According to the tree of life (<u>http://tolweb.org/angiosperm</u>), monocotyledonous plants are grouped as a single taxon of Angiosperms whereas the plants we now know as Dicotyledenous are spread across a range of different taxons. It is tempting to speculate that the fungal pathogens with a wide host range would require a large arsenal of secreted proteins, some of which would be conserved or overlap with pathogens with more specific host ranges. This may explain why the proteome of *Botryosphaeria dothidea*, a woody dicot infecting plant pathogen may share such a large set of proteins with the secretome of *S. sclerotiorum*.

The analysis of the S. sclerotiorum EST libraries was extremely valuable when trying to assign some form of function to the unannotated putative secreted proteins. EST support was available for 57% of the putative proteins within the S. sclerotiorum secretome in a range of infection conditions and developmental stages. Two secreted proteome studies confirmed the physical secretion of 46 proteins identified in the S. sclerotiorum refined secretome which is of significant importance when validating the pipeline. The other secreted proteins which were not identified in these studies may be expressed during different conditions compared to those which were investigated. Some protein secretion will only be induced during specific in *planta* infection conditions or at an earlier stage of spore germination for example. In both proteome studies, a different fungal strain was used to that which has been sequenced by the Broad which may also account for any protein differences in the computational search. The S. sclerotiorum secretome was explored for small, cysteine rich proteins which is a protein profile typically identified in other pathogen effector proteins. This study revealed 22 proteins with this profile which could be responsible for interfering with the activation of plant defence. Ten of these have support in at least one library in particular. Interestingly, a small protein with a CFEM domain which has been implicated in plant pathogenesis had strong EST support in the infected plant libraries (G865, G2118, G866) and should be investigated further. Other unannotated proteins in this set with no known function were also identified and explored for EST support. Those with support in the *in planta* infection libraries require further study to see if they are regulating any of the infection process.

The search for RxLR or Y/F/WxC motifs within the secretome revealed that none of the proteins containing these domains have small, cysteine rich features. In contrast, the *M. graminicola* secretome contained 10 cysteine rich proteins < 150 amino acids in length which contained a Y/F/WxC motifs. Interestingly the SS1G\_02025 proteins did have homology with a candidate effector 5 protein found in other fungal pathogens, *Venturia inaequalis* and *Eutypa lata* and requires further investigation.

Unsurprisingly, both secretomes analysed consist of a large battery of hydrolysing enzymes which degrade different plant host substrates. The PFAM inspection and GO functional analysis for the S. sclerotiorum refined secretome revealed that 37 % (161 proteins) of the secretome protein set is responsible for the degradation of plant polysaccharides, proteins and lipids. For comparison the F. graminearum and M. graminicola secretomes contains 29 % (171 proteins) and 27 % (132 proteins) plant host substrate degrading enzymes respectively (Brown et al. 2012, do Amaral et al. 2012). These are very similar figures even though these two wheat attacking fungi attack a much smaller host range. With a range of glycoside hydrolases, peptidases, lipases, cutinase and laccases, S. sclerotiorum is able to fully degrade all parts of the plant cell similarly to F. graminearum (Brown et al. 2012). As suggested in previous studies (Amselem et al. 2011), many of these polygalacturonases and proteases identified have optimum activities at an acidic pH which would be necessary in plant substrate where oxalic acid would have been secreted ahead of fungal cell colonisation (Williams et al. 2011). The polygalacturonase gene family is the largest family of polysaccharide degrading proteins within the S. sclerotiorum secretome compared with B. *cinerea* of which the carboxylesterases are the largest gene family expansion. This may highlight some differences between the infection strategy of the two similar fungi.

The next largest group of proteins in the *S. sclerotiorum* secretome according to the GO analysis are enzymes involved in oxidation-reduction interactions. Although these enzymes are part of a large family of oxidase proteins which are involved in multiple processes including melanin production (tyrosinase) (Halaouli et al. 2006), lignin oxidation (laccases) (Levasseur et al. 2010) and isoamyl alcohol oxidase (Yamashita et al. 2000), the redox state of the host substrate has been shown to be extremely important in the ability of *S. sclerotiorum* to cause disease. The secretion of oxalic acid has been shown to suppress the host plant oxidative burst by inhibiting the production of  $H_2O_2$  (Cessna et al. 2000). However later during the infection, oxalic acid promotes ROS production in the plant host and is

followed by programmed cell death (Williams et al. 2011). Isoamyl alcohol oxidase catalyses the reaction between alcohol and  $O_2$  which then releases aldehyde and  $H_2O_2$ , an important signalling molecule in the REDOX balance. GMC oxidoreductase of which there are 10 enzymes in the secretome would also play a role during this host REDOX balance. This enzyme has also been implicated in the biocontrol of other fungal species such as *Fusarium oxysporum* (Kawabe et al. 2011) and this domain was found in 9 proteins in the secretome of *M. gramicola* so may also be involved in outcompeting other fungi within the environment. With such a considerable proportion of enzymes involved in oxidation reactions, they are most likely to be fundamental to the process of infection. The significance of these oxidase proteins could be further investigated using gene knockout constructs.

The two secreted oxalate decarboxylase enzymes identified in this analysis are also integral to the infection process as they will be induced/regulated by the acidic environment created by secreted oxalic acid. These enzymes prevent direct toxicity to the fungus by hydrolysing excess oxalic acid. This will then allow a pH shift which then triggers the downstream regulation of other genes involved in other important processes such as sclerotia formation.

The identification of the *S. sclerotiorum* secretome has provided insights into how other secreted proteins alongside secreted oxalic acid may contribute to the infection cycle. Although no direct associations can be made, many candidate proteins have now been identified which need further experimental investigation to explore whether they truly are secreted proteins with an effector role.

The use of this bioinformatics pipeline and molecular biology to identify unique protein targets for *S. sclerotiorum* detection will be further discussed in Chapter 6.

# Chapter 6: Using the *S. sclerotiorum* secretome to identify uniquely secreted protein targets for infield disease detection.

# **6.1 Introduction**

Within a growing season, multiple pathogens may attack a single crop. It is sometimes very difficult for growers/crop advisors to be experts in fungal identification for all these diseases. This may compromise their ability to provide accurate disease control if they cannot recognise a particular disease symptom. If growers are unsure of the particular disease which has infected their crop, they can send infected plant material to disease diagnostic labs. These labs use a range of diagnostic tools to provide disease identification. These include using microscopy to identify a fungal species based on the specific spore structure or by using molecular based technologies including qPCR and ELISA assays. Although extremely specific and sensitive, these methods are time consuming, require specialised equipment or highly trained staff and are often very expensive.

For growers and plant health officials monitoring emerging diseases, infield detection systems or handheld devices could be used to detect a variety of pathogens accurately and quickly within the field. Currently on the market, there are handheld devices that can detect some fungal diseases. These tend to be devices based on immunological methods of detection which contain antibodies specific to plant virus or fungal pathogen proteins. One company, Pocket Diagnostics, offer a range of handheld lateral flow devices (LFDs) which are used to identify many plant viruses and some fungal pathogens including Tomato mosaic virus (ToMV), Cucumber mosaic virus (CMV), Ralstonia solanacearum, Pythium, Erwinia amylovora, Phytophthora spp and B. cinerea to name a few. The B. cinerea LFD will however test positive for S. sclerotiorum within a sample as these two closely related fungi share a high proportion of their proteomes. These tests work by crushing up infected plant extracts in the field and placing them in an extraction buffer. The buffer extract is placed onto a LFD. The LFD contains antibody-coated latex beads which bind to the specific pathogen antigen absorbed from the plant extract. A coloured line is then left on the device to indicate the presence of that specific pathogen (see General Introduction).

The use of oxalic acid as a detection target for *S. sclerotiorum* has been shown to be a potentially successful way to monitor the arrival of this pathogen within a field (see Chapter 3 and 4). The SYield automated, infield machinery can capture and incubate air samples within

a liquid medium and detect the secretion of oxalic acid from growing *S.sclerotiorum* ascospores with an electrochemical biosensor. A warning of the pathogen threat can be supplied within 3 to 4 days of sampling *S. sclerotiorum* ascospores which allows growers to target their fungicide sprays more efficiently and improve protection against this disease. However, within the liquid medium in this device, there are no selective fungicides to kill off other spores of competitive fungi that may be present in the air sample. As a result there remains a risk that other fungi, for example *B. cinerea*, which will grow in this medium and also secrete oxalic acid during spore germination may cause false positive detection events. Another possibility is that there may be other fungal species in the air sampled which may outcompete *S. sclerotiorum* growth in the medium resulting in missing detection all together. For this reason, this chapter reports the identification of other unique detection targets to *S. sclerotiorum* which could be used in lateral flow devices or adapted SYield biosensors.

As there are already handheld devices available based on antibody and protein detection of fungal pathogens, it seems plausible that a new protein target could be found to identify *S. sclerotiorum* specifically. This chapter reports a novel approach to identify unique protein targets secreted by using the *S. sclerotiorum* putative secretome pipeline described in Chapter 5. A secreted protein detection target ensures that the fungal organism being detected is a living pathogen as opposed to a non-viable spore for example, which nucleic acid detection targets cannot differentiate. A potential problem with using the qPCR assays developed for the quantification of *S. sclerotiorum* DNA specifically is that the DNA from both non-viable spores as well as viable ones will be amplified.

Potential protein targets were chosen based on the probability that they would be secreted extracellularly. This also allows easier detection of the fungus in the field as there is no need for sophisticated engineering to lyophilise the fungal cells or spores which may be difficult to achieve by an automated sampling device.

This study involved the inspection of gene sequences to identify certain characteristics typical of secreted proteins. It is important that these sequences firstly have no annotation and very little homology to other eukaryotic proteins so they can be potentially patented for commercial purposes and secondly will not identify other fungal species except the species of interest.

**Table 35**: Sequence characteristics for detection targets.

List of sequences characteristics to include and discount when choosing novel protein sequences for selection.

| Characteristics to include                         | Characteristics to discount                        |
|----------------------------------------------------|----------------------------------------------------|
| • Amino-terminal secretory signal peptide          | • No transmembrane domain                          |
| • Protein length $\geq 20$ amino acids             | • A member of a multigene family                   |
| • Rich in cysteine confers extracellular stability | • Function annotated (PFAM domain)                 |
| • Predicted proteins start with a methionine.      | • If the sequence is present in any other organism |
| • Presence of a host nuclear target domain         |                                                    |
| • A high second extracellular prediction using     |                                                    |
| WoLF PSORT                                         |                                                    |

Once protein targets were identified using the bioinformatics pipelines described in the previous chapter, molecular biology techniques were used to validate protein target secretion. Initially a range of *S. sclerotiorum* isolates and *B. cinerea* isolates were screened using PCR to check for the presence or absence of the protein gene sequences. Gene expression levels of the predicted protein gene targets *in vitro* using RT-qPCR was examined. Previously published EST libraries were explored for any EST support for the protein targets as was the RNA sequencing data presented in Chapter 8. Finally this chapter reports the generation of Green Fluorescent Protein (GFP) tagged *S. sclerotiorum* transformants which enabled the observation of the tagged proteins to validate protein expression and observe protein localisation in the fungus.

Rothamsted Research does not hold the FERA licence required to transform isolates of *S. sclerotiorum.* For this reason, two travel studentships (The John Pickett Travel Fellowship and the Society for General Microbiology President's Fund) were secured so that the transformations could be carried out in the Jeffrey Rollins Laboratory (JRL) at the University of Florida, Gainesville over a period of 3 months. This research group specialises in *S. sclerotiorum* transformation protocols.

## **6.2 Experimental Procedures**

#### **6.2.1 Bioinformatics**

The total secretome or set of 1,060 *S. sclerotiorum* protein sequences generated in the first stage secretome analysis in Chapter 5 was used to find putative secreted protein detection targets for *S. sclerotiorum* specifically. These unique proteins were found using two methods.

## Method 1

Out of the 1,060 proteins in the unrefined predicted secretome, protein sequences with a cysteine number greater than 5, a WolFP Sort score of 18 or greater and no PFAM or other annotation were selected. The sequences were subjected to blast analysis using the NBCI nucleotide Blast query to search nucleotide and EST databases. Those results with any level of confidence lower than  $p < e^{-40}$  were removed. If there was any relation to other fungal species in the Blast result the sequence was disregarded from the final set.

# Method 2

To identify protein sequences found only in the *S. sclerotiorum* genome and not in the *B. cinerea* genome with a significant level of confidence, Dr. John Antoniw performed a Blast comparison of the *B. cinerea* and *S. sclerotiorum* genomes using transcript sequences. These sequences were used to generate DNA blast databases. The first search used the Blastn in Blast+ to search for *B.cinerea* sequences in the *S. sclerotiorum* database and collected all sequences with e values <= 10. The results with e values <= e-5 were extracted from the set. The gene IDs were sorted and unique IDs extracted. Comparing this with all *B. cinerea* gene IDs identified, the *S. sclerotiorum* transcripts with no hits in the *B. cinerea* transcript database were selected as unique genes to *S. sclerotiorum*. Out of this set of sequences, those found in the total secretome were extracted. This set of protein sequences were inspected and only those sequences with a cysteine number greater than 5, a Wolf P-Sort score of 18 or greater, no PFAM or other annotation were chosen. This set of genes was subjected to a Blastn analysis to find those sequences with no homologues in other fungal species.

# 6.2.2 GPI Anchors

GPI anchor proteins were predicted by big-PI (<u>http://mendel.imp.ac.at/gpi/cgi-bin/gpi pred fungi.cgi</u>) (Eisenhaber et al. 2004). From the set of GPI anchored proteins in the total *S. sclerotiorum*, those not found in the *B. cinerea* genome were selected for analysis.

## 6.2.3 Primer design used for PCR screening and RT-qPCR

Primers used to PCR screen different *S. sclerotiorum* and *B. cinerea* isolates for the presence of the predicted secreted protein targets were designed to be used for relative quantification of gene transcripts using RT-qPCR. Gene sequences were imported from the Broad *S. sclerotiorum* genome browser (www.broadinstitute.org) and primers designed in Vector NTI® (Life Technologies) to the following specifications; 20 bp in length with product sizes of approximately 150 bp, a TM between 56 and 58 °C , 45-50 % GC content and a 50 mM salt concentration (**Table 36**). Intron spanning primers were used to ensure introns were removed during reverse transcription. *S. sclerotiorum* actin was used as the gene to compare relative expression to during RT-qPCR analysis.

**Table 36:** Primer sets desgined for the amplification of unique S. sclerotiorum protein DNA sequences.

Primers to screen different *S. sclerotiorum* and *B. cinerea* isolates for the presence or absence of putative secreted protein sequences. Primers were also designed for the RT-qPCR analysis.

| Gene name            | Gene ID        | Primer | Primer sequences for PCR screening/ RT-<br>qPCR | PCR Product<br>length bp |
|----------------------|----------------|--------|-------------------------------------------------|--------------------------|
| SP1                  | SS1G_01003     | F      | CCTCCATCCTCATTCTTTCA                            | 150                      |
|                      |                | R      | GAACATCTAGTTGAGGAATACAGC                        |                          |
| SP2                  | SS1G_01749     | F      | TGACACGAGTTTTAAACTTTGC                          | 151                      |
|                      |                | R      | GATGTAGAGCATGTAGTAGGAACG                        |                          |
| SP3                  | SS1G_06412     | F      | GGAAACATCTTTCCTCTCACTACT                        | 150                      |
|                      |                | R      | CTAACTATCAGCTCGGAGTCTG                          |                          |
| SP 4                 | SS1G_00564     | F      | GCTTCTGCCTTCTAGCTTTG                            | 107                      |
|                      |                | R      | CGGAAGTCTTTGGATAAGCA                            |                          |
| SP 12                | SS1G_10452     | F      | CTTCGCAGTCACAACAATTC                            | 119                      |
|                      |                | R      | AGTAACTGCCGTGTTGAAGG                            |                          |
| GPi 1                | SS1G_03000     | F      | AGTCACTCTTCTTGCTGCCT                            | 153                      |
|                      |                | R      | CTTCCAGAGTAGGCGTTGAC                            |                          |
| GPi 2                | SS1G_04875     | F      | ATGATCTTCTCACGCTTGAC                            | 134                      |
|                      |                | R      | ATGGTGCTTTGAGAAGGTTC                            |                          |
| GPi 3                | SS1G_07678     | F      | GGTGGAGTTTCCAAGTTGAA                            | 104                      |
|                      |                | R      | AGAAGCGTTGCAAGAATTTG                            |                          |
| S. sclerotiorum      | ITS 4/5 region | F      | GCTGCTCTTCGGGGGCCTTGTATGC                       | 278                      |
| specific primer set  |                | R      | TGACATGGACTCAATACCAAGCTG                        |                          |
| Intron spanning gene | SS1G_01003     | F      | CATTCTGCTGTATTCCTCAACT                          | 253                      |
|                      |                | R      | CCTTAATTAAACCACGCACA                            |                          |
| Actin house-keeping  | SS1G_08733     | F      |                                                 | 154                      |
| gene (Freeman et al. |                | R      | CCCCAGCGTTCTACGTCT                              |                          |
| 2002)                |                |        | CATGTCAACACGAGCAATG                             |                          |

\* F: Forward primer. R: Reverse primer

## **DNA/ RNA extraction (See General Experimental Procedures)**

# **Polymerase Chain Reaction for isolate screening (See General Experimental Procedures)**

## 6.2.4 First Strand cDNA synthesis

S. sclerotiorum RNA was treated with DNase to remove DNA using the DNA-free<sup>TM</sup> Kit (Invitrogen, Life Technologies). DNA-free cDNA was synthesised using Superscript<sup>TM</sup> III Reverse Transcriptase (Invitrogen, Life technologies, Paisley, UK). 1  $\mu$ g of total RNA per sample was used for reverse transcription according to manufacturer's protocol. cDNA was checked for gDNA contamination using intron spanning primers using RedTaq PCR.

Quantitative RT-qPCRs were carried out using SYBR Green Jumpstart Taq Ready Mix (Sigma, MO, US). ROX was used as the reference dye. cDNA was diluted 10 x with RNA free water. Per reaction: 2.5  $\mu$ l of each primer (1.2  $\mu$ M), 10  $\mu$ l Readymix and 5  $\mu$ l diluted cDNA template or water were mixed per reaction tube. Reactions were carried out using the ABI 7500 real-time PCR system (Applied Biosystems, CA, US) with ABGENE 96 well plates. Three technical replicates per template were used as well as a non-template control per gene used. Cycling parameters include a 95 °C stage for 2 minutes, then 35 cycles of 95 °C for 30 seconds and 72 °C for 45 seconds. A dissociation step was included to check for secondary products. *S. sclerotiorum* actin gene (SS1G\_08733) was used as the house keeping gene to which relative gene expression was compared.

# 6.2.5 Generating GFP tagged protein targets

The GFP fusion construct, pBluntNAT-Odc2GFP, was sent from the Dr. Jeffrey Rollins laboratory (JRL), University of Florida to generate GFP fusion constructs with the protein sequences of interest (**Figure 52**). This construct was designed by a PhD student Xiaofei Liang at this laboratory and has successfully been used in the past to transform *S. sclerotiorum*. The GFP codon has been optimised with the GFP intron and contains the selection marker Nourseothricin for *S. sclerotiorum* transformation and Kanamycin for *E-coli* cell selection (Leroch et al. 2011). The genes of interest were under regulation of their own promoter.



**Figure 52**. The pBluntNAT-Odc2GFP construct generated at JRL. Restriction enzymes *Bam*HI and *Asc*I used to remove SS1G10796OxDc2Pro insert and then ligate the *S. sclerotiorum* protein of interest with the appropriate restriction sites. The ligated insert was designed without the gene stop codon sequence to allow continued transcription of the green fluorescent protein.

## 6.2.6 Transformation of competent cells with pBluntNAT-Odc2GFP vector:

3 µg of pBluntNAT-Odc2GFP construct was spotted onto the centre of a paper circle and sent from the Jeffrey Rollins laboratory, University of Florida. The paper was cut out and soaked in 300 µl sterile distilled water. After vigorous shaking, the solution was nanodropped with a concentration of 10 ng/ ul. 50 µl XL-Blue Competent cells (Agilent Technologies) were placed into to a 15 ml falcon tube using a pipette. The remaining cells were frozen at -80 °C. 0.85 µl β-mercaptoethanol (1.42 M) was added to the cells on ice. 2 µl of the plasmid was added to the cells (20 ng). The cell vector mixture was left on ice for 30 mins. The tube was then placed in a water bath for 42 °C for 45 seconds and then placed back on ice for 2 mins. 250 µl SOC was added to the mixture. The tube was incubated at 37°C for 1 hr, shaking 250 rpm. The cells were plated and streaked onto Yeast tryptone (YT) agar plates containing selective antibiotic Kanamycin (50 µg / ml).

The following day single clones were picked off the plate grown up overnight in 5ml LB medium containing Kanamycin. The cells were pelleted using a centrifuge and plasmid

minipreps made using QIAprep Spin Miniprep (Qiagen, Manchester UK) following the manufacturer's instructions. This process was repeated when constructs were re-ligated with the new template insert.

# 6.2.7 Restriction Digests6.2.7.1 Verification of construct

An *Eco*-R1 digest was performed to ensure that the correct vector had been transformed into the competent cells. Per 20  $\mu$ l digest reaction, 16.3  $\mu$ l sterile, deionized water, 2  $\mu$ l restriction enzyme 10 X buffer, 0.2  $\mu$ l Acetylated BSA (10  $\mu$ g/  $\mu$ l), 1  $\mu$ l of miniprep DNA (1  $\mu$ g/  $\mu$ l) and 0.5  $\mu$ l Restriction Enzyme *Eco*RI (10u/  $\mu$ l) (Promega R6011, Southampton, UK) were added to the tube. The solution was mixed gently by pipetting, and centrifuged for a few seconds in a microcentrifuge. The solution was incubated at 37 °C for 1– 4 hr. 1X Loading buffer was added to 10  $\mu$ l of digest product and run on a 1% agarose gel.

# 6.2.7.2 Restriction digest of construct template inserts

A double digest using *Bam*H1 and *Asc*1 (Fermentas, Thermo scientific<sup>TM</sup>, UK) was carried out on template inserts after DNA purification. Promega recommended the use of *Bam*HI buffer E with a 2-fold excess of the *Asc*I enzyme. Per 50 µl reaction ; 30 ng/ µl DNA, 4 µl buffer E, 0.4 µl BSA, 2 µl *Bam*HI enzyme, 3 µl *Asc*I enzyme and 20.6 µl sterile water was incubated at 37 °C for 2 h. Products were run on a 1% agarose gel and bands of appropriate size excised from the gel and purified using the Promega Wizard clean up. After digestion of the vector construct, there were two bands. The largest band (5584bp) was excised from the gel which was re-ligated with the new inserts.

# **6.2.8** Primer design for construct template insert

Geneious 5.5.6 software (Biomatters Ltd, New Zealand) was used to carry out primer design for the protein sequence insert (**Table 38**). A maximum of 1000 bp upstream of the gene was included in the template insert to encompass the gene's promoter where possible. A shorter length of base pairs was included if the upstream gene was reached. This was checked using the Broad *S.sclerotiorum* database. The amplified insert template included a *Bam*HI restriction site at the 5' end of the gene and an *AscI* restriction site at the 3' end (**Figure 53**). Care was taken in designing the *AscI* site to ensure an in frame fusion with the GFP coding

sequence. The stop codon was removed to prevent immature stopping of gene expression before the GFP is expressed. There were no additional *Bam*HI / *Asc*I restriction sites within the amplified gene as this will cause further restriction of the entire gene.



## Figure 53. Primer design of construct inserts.

The amplified region must incorporate a BamH1 restriction site before the promoter region, the upstream promoter region (max 1000bp), no gene stop codon and the Asc1 restriction site before the GFP reporter protein sequence. Extra base pairs were added into the design to keep sequence in frame with GFP fusion sequence.

# 6.2.9 Amplification of insert

PCR conditions using Redtaq (Sigma-Aldrich), high fidelity Phusion DNA polymerase (New England Biolabs, USA), or a Long PCR mix (Invitrogen) for larger sequences were optimised for each gene of interest. Previously used Redtaq PCR conditions were used to amplify inserts for SP1, SP4, GPi1, GPi2, GPi3 (**Table 37**). Phusion PCR system was used for SP3 (**Table 37**). Five microliter of the PCR product was run on 0.8% agarose gels to ensure that the correct single products had been amplified. If single bands were present, PCR product were directly purified using Promega Wizard clean up system by following the manufacturer's protocol. If other bands were present, the products were excised from gel first and then purified using the same system.

# 6.2.10 Ligation of the digested inserts and plasmid.

The Promega T4 DNA ligase protocol was followed to ligate the insert templates with the linearised construct. A 3:1 molar ratio of insert to vector was used.

**Table 37.** PCR conditions for the different polymerase systems used to amplify the sequences of interest.

| Gene IDS                   | Polymerase | Cycling conditions                                       |
|----------------------------|------------|----------------------------------------------------------|
|                            | system     |                                                          |
| SP1, SP4, GPi1, GPi2, GPi3 | RedTaq     | 95°C/ 2mins. 35 cycles: 95°C/30sec, 55°C /30 sec, 72°C/  |
|                            |            | 45secs. Final extension 72°C/ 5mins                      |
| SP3                        | Phusion    | 98°C/ 30secs. 30 cycles: 98°C/10sec, 55°C /30 sec, 72°C/ |
|                            |            | 30secs. Final extension 72°C/ 10mins                     |

#### **6.2.11 Methods for Fungal Transformation**

The following procedures were adopted from procedures used by the scientists at the Jeffrey Rollins Laboratory (JRL), Department of Plant pathology, University of Florida (Rollins 2003).

# **6.2.11.1 Protoplast production**

S. sclerotiorum 1980 isolate was grown and maintained on PDA Petri dishes. A glass Petri dish containing 25 ml of PDB was inoculated with hyphae from the actively growing culture. The hyphae were harvested after 3-5 days once the plate was covered but before sclerotia initials were observed. The hyphal mass was washed with sterile water and 1x protoplast buffer (0.8 M Magnesium sulphate, 0. 2 M Sodium citrate, pH 5.5) over a funnel lined with sterile cheesecloth. The mycelium was then chopped up in sterile conditions and transferred to a 125 ml Erlenmyer flask. 200 mg Glucanex was dissolved in 3 ml Novozyme buffer (1 M Sorbitol, 50 mM Sodium citrate, pH 5.8) and sterile filtered using a 0.45 µm filter. This was added to 17 ml protoplast buffer and poured over the mycelium. The flask was incubated at 28 °C while being shaken continuously for 3 hours. The protoplasts were separated from the residual hyphae by filtering through autoclaved nylon mesh over a sterile 125 ml flask. 30 ml of 0.6 M KCl was poured over the protoplasts. The protoplasts were centrifuged in 50 ml disposable conical tubes at 3000 xg (AB50.10 5000 rpm) at 4 °C for 10 min. The protoplasts were washed with 10 ml 2x STC and centrifuged as above. The pellet was suspended in 800 µl 1x STC (1 M Sorbitol, 50 mM Tris, 50 mM Calcium chloride, pH 8) and the protoplasts counted. The concentration of protoplasts was adjusted to  $1 \times 10^8$  / ml and kept on ice. 12.5 µl DMSO, 62.5 µl Heparin (5 mg/ ml in STC) and 250 µl 40 % PEG (mix 2

parts 60 % PEG in water and 1 part KTC; 1.8 M KCl , 150 mM CaCl<sub>2</sub>,150 mM Tris, pH 8,) were added to 1 ml protoplasts. Protoplasts were routinely frozen at -80°C.

# 6.2.11.2 Transformation of S.sclerotiorum protoplasts

Constructs made at Rothamsted Research, were transformed back into competent cells (cell stock previously made in JRL) along with a control constitutive GFP expressing construct, p-BluntNAT-OliC-GFP (GFP) (**Figure 54**). Filter paper discs containing the transported constructs were cut up and placed in 200  $\mu$ l sterile water. 10  $\mu$ l was added to 100  $\mu$ l cells and incubated on ice for 30 mins. The cells were then incubated for 1 hr at 37 °C in LB liquid. The cell mixture was plated evenly onto LB agar plates containing 400  $\mu$ g/ ml Nourseothricin selection agent. Visible colonies were picked off the plates the following day and grown up in 20 ml LB medium. Plasmid preps of the cells were made. PCR was used to check whether colonies contained the inserted gene using original primers used to make the insert (**Table 38**).



Figure 54. The pBluntNAT-GFP construct.

Used as a constitutive GFP control during transformation of *S. sclerotiorum*. Construct generated by Dr. Matthias Hahn, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany (Leroch et al. 2011).

**Table 38:** Primer sets designed to amplify construct inserts of putative secreted proteins.

The forward primers include a BamH1 restriction site (purple) and the first 21 bases of the upstream promoter (blue). Reverse primers include the reverse complement of the end of the secreted protein sequence, without the stop codon but include an AscI restriction site (purple) which links to the GFP insert (blue). In both primers, 3 extra bases were added to prevent frame shifts (red).

| Name | Position on                           | Position of                          | Distance<br>from<br>previous<br>gene | Forward primer with BamH1 site<br>(first 21 bp with restriction site) | Reverse primer with AscI site<br>(reverse complement without the<br>stop codon in the sequences to<br>keep it in frame!) | upstream<br>promoter<br>bp             | Length<br>of PCR                |
|------|---------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------|
| SP1  | Supercontig 1:<br>2579461-<br>2579910 | SS1G_01002.<br>3, ends at<br>2576438 | 3023                                 | CCAGGATCCAAATGGCTCTGAATCG<br>TAAAA                                    | CCGGGCGCGCCATGTTGAACTGCCT<br>CACT                                                                                        | 1000                                   | 1470                            |
| SP2  | Supercontig 2:<br>1757253-<br>1758640 | SS1G_01748,<br>ends at<br>1755526    | 1727                                 | CCAGGATCCTATATAATTAAAATCA<br>AAATC                                    | CCGGGCGCGCCCATCCACCACGCTA<br>CCAAAGT                                                                                     | 1000                                   | 2408                            |
| SP3  | Supercontig 8:<br>245616-<br>246633   | SS1G_06411,<br>ends at<br>243865     | 1751                                 | CCAGGATCCATGATGTTCAAGGAAA<br>CATCT                                    | CCGGGCGCGCCATCGACTCTGTCAC<br>TAAGAAT                                                                                     | 1000                                   | 2038                            |
| SP4  | Supercontig 1:<br>1470162-<br>1471188 | SS1G_00563,<br>ends at<br>1469714    | 448                                  | CCAGGATCCAGCTGTGATACCTACA<br>GCTTCAAG                                 | CCGGGCGCGCCTCTACCTGGGAATG<br>GAACTTT                                                                                     | 300                                    | 1347                            |
| Gpi1 | Supercontig 3:<br>2333058-<br>2333486 | SS1G_02999.<br>3 ends at<br>2329017  | 4041                                 | CCAGGATCCGGCATGCCCCGTTTGT<br>ATTTA                                    | CCGGGCGCGCCGCATTGAACAGAG<br>ACTGAA                                                                                       | 1000                                   | 1449                            |
| Gpi2 | Supercontig 6:<br>123166-<br>123596   | SS1T_04874<br>ends at<br>121890      | 1276                                 | CCAGGATCCAGCGGCAGGTCAACA<br>TACA                                      | CCGGGCGCGCCCAAAAACATCAAA<br>CCCAAAC                                                                                      | 1000                                   | 1451                            |
| Gpi3 | Supercontig<br>10:432214-<br>432589   | SS1T_07677<br>ends at<br>431327      | 887                                  | CCAGGATCCGCTGGTAGATAAGCTG<br>ATAA                                     | CCGGGCGCGCCTATAAGAAGCGTTG<br>CAAG                                                                                        | 700                                    | 1096                            |
| GFP  | Based on HQ42                         | 3138.1 GFP seque                     | ences                                | GTTGAAGGGCATCGATTTCAAGGAA                                             | TTCCTTGAAATCGATGCCCTTCAAC                                                                                                | Only revers<br>used to<br>sequence con | e primer<br>reverse<br>nstructs |

# 6.2.11.2 Continuation of transformation of S.sclerotiorum protoplasts

5 x  $10^6$  protoplasts (50 µl) in STC were added to each chilled DNA (1-5 µg) suspension and incubated on ice for 30 min. 1 ml of PEG solution was added to the protoplast-DNA suspension gentle mixed. The tubes were incubated at room temperature for 20 min. Each suspension was evenly spread on the surface of a RM bottom agar plate (Modified Fries Medium / L: 239.6 g Sucrose, 5 g NaNO<sub>3</sub>, 1 g KH<sub>2</sub>PO<sub>4</sub>, 0.51 g MgSO<sub>4</sub>.7H<sub>2</sub>O, 0.5 g NaCl, 0.065 g CaCl<sub>2</sub> 2H<sub>2</sub>O, 15 g/ L Agar). The suspension was spread by pipetting the solution to the center of the plate and tilting the plate in a circular fashion. Petri dishes were incubated overnight at room temperature. The following day the plates were overlayed with 5 ml of RM top agar (RM agar adjusted with 8 g/ L Agar) containing 400 ug / ml Nourseothricin. Regenerating colonies were observed after 5 days. Plates were observed under GFP fluorescence filter under a Leica compound microscope and individual colonies showing evidence of fluorescence were picked and transferred to 3 compartmental Petri dishes containing PDA with 400 ug/ ml Nourseothricin. The growing hyphal tips were cut under a dissecting microscope and transferred to a new compartment on the petri dish at least 3 times to purify the genetic material. This also enabled selection of stable lines or a culture that had more uniform florescence.

## 6.2.11.3 DNA extraction for southern and PCR

Cultures of transformants (SP1B/E, SP4B/D, Gpi2a, GFP1/2) were grown on cellophane discs over PDA until it covered the plate. Fungal tissue was collected, lyophilised, frozen and ground up into a fine powder using a bead beater. 100  $\mu$ l of powder by volume was added to a 1.5 ml microfuge tube with 1 ml extraction buffer (50 mM EDTA, 0.2 % SDS) and vortexed. Tubes were incubated for 15 min at 68 °C and vortexed. Tubes were centrifuged for 5 min at 20'000 x g at room temperature. The supernatant was transferred to a clean 1.5 ml tube containing 60  $\mu$ l KAC buffer (60 ml 5 M potassium acetate, 11.5 ml glacial acetic acid, 28.5 ml distilled water).

Tubes were inverted tube 4-6 times and placed on ice for 5 min. Tubes were spun at room temperature for 5 min at 20 000 x g. The supernatant was transferred to a 2 ml round bottom microfuge tube containing 1.2 ml isopropanol and mixed vigorously. The tubes were centrifuged at room temperature for 5 min at 16 000 x g and the liquid decanted. Tubes were drained by inverting on paper towel and transferred to a vented hood for 15

min. 400 µl TE containing 10 µl RNase to 1ml TE was added to each tube and incubated for 30 min at 37 °C. Tubes were then placed on a bench top rotisserie (Labquake, Thermo Scientific<sup>TM</sup>, USA) for 30 min. 20 µl 10 M LiCl to was added to each tube and mixed. 1 ml 95 % ethanol was added to each tube and then spun at 16 000 xg for 5 min. Liquid was removed and the pellet washed with 1ml 70 % ethanol. The tubes were centrifuged for 2 min to secure the pellet in tubes dried as previously described. The pellets were dissolved in 100 µl TE and incubated for 15 min at 55 °C. Tubes were placed on the rotisserie overnight for thorough mixing. 2 µl of sample with loading dye was run on 0.8 % 0.5 x TBE agarose gel containing ethidium bromide (EtBr) to estimate concentration. DNA was also quantified using Nanodrop 1000 spectrophotometer.

## 6.2.11.4 Polymerase chain reaction for verification of gene integration

To verify the integration of the gene of interest, PCR assays were completed using the original primers designed to amplify the template insert as well as primers designed to amplify a small section of the GFP tag, (GFP F; ATCTTGGTCGAACTCGATGG, GFP R: AGGCAATTTACCTGTGGTGC). The PCR was carried out in a 25  $\mu$ l reaction containing 10 ng of DNA, 10  $\mu$ M of each primer, 2.5  $\mu$ l PCR buffer (Promega), 2  $\mu$ l MgCl<sub>2</sub>, 0.5  $\mu$ l dNTPs, 0.2  $\mu$ l Taq polymerase (NEB). The thermocycler parameters; 4 min at 94 °C, 30 cycles of 1 min at 94 °C, 1min at 55 °C, 1 min at 72 °C and a final extension step of 7min at 72 °C. 2  $\mu$ l of sample with loading dye was run on 0.8 % 0.5x TBE agarose gel containing ethidium bromide (EtBr).

## 6.2.11.5 Southern Blot

## 6.2.11.5.1 DNA digestion

Transformant DNA (SP1B, SP1E, SP4B, SP4D, Gpi2a, GFP1, GFP2 and a control untransformed strain UF-70 were digested using *Eco*RI enzyme and Buffer 2 (NEB, USA) system. The enzyme cut the construct in 4 places resulting in band sizes; 949 bp, 1271 bp, 1200 bp and 3533 bp. Per 50  $\mu$ l digest reaction; 5  $\mu$ l buffer 2, 2  $\mu$ l *Eco*RI enzyme and 10  $\mu$ g DNA were mixed in a 1.5 ml tube. Samples were incubated at 37 °C overnight. The enzyme was deactivated by heating at 65 °C for 15 min. Digestion products were separated overnight by electrophoresis on a 0.8 % gel containing EtBr.

#### 6.2.11.5.2 Probe synthesis

A probe was designed to hybridise with approximately 292 bp of the GFP tag for all of transformants. Primers (GFP Southern F: TTCCAATCTTGGTCGAACTC, GFP southern R: CGAGTCTTATAATTTCCGTC) were designed to amplify from 50 to 380 bp of the GFP insert in order to generate a probe using DIG labelling PCR. Genomic DNA isolated from the original SP1 plasmid prep used to transform *S. sclerotiorum* protoplasts was used as a template during PCR. For a single 25  $\mu$ l probe reaction, 2.5  $\mu$ l buffer, 1.5  $\mu$ l 10 x MgCl<sub>2</sub>, 1 $\mu$ l DIG labelling PCR Mix (Roche, Germany), 0.3  $\mu$ l 10 mM dNTPs, 0.15  $\mu$ l Taq (NEB, USA), 2  $\mu$ l of each 10 mM primer, 1  $\mu$ l DNA template and 10.45  $\mu$ l water were added to PCR tubes. PCR conditions: 94 °C for 4 mins, 30 cycles of 94 °C for 1 min, 55 °C for 1 min and 72 °C for 1 min. Final extension step at 72 °C for 7 mins.

# 6.2.11.5.3 Southern blot and hybridisation

The gel containing the digested products was soaked in 0.25 N HCL for 10 mins while gently shaking. HCL was removed and the gel soaked for 30 min in Denaturing buffer (0.4 N NaOH, 0.8 M NaCl). After removal of the buffer, the gel was soaked in Neutralisation buffer (1.5 M NaCl, 0.5 M Tris-HCl, pH 7.6) for 30mins.

A 4 cm pile of paper towels were stacked up and overlayed with several sheets of 3 mm filter paper the same size as the gel. A nylon membrane (Roche, Germany), cut to the size of the gel was placed over the upside of the gel. The membrane and gel were placed over the filter paper. Another stack of five gel sized 3 mm filter papers were stacked over the gel. A filter paper bridge was placed over the gel paper stack linking it to a tray containing transfer solution (20X SPPE: 3.6 M NaCl, 0.2 M NaH<sub>2</sub>PO4.H<sub>2</sub>0, 0.02 M EDTA). The stack was left overnight.

The membrane was rinsed briefly with 2X SSPE. A prehybridization buffer (6 X SSPE, 1% skim milk, 0.5% SDS) was dissolved in water at 65 °C and the membrane washed in prehybridization buffer for at least 2 hours at 65 °C. 500-600 ng of probe was added to the Hybridization buffer and boiled for 20 mins. The membrane was then washed in hybridization buffer (6 X SSPE, 1% blocking reagent, 0.5% SDS) at 65 °C in a heated rotisserie.

# 6.2.11.5.4 Washing and detection

The membrane was then washed 3 times for 20 mins at 65 °C in a solution containing 2X SSPE, 0.1 % SDS and 0.1 % sodium pyrophosphate in a heated rotisserie. The membrane was washed in a 100 ml rotisserie glass tube. The membrane was then further washed in a solution of 0.2X SSPE, 0.1 % SDS and 0.1 % sodium pyrophosphate, for 20 min, 3 times at  $65^{\circ}$ C.

# 6.2.11.5.5 Chemiluminescent detection film development

The membrane blot was equilibrated for 5 mins in 30 ml Buffer 1 (0.1 M Tris, 0.15 M NaCl). It was then incubated in 30 ml buffer 2 (Skim milk and Buffer1 which had been previously heated to 75 °C), for 1 hr. The blot was then incubated for 30 min in 20 ml buffer 2 containing Anti-Digoxingenin-AP Ab 1:20,000 to a final concentration of 37.5 mU /ml. The blot was then washed in 30 ml Buffer 1 for 15 mins four times to remove traces of antibodies. The blot was then equilibrated for 5 mins in 20 ml buffer 3 (0.1 M Tris, 0.1 M NaCl, 50 mM MgCl<sub>2</sub>).

 $6 \ \mu l$  of CSPD was added to 10 ml of Buffer 3.  $500 \ \mu l$  of Buffer 3 was pipetted into the centre of cling film placed on a bench top. The membrane was placed DNA side down onto the buffer solution. The membrane was covered to prevent it drying out and then placed in a freezer bag. The bag was sealed using a heat sealer and then incubated. The membrane was then exposed to an x-ray film (Kodak) overnight in a light tight box.

## 6.2.11.5.6 Film development

The film was developed in a dark room using a safe light. The film was washed in trays containing development solution for 10 secs, then in Stop solution for 1 min and then in Fixing solution for 1 min. The film was then rinsed in running water and hung up to dry.

## 6.2.12 GFP fluorescence under different environmental growth conditions

The successfully tipped transformants were grown under a range of conditions to determine whether the protein expression of interest was induced *in planta*, *in vitro* or was constitutive. The transformants were kept under Nourseothricin selection during the media growth tests. They could not be kept under selection during the onion infection assay.

# 6.2.12.1 Solid growth

Transformant agar plugs were used to inoculate a variety of media. Plugs were grown on PDA plates (30 g/ L) on the agar surface and on top of sterile cellophane discs. Transformant agar plugs were grown on water agar plates and water agar plates overlayed with lily pollen (*Lilium candidum*). Plates were observed using a GFP fluorescent filter on a Leica compound microscope on a daily basis over a period of 20 days.

# 6.2.12.2 Liquid medium

Transformant agar plugs were transferred to flasks containing 50ml of YP sucrose liquid medium (/L; 4 g yeast extract , 1 g  $K_2$ HPO<sub>4</sub>, 0.5 g Mg<sub>2</sub>SO<sub>4</sub>, 15 g sucrose, pH to 6.5) and 50 ml PDB liquid medium and incubated at room temperature, unshaken. Filtered mycelium was observed using a GFP fluorescent filter on a Leica compound microscope at day 4 and 7 of incubation.

# 6.2.12.3 In planta infection

Yellow onions were cut into segments. Three single onion segments were inoculated with an agar plug per transformant (**Figure 55**). The segments were misted with sterile water and placed in a sealed container to increase humidity. After 24 hr the top epidermis layer of infected onion was peeled off and placed on a microscopy slide for observation using GFP fluorescent filter on a Leica compound microscope.



# Figure 55. Onion infection assay.

Three onion segments inoculated with agar plugs per transformant. Segments incubated in a misted box overnight at 22 °C. The top epidermal observed under green fluorescence filter.

# **6.3 Results**

The initial gene search for unique proteins targets for this study was performed before the multispecies proteome comparison was completed (Chapter 5). As a result, some protein targets originally chosen for analysis, were found at a later date to have homologues protein sequences in other fungi. This is principally a result of more genomic information being added to the public domain over the past three years of this study. The amount of annotation information which is added to the NCBI is continually growing.

## **6.3.1 Bioinformatics**

## 6.3.1.1 Gene selection method 1

Out of the 1,061 protein sequences in the total secretome, 344 protein sequences were selected which have 5 or more cysteine residues in the mature protein. From this set 247 proteins have a Wolf-P-Sort score of 18 or more. Eight of these sequences contain no PFAM domain or other annotation. These 8 sequences were subject to a blast analysis to find those sequences with no homology with any other fungal species in the NCBI nucleotide and EST databases. From this group three sequences (**Table 39** 

Table 39) appear to be unique to S. sclerotiorum.

| Gene<br>name | Gene ID    | Mature length of protein | WolF-P<br>SORT<br>score | No.of<br>cysteines | E-value | Organism with sequence<br>similarity (top hit)<br>NCBI Blastn |
|--------------|------------|--------------------------|-------------------------|--------------------|---------|---------------------------------------------------------------|
| SP1          | SS1G_01003 | 89                       | 25                      | 8                  | 0.38    | Amphidinium carterae                                          |
| SP2          | SS1G_01749 | 401                      | 20                      | 15                 | 0.46    | Coffea arabica                                                |
| SP3          | SS1G_06412 | 237                      | 18                      | 7                  | 0.95    | Torpedo californica                                           |

Table 39. Three sequences unique to S. sclerotiorum.

## 6.3.1.2 Gene selection method 2

The *S. sclerotiorum* genome was compared to the *B.cinerea* genome. A total of 4,722 gene sequences appear to be found in the *S. sclerotiorum* genome but not in the *B. cinerea*. Of these sequences 39 were found in the *S. sclerotiorum* refined secretome. These sequences have a Wolf P-Sort of 18 or greater and no transmembrane domains. Fourteen of these sequences contain six or more cysteines. Out of this set, five of these have no annotation and have no homology with any other proteins found in other fungi (**Table 40**).

Of these five, three of the sequences were found in the gene selection Method 1 and taken forward for further screening to find those sequences with no homology with any other fungal species in the NCBI nucleotide and EST databases

 Table 40: Five sequences unique to S. sclerotiorum found that are not in the B.cinerea genome.

| Gene names | Gene ID    | Mature    | WolF-P | No. of    | E-value | Organism with sequence |
|------------|------------|-----------|--------|-----------|---------|------------------------|
|            |            | length of | SORT   | cysteines |         | similarity (top hit)   |
|            |            | protein   | score  |           |         | NCBI Blastn            |
| SP1        | SS1G_01003 | 89        | 25     | 8         | 0.38    | Amphidinium carterae   |
| SP2        | SS1G_01749 | 401       | 20     | 15        | 0.46    | Coffea arabica         |
| SP3        | SS1G_06412 | 237       | 18     | 7         | 0.95    | Torpedo californica    |
| SP 4       | SS1G_00564 | 283       | 27     | 12        | 4.2     | Mus musculus           |
| SP 12      | SS1G_10452 | 174       | 26     | 8         | 0.75    | Arabidopsis thaliana   |

## 6.3.1.3 GPI Anchor analysis

Sequences from the total *S. sclerotiorum* secretome containing a Glycosyl Phosphatidyl Inositol (GPI) anchor were investigated as these proteins may not be fully secreted but remain tethered to the exterior of a hyphal cell. These sequences usually do not possess a transmembrane domain and no cytoplasmic tail so that although they are not fully secreted but are always tethered to the extracellular side of the plasma membrane (Brown and Waneck 1992). If these proteins are expressed early enough they could be used as a suitable detection target. Out of the 1061 sequences in the unrefined secretome, 75 contain a GPi Anchor. Of these sequences, three had no homology in the *B. cinerea* genome. Only SS1G\_03000 was found in the refined *S. sclerotiorum* secretome. The other two proteins had a Wolf P-Sort score of 16 which is a prediction that that these proteins are to be secreted or be anchored in the plasma membrane. Blastn and Blastp analysis revealed that none of the sequences had any homology with any sequences in other fungal species. All three proteins were taken forward for further analysis including PCR and gene expression testing (**Table 41**).

**Table 41:** S. sclerotiorum sequences containing GPI anchor motifs with no homologues in the B. cinerea genome.

| Gene<br>name | Gene ID    | GPI<br>Anchor | Protein length | WoLFP<br>SORT | No.<br>Cysteine | TM<br>domain | E-<br>value | Top hit)<br>NCBI Blastn   |
|--------------|------------|---------------|----------------|---------------|-----------------|--------------|-------------|---------------------------|
| Gpi1         | SS1G_03000 | Y             | 107            | extr=25       | 6               | 0            | 0.45        | Leptosphaeria<br>maculans |
| Gpi2         | SS1G_04875 | Y             | 89             | plas=16       | 4               | 1            | 0.17        | Aspergillus<br>fumigatus  |
| Gpi3         | SS1G_07678 | Y             | 32             | plas=10       | 1               | 1            | 0.25        | Ehrlichia<br>chaffeensis  |

## 6.3.2 Screening of isolates

The presence/absence of the selected gene sequences were screened across a variety of *S. sclerotiorum* isolates using PCR (See General Experimental Procedures for isolate list). The majority of genes were PCR screened across at least 12 isolates of mixed origins (English, Polish and American). The gene sequences were also screened across five *B.cinerea* isolates to check there is no sequence present in this related species. If the PCR results were negative the first screen they were re-screened a second time to confirm the negative result. A control primer set was used which amplifies only *S. sclerotiorum* DNA. These primers are designed based on the fungal Internal Transcribed Sequences (ITS) 4/5 region of *S. sclerotiorum* (Freeman et al. 2002). This region of the fungal genome is highly variable and surrounds the 5.8 S-coding sequence between the Small SubUnitcoding sequence (SSU) and the Large SubUnit-coding sequence (LSU) of the ribosomal operon (White et al. 1990).

Only sequences present in more than 80% of the *S. sclerotiorum* isolates tested and not in the *B. cinerea* isolates were taken forward gene expression analysis (**Table 42**). SP12 was not taken forward after screening because the sequence was only detected in 75% of the isolates tested. Most of the sequences were found in another *Sclerotinia* species, *S. trifoliorum*. These sequences were still used for the analysis as both *Sclerotina* species cause a similar in many of the same host plants although *S. trifoliorum* is mainly a problematic disease on legumes, (perennial clover and alfalfa) in North Temperate regions (Lithourgidis et al. 2007). It would still be useful to be able to have a detection system for both.

 Table 42. Set of putative S. sclerotiorum detection targets.

The final group of proteins taken forward for PCR screening to look for presence in at least 12 *S. sclerotiorum* isolates and absence in 5 isolates of *B. cinerea*.

| Gene IDS | WoLF-<br>PSORT<br>score* | No.of<br>cysteines | Present<br>sclerotion<br>isolates | in S.<br>rum | Present in<br>B. cinerea<br>(5 isolates) | Present in S.<br>trifoliorum<br>R316 isolate |
|----------|--------------------------|--------------------|-----------------------------------|--------------|------------------------------------------|----------------------------------------------|
| SP1      | extr=25                  | 8                  | 12/13                             | 94%          | No                                       | Yes                                          |
| SP2      | extr=20                  | 15                 | 12/13                             | 100%         | No                                       | Yes                                          |
| SP3      | extr=18                  | 7                  | 13/13                             | 97%          | No                                       | Yes                                          |
| SP 4     | extr=27                  | 12                 | 16/16                             | 100%         | No                                       | Yes                                          |
| SP 12    | extr=26                  | 8                  | 12/16                             | 75%          | No                                       | No                                           |
| GPi 1    | extr=25                  | 6                  | 16/17                             | 94%          | No                                       | Yes                                          |
| GPi 2    | plas=16                  | 4                  | 16/19                             | 84%          | No                                       | Yes                                          |
| GPi 3    | plas=10                  | 1                  | 12/12                             | 100%         | No                                       | Yes                                          |

\*WoLF-P SORT score is the prediction of where that protein sequence is predicted to localise with or out of the cell. extr ; extracellular localisation of the protein. plas = protein localise in the plasma membrane.

## 6.3.3 EST support and relative gene expression of unique putative secreted proteins.

The expression of the putative secreted proteins was investigated using RT-qPCR. The expression of the selected genes was investigated *in vitro*. Ascospores were grown in 1 ml PDB medium and the mycelium harvested after five days of incubation. Two biological replications were used in the experiment. The expression of the selected secreted proteins was normalised against the S.sclerotiorum actin gene (SS1G\_08733). At this particular time point, there was minimal expression of SP1, SP2, SP3, GPi1 and Gpi2. SP4 and Gpi3 had the highest relative expression (Figure 56). Although SP3 (SS1G\_06412) did not have high relative expression in this experiment, this gene had 96 EST counts in the developing apothecia EST library (G787) downloaded from the Broad Sclerotinia sclerotiorum genome. This gene probably requires fungal material for RNA extraction to be collected at a different developmental stage, when the apothecia develop from sclerotia rather than during hyphal growth. There was no EST support for the other genes of interest. These genes may also require different environmental stimuli or developmental conditions to be expressed. It is for this reason that it was decided to GFP tag the proteins of interest to find out when the proteins were expressed, if at all, instead of doing many more RT-qPCRs which would have become very costly.



Figure 56. The relative quantification of putative secreted proteins.

RNA collected after five days of incubation after spore germination in liquid media. Transcripts normalised against actin .

# 6.3.4 RNA sequencing expression

The eight genes of interest were assessed for expression in the five libraries submitted for RNA sequencing (see Chapter 7 for further information on methods and how sequencing was performed). The Fragments Per Kilobase of transcript per Million mapped reads (FPKM) for the selected genes was calculated for each of the libraries sequences. There was extremely low FPKM values and this suggests that in these libraries there was nearly no expression of these genes (**Table 43**).

| FPKM** values |            |          |          |          |          |          |  |  |
|---------------|------------|----------|----------|----------|----------|----------|--|--|
| RTqPCR        | Gene ID    | WT T0*   | WT T1*   | WT T2*   | OAH      | OAH      |  |  |
| Gene ID       |            |          |          |          | T0*      | T1*      |  |  |
| SP1           | SS1G_01003 | 0.052853 | 0.336168 | 0.130108 | 0.712253 | 0.336168 |  |  |
| SP2           | SS1G_01749 | 0        | 0        | 0.085446 | 0        | 0        |  |  |
| SP3           | SS1G_06412 | 0        | 0        | 0.565262 | 0.110515 | 0        |  |  |
| SP 4          | SS1G_00564 | 0        | 0        | 0        | 0        | 0        |  |  |
| SP 12         | SS1G_10452 | 0.963025 | 0.510434 | 2.76577  | 0        | 0.510434 |  |  |
| GPi 1         | SS1G_03000 | 0        | 0        | 0        | 0        | 0        |  |  |
| GPi 2         | SS1G_04875 | 0        | 0        | 0        | 0        | 0        |  |  |
| GPi 3         | SS1G_07678 | 0.098281 | 0.156277 | 0        | 0        | 0.156277 |  |  |

Table 43. The FPKM values for the 8 putative secreted protein gene sequences.

# \* Sequenced library conditions:

WT T0: Wild type *S. sclerotiorum* grown on PDA and cellophane disc. Mycelium was taken from expanding edge of plate.

WT T1: Arabidopsis leaves infected with Wild type S. sclerotiorum, collected at 12hr PI.

WT T2: Arabidopsis leaves infected with Wild type S. sclerotiorum, collected at 24hr PI.

OAH T0: Oxalic acid deficient mutant grown on PDA + cellophane disc. Mycelium was taken from expanding edge.

OAH T1: Arabidopsis leaves infected with Oxalic acid deficient mutant, collected at 24hr PI.

\*\*FPKM: Fragments Per Kilobase of transcript per Million mapped reads
#### **6.3.5 GFP transformation: construct development**

Attempts were made to make GFP fused constructs for all seven putative secreted proteins at Rothamsted Research. However due to time constraints only three constructs (SP1, SP4 and Gpi2) were successfully generated to be later transformed at the JRL. These three constructs were sequenced by Eurofins MWG Operon (UK), to ensure the fusion junctions of the insert and the GFP were accurate and no frame shifts had occurred during insert amplification (**Figure 57**)

#### 6.3.6 S. sclerotiorum transformation

*S. sclerotiorum* isolate UF70 (the original WT 1980 strain sequenced by the Broad Institute) was successfully transformed with three constructs separately. After successive rounds of hyphal tipping to purify the genetic material, two stable transformant strains (which continued growing after subsequent hyphal tipping) were isolated for the SP1:GFP constructs (SP1b, SP1e), two stable transformant strains were isolated for SP4:GFP (SP4b, SP4d) and one stable line was generated for Gpi2:GFP (Gpi2a). With each separate *S. sclerotiorum* transformation, the constitutive GFP expressing construct (BluntNAT-OliC-GFP) was transformed as a positive control. Two of these transformations were stable (GFP1, GFP2) and enabled qualitative comparison of GFP fluorescence in the other transformants.

PCR was used to amplify the protein sequence insert and the GFP insert to ensure the presence of the full fusion construct (**Figure 58**). The original construct insert primers and GFP primers were used to amplify the two regions of the insert (**Table 38**). These confirmed that the amplified insert was present in the transformant DNA.



## Figure 57. Sequencing of the final re-ligated pBluntNAT-Odc2GFP construct.

Construct contained inserted protein sequences fused to GFP reporter sequence for transformation. Forward sequencing of the upstream promoter starts with the *Bam*HI restriction site. Reverse sequencing across the GFP protein contains some of the GFP protein sequence, the *Asc*I restriction and the end of the secreted protein sequence. The breaks between the end of the insert and the GFP reporter are the extra base pairs added into the sequences to keep it in-frame.



Figure 58. PCR verification of transformed cultures.

a) Four different SP1 transformants isolated during hyphal tipping. 1470 bp band in SP1b and SP1e. b) Four SP4 transformants isolated during hyphal tipping 1347 bp band seen in all four transformants. SP4b and SP4d used in further characterisation tests. c) Five GPI2 transformants isolated after hyphal tipping. 1451 bp band seen in GPI2a, c and d. GPI2a used in further characterisation tests. d) GFP insert amplified in all transformants for further testing.

#### 6.3.7 Southern Blot

Southern blot hybridization was used to screen integration events in all transformants used in further growth characterisation tests (**Figure 59**). The strongest band at roughly 300 bp indicates that there was a successful integration event in 6 of the 7 transformants as there is a definite band at in lanes 1 to 6. There was no band present in the control untransformed control fungal strain as expected. The GFP1 transformant had the appropriate band however the band in GFP2 is very faint suggesting that the transformation event may not have worked efficiently and so was not used in growth tests. The other banding pattern in the background is a result of the partial digests and overexposure of the photographic paper.



100bp ladder SP1b SP1e SP4b SP4dGpi2a GFP1 GFP2

Figure 59. Southern blot of the S. sclerotiorum transformants generated.

The hybridisation probe was designed to bind to 300 bp of the GFP insert for all the transformants. Transformants SP1b, SP1e, SP4b, SP4d, Gpi2a and GFP1 have been successfully transformed. GFP2 constitutive expressing strain does not have a clear band of this size so transformation may not have been efficient

#### 6.3.8 GFP fluorescence of secreted proteins under different growth conditions.

All transformants were grown under different conditions to assess what environmental conditions or developmental stages induce putative protein expression and secretion. The transformants where kept under Nourseothricin selection when possible, except during the onion infection assay. All transformed strains displayed normal growth compared to the untransformed wild type (WT) strain when grown on PDA (Figure 60). All transformants produced sclerotia after 12 days of growth on the plates comparable to the WT strain. The only differences in sclerotia size were seen in SP1e, SP4b, SP4d and Gpi2a which had smaller sclerotia compared with the WT sclerotia.

When strains were grown on cellophane discs on top of PDA (Figure 61), a strong GFP signal was observed in the constitutive GFP1 transformant and a lower GFP signal in SP1b and SP1e transformants. SP4 and GPi2 transformants had no GFP fluorescence. The SP1 GFP fluorescence was not uniformly observed in all hyphae as with the constitutive GFP1 strain. Under the microscope the fluorescence appeared to localise more to the growing edge of the colony, although sometimes the signal would appear randomly in a localised section of a single hyphae.

When transformants were grown in flasks of YP sucrose broth at room temperature, without shaking, only the GFP1, SP1b and SP1e strains grew (**Figure 62**). Hyphae was filtered from the liquid, thinned and observed under a GFP filter. SP1b and SP1e had strong GFP signals, comparative to the constitutive expressing strain GFP1 at four and seven days incubation suggesting this protein can be induced to express for a prolonged period of hyphal growth. The GFP fluorescence was more uniformly spread across the hyphae unlike the GFP signals observed for the same transformants grown on PDA plates. Fluorescence in the SP1 transformants appeared slightly blurred compared to GFP1 fluorescence which suggests that this protein was extracellulary secreted rather than maintained in the hyphal cells. Submerging this transformant in a liquid growth medium may be the trigger for this protein to be switched on and secretion.

When transformants were grown on water agar plates the transformants appeared to grow as the wild type; an expanding colony with less hyphal biomass. GFP fluorescence was only observed in the constitutive GFP1 transformant (**Figure 63**). Lilly pollen was spread over water agar and the transformants grown on the plates. Lilly pollen was used to see whether any metabolites within the pollen may stimulate protein production. There was some GFP fluorescence in the hyphae of SP1e and SP4d (**Figure 64**) grown under this condition. This expression was seen at both the expanding edge of the colony and in other hyphae in the main body of the colony. There was no expression observed in SP4d and GPi2a.

Agar plugs taken from the edge of expanding transformant colonies grown on PDA plates were used to infect onion segments. SP1b and SP1e had good GFP fluorescence in the onion epidermis infection assay (**Figure 65**). The signal is not as strong as the GFP constitutive transformant GPF1 or as uniform across the hypha, but there was clear GFP expression. The signal was again slightly blurred as with the liquid grown cultures suggestive of possibly a secreted protein still attached to the GFP tag in the extracellular environment. SP4 and Gpi2 transformants both displayed considerably less GFP signal during this assay (**Figure 66**). It was very difficult to distinguish between GFP signal for these two transformants and background autoflorescence which is seen surrounding the onion cell walls. It was difficult to get Gpi2a infection established compared with SP1 transformants, which could account for increase in background plant autoflorescence. However, when the bright field image is compared with the GFP filter image some GFP

fluorescence tracking along the fungal hyphae was observed. The third panel on Figure 65 and Figure 66 highlights the calcium-oxalate crystals which form as oxalic acid is secreted by the fungus and chelates with plant calcium. The JRL have previously quantified increasing crystals observed under a polarised filter with increasing oxalate concentrations secreted by a fungal culture (data not shown). The polarised images indicate that all the strains were secreting oxalic acid required for pathogenicity. However GPi2a did appear to have reduced oxalate crystals which may explain the difficulty in establishing infection.



Figure 60. Transformant growth on PDA, 12 dpi.

a) WT190. b) GFP1 c)SP1B. d) SP1E. e) SP4A. f) SP4B. g) SP4D. h) Gpi2a. All transformants demonstrated normal growth rates and physiology compared with WT 1980 strain (a). All transformants developed sclerotia after 12 days on PDA plates, however SP4B (f), SP4D (g), SP1D (d) and Gpi2a (h) produced smaller sclerotia than WT 1980 (a).



**Figure 61**. GFP fluoresence in *S. sclerotiorum* transformants grown on cellophane sheets over PDA. Plates observed under GFP fluoresence filter (left column) and under bright field on Leica compound microscope, 100X maginification (right column), two days after plate inoculation. a) Constitutive GFP1. b) SP1b some GFP expression. c) SP1e some GFP expression. d) SP4 transformants, no expression observed. e) GPI2a,no fluoresence was observed.





Only constitutive GFP1 and SP1 transformants grew in liquid medium. GFP fluorescence seen in both SP1 transformants. Mycelium observed under GFP fluorescence filter on a Leica compound microscope, 100X maginification. a) GFP1. b) SPle. c) SP1b.





Plates were observed on Leica compound microscope 100X maginification. Plates observed under GFP fluoresence filter (column 1 &3) and under bright field (column 2 &4) three days after plate inoculation. a) Constitutive GFP1. b) SP1b, SP1e, SP4b, SP4d, GPi2a no GFP . observed. Scalebars =  $100\mu m$ .



Figure 64. GFP fluoresence in *S. sclerotiorum* transformants grown on water agar covered with Lilly pollen.

Plates were observed on Leica compound 100X maginification. Plates observed under bright field (row1&3)and under GFP fluoresence filter (row 2 &4) and three days after plate inoculation. a) Constitutive GFP1. b) GFP expression observed in SP1b. c) Very low level of GFP expression observed in SP1e (white arrows). d) Very Slight GFP expression observed in SP4b (white arrow). e) No GFP observed in SP4d. f) No GFP observed in GPi2a. Scalebars =  $100\mu m$ .



Figure 65. S. sclerotiorum transformant infection of onion epidermis.

The top layer of epidermis was observed using a Leica compound microscope, 1 day post inoculation. Column 1: slides viewed under bright field. Column 2: slides observed under GFP fluoresence filter. Column 3: slides viewed under polarised light combined with GFP filter. (a-b) Constituitive GFP 100X maginification. (c-d) SP1b x20. (e-f) SP1e 200x Maginification .Scalebar:100 µm.



Figure 66. S. sclerotiorum transformant infection of onion epidermis, 1 day post inoculation.

The top layer of epidermis was observed using a Leica compound microscope. Column 1: slides viewed under bright field. Column 2: slides observed under GFP fluoresence filter. Column 3: slides viewed under polarised light combined with GFP filter. (a) Constituitive GFP 100x magnificaton. (b) SP14b 100x magnificato. (c-d) GPi2a 200x magnification. Scalebar: 100 µm.

**Table 44**: NBCI BlastP result performed after transformants were made.

Protein sequences were blasted against the NCBI database to explore any sequence homology in other fungi. The top hit in another fungal species was recorded.

| SP    | Gene ID in<br>Broad | Top BlastP Hit           | Gene Name   | Accession                    | Expected Value (e- value) | hit-<br>length | align-<br>length | +ve<br>bp | similarity |
|-------|---------------------|--------------------------|-------------|------------------------------|---------------------------|----------------|------------------|-----------|------------|
| SP1   | SS1G_01003          | Botryotinia fuckeliana   | -           | CCD50509.1                   | 4.57667e <sup>-13</sup>   | 109            | 101              | 51        | 50%        |
| SP1   | SS1G_01003          | Trichoderma reesei       | -           | EGR44794.1                   | 7.46162e <sup>-5</sup>    | 102            | 101              | 50        | 49%        |
| SP2   | SS1G_01749          | Botryotinia fuckeliana   | BcDW1_9533  | CCD48435.1<br>EMR81869.1     | 9.79916e <sup>-33</sup>   | 377            | 143              | 98        | 68%        |
| SP3   | SS1G_06412          | Coniosporium apollinis   | -           | EON67515.1                   | 5.15112e <sup>-6</sup>    | 592            | 171              | 79        | 46%        |
| SP 4  | SS1G_00564          | Fusarium oxysporum       | -           | EGU73827.1                   | 1.46706e <sup>-33</sup>   | 281            | 206              | 108       | 52%        |
| SP 12 | SS1G_10452          | Neosartorya fischeri     | NFIA_005660 | XP_001259100.1<br>EAW17203.1 | 2.01735e <sup>-48</sup>   | 244            | 198              | 133       | 67%        |
| GPi 1 | SS1G_03000          | Podospora anserina       | PODANSg7294 | XP_001910257.1<br>CAP71391.1 | 8.18751e <sup>-12</sup>   | 115            | 78               | 47        | 60%        |
| GPi 2 | SS1G_04875          | Sclerotinia sclerotiorum | SS1G_04875  | XP_001593448.1<br>EDO02399.1 | 1.46416e <sup>-58</sup>   | 117            | 104              | 104       | 100%       |
| GPi 3 | SS1G_07678          | Sclerotinia sclerotiorum | SS1G_07678  | XP_001591053.1<br>EDN91817.1 | 6.8217e <sup>-26</sup>    | 56             | 56               | 56        | 100%       |



Figure 67. Alignments of successfully integrated SP1 and SP4 protein sequences.

Proteins along with the Blastp top hit homologous sequence found in other fungal species. a) SP1 protein sequence aligned to *B*. *fuckeliana* homologous sequence  $(4.58e^{-13})$ . b) SP1 protein sequence aligned to *T*. *reesei* homologous sequence  $(7.46e^{-5})$ . b) SP4 protein sequence aligned to *F*.oxysporum homologous sequence  $(1.7e^{-33})$ .

#### **6.3.9 Updated BlastP results**

For completeness, the eight putative protein sequences were subject to a final Blastp search at the end of the analysis (17.05.2013) to explore whether any updated information about homologous protein sequences in any other species had been added to the public domain since the beginning of the study (**Table 44**). Interestingly, SP1 has some homology to a hydrophobin protein sequence found in *Trichoderma reesei* (7.46e<sup>-5</sup>). This protein sequence had some homology with a sequence in *Botryotinia fuckeliana*, the anamorph of *B. cinerea*. However, when these sequences was blasted against the *B.cinerea* genomes there was no homologous sequences found. SP4 had some homology with a sequence in the *Fusarium oxysporum* genome (1.7E<sup>-33</sup>). ClustalW alignments of the *S. sclerotiorum* proteins and the semi homologous protein sequence were created in Geneious (**Figure 67**).

## 6.4 Discussion

The use of bioinformatics tools to assist in the discovery of novel protein targets which have putative effector functionality has been a success in many fungal and bacterial plant pathogen systems (Brown et al. 2012, do Amaral et al. 2012). Recent studies on the predicted secretomes of fungal pathogens including wheat infecting pathogens, *Fusarium graminearum* and *Mycosphaerella graminicola* provide a valuable resource to further our understanding of how secreted proteins are central to fungal disease development in host plants (Brown et al. 2012, do Amaral et al. 2012). This chapter reports another use of such a valuable resource. Instead of using the described bioinformatics pipeline to find proteins involved in infection, the pipeline has been modified to identify proteins which are unique to *S. sclerotiorum* and can be used as novel detection targets in systems such as lateral flow devices or even in an adapted electrochemical biosensor systems such as the SYield detection system.

#### 6.4.1 The use of a bioinformatics pipeline to select protein targets for pathogen detection

The total secretome of *S. sclerotiorum* was explored to identify those sequences which had a high cysteine content and a WoLF P-SORT score of 18 or above. These are common characteristics in protein sequences which have a high probability of being secreted (Luderer et al. 2002, Horton et al. 2007). Unique targets with these characteristics were then identified if they had no homologous nucleotide or protein sequences in other fungal species. It was of particular importance that there was no homology in the closely related fungal species *B*.

*cinerea* so that future detection systems could consistently distinguish the two species. GPI anchor containing sequences identified in the total *S. sclerotiorum* secretome but not in the *B.cinerea* genome were also investigated as they are anchored to the extracellular side of the plasma membrane and so could be used as a detection target (Brown and Waneck 1992). A total of eight protein sequences were identified from this bioinformatics study. In this chapter the physical secretion of these proteins was explored using a range of molecular techniques.

#### 6.4.2 Protein expression verification

The transformation work reported in this chapter was carried out during a three month visit to the JRL. Due to the time constraint of this trip only three of the protein detection targets were successfully tagged with a GFP and transformed into *S. sclerotiorum*. Successful integration of the three GFP tagged constructs into *S. sclerotiorum* DNA was shown via southern blot analysis. Growth on solid media for these transformants was comparable to the wild type strain but the inability of SP4 and GPi2 to grow in liquid culture and the production of smaller sclerotia compared to the WT may indicate that the GFP insert may have disabled some developmental abilities in these strains.

growing the transformants under a number of different conditions, the strongest GFP signals were observed in SP1 and fluorescence was enhanced particularly when grown in a liquid environment. Since this protein has now been shown to have some distant homology with a Trichoderma reesei hydrophobin protein sequence and strong GFP signals were observed in the transformant grown in the liquid medium it is tempting to speculate that this protein may have hydrophobin functionality. Hydrophobins are unique fungal proteins found in filamentous fungi and not yeast (Bayry et al. 2012). Two hydrophobin classes have been described based on their hydropathy patterns and solubility characteristics (Wosten 2001). They consist of a diverse group of proteins which have many functions and as a result there is very little sequence conservation. The proteins do however form four disulphide bridges in the mature protein which is formed by eight characteristic cysteine residues (Kwan et al. 2006). The SP1 protein sequence has the characteristic eight cysteines, but it only contains an insignificant PFAM hydrophobin domain. Hydrophobin proteins have a high surfactant activity which is a result of their hydrophilic-hydrophobic arrangement which forms an amphipathic membrane (Wang et al. 2005). This monolayer will self-assemble at interfaces between water and air, water and oil or water and a hydrophobic solid and prevent waterlogging which may hinder gaseous exchange (Bayry et al. 2012). This aids aerial hyphae to grow through wet environments. Some fungal spores which develop on aerial hyphae have been shown to be waterproofed by a hydrophobin rodlet layer encapsulating the spore and this aids spore dispersal through the air (Bayry et al. 2012). Some hydrophobins play a significant role in fungal attachment which was demonstrated in the basidiomycete *Schizophyllum commune* which will adhere to Teflon via its cell wall hydrophobin, SC3 (Wosten et al. 1994). This hydrophobin was shown to be secreted into fungal growth media when it was purified from both hyphal cell walls and liquid media (Wosten et al. 1993). A similar protocol was used to identify the ABH3 hydrophobin secreted into a liquid medium from the common white button mushroom, *Agaricus bisporus* (Lugones et al. 1998).

Interestingly the Dutch-Elm disease caused by the pathogens *Ophiostoma ulmi* and *O. novo-ulmi* both secrete a hydrophobin toxin, CU (Wosten 2001). It has been suggested that this hydrophobin may be secreted into host xylem and cause plugging of the vesicles by coating air bubbles(Russo et al. 1982). This was proposed because when purified CU was inject into the host plant which caused wilting, increase in leaf respiration, reduction in transpiration and electrolyte loss.

The role of the potential hydrophobin SP1 in this study may in fact be assisting the mycelia escape an aqueous environment (Wosten 2001) by making it easier for hyphae to grow through the liquid. This would explain the much stronger signal mycelium grown in liquid. Less of a GFP signal was observed in this transformant growing on solid media and during the onion epidermis infection but it was still evident suggesting it is just turned on in certain parts of the colony when there may be some difficulty in hyphal development. The lack of expression support in the EST libraries, the RT-qPCR data and the RNA sequencing could be explained by the fungus not being grown fully submerged in liquid. The RT-qPCRs were performed on RNA collected from spores which had been germinated in 1ml of PDB in 12 multiwell plates. This growth assay allows the fungal hyphae to form a floating raft on top of the medium so that the majority of the hyphae remain on top of the liquid rather than submerged. There was also very little liquid left in these small wells after 5 days of growth. In this study, the transformants were grown in 100 ml of YPD sucrose medium in a flask and so agar plugs were fully submerged. Further experimentation is required to look at relative gene expression in transformants submerged and not submerged. The SP1:GFP transformants could also be grown in a submerged liquid environment and then it could be observed whether the GFP signal reduces once the same culture is placed on a solid agar plate for a few days. A

simple gene knock out experiment to determine the significance of this protein when the mutant is grown submerged liquid or floating on top of liquid could also be done to further characterise this protein. Environmental conditions can significantly affect gene expression and so further growth tests will be required to pin point at which other exact point this particular protein is expressed. If this protein truly is secreted in a liquid environment then this protein could be a very good candidate detection target for a liquid sampling system similar to the SYield biosensor. However the biosensor would require the electrochemical assay to be based on antibody recognition rather than enzymatic based recognition. The next logical experiment to explore this possibility would be to raise an antibody against the SP1 protein and used it to show whether the protein was secreted in a liquid environment with the use of a Western blot. Comparisons between the distant related *Trichoderma reesei* hydrophobin and other fungal hydrophobins would be required to ensure any antibody raised against this SP1 would not bind to other hydrophobins.

The SP4 and Gpi2 transformants were more difficult to assess for GFP expression. Signals were very rarely discernible on the solid medium for SP4 and never for GPi2. SP4 had some GFP signal on agar plates covered with lily pollen and slight fluorescence in the onion infection assay suggesting that there may be some compound in plant based tissue which triggers the expression of this protein. GFP fluorescence was only seen weakly in the onion infection assay for Gpi2a. Establishing infection by this transformant was difficult and background autofluorescence made it challenging to distinguish GFP expression. It was observed occasionaly tracking along some of the hyphae. There was no support for these two proteins in the EST, RNAseq or RT-qPCR studies, but as with SP1 this might be due to the material being collected at the wrong time or the growing conditions not induces for expression of these particular proteins. Further growth experiments of both the SP4:GFP and GPi2:GFP strains could reveal further information about the expression pattern of these proteins.

#### 6.4.3 GFP as a reporter tag for secreted proteins

GFP has been used in countless studies as a successful reporter strain to explore gene regulation, protein localisation and specific organelle labelling *in vivo* in bacteria, yeast, insects, mammals and plants. This stable protein is 238 amino acids in length absorbs light at maxima of 395 and 475 nm and emits light at a maximum of 508 nm, requiring UV or blue

light and oxygen to cause fluorescence (Lorang et al. 2001). It has been used to tag successfully characterised secreted effector proteins including the Ustilago maydis secreted effector, Pep1 (Doehlemann et al. 2009). It was used in this study to observe whether protein sequences of interest are truly expressed proteins and where they localised within the hyphae. A qualitative comparison of protein expression made between the constitutive GFP transformant and the other transformants was very useful to observe how highly expressed these proteins were under certain conditions. However it still remains unclear as to whether or not these proteins were fully secreted into the extracellular environment. A blurred expression pattern of GFP was sometimes observed in transformants compared to the very defined GFP signals seen along the hyphae of the constitutive GFP transformant. This may be a result of the proteins actually being secreted extracellularly but in very low quantities. It could also be possible that in the case of SP4:GFP and GPi2:GFP, they were secreted in low quantities but the GFP tag may have been cleaved off during extracellular secretion and result in the no GFP fluorescence being observed. This could be further tested by using a GFP specific antibody pull down system to pull out any proteins that were secreted into the growth medium and whether they were still tagged with GFP and secreted into a liquid medium and visualised using a western blot.

In conclusion, this chapter revealed the use of a bioinformatics pipeline to identify fungal secretomes can be used not only to find secreted effector proteins but to look for unique targets of detection for *S. sclerotiorum*. This bioinformatics method could be applied to many other plant pathogens with sequenced genomes. The unique detection targets could then be used to design specific DNA based identification using qPCR and Taqman assays as well as in LFDs if suitable proteins are identified and antibodies could be generated to be used directly in field diagnostic equipment. This chapter also reports the potential characterisation of the novel hydrophobin in *S. sclerotiorum*, SP1. This protein would work specifically well in a liquid detection system as its expression was upregulated when the fungus was submerged in liquid. Providing the electrochemistry of the SYield biosensor could be adjusted to recognise this protein rather than oxalic acid it could prove to be an interesting second choice as a detection target. Further investigation would be required to generate an antibody specific to SP1 to identify that it is truly secreted into a liquid and to explore whether other hydrophobins from other fungal species be detected in such a system. It would need to be truly specific to *S. sclerotiorum* SP1 for it to be of any use in a detection system.

## Chapter 7: A comparative investigation into the transcriptomes of wild type and an oxalic acid deficient *S. sclerotiorum* mutant during *in vitro* growth and infection of *Arabidopsis* leaves

#### 7.1 Introduction

The secretion of oxalic acid during early plant infection has been described as the main pathogenicity mechanism for *S. sclerotiorum* disease progression in multiple host species (Maxwell and Lumsden 1970, Magro et al. 1984, Dutton and Evans 1996, Godoy et al. 1990, De 1884). This seemingly simple molecule is responsible for a range of functions including the mediation of pH signalling during the infection process (Rollins and Dickman 2001), and as a result increases the activity of pH dependent enzymes including polygalacturonases, which degrade plant cell walls (Bateman and Beer 1965). Oxalic acid deregulates stomatal guard cell closure (Guimaraes and Stotz 2004), suppresses the plant oxidative burst (Cessna et al. 2000), is an elicitor of plant programmed cell death (Kim et al. 2008) and changes the cellular redox-status of the host plant during infection (Williams et al. 2011).

The biosynthesis of this compound in *S. sclerotiorum* has not been fully characterised. However it is speculated that oxalic acid is produced principally via the tricarboxylic acid cycle (TCA) (Cessna et al. 2000), an essential aerobic pathway which involves many enzymes which metabolise pyruvate and fatty acids to produce acetyl CoA. NADH is the principle end-product which is fed into the electron-transport chain in mitochondria as the main source of electrons. Oxalic acid is generated during this process via the direct hydrolysis of oxaloacetate into acetate and oxalate (Lenz et al. 1976) by the relatively well characterised enzyme oxaloacetate acetylhydrolase (OAH) (EC 3.7.1.1) (Han et al. 2007).

OAH was initially purified from *Aspergillus niger* (Han et al. 2007) and homologues of this protein have been identified in both *S. sclerotiorum* (SS1G\_08218) and *B. cinerea* (BC1G\_03473). *S. sclerotiorum* mutant strains deficient in this enzyme are unable to produce oxalic acid and its ability to induce disease is severely impaired (Rollins, JA unpublished, Amselem et al. 2011, Kabbage et al. 2013). The *oah* gene deletion mutant ( $\Delta oah_1$ - $KO_2$ ) generated in the Jeffrey Rollins laboratory at the University of Florida, Gainesville, is deficient in oxalic acid production (unpublished data, (Amselem et al. 2011)) and can only cause limited infection if the plant is pre-wounded and a mycelial-agar plug is placed over the wound. A small lesion can be seen surrounding the infection plug but unlike wild type infection, the lesion remains small, the disease is unable to progress and clear signs of plant defence are visible.

To further our understanding of the role of oxalic acid during infection and its signalling effect on other pathogenicity genes during infection, wild type *S. sclerotiorum* infection of *Arabidopsis thaliana* was compared to the same infection by the OAH deficient strain,  $\Delta oah_1$ - $KO_2$ . Transcriptome sequencing (RNA-seq) was used to analyse the gene expression of these two strains during an infection time course. In addition, tissue collected from both strains growing *in vitro* was collected for transcriptome analysis to distinguish those genes specifically expressed *in planta*.

## **7.2 Experimental Procedures**

#### 7.2.1 Plant varieties, fungal strains and infection conditions.

*Arabidopsis thaliana* ecotype *Columbia* (Col) seeds were sown in moist vermiculite potting soil and put in a cold chamber to vernalise for five days. Subsequently, the seedlings were potted up individually and grown up in a controlled environment chamber in a regime of 12 hr day/12hr night light at 22 °C. Fungal infections were carried out after 6 weeks of plant growth, once rosette leaves had fully expanded to approximately 7 cm diameter, but before plant bolting.

Two *S. sclerotiorum* strains were used in this study. The sequenced wild type strain 1980 (WT) and the oxalic acid deficient strain  $\triangle oah_1 - KO_2(\triangle oah)$ . Both were maintained on potato dextrose agar (PDA) plates kept at room temperature. Two days before plant inoculation,  $\triangle oah$  agar plugs were placed onto new PDA plates, to ensure the inoculation plugs could be taken from expanding cultures for plant infection. WT agar plugs were replated 24hrs before plant inoculation because the growth rate of the WT strain is faster than the mutant strain.

Expanding cultures harvested for the first time point (T0) were grown on cellophane discs placed on the surface of the PDA plates. This allowed harvesting of the mycelium without the uptake of agar which inhibits the RNA extraction process. Agar plugs with cellophane were not used in the inoculation time course because this prevented the annealing of  $\Delta oah$  strain to the leaves and thus reduced the incidence of plant infection. Mycelium was taken from the edge of the expanding cultures, the same area where the inoculation plugs were cut from. Mycelia was immediately flash frozen in liquid nitrogen and kept at -80 °C.

Twenty-four hours before fungal inoculation, plants were placed in the controlled

environment chamber in smaller, sealed plastic boxes lined with damp paper roll to maintain high humidity within each box. Eight plants were placed in each of the eight boxes and four boxes placed on each shelf in the chamber. The plants were placed in the boxes according to a randomised block design. Representative plants inoculated with either the WT strain , the  $\Delta oah$  strain or mock inoculated with an colonised agar plug were selected in each smaller box. The lights were kept on throughout the experiment to reduce the effect of photoresponses by the plant and fungus.

Before inoculation, plants were wounded with a sterile scalpel, making a cut across the centre of the rosette leaves, which included the midvein. A single 0.5 mm<sup>2</sup> square agar plug was cut from the edge of the expanding culture and placed fungal side down on top of each cut. One strain only was used to infect multiple leaves on a single plant. Twenty-five plants were inoculated with the  $\Delta oah$  strain and 15 plants were inoculated with the wild type strain. A further 15 plants were mock inoculated with uncolonised agar plugs.

Leaves were harvested at two stages during fungal infection. The first harvest time point (T1) occurred when a small infection lesion was observed under the agar plug surrounding the cut. The second harvest time point (T2) occurred when the infection lesion had expanded beyond the agar plug. T1 harvest for WT was approximately at 12 hrs post inoculation (hpi) but for the slower growing  $\Delta oah$ , this stage of symptom of development was observed at 24 hpi. T2 harvest occurred at 24 and 72 hpi for WT and  $\Delta oah$ respectively. Mock inoculated leaves were collected at 12, 24 and 72 hpi.

Material was harvested by detaching leaves from the plant, removing the agar plug and then using a sterile razor blade to cut around the observed lesion, leaving a thin area of green leaf around the lesion. Ten leaf samples infected with the same strain from different plants were pooled into one sample for RNA extraction. Material was immediately flash frozen in liquid nitrogen and stored at -80 °C.

## 7.2.2 RNA extraction

Frozen leaves were lyophilised and ground into a fine powder using a bead beater with baked 3.2 mm stainless steel beads in 1.8 ml stainless steel vials. RNA was extracted using Qiagen RNeasy mini kit. RNA was sent for quality checking, cDNA library construction and RNA sequencing at the Interdisciplinary Center for Biotechnology Research facility (ICBR), University of Florida.

#### 7.2.3 TruSeq RNA Library Construction (ICBR Experimental procedure)

RNA concentration was determined on a NanoDrop Spectrophotometer (NanoDrop Technologies, Inc) and sample quality was assessed using the Agilent 2100 Bioanalyser (Agilent Technologies, Inc). Two µg of total RNA was used for library construction using Illumina TruSeq RNA sample preparation kit according to manufacturer's protocol. Briefly, poly-A mRNA was enriched from 2 µg of total RNA sample using the polydT oligo-attached magnetic beads. Purified mRNA was then fragmented using divalent cations at 94 °C, followed by first strand cDNA synthesis using reverse transcriptase and random primers. Synthesis of ds cDNA using DNA Polymerase I and RNase H was performed followed by end-repair and dA-tailing. Indexed Illumina adaptors were ligated to each sample. Each library was appropriately barcoded. Finally, the library was enriched by 12 cycles of amplification and purified by Agencourt AMPure beads (Beckman Coulter). TruSeq RNA library construction was performed at the Interdisciplinary Center for Biotechnology Research (ICBR) Gene Expression Core, University of Florida (UF).

## 7.2.4 Illumina GAIIx Sequencing (ICBR Experimental procedure)

The amplified TruSeq libraries were quantified using the Agilent DNA highsensitivity kit on an Agilent 2100 Bioanalyzer and qPCR using Bio-Rad CFX 96. Based on the calculated values, the libraries were pooled and diluted to 10 nM and then applied at 9 pM to individual lane of Illumina pair-end flowcell for cluster generation on cBOT (Illumina). Therefore each of the seven flow cells contained an equal mixture of each library. Each library was sequenced for 1x100 bp reads on Illumina GAIIx. Image analysis and base calling were performed using the Illumina Pipeline, where sequence tags were obtained after purity filtering. The Illumina GAIIx sequencing was performed by the NextGen Sequencing Core at UF-ICBR.

#### 7.2.5 Bioinformatics Analysis

David Hughes, Ambrose Andongabo and Keywan Hassani-Pak from the Rothamsted Computation and Systems Biology group assisted on workflow methods, statistical calculation of reads and writing command lines for the following analysis.

The raw RNA sequencing reads were mapped and differential gene expression calculated using the workflow described by Trapnell et al (2012) (Trapnell et al. 2012) using the Galaxy platform (Blankenberg et al. 2010, Giardine et al. 2005, Goecks et al. 2010) which combines the necessary tools required for the analysis (**Figure 68**). The *S*.

*sclerotiorum* reference genome GTF file for read alignment was downloaded: (http://www.broadinstitute.org/annotation/genome/sclerotinia\_sclerotiorum/MultiDownloa ds.html). The Arabidopsis TAIR reference genome GTF file was downloaded from TAIR (http://www.arabidopsis.org/). Quality of reads was calculated using FastQC and determined to be of good quality and did not require trimming before analysis. Tophat2 was used to align the reads for each library to the genome and to find transcript splicesites. To calculate the correct expression level of each transcript, Cufflinks was used to count the reads that map to each transcript and then normalise this count by each transcript's length. To compare the expression level of a transcript across runs, the counts must be normalised for the total yield of the machine. Cufflinks combines these two steps by assembling the reads into transcripts and calculating the Fragments Per Kilobase of transcript per Million mapped reads (FPKM). Expression levels can be calculated easily as the software simply adds up the expression level of each splice variant. This is possible because FPKM is directly proportional to abundance (Trapnell et al. 2012).

Cufflinks estimates transcript abundance based on how many reads support each transcript, taking into account biases in library preparation protocols. It accepts aligned RNA-Seq reads from Tophat2 and assembles the alignments into a parsimonious set of transcripts. Then it tests for differential expression and regulation in RNA-Seq samples (http://cufflinks.cbcb.umd.edu/index.html).

Cuffmerge combines all the transcript assemblies together. Some genes with low expression may receive inadequate sequencing depth to allow full reconstruction in each replicate. Merging these replicate assemblies with Cuffmerge was used to recover the complete gene (Trapnell et al. 2012). Cuffdiff then uses the merged transcripts to report genes which were differentially expressed using a rigorous statistical analysis across two or more conditions (Trapnell et al. 2012). CummeRBund package in R version 2.15.3<sup>©</sup> was used to generate graphical representations of the differential gene expression events. General commands followed (<u>http://compbio.mit.edu/cummeRbund/manual\_2\_0.html</u>) from the user manual to plot graphs.

Blast2go was used explore the gene annotation and function of the genes with significant gene expression (<u>http://www.blast2go.com/b2glaunch</u>) (Conesa et al. 2005). From this interface, the InterPro website was accessed to further explore the IPO entries discovered (<u>http://www.ebi.ac.uk/interpro</u>) (Hunter et al. 2012, Quevillon et al. 2005).



Figure 68: Bioinformatics workflow for RNAseq alignments.

The workflow based on Trapnell et al (2013) (Trapnell et al. 2012) to process the Ilumina sequencing data. Tophat2 and Cufflinks (steps 1-2) used to align the reads to the *S. sclerotiorum* genome and calculate Fragments Per Kilobase of transcript per Million mapped reads (FPKM). Cuffmerge (step 3) then merged all files so that differential gene expression could be calculated across the different time points. Cuffdiff (step 4) calculates the statiscal significant gene expression events between two or more conditions. Files can then be used in R to generate graphical representation using CummeRBund.

#### 7.3 Results

Financial constraints for this experiment prevented the sequencing of three biological replicates for each condition. Instead, 10 biological replicates per condition were pooled as a single library and sequenced as one replicate. Each library was barcoded and run across all 7 lanes of the Ilumina platform, resulting in seven technical replicates for each condition. Due to time constraints, these libraries were recombined for data analysis.

## **7.3.1** Challenges with using $\Delta$ oah mutant to obtain high quality RNA

A considerable challenge for this experiment was obtaining RNA for the  $\Delta oah$ mutant at T2. The infection for this mutant did not progress as fully as the WT sample ( Figure 70). During WT infection initially a small lesion was evident at 12phi. At 24 hpi the lesion is fully extended around the agar plug (Figure 70) and across the leaf. If the infection was left to progress further than 24 hpi, the lesion would expand fully until the leaf was completely colonised and cells are fully lysed. The infection then extends into the stem and base of the plant. This infection course was monitored using trypan blue staining which is a vital stain which stains dead plant cells blue (Figure 71). The  $\triangle oah$  mutant was capable of causing initial infection symptoms but only if the leaf was wounded. This strain was able to cause an initial expanding lesion around the wounding site however it could not cause a fully expanding lesion. Yellowing of the leaf and a dark green outline around the lesion was observed (Figure 70). It is hypothesised that the dark ring around the lesion is the deposition of lignin and this is a result of induced plant defences which would normally be evaded or overpowered by the action of oxalic acid secreted by the fungus. When samples for  $\triangle oah$  were collected, the RNA obtained at later time points was constantly degraded, even after setting up the infection course a further two times. As a result only the  $\triangle oah$  T0 and T1 libraries were sequenced for this time course. The quality and extent of RNA degradation was assessed using an Agilent 2100 Bioanalyser. Only libraries with RIN values above 6 passed QC and were included in the analysis (Table 45).

#### 7.3.2 Calculation of the percentage of reads aligned to each reference genome

Initially the reads were aligned to both the *Arabidopsis* TAIR reference genome as well as the *S. sclerotiorum* reference genome to calculate the percentage of reads which aligned to each genome (**Table 46**). Flagstat was used to calculate this information. This helped to distinguish between any plant transcripts which have conserved homology with

fungal transcripts. The plant reads which aligned to the *S. sclerotiorum* genome were excluded from the fungal aligned datasets so that these reads do not bias the set of fungal FPKM values and subsequent calculation of significant gene expression. A pile up of plant reads were observed to align to the *S. sclerotiorum* genome at Contig 2.35 at positions 5759-5920 and 16241-16398. These transcripts are annotated as ribonucleases. The Mock T2 library which contains only plant material contained 619,886 mapped reads to the fungal genome of which 608,481 mapped to contig 2.35. The Mock T1 library which also contained plant reads contained 378,944 reads which mapped to the fungal genome, of which 371,767 map to just one fungal contig. This group of reads were excluded from the libraries containing both plant and fungal material. Only the libraries containing fungal material were used for the analysis; WT T0, WT T1, WT T2,  $\Delta oah$  T0 and  $\Delta oah$  T1.

**Table 45**: RIN values calculated using an Agilent 2100 Bioanalyser.

| Library        | 260/280 | 260/230 | <b>Bioanalyser RIN values</b> |
|----------------|---------|---------|-------------------------------|
| Mock T2        | 2.13    | 2.3     | 6.80                          |
| Mock T1        | 2.13    | 2.5     | 6.50                          |
| <i>∆oah</i> T1 | 2.18    | 2.3     | 7.40                          |
| <i>∆oah</i> T0 | 2.12    | 1.62    | 6.70                          |
| WT T1          | 2.15    | 2.44    | 7.60                          |
| WT T2          | 2.16    | 2.44    | 6.10                          |
| WT TO          | 2.21    | 2.63    | 6.40                          |

These libraries had the best RIN values which past quality control checks.

 Table 46: The total reads for each library aligned to both the A. thaliana and S.

 sclerotiorum reference genome.

| Library<br>name | Material    | Total<br>Reads | Mapped<br>reads/plant | Mapped<br>reads/fungi | %Mapped<br>reads/plant | %Mapped<br>reads fungi |
|-----------------|-------------|----------------|-----------------------|-----------------------|------------------------|------------------------|
| Mock T1         | Plant       | 122842668      | 31547444              | 378944                | 25.68                  | 0.31                   |
| Mock T2         | Plant       | 227283408      | 54194299              | 619886                | 23.84                  | 0.27                   |
| <i>∆oah</i> т0  | Fungi       | 168187016      | 463319                | 77792790              | 0.28                   | 46.25                  |
| <i>∆oah</i> T1  | Fungi/Plant | 295259772      | 53333467              | 42774717              | 18.06                  | 14.49                  |
| WT TO           | Plant       | 143689092      | 526649                | 68515543              | 0.37                   | 47.68                  |
| WT T1           | Fungi/Plant | 193495152      | 25687260              | 43638284              | 13.28                  | 22.6                   |
| WT T2           | Fungi/Plant | 159848476      | 9842378               | 58671081              | 6.15                   | 36.7                   |



**Figure 69:** *A* .*thaliana* infection with *S. sclerotiorum* agar plugs inoculated with WT strain and  $\triangle oah$  strain. a) *A. thaliana* pre-wounding and pre-infection. b) *A. thaliana* leaves wounded by slitting the leaf with a sterile scalpel. c) Arrangement of agar plugs. d) WT T0 grown on PDA and cellophane. e) Mock T2 (24hpi). f-g) WT T2 (24hr pi). h)  $\triangle oah$  T0 grown on PDA and cellophane. i) Mock T2 (72hpi). j-k)  $\triangle oah$  T2 (72hpi). Panels g and k are close up images of infected leaves from images shown in panels f and j, respectively.



Figure 70: A. thaliana leaf infection progression over two time points.

Leaves were inoculated with a PDA agar plug colonised by the wild type strain (WT) or the oxalic acid deficient strain  $\Delta oah_I$ - $KO_2$  ( $\Delta oah$ ). Leaves were mock inoculated with an uncolonised agar plug. RNA was then collected at different time points. a) Mock T1 (12hpi). b) WT T1 (12hpi). c) Mock T2 (24hpi). d) WT T2 (24hpi). e) Mock T1 (26hpi). f)  $\Delta oah$  T1 (26hpi). g) Mock T2 (72hpi). h)  $\Delta oah$  T2 (72hpi), a dark ring was observed around lesion.





*A. thaliana* ecotype Columbia leaves inoculated with a PDA agar plug colonised by the wild type strain 1980 (WT) or the oxalic acid deficient strain  $\Delta oah_1$ - $KO_2$  ( $\Delta oah$ ). Control leaves were mock inoculated with an uncolonised agar plug. Agar plugs were removed and leaves stained with trypan blue stain. Cells were fixed by soaking leaves in 95% acetone overnight. a) Mock T1 (12hpi). b) WT T1 (12hpi). c) WT 1 T2 (24hpi). d) Mock T1 (24hpi). e)  $\Delta OAH$  T1 (24hpi). f)  $\Delta OAH$  T2 (72hpi).

## 7.3.3 The most abundant transcripts in each library

The number of gene with FPKM values above 100 were calculated and the number of secreted expressed in each library with an FPKM value above 100 was also assessed (**Table 47**).

| RNAseq Library | No. of genes FPKM >100<br>in total library | No. of secretome genes<br>FPKM >100 |
|----------------|--------------------------------------------|-------------------------------------|
| ⊿oah T1        | 824                                        | 38                                  |
| ⊿oah T0        | 802                                        | 52                                  |
| WT TO          | 796                                        | 52                                  |
| WT T1          | 838                                        | 56                                  |
| WT T2          | 810                                        | 57                                  |

Table 47: The most abundant S. sclerotiorum transcripts in each RNAseq library

The top ten genes with the highest FPKM values were analysed in each library This resulted in an overlapping set of 20 genes (**Table 48**). The hypothetical protein SS1G\_00253, with no domain of known function or protein domain, had the highest FPKM abundance in all libraries, however it most likely to be a Ribosomal gene as the gene model may overlap with the ribosomal gene SS1G\_00254. Ribosomal subunit genes were also highly expressed in all libraries. Eleven hypothetical proteins were highly expressed which may give clues to other significant genes involved during infection in the WT libraries or those genes which are integral for development.

SS1G\_12734, a bZIP transcription factor is involved in dimerising two DNA binding regions (PFAM, PF00170). The antibiotic response gene SS1G\_01463 has the highest up regulation *in vitro* which is understandable because antibiotics were used in the PDA to prevent bacterial contamination. It is likely this gene would not be expressed during infection in the field. SS1G\_12763, a cyanovirin-n family protein was also expressed highly *in vitro*. These expression patterns are approximately halved *in planta*. This protein domain has shown to have some activity to supress viruses including the HIV and is expressed in many eukaryotes (Percudani et al. 2005).

SS1G\_10335, contains a proteolipid membrane potential modulator domain (PFAM, PF01679. These proteins function to control membrane potential. In eukaryotic organisms, this domain is found in stress-activated mitogen-activated protein kinases.

These proteins are well known to transmit environmental signals that will regulate gene expression to permit the cell to adapt to cellular stress). SS1G\_10335was up regulated *in planta* when there may be more cellular stress experienced by the fungus whilst evading host plant defence.

**Table 48**: The combined genes with the highest FPKM values from each of the five conditions analysed.

| Gene ID    | Blast2Go Description                     |       |        | FPKM Valu | ue          |             |
|------------|------------------------------------------|-------|--------|-----------|-------------|-------------|
|            |                                          | WT TO | WT T1  | WT T2     | <i>∆ОАН</i> | <i>∆ОАН</i> |
|            |                                          |       |        |           | TO          | T1          |
| SS1G_00030 | predicted protein                        | 1441  | 4583   | 1774      | 3966        | 16992       |
| SS1G_00126 | predicted protein                        | 2548  | 5045   | 5422      | 2484        | 6301        |
| SS1G_00253 | hypothetical protein                     | 78414 | 128363 | 68007     | 85496       | 37605       |
| SS1G_00544 | 60s ribosomal protein 139                | 11631 | 21119  | 11707     | 8491        | 3143        |
| SS1G_01463 | cipc-like antibiotic response<br>protein | 20999 | 10077  | 9682      | 12445       | 2556        |
| SS1G_01771 | predicted protein                        | 3302  | 5654   | 4689      | 1864        | 7273        |
| SS1G_03299 | ekda protein                             | 271   | 415    | 8955      | 241         | 11          |
| SS1G_03582 | 40s ribosomal protein s29                | 6547  | 13249  | 7133      | 4640        | 1733        |
| SS1G_03868 | predicted protein                        | 13349 | 7445   | 7602      | 7402        | 6545        |
| SS1G_05038 | 40s ribosomal protein s30                | 8254  | 11005  | 7270      | 6405        | 2820        |
| SS1G_06999 | 60s ribosomal protein 129                | 10064 | 13413  | 8431      | 7643        | 2278        |
| SS1G_08102 | predicted protein                        | 351   | 1564   | 2594      | 1160        | 11832       |
| SS1G_09040 | hypothetical protein                     | 38781 | 21505  | 28745     | 15258       | 3401        |
| SS1G_09993 | predicted protein                        | 11673 | 1049   | 4857      | 15386       | 898         |
| SS1G_10335 | plasma membrane proteolipid 3            | 1655  | 7367   | 8707      | 3731        | 7702        |
| SS1G_12734 | transcription factor bzip                | 2414  | 2821   | 1863      | 5439        | 7033        |
| SS1G_12763 | cyanovirin-N family protein              | 6843  | 3039   | 2764      | 3987        | 1691        |
| SS1G_13124 | predicted protein                        | 6367  | 3135   | 1044      | 7773        | 6290        |
| SS1G_13356 | predicted protein                        | 3048  | 0      | 10004     | 32384       | 428         |
| SS1G_13910 | hypothetical protein                     | 36078 | 9358   | 8215      | 55315       | 14315       |

# **7.3.4** Comparison of significant differential putative secreted protein gene expression events across the different conditions.

The defence response to pathogen infection in *Arabidopsis* would be interesting to analyse, however due to time constraints only the gene expression data for fungal gene expression was analysed during this study. Four comparisons across the libraries aligned to the *S. sclerotiorum* reference genome were analysed to explore the significant changes in gene expression over the time course and between the two strains (**Table 49**). The expression of the putative secreted proteins identified in the *S. sclerotiorum* refined secretome (Chapter 5) was investigated. Only two of the four comparisons exhibited significantly expressed secreted proteins which are discussed in further detail.

**Table 49:** Four comparisons of libraries analysed and the number of statistically significant gene expression events calculated in each comparison.

| Comparison | Libraries compared      | Significant* gene<br>expression events | No. of refined<br>secreted protein<br>involved in sig exp<br>events |
|------------|-------------------------|----------------------------------------|---------------------------------------------------------------------|
| 1          | WT T0 vs WT T1 vs WT T2 | 519                                    | 60                                                                  |
| 2          | WT T0 vs ⊿oah T0        | 34                                     | 4                                                                   |
| 3          | WT T1 vs ⊿oah T1        | 12                                     | 0                                                                   |
| 4          | ⊿oah T0 vs ⊿oah T1      | 0                                      | 0                                                                   |

\* The statistical significance of the fold change in gene expression across the different libraries was calculated in Cuffdiff. It uses the Benjamini-Hochberg correction for multiple-testing to determine a False Discovery Rate (FDR) adjusted p-value described as the q-value. The test directly samples from the beta negative binomial model for each transcript in each condition in order to estimate the null distribution of its log fold change under the null hypothesis (<u>http://cufflinks.cbcb.umd.edu/</u>). There were no biological replicates in the dataset and as a result the statistical testing used variation across the entire dataset to calculate significance however this is not be as powerful as using biological replicates.

## 7.3.5 Expressed putative secreted proteins

In total, 88 predicted genes identified in the secretome had high expression (> 100FPKM) in at least one of the libraries analysed using RNA sequencing (**Table 50** and **Table 51**). Twenty of these genes had no previous annotation (**Table 50**).

Table 50: The 20 genes with no annotation identified in the secretome which had expression.

| No. | Gene ID    | oahT0 | oah T1 | WT TO | WT T1 | WT T2 |
|-----|------------|-------|--------|-------|-------|-------|
| 1   | SS1G_00263 | X*    | Х      | Х     | Х     | Х     |
| 2   | SS1G_00849 | Х     | Х      | Х     | Х     | х     |
| 3   | SS1G_01086 | Х     |        | Х     | Х     | х     |
| 4   | SS1G_01226 | Х     |        | х     | Х     | х     |
| 5   | SS1G_01867 | Х     |        | Х     |       |       |
| 6   | SS1G_02250 | Х     | Х      | Х     | Х     | х     |
| 7   | SS1G_02828 |       |        | х     | Х     | х     |
| 8   | SS1G_03146 | Х     | Х      |       |       |       |
| 9   | SS1G_05103 | Х     |        | Х     | Х     | х     |
| 10  | SS1G_06068 | Х     | Х      | Х     | Х     | х     |
| 11  | SS1G_07027 | Х     |        | х     | Х     | х     |
| 12  | SS1G_07230 | Х     |        | Х     | Х     | Х     |
| 13  | SS1G_08110 | Х     | Х      | Х     | Х     | х     |
| 14  | SS1G_08907 | Х     |        |       | Х     | Х     |
| 15  | SS1G_09232 | Х     |        | Х     | Х     | х     |
| 16  | SS1G_11706 | Х     |        | Х     | Х     | х     |
| 17  | SS1G_12262 | Х     | Х      | х     | Х     |       |
| 18  | SS1G_12361 | X     |        | X     | X     | x     |
| 19  | SS1G_13599 |       |        | Х     | Х     | х     |
| 20  | SS1G_13764 |       | х      | x     | Х     |       |

\*x: The FPKM value for that gene in that library >100.

**Table 51**: The 68 genes with annotation identified in the secretome which had expression support.

| Gene ID    | Annotation/ protein domain              | oah T0 | oah T1 | WT TO | WT T1 | WT T2 |
|------------|-----------------------------------------|--------|--------|-------|-------|-------|
| SS1G_00044 | ribonuclease                            | X*     |        |       |       |       |
| SS1G_00332 | carbohydrate esterase family 8 protein  |        | Х      | Х     | Х     |       |
| SS1G_00458 | endo-betaglucanase precursor            |        |        |       |       | Х     |
| SS1G_00468 | carbohydrate esterase family 8 protein  |        |        | Х     | Х     |       |
| SS1G_00730 | gmc oxidoreductase                      |        | Х      |       |       |       |
| SS1G_00974 | extracellular dihydrogeodin oxidase     |        |        |       | Х     |       |
| SS1G_01662 | glycoside hydrolase family 1 protein    |        |        |       | Х     | Х     |
| SS1G_01776 | glycoside hydrolase family 13 protein   |        |        |       | Х     |       |
| SS1G_02495 | wsc domain containing protein           |        |        | Х     | Х     | Х     |
| SS1G_02857 | protease s8 tripeptidyl peptidase       |        |        |       | Х     | Х     |
| SS1G_03181 | aspartic endopeptidase                  | Х      |        | Х     | Х     | Х     |
| SS1G_03286 | pectin methylesterase                   | Х      | Х      | Х     | Х     | Х     |
| SS1G_03361 | serine peptidase                        | Х      | Х      | Х     | Х     | Х     |
| SS1G_03518 | protease s8 tripeptidyl peptidase       | Х      |        | Х     |       | Х     |
| SS1G_03611 | predicted protein                       | Х      |        | Х     |       | Х     |
| SS1G_03647 | beta-galactosidase                      |        |        |       |       | Х     |
| SS1G_03656 | secreted protein                        | Х      |        |       |       |       |
| SS1G_04085 | extracellular cellulase allergen asp f7 |        |        |       | Х     |       |
| SS1G_04200 | alphamannosidase family protein         | Х      |        |       |       |       |
| SS1G_04468 | glycoside hydrolase family 47 protein   | Х      |        |       |       |       |

| SS1G_04497               | glycoside hydrolase family 16 protein  | Х      | Х      | Х      | Х      | Х      |
|--------------------------|----------------------------------------|--------|--------|--------|--------|--------|
| SS1G_04530               | lysophospholipase plb1                 |        | х      |        | Х      | Х      |
| SS1G_04592               | carbohydrate esterase family 16        |        |        |        |        | Х      |
|                          | protein                                |        |        |        |        |        |
| SS1G_04790               | acid phosphatase                       | Х      |        | Х      | Х      | Х      |
| SS1G_04945               | glycoside hydrolase family 7 protein   | Х      | х      | Х      | Х      | Х      |
| SS1G_05337               | malate dehydrogenase protein           | Х      |        |        |        | Х      |
| SS1G_05449               | carboxypeptidase cpds                  | Х      |        | Х      | Х      | Х      |
| SS1G_05612               | prolyl aminopeptidase                  |        | Х      |        |        |        |
| SS1G_05832               | glycoside hydrolase family 28 protein  | Х      | Х      | Х      | Х      | Х      |
| SS1G_06365               | extracellular dihydrogeodin oxidase    |        | Х      |        |        |        |
|                          | laccase                                |        |        |        |        |        |
| SS1G_07268               | protease s8 tripeptidyl peptidase      |        |        | Х      |        |        |
| SS1G_07554               | endobeta-xylanase                      | Х      | Х      | Х      | Х      |        |
| SS1G_07613               | phosphatidylinositol transfer protein  | Х      | Х      | Х      | Х      | Х      |
| SS1G_07639               | acid phosphatase                       | Х      |        |        |        |        |
| SS1G_07655               | subtilisin-like protein                | Х      |        | Х      | Х      | Х      |
| SSIG_07836               | acid protease partial                  | Х      |        | Х      | Х      | Х      |
| SSIG_08645               | fad binding domain-containing protein  |        | Х      |        |        |        |
| SSIG_09020               | beta-d-glucan cellobiohydrolase b      |        |        |        |        | Х      |
| SSIG_09225               | tripeptidyl peptidase a                | Х      |        | Х      | Х      | Х      |
| SSIG_09248               | hydrophobin                            |        |        |        |        | X      |
| SSIG_09268               | tripeptidyi-peptidase i precursor      |        |        | Х      |        |        |
| SSIG_09270               | nydrophobic surface binding protein    |        |        | X      |        | X      |
| SSIG_094/5               | serine carboxypeptidase                | X      | Х      | Х      | Х      | Х      |
| SSIG_09782               | aluquesida hudrolasa familu 5 protoin  | X      |        |        |        | v      |
| SSIG_09000               | sphingerwalin phosphodiosterase        | v      |        | 37     | 37     | X      |
| SSIG_09905               | opl1 protoin                           | X      | v      | X      | X      | X      |
| SSIG_10090<br>SSIC_10167 | polygalacturonase 1                    | A<br>V | A<br>V | A<br>V | A<br>V | A<br>v |
| SS1G_10107               | major royal jelly protein              | Λ      | A<br>V | Λ      | Λ      | Λ      |
| SS1G_11120<br>SS1G_11468 | cas1 appressorium specific protein     | v      | Λ      |        | v      | v      |
| SS1G_11700               | glycoside hydrolase family 18 protein  | x      |        |        | Λ      | Λ      |
| SSIG 11853               | carboxylesterase family protein        | Λ      | x      |        |        |        |
| SS1G_11912               | necrosis and ethylene inducing peptide | x      | Λ      |        |        |        |
| 5510_11712               | 2                                      |        |        |        |        |        |
| SS1G 12017               | betaglucanosyltransferase              | X      | Х      | х      | х      | X      |
| SS1G 12024               | cell wall glucanase                    |        | х      |        | Х      |        |
| SS1G 12191               | Glycoside hydrolase                    |        |        |        |        | х      |
| SS1G 12210               | Peptidase                              | Х      |        | Х      | Х      | Х      |
| SS1G 12413               | carboxypeptidase                       | х      |        | х      | Х      | х      |
| SS1G_12499               | carboxypeptidase                       |        |        | Х      | Х      |        |
| SS1G_12500               | carboxypeptidase                       | х      | х      | х      | Х      | Х      |
| SS1G_12907               | cutinase                               |        |        |        |        | Х      |
| SS1G_12930               | glycoside hydrolase family 17 protein  | х      | х      | Х      | Х      | Х      |
| SS1G_13199               | extracellular aldonolactonase          | Х      | Х      | Х      | Х      |        |
| SS1G_13385               | actin patch protein 1                  |        |        |        | х      | х      |
| SS1G_13472               | glycoside hydrolase 35                 | Х      | Х      | Х      | Х      | Х      |
| SS1G_14133               | Integrin                               | Х      | Х      |        | Х      | Х      |
| SS1G_14184               | carbohydrate esterase family 4 protein |        | Х      |        |        |        |
| SS1G_14293               | glucose oxidase                        |        | х      |        |        |        |

\*x: The FPKM value for that gene in that library >100.

# 7.3.6 Comparison of significantly expressed secreted proteins during WT in vitro conditions and in planta infection

The WT T0, WT T1 and WT T2 libraries were compared and based on fold changes in gene expression, 519 gene expression events were calculated to be significant across the 3 libraries. Across these significant events, secreted proteins identified in the refined secretome (Chapter 5) were responsible for 60 of these significant events (**Table 52**). The comparison of these libraries highlighted which secreted proteins are specifically involved in WT infection or are constitutively expressed. Out of this group, three sub groups were identified to have similar expression profiles. Group 1 contains genes which had significant up regulation in WT T1 and were down regulated in WT T2 (**Figure 72**a). Group 2 includes genes which were significantly up regulated late in *in planta* infection at WT T2 (**Figure 72**b) and Group 3 included those genes which exhibited high expression *in vitro*, then a reduction in expression during WT T1 and finally an expression increase again during later plant infection stages (**Figure 72**c).
**Table 52:** Forty secreted proteins identified in the *S. sclerotiorum* refined secretome that account for the 60 statistically significant gene expression events across the comparison of *in vitro* and *in planta* conditions.

| Group | Gene ID    | Protein domain                                    |       | FPKM  |       |  |
|-------|------------|---------------------------------------------------|-------|-------|-------|--|
|       |            |                                                   | WT TO | WT T1 | WTT2  |  |
| 1     | SS1G_00974 | dihydrogeodin oxidase                             | 45    | 662   | 288   |  |
| 1     | SS1G_07022 | histidine acid phosphatase                        | 14    | 93    | 45    |  |
| 1     | SS1G_09495 | phospholipase                                     | 5     | 132   | 112   |  |
| 1     | SS1G_11912 | necrosis and ethylene inducing peptide 2          | 24    | 159   | 108   |  |
| 1     | SS1G_13385 | actin patch protein 1                             | 13    | 473   | 346   |  |
| 2     | SS1G_00746 | endobeta-mannosidase                              | 2     | 6     | 148   |  |
| 2     | SS1G_01083 | GH 31 protein                                     | 1     | 2     | 99    |  |
| 2     | SS1G_02334 | GH 7 protein                                      | 22    | 27    | 201   |  |
| 2     | SS1G_02620 | GH 79 protein                                     | 11    | 14    | 184   |  |
| 2     | SS1G_03387 | GH 5 protein                                      | 1     | 2     | 89    |  |
| 2     | SS1G_04030 | lysophospholipase 1                               | 13    | 38    | 106   |  |
| 2     | SS1G_04473 | extracellular serine-rich protein                 | 4     | 81    | 210   |  |
| 2     | SS1G_05192 | GH65                                              | 23    | 34    | 137   |  |
| 2     | SS1G_05434 | gdsl-like lipase acylhydrolase                    | 9     | 13    | 167   |  |
| 2     | SS1G_06426 | GH 43 protein                                     | 6     | 6     | 41    |  |
| 2     | SS1G_07749 | GH 11 protein                                     | 0     | 0     | 12    |  |
| 2     | SS1G_08163 | signal peptide-containing protein                 | 0     | 13    | 139   |  |
| 2     | SS1G_08634 | exo-polygalacturonase                             | 20    | 20    | 130   |  |
| 2     | SS1G_08695 | class III chitinase (GH18)                        | 0     | 1     | 9     |  |
| 2     | SS1G_09060 | subtilisin-like protease                          | 1     | 1     | 44    |  |
| 2     | SS1G_09866 | GH 5 protein                                      | 13    | 51    | 526   |  |
| 2     | SS1G_11922 | arabinan endo-1,5-alpha-L-arabinosidase<br>(GH43) | 0     | 0     | 17    |  |
| 2     | SS1G_12200 | glucooligosaccharide oxidase                      | 74    | 25    | 152   |  |
| 2     | SS1G_12287 | predicted protein                                 | 0     | 0     | 6     |  |
| 2     | SS1G_13501 | alpha-l-rhamnosidase                              | 29    | 34    | 290   |  |
| 2     | SS1G_13736 | protein rds1                                      | 8     | 21    | 136   |  |
| 2     | SS1G_14133 | fg-gap repeat protein                             | 171   | 658   | 1764  |  |
| 3     | SS1G_00423 | ser thr protein phosphatase                       | 91    | 8     | 60    |  |
| 3     | SS1G_01005 | GH 31 protein                                     | 5     | 2     | 24    |  |
| 3     | SS1G_02022 | alpha-mannosidase                                 | 60    | 9     | 99    |  |
| 3     | SS1G_03610 | carbohydrate esterase family 16 protein           | 108   | 43    | 293   |  |
| 3     | SS1G_03611 | predicted protein CFEM domain                     | 1315  | 79    | 10625 |  |
| 3     | SS1G_04468 | GH 47 protein                                     | 52    | 7     | 203   |  |
| 3     | SS1G_07230 | predicted protein (unique to Ss)                  | 3146  | 638   | 3920  |  |
| 3     | SS1G_07639 | acid phosphatase                                  | 50    | 4     | 57    |  |
| 3     | SS1G_08208 | b-mannanase (GH 5)                                | 55    | 25    | 179   |  |
| 3     | SS1G_09020 | cellulose 1,4-beta-cellobiosidase                 | 121   | 17    | 376   |  |
| 3     | SS1G_09270 | hydrophobic surface binding protein               | 3714  | 191   | 988   |  |
| 3     | SS1G_12083 | GH 115 protein                                    | 11    | 2     | 61    |  |
| 3     | SS1G_12907 | cutinase                                          | 81    | 61    | 728   |  |

Bold Genes denote the most highly expressed genes across the conditions.

# Group 1

This group of putative secreted proteins are specifically up regulated during the change from *in vitro* conditions to early plant infection. They are all down regulated during later plant infection. Apart from the phospholipase (SS1G\_09495), the genes identified here are not lipid or cell wall degrading enzymes but instead consist of enzymes that may be more fundamental for the switch between general vegetative growth to infection, or the possible switch between biotrophy and necrotrophy. These may include SS1G\_11912, a necrosis and ethylene inducing peptide 2 precursor, which was significantly up regulated and could be important for infection. SS1G\_13385, an actin patch protein 1, is not directly involved in de novo lipid synthesis but is a phosphatidate phosphatase that catalyses the conversion of phosphatide to diacylglycerol. SS1G\_00974, an extracellular dihydrogeodin oxidase had the highest expression at WT T1 in this group. This enzyme is widespread in fungi and likely involved in phenolic metabolism potentially as a laccase involved in lignin degradation.

## Group 2

Many of the secreted proteins up regulated at later points during *in planta* infection are hydrolysing enzymes which are required to breakdown different parts of plant cell walls and other plant substrates. Many of these proteins would be secreted extracellularly to act on plant substrates. Group 2 consists of many Glycoside Hydrolase (GH) domain containing genes which have a role in hydrolysing plant polysaccharides.

SS1G\_08163 was identified in the refined secretome as small, cysteine rich secreted protein which is typical of some effector proteins (Bolton et al. 2008b, do Amaral et al. 2012). This gene was expressed only *in planta* highlighting that it's induction is during infection. SS1G\_07749, containing a GH11 domain, SS1G\_08695 a class III chitinase, SS1G\_11922, a arabinosidase and SS1G\_12287 a hypothetical protein, all have no transcripts detected *in vitro* but were significantly up regulated during later infection.

SS1G\_10167 (SsPg1) a polygalacturonase involved in virulence (Dallal Bashi et al. 2012), has very high abundance across all 5 libraries and shows no significant change in expression. Another polygalacturonase (SS1G\_08634) was however significantly up regulated later on in the infection course. This is in keeping with other studies as which have demonstrated that other polygalacturonases (SsPg3, SsPg5, or SsPg6) are expressed much later than SsPg1 (Cotton et al. 2003, Li et al. 2004b, Favaron et al. 2004) during infection.

SS1G\_14133 was the most highly expressed gene in Group 2. It is a fg-gap repeat

protein which is one of the  $\alpha$  subunits of an integrin protein. Integrins are involved in many critical roles including cell structure, cell migration, anchoring cells to the extracellular matrices and carrying signals from the outside to the inside of the cell and vice versa (Zhu et al. 2013). Silencing of this gene (SSITL) resulted in a significant reduction in virulence and initiated strong and rapid defence response in Arabidopsis. It has been suggested that SSITL is an effector protein and plays significant role in the suppression of jasmonic/ethylene (JA/ET) signal pathway (Zhu et al. 2013).

# Group 3

This group of putative secreted proteins show significant expression during the transition from agar plug to 12hpi *A. thaliana* infection. SS1G\_03611 had the highest FPKM in WT T2. This protein was identified in the refined secretome as small, cysteine rich secreted proteins which is the protein profile typical of some effector proteins (Bolton et al. 2008b, do Amaral et al. 2012). As described previously, SS1G\_03611 has further EST support from in other EST libraries and also contains a CFEM domain which may be important for virulence. SS1G\_07230, a protein identified as unique to *S. sclerotiorum* also follows a high expression pattern like SS1G\_03611 but is also expressed during culture. This protein has only 63 amino acids in the mature protein but no cysteine residues.

The cutinase SS1G\_12907 was significantly up regulated *in planta*. SS1G\_07661 a cutinase (Sscuta) which has been implicated in virulence (Dallal Bashi et al. 2012) and shares 52% homology with SS1G\_12907 which was identified in this study suggesting that other cutinases may also be required for virulence. In previous studies, 4 cutinase-like enzymes encoded by SS1G\_07661 (down regulated *in planta*), SS1G\_12709 (lowly expressed), SS1G\_13386 (some abundance in WT T2), and SS1G\_12907 exhibited 81%, 63%, 58%, and 52% homology respectively to the homologous *B.cinerea* cutinase (BcCUTA).

The phophatases SS1G\_07639 and SS1G\_00423 are not highly expressed but are required for the specific dephosphorylation of specific phosphoprotein substrates. SS1G\_09020 a cellulose 1,4-beta-cellobiosidase was down regulated during the transition from agar to plant most likely because the cellulose and cellotetraose which it hydrolyses were not available during early infection. Instead this gene is up regulated during the later stages of infection once the cellulose has been release after hydrolysis of the cell wall.

The hydrophobic surface binding protein, SS1G\_09270, which has been previous isolated from the liquid exudates from sclerotial (Liang et al. 2010), was highly up regulated *in vitro*. This could be a result of growing the fungus aerially on cellophane and therefore may require more surface binding proteins.





Secreted proteins identified in the refined secretome which are divided into three groups based on similar expression profiles across the WT time course. The x-axis represents the time points during infection: 1-WT T0, 2-WT T1, 3-WT T2.

# 7.3.7 Comparison of significantly expressed secreted proteins during WT and $\Delta oah$ in vitro conditions

Across all 34 significant gene expression events between WT T1 and  $\Delta oah$  T0 libraries, only four secreted proteins from the refined secretome were identified (**Table 53**). SS1G\_02828 was significantly down regulated in the mutant, however with no protein domain information we cannot really speculate on its involvement with oxalic acid. An increase in expression was seen  $\Delta OAH$  T0 library in the remaining 3 genes. SS1G\_04200 contains a glycoside hydrolase domain and is speculated to have alpha-mannosidase activity which hydrolyses alpha mannose. SS1G\_04958 which contains a putative Prokumamolisin, activation domain is predicted to have peptidase activity. Finally SS1G\_10172 has a phytase-like PFAM domain, which is suggested to have PLC-like phospho-diesterase which hydrolyse phosphodiester bonds.

**Table 53**: Four secreted proteins identified in the refined secretome with significant gene expression between the in vitro WT and  $\triangle oah$  samples.

| Gene ID    | Gene<br>annotation                     | Length | Cysteine | %<br>Cys | WolF<br>PSOR<br>T | PFAM  | WT TO<br>FPKM | <i>∆oah</i> T0<br>FPKM |
|------------|----------------------------------------|--------|----------|----------|-------------------|-------|---------------|------------------------|
| SS1G_02828 | Protein                                | 187    | 4        | 2.14     | extr=21           | -     | 1292.43       | 16.8366                |
| SS1G_04200 | alpha<br>mannosidase<br>family protein | 755    | 3        | 0.4      | extr=25           | 07971 | 3.49278       | 335.028                |
| SS1G_04958 | tripeptidyl-<br>peptidase<br>precursor | 567    | 6        | 1.06     | extr=25           | 09286 | 5.11701       | 188.57                 |
| SS1G_10172 | Phytase-like                           | 401    | 4        | 1        | extr=25           | 13449 | 15.4866       | 319.67                 |

# 7.3.8 The botcinic acid biosynthesis cluster

The 50 genes with highest fold changes, regardless of significance, between the  $\Delta oah$  T0 and  $\Delta oah$  T1 libraries were investigated. The 50 gene IDs were mapped to the *S. sclerotiorum* genome using Omnimap. This identified a cluster of 10 genes which were up regulated in the fungus during *in planta* infection (**Figure 73a**). The genes all cluster on the 14<sup>th</sup> chromosome. Three of these genes have cytochrome P450 domains, two exhibit sequence homology with polyketide synthase enzymes and a further two genes were annotated as having possible mono-oxygenase activity. The annotation and close proximity of the genes in the genome is highly suggestive of a gene cluster involved in secondary metabolite synthesis. On closer inspection of this gene cluster, the genes were identified to be homologues to the BcBOA genes in *B.cinerea* genome which have been predicted to be involved in the biosynthetic pathway of botcinic acid (Dalmais et al. 2011).

In the proposed botcinic acid biosynthetic pathway, 17 genes are predicted to be involved in biosynthesis of this phytotoxin (Dalmais et al. 2011). Of these, thirteen homologue genes have been identified in the *S. sclerotiorum* sequenced genome. Both fungi possess two clusters of genes involved in this pathway but their repartitions are different (Dalmais et al. 2011) (**Figure 73b**). What is very interesting about this group of genes in *S. sclerotiorum* is that they are highly expressed under the  $\Delta oah$  in planta conditions but had relatively no expression in any of the other 4 libraries (**Table 54**).



### b) Botrytis cinerea B05.10

a)



#### Figure 73: Botcinic acid cluster.

a) The two clusters of genes identified on chromosome 14 which corresponds to the homologue botcinic acid synthesis genes. b) Figure from Dalmais et al. (2011) (Dalmais et al. 2011) which highlights the putative botcinic acid biosynthetic genes. BcBOA genes are part of two clusters in both *B. cinerea* B05.10 and *S. sclerotiorum* sequenced genomes. Black arrows indicate genes that might be involved in botcinic acid biosynthesis in B. cinerea. Dark grey arrows in *S. sclerotiorum* indicate the homologue BcBOA genes. Light grey arrows indicate the *S. sclerotiorum* genes that are probably not related to secondary metabolism and the botcinic acid cluster. Grey boxes at the ends of the B. cinerea clusters indicate AT-rich regions exhibiting AT contents from 70% to 90%.

| Cluster | Gene ID    |                                              | FPKM           |         |       |       |       | Pfam                          | B. cinerea ID                                    | Ref paper                |
|---------|------------|----------------------------------------------|----------------|---------|-------|-------|-------|-------------------------------|--------------------------------------------------|--------------------------|
|         |            |                                              | <i>∆oah</i> T0 | ⊿oah T1 | WT T0 | WT T1 | WT T2 |                               |                                                  |                          |
| 1       | SS1G_12300 | Flavin-binding monoxygenase                  | 1              | 252     | 0     | 0     | 0     | PF00743                       | BcBOA2<br>Bc1g_16083                             | Schumacher et al.(2008)  |
| 1       | SS1G_12301 | monooxygenase-like, NmrA-like family         | 1              | 967     | 1     | 0     | 0     | PF05368                       | BcBOA1                                           | Schumacher et al.(2008)  |
| 2       | SS1G_09234 | cytochrome p449                              | 15             | 1113    | 1     | 1     | 1     | PF00067                       | BcBOA3<br>Bc1g_16084                             | Schumacher et al.(2008)  |
| 2       | SS1G_09235 | cytochrome p450                              | 36             | 1099    | 3     | 1     | 4     | PF00067                       | BcBOA4<br>Bc1g_16085                             | Schumacher et al.(2008)  |
| 2       | SS1G_09236 | alcohol dehydrogenase                        | 3              | 327     | 0     | 0     | 1     | PF08240                       | BcBOA5                                           | Schumacher et al.(2008)  |
| 2       | SS1G_09237 | Reducing polyketide synthase                 | 4              | 804     | 0     | 0     | 1     | PF00109<br>PF02801<br>PF00698 | BcBOA6<br>Bc1g_16086<br>Bc1g_16087               | Schumacher et al.(2008)  |
| 2       | SS1G_09238 | cytochrome p450<br>monooxygenase             | 3              | 505     | 0     | 0     | 0     | PF00067                       | BcBOA7                                           | Dalmais et al. (2011)    |
| 2       | SS1G_09239 | fad binding domain                           | 3              | 599     | 0     | 1     | 0     | PF01494                       | BcBOA8<br>Bc1g_15836                             | Dalmais et al. (2011)    |
| 2       | SS1G_09240 | polyketide synthase                          | 20             | 333     | 7     | 10    | 13    | PF00109<br>PF02801<br>PF00698 | BcBOA9<br>Bc1g_15837<br>Bc1g_15838<br>Bc1g_15839 | Dalmais et al.<br>(2011) |
| 2       | SS1G_09241 | thioesterase domain containing protein       | 1              | 1005    | 0     | 0     | 0     | PF00975                       | BcBOA10<br>Bc1g_15840                            | Dalmais et al. (2011)    |
| 2       | SS1G_09242 | Transferase family                           | 0              | 108     | 0     | 0     | 0     | PF02458                       | BcBOA11<br>Bc1g_15841                            | Dalmais et al. (2011)    |
| 2       | SS1G_09243 | unknown function (no domains found)          | 1              | 777     | 0     | 0     | 0     | -                             | BcBOA12<br>Bc1g_15842                            | Dalmais et al. (2011)    |
| 2       | SS1G_09244 | fungal Zn(2)-Cys(6) binuclear cluster domain | 7              | 167     | 1     | 0     | 0     | PF00172                       | BcBOA13<br>Bc1g_15843                            | Dalmais et al. (2011)    |

**Table 54**: The S. sclerotiorum homologue gene identified in B. cinerea which are responsible for the synthesis of botcinic acid.

# 7.3.9 Expression of appressoria associated genes

The expression of genes associated with the development of appressoria that were listed in the genome analysis paper (Amselem et al. 2011) was investigated which revealed that the expression between the mutant and the WT strain were comparable (**Table 55**). As the *oah* mutant has been observed to produce a very low frequency of appressoria, this suggests that there was very little development of apothecia during the WT infection. SS1G\_11468 may be induced by thigmotrophic sensing as it highly upregulated in the *oah* T0 library. This gene was also identified in the *S. sclerotiorum* secretome (Chapter 5).

**Table 55:** The ortholog genes in *S. sclerotiorum* known to be associated with appressoria formation.

| Gene ID    | Proposed function        | WT TO    | WT T1   | WT T2   | <i>∆oah</i> T0 | ⊿oah T1  |
|------------|--------------------------|----------|---------|---------|----------------|----------|
| SS1G_00173 | uncharacterized          | 3.1671   | 9.78576 | 3.83291 | 9.12065        | 9.13484  |
| SS1G_00637 | appressorium formation   | 112.798  | 74.2221 | 74.1364 | 93.9233        | 142.959  |
|            | and penetration; PAK     |          |         |         |                |          |
|            | protein kinase           |          |         |         |                |          |
| SS1G_01602 | penetration hyphae;      | 1594.88  | 963.326 | 1040.47 | 987.626        | 1544.08  |
|            | autophagy                |          |         |         |                |          |
| SS1G_01851 | appressorium formation;  | 263.849  | 97.1984 | 84.6698 | 170.006        | 367.768  |
|            | extracellular matrix     |          |         |         |                |          |
|            | protein                  |          |         |         |                |          |
| SS1G_04934 | uncharacterized          | 96.3784  | 39.7014 | 18.0993 | 53.0418        | 7.39463  |
| SS1G_05586 | appresorium penetration; | 112.254  | 60.2846 | 67.2887 | 142.456        | 56.5463  |
|            | tetraspanin              |          |         |         |                |          |
| SS1G_07136 | appressorium             | 97.6622  | 85.5689 | 93.2887 | 133.322        | 221.061  |
|            | maturation; steA         |          |         |         |                |          |
|            | Transcription factor     |          |         |         |                |          |
| SS1G_10311 | appresorium penetration  | 244.265  | 295.718 | 177.454 | 54.9693        | 24.1381  |
| SS1G_11468 | uncharacterized          | 227.984  | 966.581 | 392.496 | 5284.91        | 7.9385   |
| SS1G_13339 | penetration hyphae;      | 694.224  | 495.879 | 430.443 | 208.49         | 156.45   |
|            | carnitine O-acetyl       |          |         |         |                |          |
|            | transferase              |          |         |         |                |          |
| SS1G_14237 | uncharacterized          | 0.700403 | 3.59151 | 1.48338 | 3.64723        | 0.606049 |

The numerical values represent the FPKM calculated for each library.

# 7.3.10 Expression of documented virulence genes

The expression levels of reported virulence genes and other potential genes identified in the refined *S. sclerotiorum* secretome involved in pathogenesis were investigated across the different conditions (**Table 56**). What is noticeable is that most of the highly expressed proposed virulence genes (SS1G\_08218, SS1G\_10167, SS1G\_00699, SS1G\_00263) in the WT libraries are still expressed highly but at much lower transcripts were measured in the corresponding mutant libraries. An exception to this is the pac1 gene (SS1G\_07355) which was up regulated in both  $\Delta oah$  libraries. There was no expression seen for the *oah* gene which confirmed the lack of this enzyme within the mutant.

The identified oxalate decarboxylase proteins which are associated with the breakdown of oxalate (SS1G\_08814 and SS1G\_10796) had relatively low expression. SS1G\_08814 had relatively constant expression throughout the experiment. SS1G\_10796 was more highly expressed later on during infection. However expression levels dropped considerably in the mutant libraries.

SS1G\_00772 a putative secreted protein containing three LysM domains which had been identified in the *S. sclerotiorum* refined secretome was expressed throughout the infection in both WT and  $\Delta oah$  strains but in relatively low abundance. The other three proteins containing LysM domains were not expressed during this experiment. This gene had higher expression levels *in vitro* then during plant infection, although the LysM genes are often expressed more highly at later points in infection which is something which could be further investigated.

The two NADPH oxidases (SS1G\_05661, SS1G\_11172) had low expression across all libraries which is surprising as this protein is important for regenerating superoxide which is an important precursor of several reactive oxygen species (ROS), including hydrogen peroxide (Kim et al. 2011). SsSod1, a superoxide dismutase (SS1G\_00699) had higher expression in comparison to NADPH oxidase genes, which but was reduced lower in the mutant libraries.

# **Table 56:** Expression of documented virulence genes.

The expression levels of genes documented in the literature or identified in the refined secretome to be potentially involved in virulence of pathogenicity during *S. sclerotiorum* infection. Red denotes genes which were down regulated in the corresponding OAH libraries. Green denotes those genes which were up regulated in the corresponding library.

| Gene ID    | Documented virulence genes |       | FPKM  |       |         |         |  |  |
|------------|----------------------------|-------|-------|-------|---------|---------|--|--|
|            |                            | WT TO | WT T1 | WT T2 | ⊿oah T0 | ⊿oah T1 |  |  |
| SS1G_02462 | arabinofuranosidase/beta-  | 51    | 211   | 495   | 15      | 13      |  |  |
|            | xylosidase                 |       |       |       |         |         |  |  |
| SS1G_01788 | cna1                       | 193   | 201   | 187   | 135     | 122     |  |  |
| SS1G_00772 | LysM domain                | 73    | 48    | 26    | 38      | 11      |  |  |
| SS1G_12509 | LysM domain                | 0     | 0     | 0     | 0       | 0       |  |  |
| SS1G_12513 | LysM domain                | 0     | 0     | 0     | 1       | 0       |  |  |
| SS1G_03535 | LysM domain                | 1     | 0     | 0     | 1       | 0       |  |  |
| SS1G_08218 | OAH                        | 7110  | 6050  | 3004  | 2       | 12      |  |  |
| SS1G_08814 | oxalate decarboxylase      | 22    | 22    | 16    | 16      | 28      |  |  |
| SS1G_10796 | oxalate decarboxylase      | 2     | 27    | 29    | 3       | 4       |  |  |
| SS1G_07355 | pac 1                      | 68    | 120   | 108   | 257     | 440     |  |  |
| SS1G_08104 | Cutinase                   | 6     | 31    | 35    | 6       | 72      |  |  |
| SS1G_12907 | Cutinase                   | 81    | 61    | 728   | 103     | 18      |  |  |
| SS1G_07661 | Sscuta                     | 75    | 25    | 27    | 44      | 60      |  |  |
| SS1G_14127 | Ss-ggt1                    | 21    | 19    | 62    | 29      | 16      |  |  |
| SS1G_10167 | sspg1                      | 16564 | 11091 | 6353  | 10141   | 5548    |  |  |
| SS1G_00699 | SsSod1                     | 1887  | 1518  | 1332  | 1739    | 1195    |  |  |
| SS1G_00263 | ssv263                     | 17757 | 14887 | 10574 | 14063   | 2273    |  |  |
| SS1G_07626 | B.cinerea velvet homologue | 45    | 48    | 63    | 58      | 123     |  |  |
| SS1G_05661 | NADPH oxidase(Ssnox1)      | 13    | 16    | 20    | 27      | 24      |  |  |
| SS1G_11172 | NADPH oxidase(Ssnox2)      | 47    | 43    | 43    | 42      | 15      |  |  |

## 7.3.11 Polygalacturonase expression

The analysis of the S. sclerotiorum refined secretome revealed 17 genes with Glycoside Hydrolase family 28 (GH28) protein domains which are characteristic of polygalacturonases (PGs) (Chapter 5) (Table 57). Six of these genes have been identified and characterised as PGs in previous studies ((Li et al. 2004b, Dallal Bashi et al. 2012, Kasza et al. 2004, Cotton et al. 2003). In this experiment, Sspg1 (SS1G\_10167) was the most highly expressed PG across all libraries. It was most highly expressed in the *in vitro* libraries and less expressed in planta. The expression level of this gene in the  $\triangle OAH$ libraries was almost half the expression of that in the corresponding WT libraries. SS1G\_05832 which contains a GH28 domain but has not been previously characterised as a PG, was the second most highly expressed gene in this data set. SS1G\_14449 was also up regulated across all libraries; again the level of expression was higher in the in vitro libraries. An interesting observation is the up regulation of SS1G\_01009 only in the  $\Delta oah$ in planta T1 library, again suggestive of a link between this enzyme and the OAH enzyme specifically. SS1G\_06235 and SS1G\_07039 have very little or no expression in any of the libraries suggesting that they may be redundant PGs or require other environmental signals to induce expression. SS1G\_06235 had no expression in WT libraries and only very low abundance in the  $\triangle oah$  libraries.

From these data, 3 groups of putative polygalacturonases were identified across the WT infection course. Most of the previously characterised endo-PGs are in Group 1 which exhibit the highest expression *in vitro* and then have decreasing expression over time *in planta* (Figure 74a). Group 2 consist of other endo-PGs which have expression levels which peak in the WT T1 library suggesting they are principally activated early during infection (Figure 74b). Finally Group 3 consists of the exo-PGS which had higher expression levels later during infection (Figure 74c).

**Table 57**: Seventeen S. sclerotiorum genes identified in the refined secretome as putative polygalacturonases.

The expression levels in each library are denoted by the FPKM values.

| Group | Gene ID    | Cla             | ssified | NCBI     | FPKM      | [         |          |        |       |
|-------|------------|-----------------|---------|----------|-----------|-----------|----------|--------|-------|
|       |            |                 |         |          | WT        | WT        | WT       | ∆oah   | ∆oah  |
|       |            |                 |         |          | T0        | T1        | T2       | T0     | T1    |
| 1     | SS1G_02399 |                 |         |          | 56        | 35        | 27       | 31     | 38    |
| 1     | SS1G_04177 |                 | Sspg5   | AY496277 | 20        | 6         | 6        | 3      | 4     |
| 1     | SS1G_05832 |                 |         |          | 1 885     | 1<br>188  | 499      | 697    | 939   |
| 1     | SS1G_10167 | Neutral<br>endo | Sspg1   | AF501307 | 16<br>564 | 11<br>091 | 6<br>353 | 10 141 | 5 548 |
| 1     | SS1G_11057 | Neutral<br>endo | Sspg6   | AF501308 | 6         | 4         | 3        | 14     | 41    |
| 1     | SS1G_14449 |                 |         |          | 236       | 130       | 133      | 138    | 115   |
| 2     | SS1G_04552 |                 |         |          | 2         | 7         | 6        | 3      | 12    |
| 2     | SS1G_07039 |                 |         |          | 5         | 8         | 6        | 5      | 8     |
| 2     | SS1G_01009 |                 |         |          | 0         | 2         | 0        | 1      | 136   |
| 2     | SS1G_10698 | Acid<br>endo    | Sspg3   | AY312510 | 58        | 99        | 41       | 75     | 64    |
| 3     | SS1G_02553 | exo             | Xpg2    | AY312512 | 2         | 1         | 15       | 7      | 1     |
| 3     | SS1G_03540 |                 |         |          | 40        | 15        | 78       | 57     | 6     |
| 3     | SS1G_04207 | exo             | Xpg1    | AY312511 | 0         | 0         | 36       | 3      | 0     |
| 3     | SS1G_08229 |                 |         |          | 3         | 6         | 21       | 2      | 13    |
| 3     | SS1G_08634 |                 |         |          | 20        | 20        | 130      | 11     | 5     |
| 3     | SS1G_12057 |                 |         |          | 10        | 6         | 21       | 15     | 15    |
| -     | SS1G_06235 |                 |         |          | 0         | 0         | 0        | 2      | 3     |





a) Group 1 WT PG expression. b) Group 2 WT PG expression. c) Group 3 WT PG expression.

## 7.3.12 Genes with similar expression patterns as oah

The top 20 genes with most similar expression profiles to oxaloacetate acetylhydrolase (SS1G\_08218) across the WT infection course were selected using the 'mySimilar' command in R (

**Table 58**). The aim of this investigation was to monitor which genes were expressed alongside oah1 and if any of these same genes were down regulated in a similar way to *oah1* in the  $\triangle oah1$  libraries. This could be suggestive of co-regulation of important genes linked with OAH function. SS1G\_08218 was expressed highly in all three WT conditions but has the highest expression *in vitro*. Out of those 20, only the 15 genes which had FPKM value greater than 100 FPKM in at least one library were analysed. The 15 genes were divided into three groups according to their expression profiles in the  $\triangle oah$  libraries. Four genes were

placed in Group 1 (**Figure 75a**). These genes were considerably down regulated in the  $\triangle oah$  libraries. These include SS1G\_14018 a fad binding domain protein, SS1G\_09475, a serine carboxypeptidase, SS1G\_08795, a succinate fumarate mitochondrial transporter and SS1G\_05902, a Sec61beta family domain containing protein may all be directly regulated alongside *oah1*. In Group 2, expression

of genes is up regulated in  $\triangle oah$  in vitro library (

Figure 75b). This was observed for SS1G\_12839, a pyruvate carboxylase which catalyses the breakdown of pyruvate into oxaloacetate was on the other hand was up regulated in  $\Delta oah1 \ TO$ . Other proteins in this group are transporters and transferases.

The third group consists of hypothetical proteins with unknown function, a Git3 glucose receptor (SS1G\_07511) and a vesicle coat transport protein (SS1G\_14228). These proteins are up regulated in the  $\triangle oah T1$  library (

Figure 75c).



**Figure 75**: Three groups of genes which exhibited similar expression profiles to *oah*. Genes identified in the WT libraries but have different expression profiles in the OAH libraries. a) Expression is down regulated in the *oah* libraries. b) Expression is up regulated in the *oah1 in vitro* library. c) Expression was up regulated *in planta*.

**Table 58**: The expression of the top 20 genes with most similar expression profiles to oxaloacetate acetylhydrolase gene across the five libraries.

| Group  |                          | Name                                                                      | Function                                                                                                                                                                                                                                  | WT TO       | WT T1       | WT T2       | <i>∆oah</i> T0 | <i>∆oah</i> T1 |
|--------|--------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|----------------|----------------|
| 1<br>1 | SS1G_08218<br>SS1G_08795 | oxaloacetate hydrolase<br>succinate fumarate<br>mitochondrial transporter | Hydrolyse oxaloacetate into oxalate and acetate.<br>Transporter protein within the TCA cycle.                                                                                                                                             | 7110<br>257 | 6050<br>217 | 3004<br>106 | 2<br>15        | 12<br>9        |
| 1      | SS1G_09475               | serine carboxypeptidase                                                   | Peptide hydrolysis, found in the refined secretome.                                                                                                                                                                                       | 2704        | 2163        | 1056        | 878            | 520            |
| 1      | SS1G_14018               | fad binding domain protein                                                | Oxygen oxidoreductase which uses FAD as a co-<br>factor.                                                                                                                                                                                  | 79          | 70          | 33          | 30             | 21             |
| 2      | SS1G_00146               | carbonic anhydrase                                                        | Catalyses the hydration of $CO_2$ to give bicarbonate<br>and a proton. Provide bicarbonate for metabolic<br>carboxylation reactions and involved in $CO_2$<br>sensing by producing bicarbonate for the activation<br>of adenylyl cyclase. | 382         | 326         | 161         | 358            | 329            |
| 2      | SS1G_02757               | predicted protein                                                         | -                                                                                                                                                                                                                                         | 497         | 392         | 201         | 392            | 335            |
| 2      | SS1G_03654               | formate transporter                                                       | Formate/nitrate transporters.                                                                                                                                                                                                             | 105         | 87          | 41          | 113            | 68             |
| 2      | SS1G_05902               | Sec61beta family domain                                                   | Protein-conducting channel transferring polypeptides across the endoplasmic reticulum.                                                                                                                                                    | 670         | 604         | 284         | 427            | 312            |
| 2      | SS1G_07854               | Acetyltransferase (GNAT) family                                           | Transferase enzyme that transfers an acetyl group.<br>Possibly to traffic intermediates of the glyoxylate cycle.                                                                                                                          | 89          | 75          | 37          | 197            | 9              |
| 2      | SS1G_12839               | pyruvate carboxylase                                                      | Catalyses the breakdown of pyruvate into oxaloacetate.                                                                                                                                                                                    | 1776        | 1412        | 761         | 2206           | 1190           |
| 2      | SS1G_13658               | 1-aminocyclopropane-1-<br>carboxylate synthase                            | Generates aminocyclopropane-1-caroxylate, a pre-<br>cursor for ethylene.                                                                                                                                                                  | 26          | 21          | 11          | 42             | 33             |
| 3      | SS1G_02149               | hypothetical protein<br>SS1G_02149                                        | -                                                                                                                                                                                                                                         | 17          | 14          | 7           | 24             | 137            |
| 3      | SS1G_04390               | hypothetical protein<br>SS1G_04390                                        | -                                                                                                                                                                                                                                         | 65          | 51          | 26          | 51             | 131            |
| 3      | SS1G_07511               | G protein-coupled glucose receptor regulating Gpa2                        | Git3 functions during adenylate cyclase activation.                                                                                                                                                                                       | 51          | 43          | 23          | 78             | 138            |
| 3      | SS1G_14228               | copii-coated vesicle<br>membrane protein                                  | Vesicle coat protein that transports proteins from<br>the rough endoplasmic reticulum to the Golgi<br>apparatus.                                                                                                                          | 130         | 109         | 56          | 86             | 128            |

### 7.4 Discussion

The use of RNA sequencing to monitor the infection process of *S. sclerotiorum* WT and  $\Delta oah$  mutant strains in *Arabidopsis* has revealed a wealth of expression data which will improve the community's understanding of this interaction and how oxalic acid may regulate other genes important to the infection process and pathogen development. However due to the lack of finance to sequence biological replicates, the observations made in this chapter would require further validation through repetition of the RNA sequencing or RT-qPCR to explore further a particular gene expression pattern. In future, the technical replicate data which is available for each library will be individually processed through the bioinformatics pipeline to calculate the FPKM values per genes per technical replicate to allow for further statistical analysis of the results.

In total, seven libraries were sequenced using the Illumina RNAseq platform. The changes in the fungal gene expression profiles have been analysed but changes in the expression profile of the plant genes is yet to be analysed. The transcriptome information of the fungal *in vitro* samples (WT T0,  $\Delta oah$  T0) and the plant samples infected with the pathogen (WT T1, WT T2,  $\Delta oah$ T1) were explored to observe expression of putative secreted proteins, documented virulence genes and proteins with a similar expression profile to *oah* (SS1G\_08218). Due to time constraints, the entire set of data has not been fully explored but continues to be analysed by collaborators at the University of Florida.

#### 7.4.1 Genes with the highest abundance

The analysis initially has revealed the 10 most highly expressed genes across the five libraries. These genes predominately include ribosomal proteins was expected as ribosomes are essential for the synthesis of the plethora of proteins and enzymes required for growth and pathogenesis. The most highly expressed gene across all libraries was SS1G\_00253 which has no known protein domains or any annotation but is most likely a risbosomal protein. Although still highly expressed in the  $\Delta oah$  libraries compared to other genes, SS1G\_00253 was expressed at reduced levels suggesting the lack of *oah* and the subsequent reduction in oxalic acid production will affect some of the most important basic growth and metabolism genes. Other housekeeping genes like proteolipid membrane potential modulators and a putative transcription factor bZIP were also highly expressed. Transcription factor bZIP was present in high abundance across all libraries suggesting it regulates general growth and metabolism. The *S. sclerotiorum* genome contains a predicted 345 transcription factors which are responsible for regulating a range of genetic networks and so it is logical that these would be highly up regulated during certain conditions.

Eleven hypothetical proteins with no known protein domains were expressed at high levels across the five libraries. This highlights an abundance of proteins within the two saprotrophic and necrotrophic phases that are expressed at high levels during growth but remains relatively unknown and require further investigation.

### **7.4.2 Expression of the putative refined secretome**

Eighty eight genes identified in the refined secretome were found have an FPKM > 100 in at least one of the RNAseq libraries. This provides further expression support for 20% of the refined secretome. Furthermore, determining the significant expression pattern across different conditions is a very powerful tool to observe important genes involved in specific processes. This allows identification of certain genes that differ in gene expression between different fungal strains as well as looking at changes in the same species over time or during infection. As there were no biological replicates to calculate the variations across gene events, cuffdiff calculated significant expression by taking into account variations across all the different conditions being compared. As a result there were fewer significant events than expected because of the reduced statistical power.

The significant expression of genes from the refined secretome defined in Chapter 5 was investigated across the *in vitro* and *in planta* WT libraries. If these putative secreted proteins have high levels of expression, it provides further validation that these proteins have a function. Forty one putative secreted proteins were responsible for 60 significant gene expression events across WT T0, WT T1 and WT T2. Three subgroups (Group1-3) of these proteins which have similar expression patterns were the subject of further investigation. Group 1 identified genes that were switched on in planta. One of the most interesting genes observed with significant expression in Group 1 was SS1G\_11912, the putative necrosis and ethylene inducing peptide identified in the refined secretome. This should be investigated further as a homologous protein in *Phytophthora sojae* (PsojNIP) was shown to be expressed during the transition from biotrophy to necrotrophy (Qutob et al. 2002). This is similar to the conditions being investigated here where S. sclerotiorum was forced to switch from a non-pathogenic lifecycle on the agar plate to infecting A. thaliana. PsojNIP is hypothesised to be a toxin gene that is expressed late during the colonisation of soybean, and facilitates colonisation of host tissue during the necrotrophic phase of infection (Qutob et al. 2002). It has recently been speculated that S. sclerotiorum should be re-classified from a necrotroph to a hemibiotroph as observations using different microscopy techniques (Kabbage et al. 2013) and staining during the initiation of pathogenesis, indicate that the WT fungus does not kill host plant cells; there is no evidence for oxidative stress and fungal growth is observed in living plant tissue. This recent bioimaging study, also revealed the induction of apoptosis necrotrophy which enables the fungus to live off dead cells. Kabbage et al (2013) demonstrated that WT strains induced runaway apoptotic cell death of host plant cells which is associated with a necrotrophic lifestyle, whereas the oxalate deficient A2 mutant strain induces autophagic cell death is associated with a restricted phenotype (Kabbage et al. 2013).

A phospholipase (SS1G\_09495) which was significantly up regulated *in planta* requires further investigation. Secreted phospholipases have been implicated in virulence in bacteria for many years and there is evidence that this may also be the case for fungal pathogens. These enzymes hydrolyse one or more ester linkages in glycerophospholipids which are the main components of biological membranes (Ghannoum 2000). It is tempting speculate that the expression of this gene may be directly involved with the expression of the actin patch protein 1 which catalyses the conversion of phosphatide to diacylglycerol. In yeast this protein is thought to play a role in endocytosis (Chae and Carman 2013). Endocytosis has been shown to be important in the filamentous fungus *Aspergillus oryzae* for apical growth and for recycling components which are required for re-transported to the tip region (Higuchi et al. 2009). If the phospholipase is secreted into the plant alongside other lysophospholipase (SS1G\_04030) which then break down plant membranes, then the actin patch protein may then be required to recycle plant material via endocytosis.

Twenty-five of the significantly expressed genes across the three libraries are involved in hydrolysis of different plant substrates and most have glycoside hydrolase domains which will hydrolyse plant polysaccharides. Many of the genes in Group 2 were up regulated during the later stages of infection. This was an expected result as at this point the infection lesion across the leaf was observed to have spread considerably and the plant cells would be accessible to the enzymes for hydrolysis.

The most highly expressed protein in Group 2 was SS1G\_14133, a putative integrin. Integrins belong to a large family of cell surface protein molecules that act as conserved transmembrane cell-adhesion receptors in a variety of vertebrates, invertebrates (Marcantonio and Hynes 1988) and plants. *Arabidopsis* NDR1 is required for ETI mediated defence and is an integrin. This gene now described as *S. sclerotiorum* integrin-like gene (SSITL) was recently silenced in *S. sclerotiorum* and was shown to be a potential effector and is involved in suppressing host resistance at the early stage of infection (Zhu et al. 2013). Zhu et al (2013) used RT-qPCR to show the expression of this gene during *Arabidopsis* infection peaked at 3hpi. They observed infection up to 12hpi and reported that expression of SS1G\_14133 was reduced after 3hpi but remained 120–250 fold higher

than at 0 hpi. The expression of this gene in the RNAseq experiment highlights that this protein may be required later on during infection, after 12hpi.

In Group 3, SS1G\_03611, which contains an eight cysteine-containing domain known as a CFEM domain, and SS1G\_07230, a protein unique to S. sclerotiorum, both had the highest expression values in WT T2. These genes were identified in the refined secretome to have a potential role in pathogenesis and their expression during later infection stages has now been confirmed. CFEM domains have been previously implicated to have potential pathogenicity roles in other fungal pathogens including M. grisea (Kulkarni et al. 2003). Significant gene expression events were analysed between WT TO and  $\Delta oahTO$  conditions to identify which secreted proteins may vary between the two strains in an *in vitro* environment. On agar plates, *doah* grows at a distinctly slower rate compared with WT. It was hypothesised that large changes in protein expression would be observed between the two. Only 39 genes were significantly different across the two conditions. Four of these were identified as putative secreted proteins. Three of the genes were expressed at much lower levels in the WT strain and are involved in some form hydrolysis. The higher expression of these genes in  $\Delta oah$  libraries could be as a direct effect of lack of oxalic acid *in vitro*. One reason for this that could be that because OA is reduced in the mutant, more proteins need to be expressed to sustain an infection. However, this remains a speculation.

## 7.4.3 Botcinic acid gene cluster expression

Arguably, the most interesting observation in this investigation was the up regulation of the homologue gene cluster responsible for the biosynthesis of botcinic acid in *B. cinerea* during  $\Delta oah$  in planta infection. The up regulation of the gene cluster was not observed during the WT infection. The direct role of botcinic acid, an acetate-derived polyketide (Dalmais et al. 2011), is unclear but has been shown to induce chlorosis and necrosis (Cutler et al. 1996) as well as having antifungal activities (Sakuno et al. 2007). In *B. cinerea* experimental evidence with single and double synthetic mutants suggested that botcinic acid along with the secretion of botrydial acid have redundant roles in virulence (Dalmais et al. 2011). The secretion of this proposed phytotoxin has not previously been associated with *S. sclerotiorum* infection or growth. There was some expression of these genes in the  $\Delta oah$  strain grown on agar plates ( $\Delta oah$  T0) but this was minimal compared with the  $\Delta oah$ T1 expression levels. Although the entire cluster of genes was expressed, without doing the appropriate chemical analysis on the samples, there is no evidence that this compound was synthesised and secreted during infection. However, there was

evidence of chlorosis in *Arabidopsis* leaves infected with  $\triangle OAH$  compared with WT infected leaves but that could be a result of a variety of plant defence mechanisms induced by the mutant strain which are usually evaded during WT infection (Kabbage et al. 2013).

The homologue *S. sclerotiorum* botcinin acid cluster of genes has been observed to be expressed in WT *S. sclerotiorum* previously during infection cushion or appressoria formation (unpublished data, Jeff Rollins). Appressoria formation is associated a very early point of WT infection, between 3 and 5 hpi. In this study, expression after 12 hpi was the 1<sup>st</sup> *in planta* time point explored. This may explain the very low transcript abundance or no expression of the cluster observed in the wild type libraries. Another reason for this lack of expression in WT could be that appressoria were not required during this infection course because the leaf was wounded prior to inoculation. The induction of appressoria formation may not be required for wounded leaf penetration because hyphae were observed to grow easily into the wound. The group of genes described to be associated with appressoria formation is has been observed to be reduced in the mutant (unpublished data, Jeff Rollins). This is suggestive that if plant were not wounded the expression of these genes may be higher in the WT.

B. cinerea is a close phylogenetic relative to S. sclerotiorum and although they share 84 % of their protein sequences (Amselem et al. 2011) it is plausible that they share biosynthetic pathways that over time may have become specialised in their products or regulation due to the evolution of different infection strategies. In support of this notion, the S. sclerotiorum genome does lack four of the seventeen homologue genes from the B. *cinerea* putative biosynthetic pathway so until botcinic acid levels can be quantified during S. sclerotiorum infection with the mutant it is difficult to speculate whether this specific phytotoxin is being produced. The secretion of botcinic acid varies between different B. cinerea strains (Dalmais et al. 2011) and it is reported that B. cinerea produces lower amounts of OA compared with S. sclerotiorum. It is very tempting to speculate that there is a direct link between the lack of oxaloacetate acetylhydrolase and subsequent lack of oxalic acid formation which has forced the  $\Delta oah$  strain to increase the expression of this toxin biosynthetic pathway as its attempt to induce further infection in the absence of its primary virulence factor. To speculate, botcinic acid may be induced when there is low oxalic acid produced in both fungi. In addition there may be variation between different strains of S. sclerotiorum that may or may not possess a full pathway and therefore would be unable to produce botcinic acid.

### 7.4.4 Proposed virulence genes

The expression of *S. sclerotiorum* genes previously reported to be involved in pathogenesis, virulence or infection regulation were compared across the five libraries. This analysis revealed that 10 of the documented virulence genes were down-regulated in the corresponding mutant libraries. Collectively, these data highlight that some virulence factors may be negatively regulated in the absence of oxalic acid and contribute to the restricted infection phenotype of the  $\Delta oah$  mutant.

SS1G\_00263 (ssv263) was the most highly expressed gene in this set and however, expression was markedly reduced in only the  $\triangle oah T1$  library. This protein which is unique to *B. cinerea* and *S. sclerotiorum* has been shown not to be involved with saprophytic growth, gene-disrupted mutant strains grew comparably to WT strains on PDA plates (Liang et al. 2013). Instead, when the gene-disrupted strain was used to infect susceptible Canola (*Brassica napus*), infection still occurred but the rate of lesion expansion and the final lesion size were reduced. It is suggested then that this protein is not essential for pathogenicity but affects symptom severity.

Other genes exhibited an increase in expression in the corresponding mutant libraries. This pattern of mis-regulation may result from the lack of pH regulation during infection. Consistent with this hypothesis, the *pac1* gene was considerably up regulated in both  $\triangle oah$  conditions. pacl is a pH responsive gene which was reported in A. nidulans to be positively regulated under alkaline conditions. It actively promotes transcription of alkaline-expressed genes (Rollins 2003). This occurs in accordance with the PacC model from A. nidulans, when the a zinc finger DNA-binding domain of the activated Pac1 protein recognises alkaline expressed genes containing multiple copies of a 5'GCCARG-3'binding site situated upstream of their coding sequences (Espeso et al. 1997). Under alkaline conditions this gene is activated and so ensures that only pH responsive genes are activated under the appropriate pH conditions (Espeso et al. 1997). In the oah mutant libraries, pac1 transcripts are more abundant than in the WT libraries, specifically in *planta*. This is an expected result as lack of OAH activity and subsequent lack of secreted oxalic acid would prevent the environment from becoming acidified. In the JRL, soybean leaves infected with WT and *Aoah* strain show different effects on leaf pH. At 4dpi, leaves infected with WT strains are measured at pH 3.55, whereas leaves infected with *Doah* strain remain at pH5. In this situation, *pac1* transcripts would continue to be generated and the transcription of alkaline regulated genes would occur.

One curious result is the low expression levels of the predicted oxalate decarboxylase encoding genes. These two proteins SS1G\_08814 and SS1G\_10796 are

predicted to have cupin domains which have been implicated in oxalate decarboxylase activity. These proteins were identified in the refined secretome and it is speculated that these proteins are required to breakdown oxalic acid to regulate the environment pH (Magro et al. 1988). Magro et al (1988) demonstrated that different isolates of *S. sclerotiorum* provided different levels of oxalic acid as well as oxalate decarboxylase and that oxalate decarboxylase functions optimally at acidic pH (Magro et al. 1988). This was shown in for SS1G\_10796, which had much lower expression in the mutant libraries which would have a higher environmental pH. A reason for the low abundance could be that this enzyme may be secreted at a later point during infection. Or because it is a secreted enzyme it could have been missed during tissue collection for RNA extraction.

Sscuta, (SS1G\_07661) a putative cutinase-encoding gene, had higher expression in the  $\Delta oah$  in planta infection possibly because under normal WT infection, oxalate usually helps chelate calcium from plant cells walls making plant substrates more accessible to enzymatic hydrolysis. However without this, the fungal strain may have increased cutinase expression to aid with plant cuticle breakdown. This study suggests that cutinase expression may be higher at an earlier point during infection which has been shown previously (Dallal Bashi et al. 2012) and therefore may already have reduced expression levels before 12hpi. Another putative cutinase appears to have a significant expression increase in WT T2, which suggests that this enzyme has high activity when expanding the infection lesion.

The expression of NADPH oxidases (NOX) and superoxide dismutases (SOD) have been reported to be extremely important during fungal infection. Superoxide generated from NADPH oxidase is converted to hydrogen peroxide via superoxide dismutase (Scott and Eaton 2008). This allows the fungus to suppress host plant oxidative bursts or prevent damage from fungal released free radicals which may damage their own cells. The two NOX genes in *S. sclerotiorum* (*Ssnox1/Ssnox2*) were previously silenced using RNA-interference (RNAi). Tomato plants challenged with *Ssnox1* silenced strains, exhibited an increase in the plant oxidative burst, a decrease in symptom development and this mutant strain was shown to produce less oxalic acid. Ssnox2 did not affect virulence but the mutant had limited sclerotial production (Xu and Chen 2013). *Ssnox2* did not render the mutant strain non-pathogenic, but it had limited sclerotial production (Kim et al. 2011).

Fungal superoxide dismutases are involved in detoxifying the oxidative burst during pathogenicity by converting superoxide radicals to oxygen and hydrogen peroxide. These can then be removed by catalases and peroxidases (Vallino et al. 2009). It has been proposed that the secretion of fungal SOD derived hydrogen peroxide may help the fungus to colonise the host plant tissue. In two separate studies which used different *S. sclerotiorum* strains, the superoxide dismutase, *Sssod1*, was deleted. In one study *Sssod1* mutants failed to produce sclerotia and exhibited significantly lower oxalate levels then the WT strain (Veluchamy et al. 2012). In the second study *Sssod1* mutants exhibited normal saprophytic growth and no change in oxalate production (Xu and Chen 2013). Both studies noted that both mutant strains were more sensitive to the oxidative burst.

In this RNAseq investigation, the expression levels of Ssnox1/2 were unexpectedly low in all libraries although Ssnox1 did exhibit a small increase in the mutant libraries. Ssnox2 had nearly double the expression level of Ssnox1 but decreased in  $\Delta oah$  T1 condition. NADPH oxidases, which generate superoxide as a ROS precursor, have been shown to be important in sexual and asexual production in fungi. In the pathogen of rice, *Magnaporthe oryzae*, the ROS generated from these genes facilitates the oxidative cross linking of proteins in appressoria cell walls. This strengthens the appressoria to withstand the cell wall penetration pressure during the beginning of infection (Thines et al. 2000). If the same is true for *S. sclerotiorum*, then the lack of appressoria formation wound infection may have a negative effect on NADPH oxidase expression, accounting for the overall low levels of expression.

*Sssod1* had much higher expression levels but both levels dropped considerably in the corresponding mutant libraries. The reduction in *Sssod1* transcripts in the mutant libraries from this experiment may support Veluchamy and colleagues (Veluchamy et al. 2012) who assert that *Sssod1* is linked to oxalate production as addition of exogenous oxalate to *Sssod1* mutants partially restores pathogenicity. Secreted oxalate has been described to create a reducing environment around host plant cells ahead of *S. sclerotiorum* which suppresses host defenses. Later on during infection oxidising conditions are induced which induces host plant programmed cell death and allows fungal infection to progress (Williams et al. 2011). In oxalate deficient mutants it has been observed that these strains cannot regulate this redox shift and induce lower *Sssod1* expression.

Kim et al (2011) suggest that *Ssnox1* and *SsSod1* may act in the same pathway as oxalate biosynthesis (Kim et al. 2011). This could be plausible as NADPH oxidase releases NADP+ which along with NADH released from the TCA cycle can be transformed into NADPH and NAD+ through the oxidation of glyoxylate. This provides the cofactors for ROS production and oxalate biosynthesis. Further analysis of the data is required to find any evidence of this.

## 7.4.5 Polygalcturonases expression

(PGs), or pectinases, are responsible for degrading Polygalcturonases dicotyledonous plant cells walls, particularly the middle lamella, by hydrolysing the pectic polysaccharide, homogalacturonan. After cutinases, which hydrolase ester bonds in fatty acids in the plant cuticle, PGs are the next wave of enzymes to secreted by fungi to carry out cell wall degradation (Baker and Bateman 1978). These enzymes can be classified as either endo-PGs or exo-PGS. The first catalyse the fragmentation and solubilisation of pectic polymers by cleaving the internal bonds of homogalacturonan (Federici et al. 2001) and have been described as are indispensable for necrotic lesions developments (Favaron et al. 2004). Exo-PGs cleave the linkages from the non-reducing ends of the of pectic polymers (Yadav et al. 2012). Oxalic acid has been linked to the activity of PGs as it has been reported that oxalic acid will make plant cell walls more accessible to PGS as it sequesters calcium ions bound to cell wall pectate. Secondly, oxalate lowers the ambient pH to create an optimum environment for some PG activity (Favaron et al. 2004). During a study of S. sclerotiorum infection of soybean hypocotyls, at 24hpi, the pH of the plant was 4.8 with an oxalic acid concentration of 7mM. However at 48 hpi, the oxalate concentration was closer to 50 mM and the pH had decreased to 3.8 (Favaron et al. 2004) highlighting just how the environment changes during disease development.

Oxalic acid does not necessarily regulate the expression of the PG directly. The induction of some PG expression has been shown to be a result of the substrate the fungus is exposed to. Li et al (2004) demonstrated that *sspg3, sspg5, ssxpg1* (and *sspg1* to a lesser extent) were expressed either when in contact with a pectate substrate or galacturonic acid, which is a pectin monomer and that PG expression was repressed by glucose.

*Sspg1* (SS1G\_10167), an endo-polygalacturonase has been classified as a significant protein during pathogenesis, and is usually secreted ahead of other PGs including sspg3, sspg5, sspg6 (Cotton et al. 2003, Li et al. 2004b). Along with *SsCUTA, sspg1* can be induced through thigmotrophic interactions such as being grown on a solid surface (Dallal Bashi et al. 2012). In this experiment *Sspg1* has the highest expression of all PGs and also exhibited the highest abundance *in vitro*. This could be a result of the solid surface it was grown on and potentially the detection of a cellulose disc placed over the PDA which the fungus may have been trying to hydrolyse. *Sspg1* may have reduced abundance in the mutant conditions due to the lack of OA directly as the pH was not optimum. *Sspg6* (SS1G\_11057) was expressed at low levels in the WT libraries but increased expression in the mutant libraries along with SS1G\_01009. SS1G\_11057 constantly behaves as a neutral/alkaline enzyme which would account for the increase in

expression in the absence of OA in the mutant conditions and this may also be true for SS1G\_01009.

Another consideration to note is that although previous *in vitro* tests have shown that ambient pH is a major regulator of PGs, it is quite possible that there are other plant signals that are more important than pH during infection or that can substitute for pH during infection. Plant polygalacturonase-inhibiting proteins (PGIPs) which are located in the plant cell wall are also important for regulating fugal PG activity. At low pH values (3.6 - 4), some PGs are only slightly inhibited by PGIPs and so it is suggested that as more OA is secreted and the environment is acidified, the activity of acid PGs will be increased but PGIPs are inhibited (Favaron et al. 2004). This would not be true for the  $\Delta oah$  *in planta* infection, so PGIPs may have inhibited other PGs.

#### 7.4.6 Genes with a similar expression pattern as *oah*

Monitoring the expression of genes with a similar expression profiles as *oah* in the WT strain and how this profile changes in the  $\triangle oah$  deficient strains is useful to determine which genes may be regulated directly by the activity of *oah* and the subsequent production of oxalic acid.

The genes classified as Group 1 follow the same expression pattern as *oah*, there is little or no expression in the mutant libraries. The transcript fragments that are observed are produced from non-coding sequences of the deleted gene. An interesting observation in this group is a succinate/ fumarate mitochondrial transporter (SS1G\_08795). This transporter protein was characterised in yeast (*ACR1*) to be located in the inner membranes of yeast mitochondria that connects the intermediate made in metabolic cycles or the anaplerotic steps of succinate biosynthesis by the glyoxylate cycle in the cytosol which then feeds into the tricarboxylic acid. In the TCA cycle it is required for electron transfer by complex II (succinate dehydrogenase: ubiquinone reductase). If ACR1 is disrupted, the anaplerotic replenishment of oxaloacetate would be prevented and the tricarboxylic acid cycle blocked (Palmieri et al. 1997). In this case, the loss of *oah* could potentially reduce some metabolic intermediates which feed back into the cycle. This may cause the reduced growth rate observed on the agar plates.

The serine carboxypeptidase identified in the secretome had reduced expression in the mutant libraries as it is generally an acid acting enzyme. Some proteases have been identified as effectors in some pathogenic fungi (van Esse et al. 2008) and so should be further investigated for effector function. The presence of oxalic acid may also be important for protease activity during infection as this is an acid- acting enzyme. In Group 2, the pyruvate carboxylase (SS1G\_12839) has a higher expression value in the  $\Delta oah$  T0 library. This enzyme catalysed the breakdown of pyruvate into oxaloacetate in the TCA cycle. If the anaplerotic replenishment of intermediates within the mutant mitochondrion is disrupted, the  $\Delta oah$  strain may induce increased expression of some other enzyme within the metabolic pathways to try restore the balance. In this case the lack of acetate released from the breakdown of oxaloacetate which is required for citrate formation, may induce the increase in pyruvate carboxylase which can generate more acetate substrates.

Generally there appears to be a change in many proteins controlling transport of proteins round the cell or transporters of intermediates within of the TCA cycle. This is understandable *oah* is a vital to generate the supply of acetate within the cycle. Without this enzyme the fungus will need to change the regulation of other enzymes which can restore intermediate supply to continue growth of fungus.

Overall, RNAseq is rapidly becoming the norm for genome annotation and transcriptomic analysis as it enables the user to identify all the functional expressed genes within an organism under a certain condition. In this experiment, the RNAseq was used to identify how the expression of a *S. sclerotiorum* strain deficient in its main pathogenicity factor, oxalic acid, would compare to the wild type. It is evident that there are extreme changes in the expression profiles of important genes involved in virulence as a direct result of the lack of OAH activity and subsequent secretion of OA. However the ability of the strain to continue to grow normally *in vitro* suggests that OA principally acts to indirectly regulate other genes for disease progression. It is also clear that it is not only OA which is important during infection but this study has highlighted some other genes which need further investigation into potential roles as effector proteins or contributors to virulence. This data has also provided expression evidence for many of the putative secreted proteins described in Chapter 5 whose expression had not been previously reported and will help the community further their understanding of the control of oxalic acid and other factors as facilitators of infection.

# **Chapter 8: General Discussion**

The major scientific findings revealed by this interdisciplinary study are discussed below. The future prospects of the SYield consortium and how this detection system could be applied to other sectors are also explored. In addition, previously unknown aspects of *S. sclerotiorum* biology are defined and how these new discoveries relate to the wider implications of disease control in UK agriculture will be discussed.

## 8.1 Summary of key findings and developments

# • The development of a compatible biological matrix to be used within a biosensor for the detection of *S. sclerotiorum*

The SYield consortium, as a whole, developed an electrochemical biosensor, coupled with an air sampler which is capable of measuring the oxalic acid production from *S. sclerotiorum* ascospores sampled into the device. The work in this Ph.D. project established a biological matrix, compatible with a carbon based electrochemical biosensor which induces rapid growth of the fungus and also induces measurable amounts oxalic acid secretion. A liquid medium as opposed to a solid medium proved to be the best system to use within the biosensor. Sabouraud Dextrose Broth (SDB) with a micronutrient base at pH5 induces rapid spore germination and increased concentrations of OA secreted by the fungus significantly when compared to other nutrient media tested (Chapter 3). The medium is compatible with a potentiometric based electrochemical biosensor optimised to measure the oxidation of secreted OA by the enzyme, oxalate oxidase. This medium has been successfully field trialled using manual spore traps as well as the automated biosensor (results not described), in oilseed rape fields (Chapter 4).

# • Oxalic acid concentrations produced does not correlate with the original spore number used

For disease modelling purposes, relating spore number to oxalate concentrations measured by the electrochemical biosensor was anticipated, however the research revealed that this is not possible. Oxalic acid production is not consistently positively correlated with either ascospore number or fungal biomass (Chapter 3). What was consistently revealed was that larger spore doses (>1000 spores/sample) will lead to the secretion of measurable levels of OA after three days of sample incubation compared

with four days of incubation following seeding the cultures with smaller spore doses. This information could be incorporated into future incubation times for the biosensor.

# • The identification of the fungal species present in an air sample collected from UK oilseed rape fields

The fungal species present in an air sample collected in UK oilseed rape fields was assessed using culturing methods, physical taxonomic identification and sequencing of the ITS4/5 regions of the fungal genome (Chapter 4). These species include some potential inhibitors of *S. sclerotiorum* growth including *Trichoderma spp*, *Epicoccum nigrum* and *Alternaria spp*. The oxalic acid producers *Botrytis cinerea* was isolated from the samples.

# • Production methods for larger S. sclerotiorum sclerotia

Carrot agar was discovered to be an optimum medium for the production of enlarged sclerotia from a variety of isolates from different geographical regions. This also resulted in an increase in the production of apothecia production. This new method of sclerotia production increase the numbers of ascospores harvested for experimentation (Chapter 2).

# • Identification of putative secreted proteins which may play a role in *S. sclerotiorum* pathogenicity

The prediction of the *S. sclerotiorum* secretome identified a number of candidate genes which could be involved during infection and which may work alongside secreted oxalic acid to cause infection (Chapter 5). The analysis has also generated further annotations for genes which previously had no annotation on the publically available genome.

# • Identification of secreted proteins to be used as potential detection targets in other nucleic acid or antibody based diagnostic systems.

The analysis of the predicted secretome revealed a handful of genes which are unique to *S. sclerotiorum* and which could be used in diagnostics for this species. Expression studies using GFP expression constructs highlighted one protein in particular (SP1) which is potentially a very applicable target protein. SP1 could be used as a detection target when the fungus is grown in liquid culture which could be applied to the SYield biosensor (Chapter 6). However, this approach would require the use of modified electrochemistry incorporating a stabilised antibody rather than an enzyme.

• The absence of the oxaloacetate acetylhydrolase (OAH) gene in *S. sclerotiorum* causes significant changes in gene expression and resulted in reduced pathogenicity during infection.

The intercomparative study of the wild-type and *oah* deletion strain transcriptome revealed likely genes which are significantly down regulated in the *oah* deletion strain which could have potential roles in pathogenicity and / or are regulated in a similar pattern as the *oah* gene. These may contribute to the mechanism(s) of infection which has been well described to be regulated by oxalic acid and pH (Chapter 7).

• The predicted secretome has transcriptional evidence which supports the expression of many of the putative secreted proteins.

RNA sequencing of the wild-type *S. sclerotiorum* strain has provided transcriptional support for some of the 432 genes predicted in the secretome. This is useful to the community who can use this evidence for further investigation into genes of interest.

# • Up regulation of Botcinic acid metabolic genes in OA deficient strains

The transcriptome study (Chapter 7) revealed the up regulation of the polyketide biosynthetic pathway of botcinic acid in the oxalic acid deficient mutant which is normally associated with the closely related species *B. cinerea* and not *S. sclerotiorum*. This is potential evidence of a redundant pathway in *S. sclerotiorum*. Further investigation is required to determine whether the lower amounts of OA produced by *B. cinerea* induces the production of Botcinic acid and so could account for the up regulation of this pathway within the oxalic acid deficient *S. sclerotiorum* mutant.

## 8.2 Development of a robust method for ascospore production

It is worth commenting that the use of carrot agar to induce production of large sclerotia (Chapter 2) and subsequent viable apothecia production should be adopted as a new method of sclerotia production within the community to ensure reliable ascospores production. It would also be worth investigating whether other sclerotia producing fungi respond to carrot agar in the same way. This could be further investigated as there may be some compound with the carrot root which is able to induce certain developmental stages within fungi. This has been seen in *Fusarium graminearum*, which will form perithecia when the fungus is routinely grown on carrot agar which the closely related *Fusarium culmorum* has not been observed to do (Cavinder et al. 2012).

# **8.3** Advances in Decision Support Systems for monitoring S. sclerotiorum disease outbreaks and the future of the SYield biosensor

Since the manual testing of the Sabouraud dextrose broth nutrient medium and the monitoring of the newly developed spore sampling machinery in the 2012 field trials, an automated biosensor that can detect oxalic acid secreted from *S. sclerotiorum* ascospores has been developed. This device sampled a defined volume of air over a pre-determined time interval of twelve hours. There is no doubt that this is the only device of its type in the world. Most detection devices require some form of human handling to obtain the biological sample and carry out the diagnostic test either in the field or in a laboratory and then process the data. Whereas this device situated in the field or at another location in the agricultural landscape is capable of sampling air, incubating the air sample and carrying out the electrochemical test four days after the sample was taken, all without any human interference required. This device has been compared to a 'lab in a box'. The device can also relay the information to a central processing unit (CPU). The device has its own meteorological station attached and this information can also be relayed to the same CPU for processing.

The future of this system relies now on being able to compile the real time oxalic acid measurements with the meteorological data to develop a real time disease risk assessment and provide valuable spray window(s) for farmers. Currently the meteorological data collected from this project is being fed into an existing model designed by modellers based in Syngenta, France. The RAISO-Sclero prediction model, combines current S. sclerotiorum prediction models, but also uses soil conditions and humidity at ground level, which dictates the release of the ascospores that spread the infection to the crop (Clarke 2012). This model would have successfully predicted the risk of a S. sclerotiorum outbreak in 2008 and subsequently crops could have been better protected against infection (unpublished data). The real-time spore information obtained from the SYield biosensor will substantiate the predictions made by the RAISO-sclero model. However there is still a need to relate the oxalic acid information to a disease risk factor. Even though there are spores in the air, which the biosensor will detect, there are other important factors which affect whether disease formation will subsequently occur. For example, petal stick is an important factor in governing whether there will be disease outbreak. As described previously (Chapter 1), germinating ascospores need to land on a petal or other senescing tissue (Lumsden 1979, Bolton et al. 2006). Only colonised petal tissue which falls and sticks to healthy tissue will induce disease. If it is too dry, petals fall to the floor. If it is too wet, the petals are washed off the plant. Therefore measuring the fine balance between the two environmental conditions may be a key factor to work into the disease model. Suggestions have been made that using video technology to monitor petal stick may be useful to incorporate into the biosensor device. Combining positive events from the oxalic acid biosensor, meteorological data and petal stick monitoring may be the best formula for predicting disease risks.

Further research into the locations of the sensor nodes is vital in establishing an efficient network system. From this study, it is evident that the sampling system can sample ascospores which are released from apothecia a few meters away from the device. It is also understood that DNA from ascospores can be detected on rooftops, but further field trialling of the automated biosensor is necessary to determine whether placing biosensor device on rooftops is suitable for ascospores capture and subsequent oxalic acid detection. Current thinking is that a reliable biosensor device placed on a rooftop will give a more diluted sample of spores, but from a larger area than a sensor placed in an oilseed rape field. Placing the device on a rooftop may also be better for assessing whether ascospores are moving into the region from sources of inoculum further afield. Whether the fungal community changes in air samples collected on rooftops also needs further investigation. Other species might be identified which pose more significant threats to either inhibit S. sclerotiorum growth or oxalic acid production, than the species already identified within air samples from oilseed rape fields in Chapter 4. Chemicals or pollutants present in the air at roof height may also affect the behaviour of the spore samples in the biosensor.

The business model for the biosensor is an extremely important part of the project which requires further attention to ensure this detection system becomes accessible to growers. It remains to be decided who will maintain the sensor network, collate the real time information and how will it pay for itself. The Decision Support Systems are usually available free online. Growers have to supply some information including crop variety and location and a risk factor will be available. It's then up to the grower to decide whether to spray and use that particular company's product. The SYield biosensor network would need monitoring, maintenance and the cost of the biosensor devices would also need to be covered. A possible model is that growers could buy into the network information. However, the system would require years of field testing to ensure that the predictions are accurate for growers to trust the outputs generated.

There is the possibility that this device could be modified not only to detect other species of fungi but to be used in sectors other than agriculture. In its current design the device could be used to detect *S. sclerotiorum* in other host crops including soybean,

sunflower, carrot and lettuce. *B. cinerea*, the pathogen responsible for grey mould on a variety of vegetables, strawberries and grapes in vineyards, is also a producer of oxalic acid and its airborne conidia have been captured using Burkard seven day wax traps in previous studies (Blanco et al. 2006). For the device to be suitable as a detection device for grey mould, several features would need to be verified for successful detection. The work in this Ph.D. project revealed that *B. cinerea* conidia produce OA when seeded into SDB medium in laboratory assays. Further testing is required to ensure that air sampled *B. cinerea* conidia behave in a similar manor to *S. sclerotiorum* ascospores. This work also showed that *B. cinerea* conidia produced lower amounts of OA compared with *S. sclerotiorum*. It would need to be verified that lower amounts of OA were still detected within the device. In addition, the spray window supplied by the detection device would need to be tested to ensure it provides enough time for control measures to be taken.

The automation aspect of the SYield device is attractive to both growers and plant pathology researchers. The ability to use electrochemical assays with antibodies as bioreceptors, could be invaluable in further investigations and detection systems. For example, the stabilisation of commonly used antibodies, already commercially available, which detects airborne pathogens within this electrochemical system would enable the device to be used as a detection tool for a range of other pathogenic species. This system may be of benefit for border control and plant disease inspectors to monitor the influx of airborne spores and hence potential phytopathogens from other countries. Outbreaks of fungal diseases which release airborne spores could be monitored more closely. For example, new information could be learnt on the wind dispersal pattern of the spores of Chalara fraxinea, the devastating causal agent of Ash Die Back which has spread from Poland to the UK over the last two decades (Kowalski and Holdenrieder 2009). If protein/ nucleic or metabolite detection targets could be developed for other fungal pathogens, then this device would be best adapted to detect rusts, powdery mildew, and other downy mildew diseases which produce huge numbers of airborne spores. This is particularly attractive for species where the spores can be dispersed for hundreds of kilometers as a direct result of windborne spore movement (Figure 76) (Brown and Hovmoller 2002). Puccinia triticina, a rust of wheat which can account for 14% loss of winter wheat yields (Bolton et al. 2008a) is a major problem on UK wheat as well as globally. This detection system could be used to detect the wind dispersed urediniospores which can be dispersed hundreds of kilometers from their source plant (Bolton et al. 2008a). One study showed how the rust uredospores of Hemileia vastatrix may have been carried from the coffee plantations in Angola via Transatlantic winds to Bahia in Brazil in the 1960s (Bowden et al. 1971). Antibodies are currently available for the detection of wind dispersed spores of the bacterial pathogen *Erwinia amylovora* (Roberts et al. 1998). A detection system could be used within greenhouse environments to monitor this pathogen. If the agricultural community is to secure food production for 9.6 billion people, it is essential that more stringent monitoring and containments programmes for emerging fungal disease are put in place.

Industrial sectors other than agriculture could also benefit from the novel technology developed within the SYield project. For example, an automated device could be used in the biosecurity sector to monitor the incidence of fungal or bacterial biosecurity hazards. An indoor monitoring system for fungi harmful to humans or farm animals is also a large sector where this automated detection systems is required. This technology could be transferred to monitor asthma causing pathogens like *Penicillium* or *Aspergillus* and *Cladosporium* spores which has the potential to cause atopy or allegergenic hypersensitivity and respiratory allergies, respectively (Garrett et al. 1998). Monoclonal antibodies (MAbs) against *Aspergillus fumigatus* are available which could be used in such a detection system (Stynen et al. 1992).



## Figure 76: Spore dispersal events of fungal pathogens.

Taken from (Brown and Hovmoller 2002). Red and blue arrows indicate invasions of new territories (first year recorded in brackets). Red arrows indicate dispersal that probably occurred by direct movement of airborne. Blue arrows indicate pathogens that were probably transported to the new territory in infected plant material or by people and spread thereafter as airborne spores. Orange circles indicate the worldwide spread of black Sigatoka disease of banana. Green arrows indicate periodic migrations of airborne spores in extinction-recolonisation cycle. Background world map © C. Lukinbeal, Southern Connecticut State University, New Haven, Connecticut.

## 8.4 Advances in pathogenomics

Pathogenomics is an extremely important area of research in determining how plant pathogens infect their plant hosts. This area of research can contribute to control strategies for pathogens which will ultimately help growers and farmers secure greater yields. Advances in genomics and the ease in sequencing genomes has made the identification and understanding of molecular mechanisms underpinning infection by different types of pathogens i.e. virus, bacteria, fungi, oomycetes and nematode, much more accessible. This type of research aims to discover potential targets for chemical control of diseases using well designed spray management programmes. Likewise, this information is important to plant breeders who want to develop pathogen resistant cultivars, by using the corresponding pathogen effector sequences as screening tools (Goodwin et al. 2011, Kaemper et al. 2006). This new technology can also be used to improve the isolation of bioproducts within industry as fungal fermentation plays a significant role in the food and drink sector as well as biofuel production. Since the first publication of the brewers yeast Saccharomyces cerevisiae genome in 1996 (Goffeau et al. 1996), 269 subsequent fungal genomes are publically available on the NCBI Fungi Blast website. We are now in the age of multi-isolate genome sequencing. The genomes of multiple isolates of a single species can be sequenced cost-effectively and this allows researchers to pull out truly conserved regions of a species' genome or the regions which are highly variable. This information is helping researchers identify R genes and effectors in fungal pathogens. For example one study revealed interesting new biology including the dispensable chromosomes 'the dispensome' of the wheat infecting fungus Mycosphaerella graminicola (Goodwin et al. 2011). Another pathogenomic study revealed that the tomato gene encoding Ve1, which encodes a receptor like protein, (RLP) and confers resistance against Verticillium wilt fungi can be transferred to an Arabidopsis host plant where it remains fully functional against race 1 of Verticillium (Fradin et al. 2011). This example highlights how there is race specific transfer of R genes across species boundaries, however this transfer of genetic information is usually successful between phylogenetically related donor and recipient species (Fradin et al. 2011, Hammond-Kosack and Rudd 2008).

Publically available microbial genomes and their current annotation allow research communities to explore genomes with ease to identify potentially homologous mechanisms of infection by comparing the predicted gene repertoire of different fungal species with similar or dissimilar lifestyles. The Next Generation Sequencing (NGS) methods and bioinformatics tools now available to researchers have made this previously perplexing area of research very accessible to molecular biologists. In addition, this deluge of new data has facilitated the cross disciplinary communication between biologist and bioinformatician to drive the era of genomics forward and allow biologists to have more control of gene annotation.

Full genome transcriptomics including RNA sequencing is rapidly superceeding traditional NGS and array based platforms. Transcriptome analysis is extremely powerful in generating large datasets of gene expression data for different biological scenarios, for example, at various life stages or phases of growth *in planta*. It will not be long before the cost of RNA sequencing will be so economic that time consuming qPCR to explore the expression of single to a few genes will be outdated. The ability to sequence an entire species' transcriptome is also fast becoming the way to map genomes *de novo*, *i.e.* without the need to assemble a reference genome. If enough RNA can be collected from a range of different life stages and under different treatments, then biologists can determine the genes which are non-redundant and how they interact under different conditions. This type of data is extremely useful when placing genes in pathways and/or closely regulated networks. With so many large datasets now arising from transcriptional studies, the problem is currently not how to obtain the data but instead it is how to manage such large datasets and deciding on the best method to use to construct possible molecular pathways and identify the relationships between different clusters of co-expressed genes. Bioinformatics programmes such as Galaxy which was used within this work (Chapter 5), allow biologists with no experience of software programming, to run pre-prescribed bioinformatics and statistical pipelines on the raw RNAseq data to find significant biological relationships. The most significant problems with this new era of technology is developing a standardised method that research communities across the world can use to determine the statistically correct changes in gene expression across libraries. What's more, an improvement in experimental design is required to order to be able to obtain the most from these large dataset. In this study, the cost restricted the number of biological replicate samples to be sequenced which severely restricted the amount of analysis which can be performed on the dataset. Future studies should incorporate at least three biological replicates to determine general gene expression trends.

## 8.5 Advances in the understanding of S. sclerotiorum biology through genomics

This study has not only looked at the aerobiology of *S. sclerotiorum* ascospores release and detection within an oilseed rape system but aimed to discover new targets for detection other than oxalic acid and how other genes potentially contribute to infection mechanisms alongside the production of oxalic acid though the use of modern genomic
technologies.

The use of a pre-existing bioinformatics pipeline to predict the S. *sclerotiorum* secretome and identify detection targets has proved to be successful. The use of GFP constructs fused to the protein targets successfully revealed that the targets chosen could potentially be used in detection devices. Unfortunately due to time constraints further work was not carried out to isolate these secreted GFP fused proteins in culture medium through the use of pull down antibodies. However this could be carried out in the future. This same analysis using fungal secretome prediction could now be applied to other fungal genomes to look for detection targets.

The combined secretome and RNA sequencing studies will provide the *Sclerotinia* research community with a valuable genomic resource that they can now exploit to investigate interesting *S. sclerotiorum* biology. The secretome prediction would not have been enough on its own, but alongside the RNAseq data the genes of specific interest have some support.

The use of RNA sequencing provided some expression support for some of the 432 genes predicted in the secretome In total, 88 predicted genes identified in the secretome had high expression (> 100FPKM) in at least one of the libraries analysed using RNA sequencing (Chapter 7). Twenty of these genes had no previous annotation (Chapter 7). It is challenging to assign functions to any unannotated genes in the secretome, but the expression detected in certain libraries provides some evidence suggesting which stage specific genes were expressed, for example, *in planta* or *in vitro* or during later stage of plant infection.

The RNAseq study was the first of its kind to compare the transcriptome of the *oah1* knock out strain and the wild type strain *in vitro* and during infection of *Arabidopsis*. Originally this comparison aimed to deliver further insights into which genes were up- or down-regulated alongside or as a result of the expression of *oah1* gene. A few candidate genes have been identified. However it was extremely challenging to pull this aspect of biology out of the data in the time available. Further analysis of the dataset is required to identify the sub-set of genes co-regulated with *oah* gene compared to those directly induced or suppressed as a result of the production of OA.

Future studies could use gene the gene deletion technology to explore candidate genes identified in this secretome and RNAseq study to determine their gene function during infection and development of the fungus. This would provide further supporting evidence for the genes predicted in the secretome. Candidate genes including SS1G\_08163 which was identified in the refined secretome as small, cysteine rich secreted proteins

which is typical of some effector proteins (do Amaral et al. 2012, Bolton et al. 2008b). This gene was expressed only *in planta* highlighting that its induction is during infection. SS1G\_03611 had the highest expression during later infection. This protein was also identified in the refined secretome as small, cysteine rich secreted. This protein contains a CFEM domain which may be important for virulence (Kulkarni et al. 2003). Both these genes need further investigation to determine whether they are effector proteins.

The group of genes which had similar expression profiles to the *oah* gene in the wild-type *S. sclerotiorum* libraries should also be investigated further to explore whether they are directly regulated by this gene or the subsequent secretion of oxalic acid to further the infection model. These include SS1G\_14018 a fad binding domain protein, SS1G\_09475, a serine carboxypeptidase, SS1G\_08795, a succinate fumarate mitochondrial transporter and SS1G\_05902, a Sec61beta family domain containing protein.

An improved RNA sequencing study would incorporate three biological replicates per treatment. This would allow more power to calculate statistically significant gene expression events. Secondly RNA sequencing for earlier time points during infection may also reveal other effector gene candidates that are expressed very early on during infection. For example the ortholog (SS1G\_08569) (Kabbage et al. 2013) of the *Ustilago maydis* effector Cmu1, which codes for a secreted chorismate mutase is required to maintain biotrophy during the establishment of smut infections(Djamei et al. 2011). Therefore, the *S. sclerotiorum* homologue of *Cmu1* may have higher level of expression during earlier time points. Leaf tissue would need to be collected without visible disease symptoms, and therefore obtaining sufficient fungal biomass at this stage would be very challenging.

Another important aspect which requires further investigation is whether *S*. *sclerotiorum* appressoria were formed when plants were wounded. The appressoria are extremely important infection cushions which allow the fungal hyphae to penetrate through the plant cuticle directly (Hegedus and Rimmer 2005). The expression of genes related to appressoria development is dependent on highly conserved Mitogen activated protein kinase (MAP kinase) and cAMP-dependent signal transduction pathways (Amselem et al. 2011). Growing mycelium on cellophane for the *in vitro* time points would have reduced the number of appressoria present in the sample, because appressoria only develop when a plate is fully colonised (Jeffrey Rollins, unpublished data). The *oah1* mutant produces appressoria in low frequency compared with the wild-type. It is likely that fewer of these structures would have developed during infection because the mycelium would have easily been able to grow through pre-wounded plant tissue, without needing to penetrate the cuticle. The expression of the appressoria related genes (Amselem et al. 2011) in both the

mutant and WT strains, *in planta* and during infection was comparable which is suggestive that there was lower appressoria developed by the WT strain during infection. The lower incidence of appressoria will clearly change the expression profile of this fungus and therefore may also determine whether some of the genes identified in the secretome were present or not. This may also be important when using the secretome to identify detection targets for *S. sclerotiorum* within the biosensor system. This set of appressoria related genes and other thigmotrophic-response genes would not be expected to be expressed in a liquid medium and so gene expression would be very different in this environment. A future RNA sequencing study is therefore required to assess how the secretome expression of mycelium changes in a liquid medium in the biosensor device compared with expression on a medium surface or *in planta*. This experimental design would also aid in the classification of genes not currently either identified or confirmed to be present in the genome through expression studies.

There is a further debate regarding the expression profile differences between germinating spores and infection plugs. The biosensor is designed to sample wind dispersed ascospores which then grown in a liquid medium whereas this RNA study explored infection by agar plugs containing mycelium. This may change the expression of the secretome gene set. It would be useful to carry out another RNAseq experiment which compares the two types of infection and then determine what other putative secreted protein may also be candidate for detection when spores are grown in a liquid environment rather than on the plate or during plant infection. Again this would be technically challenging as earlier time points would be required and obtaining sufficient fungal biomass would be tricky.

Originally the biosensor matrix in which the *S. sclerotiorum* ascospores would grow in was going to be a solid surface. However after much experimentation, the liquid system work better for quantifying oxalic acid quantification as well as being compatible with the electrochemistry. This may also be beneficial as growing the fungus in a liquid keeps the fungus in a saprotrophic phase and prevents the expression of any thigmotrophic responses including appressoria formation which could damage the biosensor and make the system less predictable. **Figure 77** highlights how the infection response of *S. sclerotiorum* varies when infecting wounded and intact leaves and how these responses differ quite considerably when seeding liquid cultures with ascospores. Again this highlights that keeping the fungus in a basal infection state in liquid medium would reduce an increase in other response which are less predictable then pure development of a saprotrophic phase.





In conclusion this study has embraced the use of modern genomic techniques including sequencing and bioinformatics to explore the infection biology of the pathogen *S. sclerotiorum*. This study has generated a wealth of expression data which will be useful to the *S. sclerotiorum* community. The methods described in this study can also be followed by researchers investigating similar aspects of molecular biology of other fungal pathogens. Not only will this allow them to investigate interesting aspects of science but develop tools which can truly be used to develop control strategies for these devastating pathogens. If uncontrolled, these pathogens aim to challenge high yields of food production which are becoming more and more valuable as the population grows. The tools described in this study allow the selection of appropriate detection target (protein or nucleic) to allow the monitoring of pathogens either within an agricultural industry or by plant health inspectors who monitor emerging diseases which threaten our countryside and farms. The technology from the SYield biosensor could also be potentially used within

other sectors including medical and biosecurity industries. The success of SYield detection system was reliant on the exploration and validation of important aspects of molecular and aero-biology which have now been demonstrated across this project.

## **List of References**

- Akyildiz, I. F., Su, W., Sankarasubramaniam, Y. and Cayirci, E. (2002) 'Wireless sensor networks: a survey', *Computer Networks*, 38(4), 393-422.
- Amador, C. E., J.P.; Nunes, M.C.; (2008) 'http://www.asabe.org/meetings/food2008/index.htm',
- Amselem, J., Cuomo, C. A., van Kan, J. A. L., Viaud, M., Benito, E. P., Couloux, A., Coutinho, P. M., de Vries, R. P., Dyer, P. S., Fillinger, S., Fournier, E., Gout, L., Hahn, M., Kohn, L., Lapalu, N., Plummer, K. M., Pradier, J.-M., Quevillon, E., Sharon, A., Simon, A., ten Have, A., Tudzynski, B., Tudzynski, P., Wincker, P., Andrew, M., Anthouard, V., Beever, R. E., Beffa, R., Benoit, I., Bouzid, O., Brault, B., Chen, Z., Choquer, M., Collemare, J., Cotton, P., Danchin, E. G., Da Silva, C., Gautier, A., Giraud, C., Giraud, T., Gonzalez, C., Grossetete, S., Gueldener, U., Henrissat, B., Howlett, B. J., Kodira, C., Kretschmer, M., Lappartient, A., Leroch, M., Levis, C., Mauceli, E., Neuveglise, C., Oeser, B., Pearson, M., Poulain, J., Poussereau, N., Quesneville, H., Rascle, C., Schumacher, J., Segurens, B., Sexton, A., Silva, E., Sirven, C., Soanes, D. M., Talbot, N. J., Templeton, M., Yandava, C., Yarden, O., Zeng, Q., Rollins, J. A., Lebrun, M.-H. and Dickman, M. (2011) 'Genomic Analysis of the Necrotrophic Fungal Pathogens *Sclerotinia sclerotiorum* and Botrytis cinerea', *Plos Genetics*, 7(8).
- Antoniw, J., Beacham, A. M., Baldwin, T. K., Urban, M., Rudd, J. J. and Hammond-Kosack, K. E. (2011) 'OmniMapFree: A unified tool to visualise and explore sequenced genomes', *Bmc Bioinformatics*, 12.
- Australia, Canola association of Australia. (2008) 'http://www.icf.org.au/proj\_f/pdf/Sclerotinia%20report.pdf'.
- Baggio, A. (2005) 'Wireless sensor networks in precision agriculture (Workshop)', paper presented at *RealWSN'05*, Stolckhom, Sweden,
- Baker, C. J. and Bateman, D. F. (1978) 'Cutin degradation by plant pathogenic fungi', *Phytopathology*, 68(11), 1577-1584.
- Balion, C. M. and Thibert, R. J. (1994) 'Determination of oxalate by luminol chemiluminescence', *Clinical Chemistry*, 40(6), 1096-1097.
- Balmforth, A. J. and Thomson, A. (1984) 'Isolation and characterization of glyoxylate dehydrogenase from the fungus *Sclerotium-rolfsii*', *Biochemical Journal*, 218(1), 113-118.
- Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, M. and Parr-Dobrzanski, B. (2002) 'The strobilurin fungicides', *Pest Management Science*, 58, 649-662.
- Bateman, D. F. and Beer, S. V. (1965) 'Simultaneous production and synergistic action of oxalic acid and polygalacturonase during pathogenesis by *Sclerotium rolfsii*', *Phytopathology*, 55(2), 204-&.

- Bayry, J., Aimanianda, V., Guijarro, J. I., Sunde, M. and Latge, J.-P. (2012) 'Hydrophobins-Unique Fungal Proteins', *PLoS Pathogens*, 8(5).
- Birch, P. R. J., Rehmany, A. P., Pritchard, L., Kamoun, S. and Beynon, J. L. (2006) 'Trafficking arms: Oomycete effectors enter host plant cells', *Trends in Microbiology*, 14(1), 8-11.
- Blanco, C., de los Santos, B. and Romero, F. (2006) 'Relationship between concentrations of *Botrytis cinerea* conidia in air, environmental conditions, and the incidence of grey mould in strawberry flowers and fruits', *European Journal of Plant Pathology*, 114(4), 415-425.
- Blankenberg, D., Von Kuster, G., Coraor, N., Ananda, G., Lazarus, R., Mangan, M., Nekrutenko, A. and Taylor, J. (2010) 'Galaxy: a web-based genome analysis tool for experimentalists', *Current protocols in molecular biology / edited by Frederick M. Ausubel.* Chapter 19, Unit 19.10.1-21.
- Boer, P., Vanleersum, L. and Endeman, H. J. (1984) 'Determination of plasma oxalate with oxalate oxidase', *Clinica Chimica Acta*, 137(1), 53-60.
- Boland, G. J. and Hall, R. (1994) 'Index of plant hosts of Sclerotinia sclerotiorum ', Canadian Journal of Plant Pathology-Revue Canadienne De Phytopathologie, 16(2), 93-108.
- Bolton, M. D., Kolmer, J. A. and Garvin, D. F. (2008a) 'Wheat leaf rust caused by Puccinia triticina', *Molecular Plant Pathology*, 9(5), 563-575.
- Bolton, M. D., Thomma, B. and Nelson, B. D. (2006) '*Sclerotinia sclerotiorum* (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen', *Molecular Plant Pathology*, 7(1), 1-16.
- Bolton, M. D., van Esse, H. P., Vossen, J. H., de Jonge, R., Stergiopoulos, I., Stulemeijer, I. J. E., van den Berg, G. C. M., Borras-Hidalgo, O., Dekker, H. L., de Koster, C. G., de Wit, P. J. G. M., Joosten, M. H. A. J. and Thomma, B. P. H. J. (2008b) 'The novel *Cladosporium fulvum* lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species', *Molecular Microbiology*, 69(1), 119-136.
- Bowden, J., Gregory, P. H. and Johnson, C. G. (1971) 'Possible wind transport of coffee leaf rust across atlantic ocean', *Nature*, 229(5285), 500-&.
- Bowen, J. K., Mesarich, C. H., Rees-George, J., Cui, W., Fitzgerald, A., Win, J., Plummer, K. M. and Templeton, M. D. (2009) 'Candidate effector gene identification in the ascomycete fungal phytopathogen *Venturia inaequalis* by expressed sequence tag analysis', *Molecular Plant Pathology*, 10(3), 431-448.

## BROAD, Institute

'(<u>http://www.broadinstitute.org/annotation/genome/sclerotinia\_sclerotiorum/MultiHome\_.html</u>)',

Brown, D. and Waneck, G. L. (1992) 'Glycosyl-phosphatidylinositol anchored membraneproteins', *Journal of the American Society of Nephrology*, 3(4), 895-906.

- Brown, J. K. M. and Hovmoller, M. S. (2002) 'Epidemiology Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease', *Science*, 297(5581), 537-541.
- Brown, N. A., Antoniw, J. and Hammond-Kosack, K. E. (2012) 'The Predicted Secretome of the Plant Pathogenic Fungus *Fusarium graminearum*: A Refined Comparative Analysis', *Plos One*, 7(4).
- Candresse, T., Lot, H., German-Retana, S., Krause-Sakate, R., Thomas, J., Souche, S., Delaunay, T., Lanneau, M. and Le Gall, O. (2007) 'Analysis of the serological variability of Lettuce mosaic virus using monoclonal antibodies and surface plasmon resonance technology', *Journal of General Virology*, 88, 2605-2610.
- Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V. and Henrissat, B. (2009) 'The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics', *Nucleic Acids Research*, 37, D233-D238.
- Carbone, I., Anderson, J. B. and Kohn, L. M. (1999) 'Patterns of descent in clonal lineages and their multilocus fingerprints are resolved with combined gene genealogies', *Evolution*, 53(1), 11-21.
- Carisse, O., McCartney, H. A., Gagnon, J. A. and Brodeur, L. (2005) 'Quantification of airborne inoculum as an aid in the management of leaf blight of onion caused by Botrytis squamosa', *Plant Disease*, 89(7), 726-733.
- Cavener, D. R. (1992) 'GMC oxidoreductases a newly defined family of homologous proteins with diverse catalytic activities', *Journal of Molecular Biology*, 223(3), 811-814.
- Cavinder, B., Sikhakolli, U., Fellows, K. M. and Trail, F. (2012) 'Sexual development and ascospore discharge in *Fusarium graminearum*', *Journal of visualized experiments : JoVE*, (61).
- Cessna, S. G., Sears, V. E., Dickman, M. B. and Low, P. S. (2000) 'Oxalic acid, a pathogenicity factor for *Sclerotinia sclerotiorum*, suppresses the oxidative burst of the host plant', *Plant Cell*, 12(11), 2191-2199.
- Chae, M. and Carman, G. M. (2013) 'Characterization of the Yeast Actin Patch Protein App1p Phosphatidate Phosphatase', *Journal of Biological Chemistry*, 288(9), 6427-6437.
- Cheng, V., Stotz, H. U., Hippchen, K. and Bakalinsky, A. T. (2007) 'Genome-wide screen for oxalate-sensitive mutants of *Saccharomyces cerevisiae*', *Applied and Environmental Microbiology*, 73(18), 5919-5927.
- Clark, L. C. and Lyons, C. (1962) 'Electrode systems for continuous monitoring in cardiovascular surgery', *Annals of the New York Academy of Sciences*, 102(1), 29-&.
- Clark, M. F. and Adams, A. N. (1977) 'Characteristics of microplate method of enzymelinked immunosorbent assay for the detection of plant-viruses', *Journal of General Virology*, 34(MAR), 475-483.

- Clarke, A. (2012) 'Prediction model gives optimum fungicide timing for *Sclerotinia*', [online], available: <u>http://www.fwi.co.uk/articles/29/02/2012/131667/prediction-model-gives-optimum-fungicide-timing-for.htm</u>l
- Clarkson, J. P., Coventry, E., Kitchen, J., Carter, H. E. and Whipps, J. M. (2013) 'Population structure of *Sclerotinia sclerotiorum* in crop and wild hosts in the UK', *Plant Pathology*, 62(2), 309-324.
- Clarkson, J. P., Phelps, K., Whipps, J. A., Young, C. S., Smith, J. A. and Watling, M. (2007) 'Forecasting sclerotinia disease on lettuce: A predictive model for carpogenic germination of *Sclerotinia sclerotiorum* sclerotia', *Phytopathology*, 97(5), 621-631.
- Colmenares, A. J., Aleu, J., Duran-Patron, R., Collado, I. G. and Hernandez-Galan, R. (2002) 'The putative role of botrydial and related metabolites in the infection mechanism of *Botrytis cinerea*', *Journal of Chemical Ecology*, 28(5), 997-1005.
- Conesa, A., Gotz, S., Garcia-Gomez, J. M., Terol, J., Talon, M. and Robles, M. (2005) 'Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research', *Bioinformatics*, 21(18), 3674-3676.
- Copeland, R. A. (1996) *Enzymes: A practical introduction to structure, mechanism, and data analysis,* VCH Publishers.
- Cotton, P., Kasza, Z., Bruel, C., Rascle, C. and Fevre, M. (2003) 'Ambient pH controls the expression of endopolygalacturonase genes in the necrotrophic fungus *Sclerotinia sclerotiorum*', *Fems Microbiology Letters*, 227(2), 163-169.
- Culbertson, B. J., Furumo, N. C. and Daniel, S. L. (2007a) 'Impact of nutritional supplements and monosaccharides on growth, oxalate accumulation, and culture pH by *Sclerotinia sclerotiorum*', *Fems Microbiology Letters*, 270(1), 132-138.
- Culbertson, B. J., Krone, J., Gatebe, E., Furumo, N. C. and Daniel, S. L. (2007b) 'Impact of carbon sources on growth and oxalate synthesis by the phytopathogenic fungus *Sclerotinia sclerotiorum*', *World Journal of Microbiology & Biotechnology*, 23(10), 1357-1362.
- Cutler, H. G., Jacyno, J. M., Harwood, J. S., Dulik, D., Goodrich, P. D. and Roberts, R. G. (1993) 'Botcinolide - a biologically-active natural product from botrytis-cinerea', *Bioscience Biotechnology and Biochemistry*, 57(11), 1980-1982.
- Cutler, H. G., Parker, S. R., Ross, S. A., Crumley, F. G. and Schreiner, P. R. (1996)
  'Homobotcinolide: A biologically active natural homolog of botcinolide from *Botrytis* cinerea', *Bioscience Biotechnology and Biochemistry*, 60(4), 656-658.
- Dallal Bashi, Z., Rimmer, S. R., Khachatourians, G. G. and Hegedus, D. D. (2012) 'Factors governing the regulation of *Sclerotinia sclerotiorum* cutinase A and polygalacturonase 1 during different stages of infection', *Canadian Journal of Microbiology*, 58(5), 605-16.
- Dalmais, B., Schumacher, J., Moraga, J., Le Pecheur, P., Tudzynski, B., Gonzalez Collado, I. and Viaud, M. (2011) 'The *Botrytis cinerea* phytotoxin botcinic acid requires two polyketide synthases for production and has a redundant role in virulence with botrydial', *Molecular Plant Pathology*, 12(6), 564-579.

- De, B. (1884) " Vergleichende Morphologie und Biologie de Pilze, Mycetozoen und Bacterien," " Vergleichende Morphologie und Biologie de Pilze, Mycetozoen und Bacterien,".
- de Vrije, T., Antoine, N., Buitelaar, R. M., Bruckner, S., Dissevelt, M., Durand, A., Gerlagh, M., Jones, E. E., Luth, P., Oostra, J., Ravensberg, W. J., Renaud, R., Rinzema, A., Weber, F. J. and Whipps, J. M. (2001) 'The fungal biocontrol agent *Coniothyrium minitans*: production by solid-state fermentation, application and marketing', *Applied Microbiology and Biotechnology*, 56(1-2), 58-68.
- Delgado-Jarana, J., Moreno-Mateos, M. A. and Benitez, T. (2003) 'Glucose uptake in *Trichoderma harzianum*: Role of gtt1', *Eukaryotic Cell*, 2(4), 708-717.
- Djamei, A., Schipper, K., Rabe, F., Ghosh, A., Vincon, V., Kahnt, J., Osorio, S., Tohge, T., Fernie, A. R., Feussner, I., Feussner, K., Meinicke, P., Stierhof, Y.-D., Schwarz, H., Macek, B., Mann, M. and Kahmann, R. (2011) 'Metabolic priming by a secreted fungal effector', *Nature*, 478(7369), 395-+.
- do Amaral, A. M., Antoniw, J., Rudd, J. J. and Hammond-Kosack, K. E. (2012) 'Defining the Predicted Protein Secretome of the Fungal Wheat Leaf Pathogen *Mycosphaerella* graminicola', Plos One, 7(12).
- Doehlemann, G., van der Linde, K., Amann, D., Schwammbach, D., Hof, A., Mohanty, A., Jackson, D. and Kahmann, R. (2009) 'Pep1, a Secreted Effector Protein of Ustilago maydis, Is Required for Successful Invasion of Plant Cells', *PLoS Pathogens*, 5(2).
- Donaghy, J. and McKay, A. M. (1992) 'Extracellular carboxylesterase activity of fusariumgraminearum', *Applied Microbiology and Biotechnology*, 37(6), 742-744.
- Doubayashi, D., Ootake, T., Maeda, Y., Oki, M., Tokunaga, Y., Sakurai, A., Nagaosa, Y., Mikami, B. and Uchida, H. (2011) 'Formate Oxidase, an Enzyme of the Glucose-Methanol-Choline Oxidoreductase Family, Has a His-Arg Pair and 8-Formyl-FAD at the Catalytic Site', *Bioscience Biotechnology and Biochemistry*, 75(9), 1662-1667.
- Durman, S. B., Menendez, A. B. and Godeas, A. M. (2005) 'Variation in oxalic acid production and mycelial compatibility within field populations of *Sclerotinia sclerotiorum*', *Soil Biology & Biochemistry*, 37(12), 2180-2184.
- Dutton, M. V. and Evans, C. S. (1996) 'Oxalate production by fungi: Its role in pathogenicity and ecology in the soil environment', *Canadian Journal of Microbiology*, 42(9), 881-895.
- Eisenhaber, B., Schneider, G., Wildpaner, M. and Eisenhaber, F. (2004) 'A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for *Aspergillus nidulans*, *Candida albicans Neurospora crassa*, *Saccharomyces cerevisiae* and *Schizosaccharomyces pombe*', *Journal of Molecular Biology*, 337(2), 243-253.
- Elad, Y. (2000) '*Trichoderma harzianum* T39 preparation for biocontrol of plant diseases -Control of *Botrytis cinerea*, *Sclerotinia sclerotiorum* and *Cladosporium fulvum*', *Biocontrol Science and Technology*, 10(4), 499-507.

- Emanuelsson, O., Brunak, S., von Heijne, G. and Nielsen, H. (2007) 'Locating proteins in the cell using TargetP, SignalP and related tools', *Nature Protocols*, 2(4), 953-971.
- Emanuelsson, O., Nielsen, H., Brunak, S. and von Heijne, G. (2000) 'Predicting subcellular localization of proteins based on their N-terminal amino acid sequence', *Journal of Molecular Biology*, 300(4), 1005-1016.
- Espeso, E. A., Tilburn, J., Sanchez-Pulido, L., Brown, C. V., Valencia, A., Arst, H. N. and Penalva, M. A. (1997) 'Specific DNA recognition by the *Aspergillus nidulans* three zinc finger transcription factor PacC', *Journal of Molecular Biology*, 274(4), 466-480.
- Evans, N., Welham, S. J., Antoniw, J. F. and Fitt, B. D. L. (2006) 'Development and uptake of a scheme for predicting risk of severe light leaf spot on oilseed rape', *Outlooks on Pest Management*, 17(6), 243-245.
- Favaron, F., Sella, L. and D'Ovidio, R. (2004) 'Relationships among endopolygalacturonase, oxalate, pH, and plant polygalacturonase-inhibiting protein (PGIP) in the interaction between *Sclerotinia sclerotiorum* and soybean', *Molecular Plant-Microbe Interactions*, 17(12), 1402-1409.
- Federici, L., Caprari, C., Mattei, B., Savino, C., Di Matteo, A., De Lorenzo, G., Cervone, F. and Tsernoglou, D. (2001) 'Structural requirements of endopolygalacturonase for the interaction with PGIP (polygalacturonase-inhibiting protein)', *Proceedings of the National Academy of Sciences of the United States of America*, 98(23), 13425-13430.
- Fitt, B. D. L., Brun, H., Barbetti, M. J. and Rimmer, S. R. (2006) 'World-wide importance of phoma stem canker (*Leptosphaeria maculans* and *L. biglobosa*) on oilseed rape (*Brassica napus*)', *European Journal of Plant Pathology*, 114(1), 3-15.
- Fitt, B. D. L., Gladders, P., Turner, J. A., Sutherland, K. G., Welham, S. J. and Davies, J. M. L. (1997) 'Prospects for developing a forecasting scheme to optimise use of fungicides for disease control on winter oilseed rape in the UK', *Aspects of Applied Biology*, (48), 135-142.
- Flor, H. H. (1971) 'Current staus of gene-for-gene concept', *Annual Review of Phytopathology*, 9, 275-&.
- Fradin, E. F., Abd-El-Haliem, A., Masini, L., van den Berg, G. C. M., Joosten, M. H. A. J. and Thomma, B. P. H. J. (2011) 'Interfamily Transfer of Tomato Ve1 Mediates *Verticillium* Resistance in *Arabidopsis*', *Plant Physiology*, 156(4), 2255-2265.

FRAG-UK 'http://www.pesticides.gov.uk/rags.asp?id=644', [online], available: [accessed

- Freeman, J., Ward, E., Calderon, C. and McCartney, A. (2002) 'A polymerase chain reaction (PCR) assay for the detection of inoculum of *Sclerotinia sclerotiorum*', *European Journal of Plant Pathology*, 108(9), 877-886.
- Garrett, M. H., Rayment, P. R., Hooper, M. A., Abramson, M. J. and Hooper, B. M. (1998) 'Indoor airborne fungal spores, house dampness and associations with environmental factors and respiratory health in children', *Clinical and Experimental Allergy*, 28(4), 459-467.

- Gehring, A. G., Crawford, C. G., Mazenko, R. S., VanHouten, L. J. and Brewster, J. D. (1996) 'Enzyme-linked immunomagnetic electrochemical detection of *Salmonella typhimurium*', *Journal of Immunological Methods*, 195(1-2), 15-25.
- Gelot, M. A., Lavoue, G., Belleville, F. and Nabet, P. (1980) 'Determination of oxalates in plasma and urine using gas-chromatography', *Clinica Chimica Acta*, 106(3), 279-285.
- Ghannoum, M. A. (2000) 'Potential role of phospholipases in virulence and fungal pathogenesis', *Clinical Microbiology Reviews*, 13(1), 122-+.
- Giardine, B., Riemer, C., Hardison, R. C., Burhans, R., Elnitski, L., Shah, P., Zhang, Y., Blankenberg, D., Albert, I., Taylor, J., Miller, W., Kent, W. J. and Nekrutenko, A. (2005) 'Galaxy: A platform for interactive large-scale genome analysis', *Genome Research*, 15(10), 1451-1455.
- Gimenez-Ibanez, S., Ntoukakis, V. and Rathjen, J. P. (2009) 'The LysM receptor kinase CERK1 mediates bacterial perception in *Arabidopsis*', *Plant signaling & behavior*, 4(6), 539-41.
- Godfrey, D., Bohlenius, H., Pedersen, C., Zhang, Z., Emmersen, J. and Thordal-Christensen, H. (2010) 'Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif', *Bmc Genomics*, 11.
- Godoy, G., Steadman, J. R., Dickman, M. B. and Dam, R. (1990) 'Use of mutants to demonstrate the role of oxalic acid in pathogenicity of *Sclerotinia sclerotiorum* on *Phaseolus vulgaris*
- ', Physiological and Molecular Plant Pathology, 37(3), 179-191.
- Goecks, J., Nekrutenko, A., Taylor, J. and Galaxy, T. (2010) 'Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences', *Genome Biology*, 11(8).
- Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J. D., Jacq, C., Johnston, M., Louis, E. J., Mewes, H. W., Murakami, Y., Philippsen, P., Tettelin, H. and Oliver, S. G. (1996) 'Life with 6000 genes', *Science*, 274(5287), 546-&.
- Goodwin, S. B., Ben M'Barek, S., Dhillon, B., Wittenberg, A. H. J., Crane, C. F., Hane, J. K., Foster, A. J., Van der Lee, T. A. J., Grimwood, J., Aerts, A., Antoniw, J., Bailey, A., Bluhm, B., Bowler, J., Bristow, J., van der Burgt, A., Canto-Canche, B., Churchill, A. C. L., Conde-Ferraez, L., Cools, H. J., Coutinho, P. M., Csukai, M., Dehal, P., De Wit, P., Donzelli, B., van de Geest, H. C., van Ham, R. C. H. J., Hammond-Kosack, K. E., Henrissat, B., Kilian, A., Kobayashi, A. K., Koopmann, E., Kourmpetis, Y., Kuzniar, A., Lindquist, E., Lombard, V., Maliepaard, C., Martins, N., Mehrabi, R., Nap, J. P. H., Ponomarenko, A., Rudd, J. J., Salamov, A., Schmutz, J., Schouten, H. J., Shapiro, H., Stergiopoulos, I., Torriani, S. F. F., Tu, H., de Vries, R. P., Waalwijk, C., Ware, S. B., Wiebenga, A., Zwiers, L.-H., Oliver, R. P., Grigoriev, I. V. and Kema, G. H. J. (2011)
  'Finished Genome of the Fungal Wheat Pathogen Mycosphaerella graminicola Reveals Dispensome Structure, Chromosome Plasticity, and Stealth Pathogenesis', *Plos Genetics*, 7(6).

- Guimaraes, R. L. and Stotz, H. U. (2004) 'Oxalate production by *Sclerotinia sclerotiorum* deregulates guard cells during infection', *Plant Physiology*, 136(3), 3703-3711.
- Halaouli, S., Asther, M., Sigoillot, J. C., Hamdi, M. and Lomascolo, A. (2006) 'Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological applications', *Journal of Applied Microbiology*, 100(2), 219-232.
- Hambleton, S., Walker, C. and Kohn, L. M. (2002) 'Clonal lineages of Sclerotinia sclerotiorum previously known from other crops predominate in 1999-2000 samples from Ontario and Quebec soybean', *Canadian Journal of Plant Pathology-Revue Canadienne De Phytopathologie*, 24(3), 309-315.
- Hammel, K. E., Mozuch, M. D., Jensen, K. A. and Kersten, P. J. (1994) 'H<sub>2</sub>O<sub>2</sub> recycling during oxidation of the arylglycerol beta-aryl ether lignin structure by lignin peroxidase and glyoxal oxidase', *Biochemistry*, 33(45), 13349-13354.
- Hammond-Kosack, K. E. and Rudd, J. J. (2008) 'Plant resistance signalling hijacked by a necrotrophic fungal pathogen', *Plant signaling & behavior*, 3(11), 993-5.
- Han, Y., Joosten, H.-J., Niu, W., Zhao, Z., Mariano, P. S., McCalman, M., van Kan, J., Schaap, P. J. and Dunaway-Mariano, D. (2007) 'Oxaloacetate hydrolase, the C-C bond lyase of oxalate secreting fungi', *Journal of Biological Chemistry*, 282(13), 9581-9590.
- Hegedus, D. D. and Rimmer, S. R. (2005) 'Sclerotinia sclerotiorum: When "to be or not to be" a pathogen?', *Fems Microbiology Letters*, 251(2), 177-184.
- Heger, A. and Holm, L. (2000) 'Rapid automatic detection and alignment of repeats in protein sequences', *Proteins-Structure Function and Genetics*, 41(2), 224-237.
- HGCA 'http://www.hgca.com/content.template/0/0/Home/Home/Home.mspx'.
- Higuchi, Y., Arioka, M. and Kitamoto, K. (2009) 'Endocytic recycling at the tip region in the filamentous fungus Aspergillus oryzae', *Communicative & integrative biology*, 2(4), 327-8.
- Horton, P., Park, K.-J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C. J. and Nakai, K. (2007) 'WoLF PSORT: protein localization predictor', *Nucleic Acids Research*, 35, W585-W587.
- Huang, H. C., Bremer, E., Hynes, R. K. and Erickson, R. S. (2000) 'Foliar application of fungal biocontrol agents for the control of white mold of dry bean caused by *Sclerotinia sclerotiorum*', *Biological Control*, 18(3), 270-276.
- Huang, H. C. and Kozub, G. C. (1991) 'Temperature requirements for carpogenic germination of sclerotia of *Sclerotinia-sclerotiorum* isolates of different geographic origin', *Botanical Bulletin of Academia Sinica*, 32(4), 279-286.
- Hunter, S., Jones, P., Mitchell, A., Apweiler, R., Attwood, T. K., Bateman, A., Bernard, T., Binns, D., Bork, P., Burge, S., de Castro, E., Coggill, P., Corbett, M., Das, U., Daugherty, L., Duquenne, L., Finn, R. D., Fraser, M., Gough, J., Haft, D., Hulo, N., Kahn, D., Kelly, E., Letunic, I., Lonsdale, D., Lopez, R., Madera, M., Maslen, J., McAnulla, C., McDowall, J., McMenamin, C., Mi, H., Mutowo-Muellenet, P., Mulder,

N., Natale, D., Orengo, C., Pesseat, S., Punta, M., Quinn, A. F., Rivoire, C., Sangrador-Vegas, A., Selengut, J. D., Sigrist, C. J. A., Scheremetjew, M., Tate, J., Thimmajanarthanan, M., Thomas, P. D., Wu, C. H., Yeats, C. and Yong, S.-Y. (2012) 'InterPro in 2011: new developments in the family and domain prediction database', *Nucleic Acids Research*, 40(D1), D306-D312.

Inbar, J., Menendez, A. and Chet, I. (1996) 'Hyphal interaction between Trichoderma harzianum and *Sclerotinia sclerotiorum* and its role in biological control', *Soil Biology* & *Biochemistry*, 28(6), 757-763.

Innes, J. (2010) '(http://www.jic.ac.uk/Corporate/about/publications/EconomicImpact.pdf)',

- Islam, M. S., Haque, M. S., Islam, M. M., Emdad, E. M., Halim, A., Hossen, Q. M. M., Hossain, M. Z., Ahmed, B., Rahim, S., Rahman, M. S., Alam, M. M., Hou, S., Wan, X., Saito, J. A. and Alam, M. (2012) 'Tools to kill: Genome of one of the most destructive plant pathogenic fungi *Macrophomina phaseolina*', *Bmc Genomics*, 13.
- Johnsson, B., Lofas, S. and Lindquist, G. (1991) 'Immobilization of proteins to a carboxymethyldextran modified gold surface for biospecific interaction analysis in Surface-Plasmon Resonance sensors', *Analytical Biochemistry*, 198(2), 268-277.
- Jones, J. D. G. and Dangl, J. L. (2006) 'The plant immune system', *Nature*, 444(7117), 323-329.
- Jurick, W. M., Dickman, M. B. and Rollins, J. A. (2004) 'Characterization and functional analysis of a cAMP-dependent protein kinase A catalytic subunit gene (pka1) in *Sclerotinia sclerotiorum*', *Physiological and Molecular Plant Pathology*, 64(3), 155-163.
- Kabbage, M., Williams, B. and Dickman, M. B. (2013) 'Cell Death Control: The Interplay of Apoptosis and Autophagy in the Pathogenicity of *Sclerotinia sclerotiorum*', *PLoS Pathogens*, 9(4).
- Kaemper, J., Kahmann, R., Boelker, M., Ma, L.-J., Brefort, T., Saville, B. J., Banuett, F., Kronstad, J. W., Gold, S. E., Mueller, O., Perlin, M. H., Woesten, H. A. B., de Vries, R., Ruiz-Herrera, J., Reynaga-Pena, C. G., Snetselaar, K., McCann, M., Perez-Martin, J., Feldbruegge, M., Basse, C. W., Steinberg, G., Ibeas, J. I., Holloman, W., Guzman, P., Farman, M., Stajich, J. E., Sentandreu, R., Gonzalez-Prieto, J. M., Kennell, J. C., Molina, L., Schirawski, J., Mendoza-Mendoza, A., Greilinger, D., Muench, K., Roessel, N., Scherer, M., Vranes, M., Ladendorf, O., Vincon, V., Fuchs, U., Sandrock, B., Meng, S., Ho, E. C. H., Cahill, M. J., Boyce, K. J., Klose, J., Klosterman, S. J., Deelstra, H. J., Ortiz-Castellanos, L., Li, W., Sanchez-Alonso, P., Schreier, P. H., Haeuser-Hahn, I., Vaupel, M., Koopmann, E., Friedrich, G., Voss, H., Schlueter, T., Margolis, J., Platt, D., Swimmer, C., Gnirke, A., Chen, F., Vysotskaia, V., Mannhaupt, G., Gueldener, U., Muensterkoetter, M., Haase, D., Oesterheld, M., Mewes, H.-W., Mauceli, E. W., DeCaprio, D., Wade, C. M., Butler, J., Young, S., Jaffe, D. B., Calvo, S., Nusbaum, C., Galagan, J. and Birren, B. W. (2006) 'Insights from the genome of the biotrophic fungal plant pathogen *Ustilago maydis'*, *Nature*, 444(7115), 97-101.
- Kamoun, S. (2003) 'Molecular genetics of pathogenic Oomycetes', *Eukaryotic Cell*, 2(2), 191-199.

- Kasza, Z., Vagvolgyi, C., Fevre, M. and Cotton, P. (2004) 'Molecular characterization and in planta detection of *Sclerotinia sclerotiorum* endopolygalacturonase genes', *Current Microbiology*, 48(3), 208-213.
- Kawabe, M., Onokubo, A. O., Arimoto, Y., Yoshida, T., Azegami, K., Teraoka, T. and Arie, T. (2011) 'GMC oxidoreductase, a highly expressed protein in a potent biocontrol agent Fusarium oxysporum Cong:1-2, is dispensable for biocontrol activity', *Journal of General and Applied Microbiology*, 57(4), 207-217.
- Khuri, S., Bakker, F. T. and Dunwell, J. M. (2001) 'Phylogeny, function, and evolution of the cupins, a structurally conserved, functionally diverse superfamily of proteins', *Molecular Biology and Evolution*, 18(4), 593-605.
- Kim, H.-j., Chen, C., Kabbage, M. and Dickman, M. B. (2011) 'Identification and Characterization of *Sclerotinia sclerotiorum* NADPH Oxidases', *Applied and Environmental Microbiology*, 77(21), 7721-7729.
- Kim, K. S., Min, J.-Y. and Dickman, M. B. (2008) 'Oxalic acid is an elicitor of plant programmed cell death during *Sclerotinia sclerotiorum* disease development', *Molecular Plant-Microbe Interactions*, 21(5), 605-612.
- Kimura, M., Tokai, T., Matsumoto, G., Fujimura, M., Hamamoto, H., Yoneyama, K., Shibata, T. and Yamaguchi, I. (2003) 'Trichothecene nonproducer Gibberella species have both functional and nonfunctional 3-O-acetyltransferase genes', *Genetics*, 163(2), 677-684.
- Kohlbecker, G. and Butz, M. (1981) 'Direct spectrophotometric determination of serum and urinary oxalate with oxalate oxidase', *Journal of Clinical Chemistry and Clinical Biochemistry*, 19(11), 1103-1106.
- Kohn, L. M. (1979) 'Monographic revision of the genus *Sclerotinina*', *Mycotaxon*, 9(2), 365-444.
- Kowalski, T. and Holdenrieder, O. (2009) 'Pathogenicity of *Chalara fraxinea*', *Forest Pathology*, 39(1), 1-7.
- Kulkarni, R. D., Kelkar, H. S. and Dean, R. A. (2003) 'An eight-cysteine-containing CFEM domain unique to a group of fungal membrane proteins', *Trends in Biochemical Sciences*, 28(3), 118-121.
- Kutchan, T. M. and Dittrich, H. (1995) 'Characterization and mechanism of the berberine bridge enzyme, a covalently flavinylated oxidase of benzophenanthridine alkaloid biosynthesis in plants', *Journal of Biological Chemistry*, 270(41), 24475-24481.
- Kwan, A. H. Y., Winefield, R. D., Sunde, M., Matthews, J. M., Haverkamp, R. G., Templeton, M. D. and Mackay, J. P. (2006) 'Structural basis for rodlet assembly in fungal hydrophobins', *Proceedings of the National Academy of Sciences of the United States of America*, 103(10), 3621-3626.
- Lagunas, R. (1993) 'Sugar-transport in Saccharomyces cerevisiae', Fems Microbiology Reviews, 104(3-4), 229-242.

- Lamberski, J. A., Thompson, N. E. and Burgess, R. R. (2006) 'Expression and purification of a single-chain variable fragment antibody derived from a polyol-responsive monoclonal antibody', *Protein Expression and Purification*, 47(1), 82-92.
- Lenz, H., Wunderwald, P. and Eggerer, H. (1976) 'Partial-purification and some properties of oxalacetase from *Aspergillus niger*', *European Journal of Biochemistry*, 65(1), 225-236.
- Leroch, M., Mernke, D., Koppenhoefer, D., Schneider, P., Mosbach, A., Doehlemann, G. and Hahn, M. (2011) 'Living Colors in the Gray Mold Pathogen *Botrytis cinerea*: Codon-Optimized Genes Encoding Green Fluorescent Protein and mCherry, Which Exhibit Bright Fluorescence', *Applied and Environmental Microbiology*, 77(9), 2887-2897.
- Levasseur, A., Saloheimo, M., Navarro, D., Andberg, M., Pontarotti, P., Kruus, K. and Record, E. (2010) 'Exploring laccase-like multicopper oxidase genes from the ascomycete *Trichoderma reesei*: a functional, phylogenetic and evolutionary study', *Bmc Biochemistry*, 11.
- Li, R. G., Rimmer, R., Buchwaldt, L., Sharpe, A. G., Seguin-Swartz, G., Coutu, C. and Hegedus, D. D. (2004a) 'Interaction of *Sclerotinia sclerotiorum* with a resistant *Brassica napus* cultivar: expressed sequence tag analysis identifies genes associated with fungal pathogenesis', *Fungal Genetics and Biology*, 41(8), 735-753.
- Li, R. G., Rimmer, R., Buchwaldt, L., Sharpe, A. G., Seguin-Swartz, G. and Hegedus, D. D. (2004b) 'Interaction of *Sclerotinia sclerotiorum* with *Brassica napus*: cloning and characterization of endo- and exo-polygalacturonases expressed during saprophytic and parasitic modes', *Fungal Genetics and Biology*, 41(8), 754-765.
- Li, Y., Zhang, Y. and Li, B. (1994) 'Study on the disseminating distance of ascospore of sunflower stem rot fungus', *Plant Protection*, 20(1), 12-13.
- Liang, Y., Strelkov, S. E. and Kav, N. N. V. (2010) 'The Proteome of Liquid Sclerotial Exudates from *Sclerotinia sclerotiorum*', *Journal of Proteome Research*, 9(6), 3290-3298.
- Liang, Y., Yajima, W., Davis, M. R., Kav, N. N. V. and Strelkov, S. E. (2013) 'Disruption of a gene encoding a hypothetical secreted protein from *Sclerotinia sclerotiorum* reduces its virulence on canola (*Brassica napus*)', *Canadian Journal of Plant Pathology*, 35(1), 46-55.
- Lithourgidis, A. S., Roupakias, D. G. and Tzavella-Klonari, K. (2007) 'Stem rot disease incidence on faba beans in an artificially infested field', *Journal of Plant Diseases and Protection*, 114(3), 120-125.
- Lorang, J. M., Tuori, R. P., Martinez, J. P., Sawyer, T. L., Redman, R. S., Rollins, J. A., Wolpert, T. J., Johnson, K. B., Rodriguez, R. J., Dickman, M. B. and Ciuffetti, L. M. (2001) 'Green fluorescent protein is lighting up fungal biology', *Applied and Environmental Microbiology*, 67(5), 1987-1994.

- Lowe, R., Jubault, M., Canning, G., Urban, M. and Hammond-Kosack, K. E. (2012) 'The Induction of Mycotoxins by Trichothecene Producing *Fusarium* Species' in Bolton, M. D. and Thomma, B., eds., *Plant Fungal Pathogens: Methods and Protocols*, 439-455.
- Lu, G. (2003) 'Engineering *Sclerotinia sclerotiorum* resistance in oilseed crops', *African Journal of Biotechnology*, 2(12 Cited December 31, 2003), 509-516.
- Luderer, R., De Kock, M. J. D., Dees, R. H. L., De Wit, P. and Joosten, M. (2002) 'Functional analysis of cysteine residues of ECP elicitor proteins of the fungal tomato pathogen *Cladosporium fulvum*', *Molecular Plant Pathology*, 3(2), 91-95.
- Lugones, L. G., Wosten, H. A. B. and Wessels, J. G. H. (1998) 'A hydrophobin (ABH3) specifically secreted by vegetatively growing hyphae of *Agaricus bisporus* (common white button mushroom)', *Microbiology-Uk*, 144, 2345-2353.
- Lumsden, R. D. (1979) 'Histology and physiology of pathogenesis in plant diseases caused by *Sclerotinina* species ', *Phytopathology*, 69(8), 890-896.
- Magarey, R. D., Sutton, T. B. and Thayer, C. L. (2005) 'A simple generic infection model for foliar fungal plant pathogens', *Phytopathology*, 95(1), 92-100.
- Magro, P., Marciano, P. and Dilenna, P. (1984) 'Oxalic acid production and its role in pathogenesis of *Sclerotinia sclerotiorum*', *Fems Microbiology Letters*, 24(1), 9-12.
- Magro, P., Marciano, P. and Dilenna, P. (1988) 'Enzymatic oxalate decarboxylation in isolates of *Sclerotinia sclerotiorum*', *Fems Microbiology Letters*, 49(1), 49-52.
- Marcantonio, E. E. and Hynes, R. O. (1988) 'Antibodies to the conserved cytoplasmic domain of the integrin beta-1-subunit react with proteins in vertebrates, invertebrates, and fungi', *Journal of Cell Biology*, 106(5), 1765-1772.
- Marciano, P., Magro, P. and Favaron, F. (1989) 'Sclerotinia sclerotiorum growth and oxalic acid production on selected culture media', *Fems Microbiology Letters*, 61(1-2), 57-59.
- Marshall, R., Kombrink, A., Motteram, J., Loza-Reyes, E., Lucas, J., Hammond-Kosack, K. E., Thomma, B. P. H. J. and Rudd, J. J. (2011) 'Analysis of Two in Planta Expressed LysM Effector Homologs from the Fungus *Mycosphaerella graminicola* Reveals Novel Functional Properties and Varying Contributions to Virulence on Wheat', *Plant Physiology*, 156(2), 756-769.
- Matson, P. A. and Vitousek, P. M. (2006) 'Agricultural intensification: Will land spared from farming be land spared for nature?', *Conservation Biology*, 20(3), 709-710.
- Maxwell, D. P. and Lumsden, R. D. (1970) 'Oxalic acid production by *Sclerotinia sclerotiorum* in infected bean and in culture.', *Phytopathology*, 60(9), 1395-&.
- Miki, K., Tsuchida, T., Kawagoe, M., Kinoshita, H. and Ikeda, T. (1994)
  'Bioelectrocatalysis at the yeast cell-immobilized electrode with mediators ', *Denki Kagaku*, 62(12), 1249-1250.

- Miyamoto, S., Murakami, T., Saito, A. and Kimura, J. (1991) 'Development of an amperometric alcohol sensor based on immobilized alcohol-dehydrogenase and entrapped NAD+ ', *Biosensors & Bioelectronics*, 6(7), 563-567.
- Mueller, O., Schreier, P. H. and Uhrig, J. F. (2008) 'Identification and characterization of secreted and pathogenesis-related proteins in *Ustilago maydis'*, *Molecular Genetics and Genomics*, 279(1), 27-39.
- Muhammad-Tahir, Z. and Alocilja, E. C. (2003) 'Fabrication of a disposable biosensor for *Escherichia coli* O157 : H7 detection', *Ieee Sensors Journal*, 3(4), 345-351.
- Muhammad-Tahir, Z. and Alocilja, E. C. (2004) 'A disposable biosensor for pathogen detection in fresh produce samples', *Biosystems Engineering*, 88(2), 145-151.
- Nations, United Nations. (2013) 'World Population Prospects: The 2012 Revision', [online], (http://esa.un.org/wpp/)
- Niderman, T., Genetet, I., Bruyere, T., Gees, R., Stintzi, A., Legrand, M., Fritig, B. and Mosinger, E. (1995) 'Pathogenesis-related pr-1 proteins are antifungal - isolation and characterization of 3 14-kilodalton proteins of tomato and of a basic pr-1 of tobacco with inhibitory activity against *phytophthora infestans*', *Plant Physiology*, 108(1), 17-27.
- Nierman, W. C., Pain, A., Anderson, M. J., Wortman, J. R., Kim, H. S., Arroyo, J., Berriman, M., Abe, K., Archer, D. B., Bermejo, C., Bennett, J., Bowyer, P., Chen, D., Collins, M., Coulsen, R., Davies, R., Dyer, P. S., Farman, M., Fedorova, N., Feldblyum, T. V., Fischer, R., Fosker, N., Fraser, A., Garcia, J. L., Garcia, M. J., Goble, A., Goldman, G. H., Gomi, K., Griffith-Jones, S., Gwilliam, R., Haas, B., Haas, H., Harris, D., Horiuchi, H., Huang, J., Humphray, S., Jimenez, J., Keller, N., Khouri, H., Kitamoto, K., Kobayashi, T., Konzack, S., Kulkarni, R., Kumagai, T., Lafton, A., Latge, J. P., Li, W. X., Lord, A., Majoros, W. H., May, G. S., Miller, B. L., Mohamoud, Y., Molina, M., Monod, M., Mouyna, I., Mulligan, S., Murphy, L., O'Neil, S., Paulsen, I., Penalva, M. A., Pertea, M., Price, C., Pritchard, B. L., Quail, M. A., Rabbinowitsch, E., Rawlins, N., Rajandream, M. A., Reichard, U., Renauld, H., Robson, G. D., de Cordoba, S. R., Rodriguez-Pena, J. M., Ronning, C. M., Rutter, S., Salzberg, S. L., Sanchez, M., Sanchez-Ferrero, J. C., Saunders, D., Seeger, K., Squares, R., Squares, S., Takeuchi, M., Tekaia, F., Turner, G., de Aldana, C. R. V., Weidman, J., White, O., Woodward, J., Yu, J. H., Fraser, C., Galagan, J. E., Asai, K., Machida, M., Hall, N., Barrell, B. and Denning, D. W. (2005) 'Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus', Nature, 438(7071), 1151-1156.
- Nugaeva, N., Gfeller, K. Y., Backmann, N., Dueggelin, M., Lang, H. P., Guentherodt, H.-J. and Hegner, M. (2007) 'An antibody-sensitized microfabricated cantilever for the growth detection of Aspergillus niger spores', *Microscopy and Microanalysis*, 13(1), 13-17.
- OECD-FAO Agricultural Outlook 2012-2021, (2012) (http://www.oecd.org/site/oecd-faoagriculturaloutlook/).

Oerke, E. C. (2006) 'Crop losses to pests', Journal of Agricultural Science, 144, 31-43.

- Oerke, E. C. and Dehne, H. W. (2004) 'Safeguarding production losses in major crops and the role of crop protection', *Crop Protection*, 23(4), 275-285.
- Ortiz-Bermudez, P., Srebotnik, E. and Hammel, K. E. (2003) 'Chlorination and cleavage of lignin structures by fungal chloroperoxidases', *Applied and Environmental Microbiology*, 69(8), 5015-5018.
- Palmieri, L., Lasorsa, F. M., DePalma, A., Palmieri, F., Runswick, M. J. and Walker, J. E. (1997) 'Identification of the yeast ACR1 gene product as a succinate-fumarate transporter essential for growth on ethanol or acetate', *Febs Letters*, 417(1), 114-118.
- Palumbi, S. R. (2001) 'Evolution Humans as the world's greatest evolutionary force', *Science*, 293(5536), 1786-1790.
- Parker, M., McDonald, M. R. and Boland, G. J. (2009) 'Detecting ascospores of *Sclerotinia sclerotiorum* in carrot crops in Ontario - prelude to regional level forecasting of sclerotinia rot of carrot', *Canadian Journal of Plant Pathology-Revue Canadienne De Phytopathologie*, 31(1), 153-153.
- Percudani, R., Montanini, B. and Ottonello, S. (2005) 'The anti-HIV cyanovirin-N domain is evolutionarily conserved and occurs as a protein module in eukaryotes', *Proteins-Structure Function and Bioinformatics*, 60(4), 670-678.
- Phalan, B., Onial, M., Balmford, A. and Green, R. E. (2011) 'Reconciling Food Production and Biodiversity Conservation: Land Sharing and Land Sparing Compared', *Science*, 333(6047), 1289-1291.
- Pierson, P. E. and Rhodes, L. H. (1992) 'Effect of culture medium on the production of oxalic acid by *Sclerotinia trifoliorum*.', *Mycologia*, 84(3), 467-469.
- Pijls, C. F. N., Shaw, M. W. and Parker, A. (1994) 'A rapid test to evaluate in-vitro sensitivity of *Septoria tritici* to flutriafol, using a microtitre plate reader', *Plant Pathology*, 43(4), 726-732.
- Pingali, P. L. (2012) 'Green Revolution: Impacts, limits, and the path ahead', *Proceedings* of the National Academy of Sciences of the United States of America, 109(31), 12302-12308.
- Plessner, O., Klapatch, T. and Guerinot, M. L. (1993) 'Siderophore utilization by *Bradyrhizobium japonicum*', *Applied and Environmental Microbiology*, 59(5), 1688-1690.
- Postnote, P. o. o. S. a. T. (2009) <u>http://www.parliament.uk/documents/post/postpn336.pdf</u>, [online].
- Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R. and Lopez, R. (2005) 'InterProScan: protein domains identifier', *Nucleic Acids Research*, 33, W116-W120.
- Qutob, D., Kamoun, S. and Gijzen, M. (2002) 'Expression of a *Phytophthora sojae* necrosis-inducing protein occurs during transition from biotrophy to necrotrophy', *Plant Journal*, 32(3), 361-373.

- Rassam, M. and Laing, W. (2005) 'Variation in ascorbic acid and oxalate levels in the fruit of *Actinidia chinensis* tissues and genotypes', *Journal of Agricultural and Food Chemistry*, 53(6), 2322-2326.
- Ray, D. M., ND. West, PC. Foley, JA. (2013) 'Yield Trends Are Insufficient to Double Global Crop Production by 2050', *Plos One*, 8(6).
- Rigden, D. J. (2008) 'The histidine phosphatase superfamily: structure and function', *Biochemical Journal*, 409, 333-348.
- Riou, C., Freyssinet, G. and Fevre, M. (1991) 'Production of Cell Wall-Degrading Enzymes by the Phytopathogenic Fungus *Sclerotinia sclerotiorum*', *Applied and Environmental Microbiology*, 57(5), 1478-1484.
- Roberts, R. G., Hale, C. N., van der Zwet, T., Miller, C. E. and Redlin, S. C. (1998) 'The potential for spread of *Erwinia amylovora* and fire blight via commercial apple fruit; a critical review and risk assessment', *Crop Protection*, 17(1), 19-28.
- Rogers, S. L., Atkins, S. D. and West, J. S. (2009) 'Detection and quantification of airborne inoculum of *Sclerotinia sclerotiorum* using quantitative PCR', *Plant Pathology*, 58(2), 324-331.
- Rollins, J. A. (2003) 'The *Sclerotinia sclerotiorum* pac1 gene is required for sclerotial development and virulence', *Molecular Plant-Microbe Interactions*, 16(9), 785-795.
- Rollins, J. A. and Dickman, M. B. (2001) 'PH signaling in *Sclerotinia sclerotiorum*: Identification of a pacC/RIM1 Homolog', *Applied and Environmental Microbiology*, 67(1), 75-81.
- Ruijter, G. J. G., van de Vondervoort, P. J. I. and Visser, J. (1999) 'Oxalic acid production by Aspergillus niger: an oxalate-non-producing mutant produces citric acid at pH 5 and in the presence of manganese', *Microbiology-Uk*, 145, 2569-2576.
- Ruiz-Garcia, L., Lunadei, L., Barreiro, P. and Robla, J. I. (2009) 'A Review of Wireless Sensor Technologies and Applications in Agriculture and Food Industry: State of the Art and Current Trends', *Sensors*, 9(6), 4728-4750.
- Russell, P. E. (2005) 'A century of fungicide evolution', *Journal of Agricultural Science*, 143, 11-25.
- Russo, P. S., Blum, F. D., Ipsen, J. D., Abulhajj, Y. J. and Miller, W. G. (1982) 'The surface-activity of the phytotoxin cerato-ulmin', *Canadian Journal of Botany-Revue Canadienne De Botanique*, 60(8), 1414-1422.
- Sakuno, E., Tani, H. and Nakajima, H. (2007) '2-epi-Botcinin A and 3-O-acetylbotcineric acid from *Botrytis cinerea*', *Bioscience Biotechnology and Biochemistry*, 71(10), 2592-2595.
- Scarboro.Ga (1970a) 'Sugar transport in *Neurospora crassa*', *Journal of Biological Chemistry*, 245(7), 1694-&.

- Scarboro.Ga (1970b) 'Sugar transport in *Neurospora crassa*. 2. A second glucose transport system', *Journal of Biological Chemistry*, 245(15), 3985-&.
- Schneide.Rp and Wiley, W. R. (1971) 'Regulation fo sugar transport in *Neurospora* crassa', *Journal of Bacteriology*, 106(2), 487-&.
- Schwille, P. O., Manoharan, M., Rumenapf, G., Wolfel, G. and Berens, H. (1989) 'Oxalate measurement in the picomol range by ion chromatography values in fasting plasma and urine of controls and patients with idiopathic calcium urolithiasis', *Journal of Clinical Chemistry and Clinical Biochemistry*, 27(2), 87-96.
- Scott, B. and Eaton, C. J. (2008) 'Role of reactive oxygen species in fungal cellular differentiations', *Current Opinion in Microbiology*, 11(6), 488-493.
- Shimizu, T., Nakano, T., Takamizawa, D., Desaki, Y., Ishii-Minami, N., Nishizawa, Y., Minami, E., Okada, K., Yamane, H., Kaku, H. and Shibuya, N. (2010) 'Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice', *Plant Journal*, 64(2), 204-214.
- Skidgel, R. A. and Erdos, E. G. (1998) 'Cellular carboxypeptidases', *Immunological Reviews*, 161, 129-141.
- Skottrup, P., Nicolaisen, M. and Justesen, A. F. (2007) 'Rapid determination of *Phytophthora infestans* sporangia using a surface plasmon resonance immunosensor', *Journal of Microbiological Methods*, 68(3), 507-515.
- Skottrup, P. D., Nicolaisen, M. and Justesen, A. F. (2008) 'Towards on-site pathogen detection using antibody-based sensors', *Biosensors & Bioelectronics*, 24(3), 339-348.
- Smith, D. L., Hollowell, J. E., Isleib, T. G. and Shew, B. B. (2007) 'A site-specific, weather-based disease regression model for *Sclerotinia* blight of peanut', *Plant Disease*, 91(11), 1436-1444.
- Society, The Royal Society. (2009) Reaping the benefits: Science and the sustainable intensification of global agriculture., (http://royalsociety.org/policy/publications/2009/reaping-benefits/).
- SolerRivas, C., Arpin, N., Olivier, J. M. and Wichers, H. J. (1997) 'Activation of tyrosinase in Agaricus bisporus strains following infection by Pseudomonas tolaasii or treatment with a tolaasin-containing preparation', *Mycological Research*, 101, 375-382.
- Steadman, J. R., Marcinkowska, J. and Rutledge, S. (1994) 'A semi-selective medium for isolation of Sclerotinia sclerotiorum', Canadian Journal of Plant Pathology-Revue Canadienne De Phytopathologie, 16(1), 68-70.
- Stergiopoulos, I. and de Wit, P. J. G. M. (2009) 'Fungal Effector Proteins' in Annual Review of Phytopathology, 233-263.
- Stynen, D., Sarfati, J., Goris, A., Prevost, M. C., Lesourd, M., Kamphuis, H., Darras, V. and Latge, J. P. (1992) 'Rat monoclonal-antibodies against *Aspergillus galactomannan*', *Infection and Immunity*, 60(6), 2237-2245.

- Thines, E., Weber, R. W. S. and Talbot, N. J. (2000) 'MAP kinase and protein kinase Adependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea', *Plant Cell*, 12(9), 1703-1718.
- Tilman, D., Balzer, C., Hill, J. and Befort, B. L. (2011) 'Global food demand and the sustainable intensification of agriculture', *Proceedings of the National Academy of Sciences of the United States of America*, 108(50), 20260-20264.
- Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. and Polasky, S. (2002) 'Agricultural sustainability and intensive production practices', *Nature*, 418(6898), 671-677.
- Torrance, L., Ziegler, A., Pittman, H., Paterson, M., Toth, R. and Eggleston, I. (2006) 'Oriented immobilisation of engineered single-chain antibodies to develop biosensors for virus detection', *Journal of Virological Methods*, 134(1-2), 164-170.
- Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., Pimentel, H., Salzberg, S. L., Rinn, J. L. and Pachter, L. (2012) 'Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks', *Nature Protocols*, 7(3), 562-578.
- Turner, A. P. F. (2000) 'Biochemistry Biosensors sense and sensitivity', Science, 290(5495), 1315-1317.
- Twengstrom, E. and Sigvald, R. (1993) 'Forecasting *Sclerotinia* stem rot using meteorological and field specific data', *SP Rapport*, (7), 211-216.
- Twengstrom, E. and Sigvald, R. (1996) 'Sclerotinia stem rot in spring sown rapeseed evaluation of a forecasting method', 37th Swedish Crop Protection Conference, Uppsala, Sweden, 26-27 January, 1996. Agriculture - pests, diseases and weeds., 77-84.
- Twengstrom, E., Sigvald, R., Svensson, C. and Yuen, J. (1998) 'Forecasting *Sclerotinia* stem rot in spring sown oilseed rape', *Crop Protection*, 17(5), 405-411.
- Tyler, B. M. (2009) 'Entering and breaking: virulence effector proteins of oomycete plant pathogens', *Cellular Microbiology*, 11(1), 13-20.
- Vallino, M., Martino, E., Boella, F., Murat, C., Chiapello, M. and Perotto, S. (2009) 'Cu,Zn superoxide dismutase and zinc stress in the metal-tolerant ericoid mycorrhizal fungus *Oidiodendron maius* Zn', *Fems Microbiology Letters*, 293(1), 48-57.
- van Esse, H. P., van't Klooster, J. W., Bolton, M. D., Yadeta, K. A., van Baarlen, P., Boeren, S., Vervoort, J., de Wit, P. J. G. M. and Thomma, B. P. H. J. (2008) 'The *Cladosporium fulvum* virulence protein Avr2 inhibits host proteases required for basal defense', *Plant Cell*, 20(7), 1948-1963.
- van Kan, J. A. L. (2005) 'Infection strategies of Botrytis cinerea' in Marissen, N., VanDoorn, W. G. and VanMeeteren, U., eds., *Proceedings of the Viiith International Symposium on Postharvest Physiology of Ornamental Plants*, 77-89.
- Vega, R. R., Corsini, D. and Letourne.D (1970) 'Nonvolatile organic acids produced by *Sclerotinia sclerotiorum* in synthetic liquid media', *Mycologia*, 62(2), 332-&.

- Veluchamy, S., Williams, B., Kim, K. and Dickman, M. B. (2012) 'The CuZn superoxide dismutase from *Sclerotinia sclerotiorum* is involved with oxidative stress tolerance, virulence, and oxalate production', *Physiological and Molecular Plant Pathology*, 78, 14-23.
- Velusamy, V., Arshak, K., Korostynska, O., Oliwa, K. and Adley, C. (2010) 'An overview of foodborne pathogen detection: In the perspective of biosensors', *Biotechnology Advances*, 28(2), 232-254.
- Wang, C. and St. Leger, R. J. (2007) 'The MAD1 adhesin of *Metarhizium anisopliae* links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants', *Eukaryotic Cell*, 6(5), 808-816.
- Wang, J. (2008) 'Electrochemical Glucose Biosensors', American Chemical Society, 108, 814-825.
- Wang, X., Shi, F. X., Wosten, H. A. B., Hektor, H., Poolman, B. and Robillard, G. T. (2005) 'The SC3 hydrophobin self-assembles into a membrane with distinct mass transfer properties', *Biophysical Journal*, 88(5), 3434-3443.
- Ward, E., Foster, S. J., Fraaije, B. A. and McCartney, H. A. (2004) 'Plant pathogen diagnostics: immunological and nucleic acid-based approaches', *Annals of Applied Biology*, 145(1), 1-16.
- White, T. J., Bruns, T., Lee, S. and Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal rna genes for phylogenetics, innis, m. A., et al.
- Williams, B., Kabbage, M., Kim, H. J., Britt, R. and Dickman, M. B. (2011) 'Tipping the Balance: *Sclerotinia sclerotiorum* Secreted Oxalic Acid Suppresses Host Defenses by Manipulating the Host Redox Environment', *PLoS Pathogens*, 7(6).
- Wojtaszek, P. (1997) 'Oxidative burst: An early plant response to pathogen infection', *Biochemical Journal*, 322, 681-692.
- Wosten, H. A. B. (2001) 'Hydrophobins: Multipurpose proteins', Annual Review of Microbiology, 55, 625-646.
- Wosten, H. A. B., Devries, O. M. H. and Wessels, J. G. H. (1993) 'Interfacial self-assembly of a fungal hydrophobin into a hydrophobic rodlet layer', *Plant Cell*, 5(11), 1567-1574.
- Wosten, H. A. B., Schuren, F. H. J. and Wessels, J. G. H. (1994) 'Interfacial self-assembly of a hydrophobin into an amphipathic protein membrane mediates fungal attachment to hydrophobic surfaces', *Embo Journal*, 13(24), 5848-5854.
- Xu, L. and Chen, W. (2013) 'Random T-DNA Mutagenesis Identifies a Cu/Zn Superoxide Dismutase Gene as a Virulence Factor of *Sclerotinia sclerotiorum*', *Molecular plantmicrobe interactions : MPMI*, 26(4), 431-41.
- Yadav, S., Anand, G., Dubey, A. K. and Yadav, D. (2012) 'Purification and characterization of an exo-polygalacturonase secreted by *Rhizopus oryzae* MTCC 1987 and its role in retting of *Crotalaria juncea* fibre', *Biologia*, 67(6), 1069-1074.

- Yajima, W. and Kav, N. N. V. (2006) 'The proteorne of the phytopathogenic fungus *Sclerotinia sclerotiorum*', *Proteomics*, 6(22), 5995-6007.
- Yamashita, N., Motoyoshi, T. and Nishimura, A. (2000) 'Molecular cloning of the isoamyl alcohol oxidase-encoding gene (mreA) from *Aspergillus oryzae*', *Journal of Bioscience* and Bioengineering, 89(6), 522-527.
- Yang, L. J., Ruan, C. M. and Li, Y. B. (2001) 'Rapid detection of Salmonella typhimurium in food samples using a bienzyme electrochemical biosensor with flow injection', *Journal of Rapid Methods and Automation in Microbiology*, 9(4), 229-240.
- Zezza, F., Pascale, M., Mule, G. and Visconti, A. (2006) 'Detection of *Fusarium culmorum* in wheat by a surface plasmon resonance-based DNA sensor', *Journal of Microbiological Methods*, 66(3), 529-537.
- Zhou, T., Reeleder, R. D. and Sparace, S. A. (1991) 'Interactions between *Sclerotinia* sclerotiorum and *Epicoccum purpurascens*', *Canadian Journal of Botany-Revue Canadienne De Botanique*, 69(11), 2503-2510.
- Zhu, W., Wei, W., Fu, Y., Cheng, J., Xie, J., Li, G., Yi, X., Kang, Z., Dickman, M. B. and Jiang, D. (2013) 'A Secretory Protein of Necrotrophic Fungus *Sclerotinia sclerotiorum* That Suppresses Host Resistance', *Plos One*, 8(1).

## Appendices

## Appendix 1: The 432 genes which make up the refined *S. sclerotiorum* secretome.

| Gene         | Broad ID   | Length | numes | %C   | WoLFPSORT   | Annotation                     | PFAM/ IPR    |
|--------------|------------|--------|-------|------|-------------|--------------------------------|--------------|
| <b>no.</b> 1 | 0010 00040 | 205    | 0     | 2.00 | 1.00        |                                | no.          |
| 1            | SSIG_00040 | 385    | 8     | 2.08 | extr=26     | pectin lyase a precursor       | 544          |
| 2            | SSIG_00044 | 341    | 12    | 3.52 | extr=26     | ribonuclease t2                | 445          |
| 3            | SS1G_00173 | 362    | 8     | 2.21 | extr=23     | gas1-like protein              | IPR021476    |
| 4            | SS1G_00233 | 639    | 24    | 3.76 | extr=24     | autophagy related lipase       | 8702         |
| 5            | SS1G_00238 | 312    | 1     | 0.32 | extr=27     | pectate lyase a                | 544          |
| 6            | SS1G_00263 | 135    | 4     | 2.96 | extr=21     | predicted protein              | -            |
| 7            | SS1G_00265 | 597    | 38    | 6.37 | extr=26     | CEF 4 protein                  | 1522         |
| 8            | SS1G 00271 | 603    | 5     | 0.83 | extr=26     | glutamyl-trna amidotransferase | 1425         |
| 9            | SS1G 00332 | 369    | 4     | 1.08 | extr=27     | CEF 8 protein                  | 1095         |
| 10           | SS1G_00423 | 659    | 14    | 2.12 | extr=23     | ser thr protein phosphatase    | IPR004843    |
|              |            |        |       |      |             | family protein                 |              |
| 11           | SS1G_00458 | 371    | 5     | 1 35 | extr=26     | endo-betaglucanase             | 150          |
|              | 5510_00150 | 571    | 5     | 1.55 | enti-20     | precursor                      | 150          |
| 12           | SS1G 00468 | 331    | 1     | 0.3  | extr-26     | CEF 8 protein                  | 1095         |
| 12           | SS1G_00400 | 228    | 2     | 0.9  | extr=20     | CHF 12 protein                 | 1670         |
| 1.3          | SSIC_00501 | 220    | 2     | 1.20 | $e_{xu}=27$ | olm <sup>1</sup> 12 protein    | 7071         |
| 14           | SSIG_00503 | 090    | 9     | 1.29 | exti=20     |                                | /9/1         |
| 15           | SSIG_00513 | 293    | 5     | 1./1 | extr=25     | predicted protein              | -            |
| 16           | SSIG_00514 | 252    | 2     | 0.79 | extr=26     | GHF 26 protein                 | IPR013/81;   |
|              |            |        |       |      |             |                                | IPR017853;   |
|              |            |        |       |      |             |                                | IPR022790    |
| 17           | SS1G_00534 | 91     | 8     | 8.79 | extr=20     | predicted protein              | -            |
| 18           | SS1G_00564 | 283    | 12    | 4.24 | extr=27     | predicted protein              | -            |
| 19           | SS1G_00604 | 168    | 1     | 0.6  | extr=20     | urease accessory protein       | IPR002639    |
| 20           | SS1G_00624 | 462    | 4     | 0.87 | extr=25     | aspartic-type endopeptidase    | 26           |
| 21           | SS1G_00642 | 545    | 34    | 6.24 | extr=26     | chitin binding protein         | 1522         |
| 22           | SS1G 00730 | 606    | 4     | 0.66 | extr=25     | gmc oxidoreductase             | 73,205,199   |
| 23           | SS1G_00746 | 420    | 8     | 1.9  | extr=26     | endobeta-mannosidase           | 15.000.734   |
| 24           | SS1G_00768 | 104    | 4     | 3.85 | extr=25     | predicted protein              | -            |
| 25           | SS1G_00772 | 554    | 27    | 4 87 | extr-26     | domain protein                 | IPR002482    |
| 25           | SS1G_00773 | 1690   | 57    | 3 37 | extr=20     | class v                        | 704          |
| 20           | SS1G_00775 | 1000   | 31    | 2.00 | extr=23     | predicted protein              | 704          |
| 27           | SSIC_00849 | 527    | 4     | 0.76 | ext = 27    | lipase 4                       | - 125        |
| 20           | SSIC_008/7 | 327    | 4     | 2.05 | $e_{xu}=27$ | CUE 5 metain                   | 15 000 724   |
| 29           | SSIG_00891 | 394    | 12    | 3.05 | extr=26     | GHF 5 protein                  | 15,000,734   |
| 30           | SSIG_00892 | 402    | 9     | 2.24 | extr=26     | GHF 6 protein                  | /3,401,341   |
| 31           | SSIG_00974 | 561    | 10    | 1.78 | extr=24     | extracellular dihydrogeodin    | 3,940,773,10 |
|              |            | 10.7   |       |      |             | oxidase                        | 1,132        |
| 32           | SSIG_00978 | 495    | 24    | 4.85 | extr=22     | wsc domain protein             | 182,209,362  |
| 33           | SS1G_01003 | 89     | 8     | 8.99 | extr=25     | predicted protein              | -            |
| 34           | SS1G_01005 | 887    | 8     | 0.9  | extr=20     | GHF 31 protein                 | 1055         |
| 35           | SS1G_01009 | 355    | 9     | 2.54 | extr=27     | polygalacturonase 2            | 295          |
| 36           | SS1G_01081 | 699    | 1     | 0.14 | extr=26     | thermophilum                   | 19,906,628   |
| 37           | SS1G_01083 | 976    | 9     | 0.92 | extr=26     | GHF 31 protein                 | 1055         |
| 38           | SS1G_01086 | 135    | 2     | 1.48 | extr=25     | predicted protein              | -            |
| 39           | SS1G_01107 | 166    | 8     | 4.82 | extr=27     | predicted protein              | -            |
| 40           | SS1G_01116 | 532    | 11    | 2.07 | extr=27     | isoamyl alcohol oxidase        | 1565         |
| 41           | SS1G_01226 | 144    | 10    | 6.94 | extr=27     | predicted protein              | -            |
| 42           | SS1G 01235 | 166    | 4     | 2.41 | extr=23     | predicted protein              | -            |
| 43           | SS1G_01262 | 390    | 3     | 0.77 | extr=24     | serine-rich protein            | IPR013781:   |
|              | 5510_01202 | 070    | 5     | 0.77 |             | serine nen protein             | IPR017853    |
|              |            |        |       |      |             |                                | IPR024655    |
| 44           | SS1G 01325 | 30     | 1     | 3 33 | extr-23     | predicted protein              | -            |
| 15           | SSIG_01323 | 20     | 5     | 2.55 | extr-26     | carbohydrate_binding modula    | 724          |
| 45           | 5510_01575 | 220    | 5     | 2.17 | CAU-20      | family 1 protein               | 734          |
| 16           | SS1G 01378 | 187    | 22    | 1.52 | extr-25     | wsc domain protein             | 182 200 362  |
| 40           | SSIC_01370 | +0/    |       | 4.32 | extr-10     | predicted protein              | 102,209,302  |
| 4/           | SSIU_01304 | 322    | 0     | 1.00 | CAU-10      | nolvonohorida larra famili 7   | -            |
| 48           | 2210-01289 | 251    | 5     | 1.99 | exu=27      | polysaccharide lyase family /  | 8/8/         |
| 40           | 0010 01424 | 010    | 10    |      | 1. 26       |                                |              |
| 49           | SSIG_01426 | 218    | 12    | 5.5  | extr=26     | predicted protein              | -            |
| 50           | SS1G_01428 | 395    | 25    | 6.33 | extr=25     | pan domain containing protein  | IPR003014    |
| 51           | SS1G_01472 | 560    | 5     | 0.89 | extr=21     | lipase 2                       | 135          |
| 52           | SS1G_01576 | 581    | 2     | 0.34 | extr=26     | tyrosinase protein             | 264          |
| 53           | SS1G_01587 | 734    | 58    | 7.9  | extr=25     | predicted protein              | -            |
| 54           | SS1G_01662 | 578    | 6     | 1.04 | extr=26     | GHF 1 protein                  | 232          |
|              |            |        |       |      |             |                                |              |

| 55                                                                                                                                                                                        | SS1G_01749                                                                                                                                                                                                                                                                                                       | 401                                                                                                                                                                                                                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=20                                                                                                                                                                                                                                                                                                                 | predicted protein                                                                                                                                                                                                                                                                                                                                                    | -                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 56                                                                                                                                                                                        | SS1G_01776                                                                                                                                                                                                                                                                                                       | 427                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=25                                                                                                                                                                                                                                                                                                                 | GHF 13 protein                                                                                                                                                                                                                                                                                                                                                       | 12,809,260                                                                        |
| 57                                                                                                                                                                                        | SS1G_01811                                                                                                                                                                                                                                                                                                       | 454                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=25                                                                                                                                                                                                                                                                                                                 | gmc oxidoreductase                                                                                                                                                                                                                                                                                                                                                   | 73,205,199                                                                        |
| 58                                                                                                                                                                                        | SS1G_01828                                                                                                                                                                                                                                                                                                       | 307                                                                                                                                                                                                                  | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=26                                                                                                                                                                                                                                                                                                                 | GHF 45 protein                                                                                                                                                                                                                                                                                                                                                       | 73,402,015                                                                        |
| 59                                                                                                                                                                                        | SS1G 01838                                                                                                                                                                                                                                                                                                       | 252                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=25                                                                                                                                                                                                                                                                                                                 | GHF 61 protein                                                                                                                                                                                                                                                                                                                                                       | 3443                                                                              |
| 60                                                                                                                                                                                        | SS1G 01867                                                                                                                                                                                                                                                                                                       | 102                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=23                                                                                                                                                                                                                                                                                                                 | predicted protein                                                                                                                                                                                                                                                                                                                                                    | -                                                                                 |
| 61                                                                                                                                                                                        | SS1G_01966                                                                                                                                                                                                                                                                                                       | 210                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=18                                                                                                                                                                                                                                                                                                                 | predicted protein                                                                                                                                                                                                                                                                                                                                                    | -                                                                                 |
| 62                                                                                                                                                                                        | SS1G_02003                                                                                                                                                                                                                                                                                                       | 306                                                                                                                                                                                                                  | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr-27                                                                                                                                                                                                                                                                                                                 | GHF 25 protein                                                                                                                                                                                                                                                                                                                                                       | -                                                                                 |
| 62                                                                                                                                                                                        | SS1G_02003                                                                                                                                                                                                                                                                                                       | 408                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=27                                                                                                                                                                                                                                                                                                                 | predicted protein                                                                                                                                                                                                                                                                                                                                                    | -                                                                                 |
| 64                                                                                                                                                                                        | SSIC_02014                                                                                                                                                                                                                                                                                                       | 408                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=21                                                                                                                                                                                                                                                                                                                 | alaba managidaga family                                                                                                                                                                                                                                                                                                                                              | - 7071                                                                            |
| 04                                                                                                                                                                                        | SSIG_02022                                                                                                                                                                                                                                                                                                       | 825                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=21                                                                                                                                                                                                                                                                                                                 | alphamannosidase family                                                                                                                                                                                                                                                                                                                                              | /9/1                                                                              |
| 65                                                                                                                                                                                        | SSIG_02025                                                                                                                                                                                                                                                                                                       | 232                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=23                                                                                                                                                                                                                                                                                                                 | predicted protein                                                                                                                                                                                                                                                                                                                                                    | -                                                                                 |
| 66                                                                                                                                                                                        | SS1G_02038                                                                                                                                                                                                                                                                                                       | 233                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=26                                                                                                                                                                                                                                                                                                                 | aspergillopepsin-2 heavy chain                                                                                                                                                                                                                                                                                                                                       | 1828                                                                              |
|                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                         | (secreted protein)                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |
| 67                                                                                                                                                                                        | SS1G_02068                                                                                                                                                                                                                                                                                                       | 146                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=26                                                                                                                                                                                                                                                                                                                 | predicted protein                                                                                                                                                                                                                                                                                                                                                    | -                                                                                 |
| 68                                                                                                                                                                                        | SS1G_02119                                                                                                                                                                                                                                                                                                       | 567                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=26                                                                                                                                                                                                                                                                                                                 | fad binding domain protein                                                                                                                                                                                                                                                                                                                                           | 156,508,031                                                                       |
| 69                                                                                                                                                                                        | SS1G_02250                                                                                                                                                                                                                                                                                                       | 224                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | extr=27                                                                                                                                                                                                                                                                                                                 | predicted protein                                                                                                                                                                                                                                                                                                                                                    | -                                                                                 |
| 70                                                                                                                                                                                        | SS1G_02334                                                                                                                                                                                                                                                                                                       | 487                                                                                                                                                                                                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=26                                                                                                                                                                                                                                                                                                                 | GHF 7 protein                                                                                                                                                                                                                                                                                                                                                        | 73,400,840                                                                        |
| 71                                                                                                                                                                                        | SS1G_02345                                                                                                                                                                                                                                                                                                       | 124                                                                                                                                                                                                                  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=27                                                                                                                                                                                                                                                                                                                 | predicted protein                                                                                                                                                                                                                                                                                                                                                    | -                                                                                 |
| 72                                                                                                                                                                                        | SS1G_02347                                                                                                                                                                                                                                                                                                       | 372                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=23                                                                                                                                                                                                                                                                                                                 | alphaglucanase mutanase                                                                                                                                                                                                                                                                                                                                              | 3659                                                                              |
| 73                                                                                                                                                                                        | SS10_02369                                                                                                                                                                                                                                                                                                       | 333                                                                                                                                                                                                                  | . 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | extr-27                                                                                                                                                                                                                                                                                                                 | xyloglucan-specific endo-beta-                                                                                                                                                                                                                                                                                                                                       | 1670                                                                              |
| 15                                                                                                                                                                                        | 5510_02507                                                                                                                                                                                                                                                                                                       | 555                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CAU-27                                                                                                                                                                                                                                                                                                                  | glucanase a                                                                                                                                                                                                                                                                                                                                                          | 1070                                                                              |
| 74                                                                                                                                                                                        | SS1C 02200                                                                                                                                                                                                                                                                                                       | 500                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2C                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                      | 205                                                                               |
| 74                                                                                                                                                                                        | SSIG_02399                                                                                                                                                                                                                                                                                                       | 522                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | exti=20                                                                                                                                                                                                                                                                                                                 | mannogalacturonase b                                                                                                                                                                                                                                                                                                                                                 | 293                                                                               |
| /5                                                                                                                                                                                        | SSIG_02495                                                                                                                                                                                                                                                                                                       | 557                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | extr=22                                                                                                                                                                                                                                                                                                                 | wsc domain containing protein                                                                                                                                                                                                                                                                                                                                        | 141                                                                               |
| 76                                                                                                                                                                                        | SS1G_02522                                                                                                                                                                                                                                                                                                       | 265                                                                                                                                                                                                                  | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | extr=23                                                                                                                                                                                                                                                                                                                 | predicted protein                                                                                                                                                                                                                                                                                                                                                    | -                                                                                 |
| 77                                                                                                                                                                                        | SS1G_02553                                                                                                                                                                                                                                                                                                       | 270                                                                                                                                                                                                                  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=26                                                                                                                                                                                                                                                                                                                 | GHF 28 protein                                                                                                                                                                                                                                                                                                                                                       | 295                                                                               |
| 78                                                                                                                                                                                        | SS1G_02600                                                                                                                                                                                                                                                                                                       | 391                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=18                                                                                                                                                                                                                                                                                                                 | predicted protein                                                                                                                                                                                                                                                                                                                                                    | -                                                                                 |
| 79                                                                                                                                                                                        | SS1G_02612                                                                                                                                                                                                                                                                                                       | 521                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=27                                                                                                                                                                                                                                                                                                                 | GHF 79 protein                                                                                                                                                                                                                                                                                                                                                       | -                                                                                 |
| 80                                                                                                                                                                                        | SS1G 02620                                                                                                                                                                                                                                                                                                       | 465                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=25                                                                                                                                                                                                                                                                                                                 | GHF 79 protein                                                                                                                                                                                                                                                                                                                                                       | -                                                                                 |
| 81                                                                                                                                                                                        | SS1G_02655                                                                                                                                                                                                                                                                                                       | 341                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=21                                                                                                                                                                                                                                                                                                                 | heme steroid binding protein                                                                                                                                                                                                                                                                                                                                         | 173                                                                               |
| 82                                                                                                                                                                                        | SS1G_02690                                                                                                                                                                                                                                                                                                       | 101                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | extr-21                                                                                                                                                                                                                                                                                                                 | predicted protein                                                                                                                                                                                                                                                                                                                                                    | -                                                                                 |
| 83                                                                                                                                                                                        | SS1G_02000                                                                                                                                                                                                                                                                                                       | 384                                                                                                                                                                                                                  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=21                                                                                                                                                                                                                                                                                                                 | serum paraoyonasa arulastarasa                                                                                                                                                                                                                                                                                                                                       |                                                                                   |
| 83                                                                                                                                                                                        | SSIC_02703                                                                                                                                                                                                                                                                                                       | 200                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ext = 27                                                                                                                                                                                                                                                                                                                | CEE 16 protein                                                                                                                                                                                                                                                                                                                                                       | -<br>IDD001097:                                                                   |
| 04                                                                                                                                                                                        | 5510_02708                                                                                                                                                                                                                                                                                                       | 290                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | exti=27                                                                                                                                                                                                                                                                                                                 | CEF 10 protein                                                                                                                                                                                                                                                                                                                                                       | IPK001087;                                                                        |
| 05                                                                                                                                                                                        | 0010 00714                                                                                                                                                                                                                                                                                                       | 201                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                         | 1. 1                                                                                                                                                                                                                                                                                                                                                                 | IPR013851                                                                         |
| 85                                                                                                                                                                                        | SSIG_02/14                                                                                                                                                                                                                                                                                                       | 381                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=27                                                                                                                                                                                                                                                                                                                 | predicted protein                                                                                                                                                                                                                                                                                                                                                    | -                                                                                 |
| 86                                                                                                                                                                                        | SS1G_02781                                                                                                                                                                                                                                                                                                       | 990                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=25                                                                                                                                                                                                                                                                                                                 | GHF 35 protein                                                                                                                                                                                                                                                                                                                                                       | 130,110,435                                                                       |
| 87                                                                                                                                                                                        | SS1G_02790                                                                                                                                                                                                                                                                                                       | 508                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=24                                                                                                                                                                                                                                                                                                                 | 3-phytase a                                                                                                                                                                                                                                                                                                                                                          | 328                                                                               |
| 88                                                                                                                                                                                        | SS1G_02800                                                                                                                                                                                                                                                                                                       | 57                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | extr=20                                                                                                                                                                                                                                                                                                                 | predicted protein                                                                                                                                                                                                                                                                                                                                                    | -                                                                                 |
| 89                                                                                                                                                                                        | SS1G_02812                                                                                                                                                                                                                                                                                                       | 581                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=23                                                                                                                                                                                                                                                                                                                 | predicted protein                                                                                                                                                                                                                                                                                                                                                    | -                                                                                 |
| 90                                                                                                                                                                                        | SS1G_02828                                                                                                                                                                                                                                                                                                       | 187                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=21                                                                                                                                                                                                                                                                                                                 | predicted protein                                                                                                                                                                                                                                                                                                                                                    | -                                                                                 |
| 91                                                                                                                                                                                        | SS1G 02857                                                                                                                                                                                                                                                                                                       | 659                                                                                                                                                                                                                  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=24                                                                                                                                                                                                                                                                                                                 | protease s8 tripeptidyl                                                                                                                                                                                                                                                                                                                                              | 9286                                                                              |
|                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                         | peptidase                                                                                                                                                                                                                                                                                                                                                            |                                                                                   |
| 92                                                                                                                                                                                        | SS1G_03029                                                                                                                                                                                                                                                                                                       | 498                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | extr=27                                                                                                                                                                                                                                                                                                                 | fad-                                                                                                                                                                                                                                                                                                                                                                 | 1565                                                                              |
| 03                                                                                                                                                                                        | SS1G_03041                                                                                                                                                                                                                                                                                                       | 227                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=26                                                                                                                                                                                                                                                                                                                 | GHE 61 protein                                                                                                                                                                                                                                                                                                                                                       | 3443                                                                              |
| 93                                                                                                                                                                                        | SS1G_03080                                                                                                                                                                                                                                                                                                       | 227                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=25                                                                                                                                                                                                                                                                                                                 | necrosis and ethylene inducing                                                                                                                                                                                                                                                                                                                                       | 5630                                                                              |
| 74                                                                                                                                                                                        | 5510_05000                                                                                                                                                                                                                                                                                                       | 220                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CAU-25                                                                                                                                                                                                                                                                                                                  | pentide 1 precursor                                                                                                                                                                                                                                                                                                                                                  | 5050                                                                              |
| 05                                                                                                                                                                                        | SS1C 02094                                                                                                                                                                                                                                                                                                       | 170                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ov.tn-25                                                                                                                                                                                                                                                                                                                | predicted protein                                                                                                                                                                                                                                                                                                                                                    |                                                                                   |
| 93                                                                                                                                                                                        | SSIG_03064                                                                                                                                                                                                                                                                                                       | 170                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=25                                                                                                                                                                                                                                                                                                                 | predicted protein                                                                                                                                                                                                                                                                                                                                                    | -                                                                                 |
| 96                                                                                                                                                                                        | SSIG_03146                                                                                                                                                                                                                                                                                                       | 1/4                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=21                                                                                                                                                                                                                                                                                                                 | predicted protein                                                                                                                                                                                                                                                                                                                                                    | -                                                                                 |
| 97                                                                                                                                                                                        | SS1G_03160                                                                                                                                                                                                                                                                                                       | 541                                                                                                                                                                                                                  | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=24                                                                                                                                                                                                                                                                                                                 | autophagy related lipase                                                                                                                                                                                                                                                                                                                                             | 1764                                                                              |
| 98                                                                                                                                                                                        | SS1G_03181                                                                                                                                                                                                                                                                                                       | 385                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=26                                                                                                                                                                                                                                                                                                                 | aspartic endopeptidase pep1                                                                                                                                                                                                                                                                                                                                          | 26                                                                                |
| 99                                                                                                                                                                                        | SS1G_03214                                                                                                                                                                                                                                                                                                       | 510                                                                                                                                                                                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=25                                                                                                                                                                                                                                                                                                                 | predicted protein                                                                                                                                                                                                                                                                                                                                                    | IPR003014                                                                         |
| 100                                                                                                                                                                                       | SS1G_03221                                                                                                                                                                                                                                                                                                       | 965                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=21                                                                                                                                                                                                                                                                                                                 | duf1620                                                                                                                                                                                                                                                                                                                                                              | 7774                                                                              |
| 101                                                                                                                                                                                       | SS1G_03268                                                                                                                                                                                                                                                                                                       | 1020                                                                                                                                                                                                                 | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=25                                                                                                                                                                                                                                                                                                                 | predicted protein                                                                                                                                                                                                                                                                                                                                                    |                                                                                   |
| 102                                                                                                                                                                                       | SS1G_03276                                                                                                                                                                                                                                                                                                       | 229                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=20                                                                                                                                                                                                                                                                                                                 | kelch repeat-containing protein                                                                                                                                                                                                                                                                                                                                      | 1344                                                                              |
| 103                                                                                                                                                                                       | SS1G_03286                                                                                                                                                                                                                                                                                                       | 324                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=26                                                                                                                                                                                                                                                                                                                 | pectin methylesterase                                                                                                                                                                                                                                                                                                                                                | 1095                                                                              |
| 104                                                                                                                                                                                       | SS1G 03326                                                                                                                                                                                                                                                                                                       | 338                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=25                                                                                                                                                                                                                                                                                                                 | scp-like extracellular protein                                                                                                                                                                                                                                                                                                                                       | 188                                                                               |
| 105                                                                                                                                                                                       | SSIG 03361                                                                                                                                                                                                                                                                                                       | 517                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                         | corino                                                                                                                                                                                                                                                                                                                                                               | EE77                                                                              |
| 105                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                      | . /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=25                                                                                                                                                                                                                                                                                                                 | SELLIE                                                                                                                                                                                                                                                                                                                                                               | יורר                                                                              |
| 100                                                                                                                                                                                       | SS1C 03385                                                                                                                                                                                                                                                                                                       | 520                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=25                                                                                                                                                                                                                                                                                                                 | alpha amylase a type 1.2                                                                                                                                                                                                                                                                                                                                             | 12 809 260                                                                        |
|                                                                                                                                                                                           | SS1G_03385                                                                                                                                                                                                                                                                                                       | 529                                                                                                                                                                                                                  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.35<br>1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | extr=25<br>extr=24                                                                                                                                                                                                                                                                                                      | alpha-amylase a type-1 2                                                                                                                                                                                                                                                                                                                                             | 12,809,260                                                                        |
| 107                                                                                                                                                                                       | SS1G_03385<br>SS1G_03387                                                                                                                                                                                                                                                                                         | 529<br>568                                                                                                                                                                                                           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.35<br>1.7<br>1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | extr=25<br>extr=24<br>extr=25                                                                                                                                                                                                                                                                                           | alpha-amylase a type-1 2<br>GHF 5 protein                                                                                                                                                                                                                                                                                                                            | <u> </u>                                                                          |
| 107                                                                                                                                                                                       | SS1G_03385<br>SS1G_03387                                                                                                                                                                                                                                                                                         | 529<br>568                                                                                                                                                                                                           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.35<br>1.7<br>1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | extr=25<br>extr=24<br>extr=25                                                                                                                                                                                                                                                                                           | alpha-amylase a type-1 2<br>GHF 5 protein                                                                                                                                                                                                                                                                                                                            | 5577<br>12,809,260<br>1,500,073,40<br>3,442                                       |
| 107                                                                                                                                                                                       | SS1G_03385<br>SS1G_03387<br>SS1G_03420                                                                                                                                                                                                                                                                           | 517<br>529<br>568<br>305                                                                                                                                                                                             | 9<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.35<br>1.7<br>1.06<br>0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | extr=25<br>extr=24<br>extr=25<br>extr=26                                                                                                                                                                                                                                                                                | alpha-amylase a type-1 2<br>GHF 5 protein                                                                                                                                                                                                                                                                                                                            | <u>12,809,260</u><br>1,500,073,40<br><u>3,442</u>                                 |
| 107<br>108<br>109                                                                                                                                                                         | SS1G_03385           SS1G_03387           SS1G_03420           SS1G_03518                                                                                                                                                                                                                                        | 517<br>529<br>568<br>305<br>600                                                                                                                                                                                      | 9<br>6<br>1<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.35<br>1.7<br>1.06<br>0.33<br>1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | extr=25<br>extr=24<br>extr=25<br>extr=26<br>extr=27                                                                                                                                                                                                                                                                     | alpha-amylase a type-1 2<br>GHF 5 protein<br>class iii<br>protease s8 tripeptidyl                                                                                                                                                                                                                                                                                    | <u>12,809,260</u><br>1,500,073,40<br><u>3,442</u><br>-<br><u>9286</u>             |
| 107<br>108<br>109                                                                                                                                                                         | SS1G_03385           SS1G_03387           SS1G_03420           SS1G_03518                                                                                                                                                                                                                                        | 517<br>529<br>568<br>305<br>600                                                                                                                                                                                      | 9<br>6<br>1<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.35<br>1.7<br>1.06<br>0.33<br>1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | extr=25<br>extr=24<br>extr=25<br>extr=26<br>extr=27                                                                                                                                                                                                                                                                     | alpha-amylase a type-1 2<br>GHF 5 protein<br>class iii<br>protease s8 tripeptidyl<br>peptidase                                                                                                                                                                                                                                                                       | <u>12,809,260</u><br>1,500,073,40<br><u>3,442</u><br>-<br><u>9286</u>             |
| 107<br>108<br>109<br>110                                                                                                                                                                  | SS1G_03385           SS1G_03387           SS1G_03420           SS1G_03518           SS1G_03523                                                                                                                                                                                                                   | 517<br>529<br>568<br>305<br>600<br>156                                                                                                                                                                               | 9<br>6<br>1<br>8<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.35<br>1.7<br>1.06<br>0.33<br>1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | extr=25<br>extr=24<br>extr=25<br>extr=26<br>extr=27<br>extr=25                                                                                                                                                                                                                                                          | alpha-amylase a type-1 2<br>GHF 5 protein<br>class iii<br>protease s8 tripeptidyl<br>peptidase<br>hydrophobic surface binding                                                                                                                                                                                                                                        | 3377<br>12,809,260<br>1,500,073,40<br>3,442<br>-<br>9286<br>IPR021054             |
| 107<br>108<br>109<br>110                                                                                                                                                                  | SS1G_03385           SS1G_03387           SS1G_03420           SS1G_03518           SS1G_03523                                                                                                                                                                                                                   | 529<br>568<br>305<br>600<br>156                                                                                                                                                                                      | 9<br>6<br>1<br>8<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.35           1.7           1.06           0.33           1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | extr=25<br>extr=24<br>extr=25<br>extr=26<br>extr=27<br>extr=25                                                                                                                                                                                                                                                          | alpha-amylase a type-1 2<br>GHF 5 protein<br>class iii<br>protease s8 tripeptidyl<br>peptidase<br>hydrophobic surface binding<br>protein a                                                                                                                                                                                                                           | 12,809,260<br>1,500,073,40<br>3,442<br>-<br>9286<br>IPR021054                     |
| 107<br>108<br>109<br>110<br>111                                                                                                                                                           | SS1G_03385           SS1G_03387           SS1G_03420           SS1G_03518           SS1G_03523           SS1G_03537                                                                                                                                                                                              | 529<br>568<br>305<br>600<br>156<br>88                                                                                                                                                                                | 7<br>9<br>6<br>1<br>8<br>0<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $     \begin{array}{r}       1.35 \\       1.7 \\       1.06 \\       \hline       0.33 \\       1.33 \\       0 \\       3.41 \\     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | extr=25<br>extr=24<br>extr=25<br>extr=26<br>extr=27<br>extr=25<br>extr=26                                                                                                                                                                                                                                               | alpha-amylase a type-1 2<br>GHF 5 protein<br>class iii<br>protease s8 tripeptidyl<br>peptidase<br>hydrophobic surface binding<br>protein a<br>predicted protein                                                                                                                                                                                                      |                                                                                   |
| 107<br>108<br>109<br>110<br>111<br>111                                                                                                                                                    | SS1G_03385           SS1G_03387           SS1G_03420           SS1G_03518           SS1G_03523           SS1G_03537           SS1G_03540                                                                                                                                                                         | 317<br>529<br>568<br>305<br>600<br>156<br>88<br>414                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.35<br>1.7<br>1.06<br>0.33<br>1.33<br>0<br>3.41<br>2.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | extr=25<br>extr=24<br>extr=25<br>extr=26<br>extr=27<br>extr=25<br>extr=26<br>extr=23                                                                                                                                                                                                                                    | alpha-amylase a type-1 2<br>GHF 5 protein<br>class iii<br>protease s8 tripeptidyl<br>peptidase<br>hydrophobic surface binding<br>protein a<br>predicted protein<br>GHF 28 protein                                                                                                                                                                                    | 3377<br>12,809,260<br>1,500,073,40<br>3,442<br>-<br>9286<br>IPR021054<br>-<br>295 |
| 107<br>108<br>109<br>110<br>111<br>111<br>112<br>113                                                                                                                                      | SS1G_03385           SS1G_03387           SS1G_03420           SS1G_03518           SS1G_03523           SS1G_03537           SS1G_03540           SS1G_03576                                                                                                                                                    | 317<br>529<br>568<br>305<br>600<br>156<br>88<br>414<br>377                                                                                                                                                           | 7<br>9<br>6<br>1<br>8<br>0<br>3<br>10<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{r} 1.35 \\ 1.7 \\ 1.06 \\ \hline 0.33 \\ 1.33 \\ \hline 0 \\ 3.41 \\ 2.42 \\ 1.33 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | extr=25<br>extr=24<br>extr=25<br>extr=26<br>extr=27<br>extr=25<br>extr=25<br>extr=26<br>extr=23<br>extr=21                                                                                                                                                                                                              | alpha-amylase a type-1 2<br>GHF 5 protein<br>class iii<br>protease s8 tripeptidyl<br>peptidase<br>hydrophobic surface binding<br>protein a<br>predicted protein<br>GHF 28 protein<br>pepsingen c protein                                                                                                                                                             |                                                                                   |
| 107<br>108<br>109<br>110<br>111<br>112<br>113<br>114                                                                                                                                      | SS1G_03385           SS1G_03387           SS1G_03420           SS1G_03518           SS1G_03523           SS1G_03537           SS1G_03540           SS1G_03576           SS1G_03602                                                                                                                               | 317           529           568           305           600           156           88           414           377           509                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{r} 1.35 \\ 1.7 \\ 1.06 \\ \hline 0.33 \\ 1.33 \\ \hline 0 \\ 3.41 \\ 2.42 \\ 1.33 \\ 0.33 \\ \hline 0 \\ 3.41 \\ \hline 0.33 \\ \hline 0 \\ \hline \hline \hline 0 \\ \hline \hline \hline 0 \\ \hline \hline \hline \hline 0 \\ \hline \hline$ | extr=25<br>extr=24<br>extr=25<br>extr=26<br>extr=27<br>extr=25<br>extr=25<br>extr=23<br>extr=21<br>extr=22                                                                                                                                                                                                              | alpha-amylase a type-1 2<br>GHF 5 protein<br>class iii<br>protease s8 tripeptidyl<br>peptidase<br>hydrophobic surface binding<br>protein a<br>predicted protein<br>GHF 28 protein<br>pepsinogen c protein<br>alpha-l-arabinofuranceidase a                                                                                                                           |                                                                                   |
| 107<br>108<br>109<br>110<br>111<br>112<br>113<br>114<br>115                                                                                                                               | SS1G_03385           SS1G_03387           SS1G_03387           SS1G_03387           SS1G_03518           SS1G_03523           SS1G_03537           SS1G_03540           SS1G_03576           SS1G_03602           SS1G_03602                                                                                     | 317<br>529<br>568<br>305<br>600<br>156<br>888<br>414<br>377<br>599<br>285                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{r} 1.35\\ 1.7\\ 1.06\\ \hline 0.33\\ 1.33\\ \hline 0\\ 3.41\\ 2.42\\ 1.33\\ 0.33\\ \hline 0.7\\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=25<br>extr=24<br>extr=25<br>extr=26<br>extr=27<br>extr=25<br>extr=25<br>extr=26<br>extr=23<br>extr=21<br>extr=22<br>extr=24                                                                                                                                                                                        | alpha-amylase a type-1 2<br>GHF 5 protein<br>class iii<br>protease s8 tripeptidyl<br>peptidase<br>hydrophobic surface binding<br>protein a<br>predicted protein<br>GHF 28 protein<br>pepsinogen c protein<br>alpha-1-arabinofuranosidase a<br>CEE 16 protein                                                                                                         |                                                                                   |
| 107<br>108<br>109<br>110<br>111<br>112<br>113<br>114<br>115<br>116                                                                                                                        | SS1G_03385           SS1G_03387           SS1G_03387           SS1G_03420           SS1G_03518           SS1G_03523           SS1G_03537           SS1G_03540           SS1G_03576           SS1G_03602           SS1G_03610           SS1G_03611                                                                | 317           529           568           305           600           156           88           414           377           599           285                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.35<br>1.7<br>1.06<br>0.33<br>1.33<br>0<br>3.41<br>2.42<br>1.33<br>0.33<br>0.7<br>7.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | extr=25<br>extr=24<br>extr=25<br>extr=26<br>extr=27<br>extr=27<br>extr=25<br>extr=26<br>extr=23<br>extr=21<br>extr=22<br>extr=24<br>extr=24                                                                                                                                                                             | alpha-amylase a type-1 2<br>GHF 5 protein<br>class iii<br>protease s8 tripeptidyl<br>peptidase<br>hydrophobic surface binding<br>protein a<br>predicted protein<br>GHF 28 protein<br>pepsinogen c protein<br>alpha-1-arabinofuranosidase a<br>CEF 16 protein                                                                                                         |                                                                                   |
| 107<br>108<br>109<br>110<br>111<br>112<br>113<br>114<br>115<br>116<br>117                                                                                                                 | SS1G_03385           SS1G_03387           SS1G_03387           SS1G_03420           SS1G_03518           SS1G_03523           SS1G_03537           SS1G_03540           SS1G_03576           SS1G_03602           SS1G_03610           SS1G_03611                                                                | 317           529           568           305           600           156           88           414           377           599           285           101           265                                           | $     \begin{array}{r}       7 \\       9 \\       6 \\       1 \\       8 \\       0 \\       3 \\       10 \\       5 \\       2 \\       2 \\       8 \\       8 \\       8 \\       5 \\       2 \\       2 \\       3 \\       5 \\       2 \\       2 \\       3 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\       8 \\    $ | $ \begin{array}{r} 1.35 \\ 1.7 \\ 1.06 \\ 0.33 \\ 1.33 \\ 0 \\ 3.41 \\ 2.42 \\ 1.33 \\ 0.33 \\ 0.7 \\ 7.92 \\ 2.22 \\ 0.33 \\ 0.7 \\ 7.92 \\ 0.33 \\ 0.7 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0.92 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | extr=25         extr=24         extr=25         extr=27         extr=25         extr=26         extr=23         extr=21         extr=22         extr=24                                                                                                                                                                 | alpha-amylase a type-1 2<br>GHF 5 protein<br>class iii<br>protease s8 tripeptidyl<br>peptidase<br>hydrophobic surface binding<br>protein a<br>predicted protein<br>GHF 28 protein<br>pepsinogen c protein<br>alpha-l-arabinofuranosidase a<br>CEF 16 protein<br>predicted protein                                                                                    |                                                                                   |
| 107<br>108<br>109<br>110<br>111<br>112<br>113<br>114<br>115<br>116<br>117<br>115                                                                                                          | SS1G_03385           SS1G_03387           SS1G_03387           SS1G_03518           SS1G_03518           SS1G_03537           SS1G_03537           SS1G_03540           SS1G_03576           SS1G_03602           SS1G_03610           SS1G_03611           SS1G_03618                                           | 317           529           568           305           600           156           88           414           377           599           285           101           262                                           | $     \begin{array}{r}       7 \\       9 \\       6 \\       1 \\       8 \\       0 \\       3 \\       10 \\       5 \\       2 \\       2 \\       8 \\       6 \\       6 \\       6 \\       6 \\       7   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{r} 1.35\\ 1.7\\ 1.06\\ 0.33\\ 1.33\\ 0\\ 0\\ 3.41\\ 2.42\\ 1.33\\ 0.33\\ 0.7\\ 7.92\\ 2.29\\ 2.29\\ 2.29\\ 2.29\\ 2.29\\ 3.41\\ 0.33\\ 0.7\\ 0.7\\ 0.33\\ 0.7\\ 0.7\\ 0.33\\ 0.7\\ 0.7\\ 0.33\\ 0.7\\ 0.7\\ 0.33\\ 0.7\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.7\\ 0.33\\ 0.33\\ 0.7\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | extr=25         extr=24         extr=25         extr=27         extr=25         extr=26         extr=21         extr=22         extr=24         extr=21         extr=21         extr=22                                                                                                                                 | alpha-amylase a type-1 2<br>GHF 5 protein<br>class iii<br>protease s8 tripeptidyl<br>peptidase<br>hydrophobic surface binding<br>protein a<br>predicted protein<br>GHF 28 protein<br>pepsinogen c protein<br>alpha-1-arabinofuranosidase a<br>CEF 16 protein<br>predicted protein<br>endobeta-xylanase                                                               |                                                                                   |
| 107<br>108<br>109<br>110<br>111<br>112<br>113<br>114<br>115<br>116<br>117<br>118                                                                                                          | SS1G_03385           SS1G_03387           SS1G_03387           SS1G_03518           SS1G_03518           SS1G_03523           SS1G_03537           SS1G_03540           SS1G_03576           SS1G_03602           SS1G_03610           SS1G_03611           SS1G_03618           SS1G_03629                      | 317           529           568           305           600           156           88           414           377           599           285           101           262           415                             | $     \begin{array}{r}       7 \\       9 \\       6 \\       1 \\       8 \\       0 \\       \hline       3 \\       10 \\       5 \\       2 \\       2 \\       8 \\       6 \\       2 \\       \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{r} 1.35\\ 1.7\\ 1.06\\ \hline 0.33\\ 1.33\\ \hline 0\\ \hline 3.41\\ 2.42\\ \hline 1.33\\ \hline 0.7\\ 7.92\\ \hline 2.29\\ \hline 0.48\\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | extr=25         extr=24         extr=25         extr=27         extr=25         extr=26         extr=21         extr=22         extr=21         extr=21         extr=22         extr=24         extr=24         extr=24         extr=21         extr=24         extr=26         extr=26                                 | alpha-amylase a type-1 2<br>GHF 5 protein<br>class iii<br>protease s8 tripeptidyl<br>peptidase<br>hydrophobic surface binding<br>protein a<br>predicted protein<br>GHF 28 protein<br>pepsinogen c protein<br>alpha-1-arabinofuranosidase a<br>CEF 16 protein<br>predicted protein<br>endobeta-xylanase<br>aspartyl partial                                           |                                                                                   |
| 107<br>108<br>109<br>110<br>111<br>112<br>113<br>114<br>115<br>116<br>117<br>118<br>119                                                                                                   | SS1G_03385           SS1G_03387           SS1G_03387           SS1G_03420           SS1G_03518           SS1G_03523           SS1G_03537           SS1G_03540           SS1G_03576           SS1G_03602           SS1G_03610           SS1G_03611           SS1G_03618           SS1G_03647                      | 317           529           568           305           600           156           88           414           377           599           285           101           262           415           994               | $     \begin{array}{r}       7 \\       9 \\       6 \\       1 \\       8 \\       0 \\       3 \\       10 \\       5 \\       2 \\       2 \\       8 \\       6 \\       2 \\       2     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \begin{array}{r} 1.35\\ 1.7\\ 1.06\\ \hline 0.33\\ 1.33\\ \hline 0\\ \hline 3.41\\ 2.42\\ \hline 1.33\\ \hline 0.7\\ 7.92\\ \hline 2.29\\ \hline 0.48\\ \hline 0.2\\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | extr=25         extr=24         extr=25         extr=27         extr=25         extr=26         extr=21         extr=21         extr=21         extr=22         extr=24         extr=25                                                                                                                                 | alpha-amylase a type-1 2<br>GHF 5 protein<br>class iii<br>protease s8 tripeptidyl<br>peptidase<br>hydrophobic surface binding<br>protein a<br>predicted protein<br>GHF 28 protein<br>pepsinogen c protein<br>alpha-1-arabinofuranosidase a<br>CEF 16 protein<br>predicted protein<br>endobeta-xylanase<br>aspartyl partial<br>beta-galactosidase                     |                                                                                   |
| 107           108           109           110           111           112           113           114           115           116           117           118           119           120 | SS1G_03385           SS1G_03387           SS1G_03387           SS1G_03420           SS1G_03518           SS1G_03523           SS1G_03537           SS1G_03540           SS1G_03576           SS1G_03602           SS1G_03610           SS1G_03611           SS1G_03629           SS1G_03647           SS1G_03653 | 317           529           568           305           600           156           88           414           377           599           285           101           262           415           994           368 | $     \begin{array}{r}       7 \\       9 \\       6 \\       1 \\       8 \\       0 \\       3 \\       10 \\       5 \\       2 \\       2 \\       8 \\       6 \\       2 \\       2 \\       9 \\       9     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{r} 1.35\\ 1.7\\ 1.06\\ \hline 0.33\\ 1.33\\ \hline 0\\ 3.41\\ 2.42\\ 1.33\\ \hline 0.33\\ \hline 0.7\\ 7.92\\ 2.29\\ \hline 0.48\\ \hline 0.2\\ 2.45\\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | extr=25         extr=24         extr=25         extr=27         extr=25         extr=26         extr=21         extr=21         extr=21         extr=22         extr=21         extr=22         extr=21         extr=22         extr=21         extr=22         extr=21         extr=21         extr=22         extr=23 | alpha-amylase a type-1 2<br>GHF 5 protein<br>class iii<br>protease s8 tripeptidyl<br>peptidase<br>hydrophobic surface binding<br>protein a<br>predicted protein<br>GHF 28 protein<br>epsinogen c protein<br>alpha-1-arabinofuranosidase a<br>CEF 16 protein<br>predicted protein<br>endobeta-xylanase<br>aspartyl partial<br>beta-galactosidase<br>predicted protein |                                                                                   |

| 121                                    | SS1G_03656                                                                                                                                                    | 186                                      | 4                                  | 2.15                                | extr=26                                             | secreted protein                                                                                                                                        | 9352                                                       |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------|-------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| 122                                    | SS1G_03721                                                                                                                                                    | 177                                      | 3                                  | 1.69                                | extr=19                                             | predicted protein                                                                                                                                       | -                                                          |
| 123                                    | SS1G_03744                                                                                                                                                    | 181                                      | 0                                  | 0                                   | extr=24                                             | predicted protein                                                                                                                                       | -                                                          |
| 124                                    | SS1G_03795                                                                                                                                                    | 319                                      | 10                                 | 3.13                                | extr=26                                             | ribonuclease t2                                                                                                                                         | 445                                                        |
| 125                                    | SS1G_03803                                                                                                                                                    | 354                                      | 7                                  | 1.98                                | extr=25                                             | extracellular cellulase allergen                                                                                                                        | -                                                          |
|                                        |                                                                                                                                                               |                                          |                                    |                                     |                                                     | asp f7-                                                                                                                                                 |                                                            |
| 126                                    | SS1G_03897                                                                                                                                                    | 106                                      | 8                                  | 7.55                                | extr=26                                             | predicted protein                                                                                                                                       | -                                                          |
| 127                                    | SS1G_03941                                                                                                                                                    | 533                                      | 6                                  | 1.13                                | extr=26                                             | eukaryotic aspartyl protease                                                                                                                            | 26                                                         |
| 128                                    | SS1G_04030                                                                                                                                                    | 520                                      | 11                                 | 2.12                                | extr=26                                             | lysophospholipase 1                                                                                                                                     | 1735                                                       |
| 129                                    | SS1G_04085                                                                                                                                                    | 284                                      | 7                                  | 2.46                                | extr=23                                             | extracellular cellulase allergen                                                                                                                        | 3330                                                       |
|                                        |                                                                                                                                                               |                                          |                                    |                                     |                                                     | asp f7-                                                                                                                                                 |                                                            |
| 130                                    | SS1G_04095                                                                                                                                                    | 264                                      | 7                                  | 2.65                                | extr=27                                             | rhamnogalacturonan                                                                                                                                      | 657                                                        |
|                                        |                                                                                                                                                               |                                          |                                    |                                     |                                                     | acetylesterase                                                                                                                                          |                                                            |
| 131                                    | SS1G_04116                                                                                                                                                    | 432                                      | 4                                  | 0.93                                | extr=20                                             | purine nucleoside                                                                                                                                       | 6516                                                       |
| 132                                    | SS1G_04177                                                                                                                                                    | 361                                      | 8                                  | 2.22                                | extr=26                                             | endopolygalacturonase 5                                                                                                                                 | 295                                                        |
| 133                                    | SS1G_04196                                                                                                                                                    | 580                                      | 7                                  | 1.21                                | extr=24                                             | multicopper like protein                                                                                                                                | 3,940,773,10                                               |
|                                        |                                                                                                                                                               |                                          |                                    |                                     |                                                     |                                                                                                                                                         | 7,732                                                      |
| 134                                    | SS1G_04200                                                                                                                                                    | 755                                      | 3                                  | 0.4                                 | extr=25                                             | alphamannosidase family                                                                                                                                 | 7971                                                       |
|                                        |                                                                                                                                                               |                                          |                                    |                                     |                                                     | protein                                                                                                                                                 |                                                            |
| 135                                    | SS1G_04207                                                                                                                                                    | 420                                      | 10                                 | 2.38                                | extr=23                                             | polygalacturonase partial                                                                                                                               | 295                                                        |
| 136                                    | SS1G_04312                                                                                                                                                    | 1162                                     | 7                                  | 0.6                                 | extr=26                                             | predicted protein                                                                                                                                       | -                                                          |
| 137                                    | SS1G_04382                                                                                                                                                    | 185                                      | 8                                  | 4.32                                | extr=26                                             | predicted protein                                                                                                                                       | -                                                          |
| 138                                    | SS1G_04468                                                                                                                                                    | 506                                      | 2                                  | 0.4                                 | extr=25                                             | GHF 47 protein                                                                                                                                          | 1532                                                       |
| 139                                    | SS1G_04473                                                                                                                                                    | 738                                      | 8                                  | 1.08                                | extr=27                                             | predicted protein                                                                                                                                       | -                                                          |
| 140                                    | SS1G_04497                                                                                                                                                    | 368                                      | 5                                  | 1.36                                | extr=24                                             | GHF 16 protein                                                                                                                                          | 722                                                        |
| 141                                    | SS1G_04519                                                                                                                                                    | 206                                      | 12                                 | 5.83                                | extr=23                                             | predicted protein                                                                                                                                       | -                                                          |
| 142                                    | SS1G_04530                                                                                                                                                    | 629                                      | 9                                  | 1.43                                | extr=26                                             | lysophospholipase plb1                                                                                                                                  | 1735                                                       |
| 143                                    | SS1G_04541                                                                                                                                                    | 684                                      | 5                                  | 0.73                                | extr=24                                             | alpha-l-rhamnosidase                                                                                                                                    | 5592                                                       |
| 144                                    | SS1G_04552                                                                                                                                                    | 376                                      | 9                                  | 2.39                                | extr=25                                             | extracellular exo-                                                                                                                                      | 295                                                        |
| 145                                    | SS1G_04588                                                                                                                                                    | 267                                      | 0                                  | 0                                   | extr=22                                             | hva22 family tb2 dp1 protein                                                                                                                            | 3134                                                       |
| 146                                    | SS1G_04592                                                                                                                                                    | 320                                      | 4                                  | 1.25                                | extr=27                                             | CEF 16 protein                                                                                                                                          | IPR001087;                                                 |
|                                        |                                                                                                                                                               |                                          |                                    |                                     |                                                     |                                                                                                                                                         | IPR013831                                                  |
| 147                                    | SS1G_04611                                                                                                                                                    | 127                                      | 4                                  | 3.15                                | extr=21                                             | predicted protein                                                                                                                                       | -                                                          |
| 148                                    | SS1G_04618                                                                                                                                                    | 137                                      | 8                                  | 5.84                                | extr=22                                             | predicted protein                                                                                                                                       | -                                                          |
| 149                                    | SS1G_04639                                                                                                                                                    | 367                                      | 7                                  | 1.91                                | extr=24                                             | l-sorbosone dehydrogenase                                                                                                                               | IPR011042;                                                 |
|                                        |                                                                                                                                                               |                                          |                                    |                                     |                                                     |                                                                                                                                                         | IPR012938                                                  |
| 150                                    | SS1G_04662                                                                                                                                                    | 511                                      | 8                                  | 1.57                                | extr=27                                             | alpha-galactosidase A                                                                                                                                   | 65,202,065                                                 |
|                                        |                                                                                                                                                               |                                          |                                    |                                     |                                                     | precursor                                                                                                                                               |                                                            |
| 151                                    | SS1G_04664                                                                                                                                                    | 257                                      | 3                                  | 1.17                                | extr=26                                             | cell surface spherulin 4-like                                                                                                                           | IPR021986                                                  |
|                                        |                                                                                                                                                               |                                          |                                    |                                     |                                                     | protein                                                                                                                                                 |                                                            |
| 152                                    | SS1G_04725                                                                                                                                                    | 569                                      | 2                                  | 0.35                                | extr=25                                             | tyrosinase                                                                                                                                              | 264                                                        |
| 153                                    | SS1G_04766                                                                                                                                                    | 192                                      | 4                                  | 2.08                                | extr=24                                             | -like cupin protein                                                                                                                                     | -                                                          |
| 154                                    | SS1G_04786                                                                                                                                                    | 379                                      | 14                                 | 3.69                                | extr=26                                             | carbohydrate-binding module                                                                                                                             | -                                                          |
|                                        |                                                                                                                                                               |                                          |                                    |                                     |                                                     | family 18 protein                                                                                                                                       |                                                            |
| 155                                    | SS1G_04790                                                                                                                                                    | 419                                      | 5                                  | 1.19                                | extr=22                                             | acid phosphatase                                                                                                                                        | 328                                                        |
| 156                                    | SS1G_04850                                                                                                                                                    | 440                                      | 7                                  | 1.59                                | extr=25                                             | GHF 76 protein                                                                                                                                          | 3663                                                       |
| 157                                    | SS1G_04857                                                                                                                                                    | 122                                      | 8                                  | 6.56                                | extr=26                                             | predicted protein                                                                                                                                       | -                                                          |
| 158                                    | SS1G_04871                                                                                                                                                    | 309                                      | 2                                  | 0.65                                | extr=25                                             | predicted protein                                                                                                                                       | -                                                          |
| 159                                    | SS1G_04881                                                                                                                                                    | 348                                      | 0                                  | 0                                   | extr=19                                             | protein                                                                                                                                                 | 13343                                                      |
| 160                                    | SS1G_04885                                                                                                                                                    | 197                                      | 0                                  | 0                                   | extr=27                                             | amine flavin-containing                                                                                                                                 | 89,003,486                                                 |
|                                        |                                                                                                                                                               |                                          |                                    |                                     |                                                     | superfamily                                                                                                                                             |                                                            |
| 161                                    | SS1G_04898                                                                                                                                                    | 791                                      | 11                                 | 1.39                                | extr=26                                             | glycosyl hydrolase                                                                                                                                      | 1522                                                       |
| 162                                    | SS1G_04923                                                                                                                                                    | 380                                      | 12                                 | 3.16                                | extr=25                                             | predicted protein                                                                                                                                       | -                                                          |
| 163                                    | SS1G_04934                                                                                                                                                    | 223                                      | 4                                  | 1.79                                | extr=25                                             | cas1 appressorium specific                                                                                                                              | IPR021476                                                  |
|                                        |                                                                                                                                                               |                                          |                                    |                                     |                                                     | protein                                                                                                                                                 |                                                            |
| 164                                    | SS1G_04945                                                                                                                                                    | 571                                      | 23                                 | 4.03                                | extr=24                                             | GHF 7 protein                                                                                                                                           | 840                                                        |
| 165                                    | SS1G_04946                                                                                                                                                    | 501                                      | 4                                  | 0.8                                 | extr=25                                             | predicted protein                                                                                                                                       | -                                                          |
| 166                                    | SS1G_04958                                                                                                                                                    | 567                                      | 6                                  | 1.06                                | extr=25                                             | tripeptidyl-peptidase 1                                                                                                                                 | 9286                                                       |
|                                        |                                                                                                                                                               |                                          |                                    |                                     |                                                     | precursor                                                                                                                                               |                                                            |
| 167                                    | SS1G_05013                                                                                                                                                    | 300                                      | 5                                  | 1.67                                | extr=23                                             | predicted protein                                                                                                                                       | -                                                          |
| 168                                    | SS1G_05073                                                                                                                                                    | 274                                      | 6                                  | 2.19                                | extr=26                                             | hypothetical protein                                                                                                                                    | -                                                          |
|                                        |                                                                                                                                                               |                                          |                                    |                                     |                                                     | SS1G_05073                                                                                                                                              |                                                            |
| 169                                    | SS1G_05103                                                                                                                                                    | 83                                       | 6                                  | 7.23                                | extr=22                                             | predicted protein                                                                                                                                       | -                                                          |
| 170                                    | SS1G_05192                                                                                                                                                    | 870                                      | 5                                  | 0.57                                | extr=26                                             | glycosyl hydrolase family 65                                                                                                                            | 3632                                                       |
|                                        |                                                                                                                                                               |                                          |                                    |                                     |                                                     | protein                                                                                                                                                 |                                                            |
| 171                                    | SS1G 05337                                                                                                                                                    | 206                                      | 4                                  | 1.94                                | extr=27                                             | malate dehydrogenase protein                                                                                                                            | IPR021851                                                  |
|                                        | 3310_03337                                                                                                                                                    |                                          | -                                  | 0.89                                | extr=25                                             | GHF 3 protein                                                                                                                                           | 93,301,915                                                 |
| 172                                    | SS1G_05368                                                                                                                                                    | 783                                      | /                                  | 0.07                                | -                                                   |                                                                                                                                                         |                                                            |
| 172<br>173                             | SS1G_05368<br>SS1G_05434                                                                                                                                      | 783<br>389                               | 2                                  | 0.51                                | extr=25                                             | gdsl-like lipase acylhydrolase                                                                                                                          | 657                                                        |
| 172<br>173<br>174                      | SS1G_05337<br>SS1G_05368<br>SS1G_05434<br>SS1G_05449                                                                                                          | 783<br>389<br>544                        | 26                                 | 0.51                                | extr=25<br>extr=22                                  | gdsl-like lipase acylhydrolase<br>carboxypeptidase cpds                                                                                                 | 657<br>450                                                 |
| 172<br>173<br>174<br>175               | SS1G_05337           SS1G_05337           SS1G_05434           SS1G_05449           SS1G_05454                                                                | 783<br>389<br>544<br>1742                | 2<br>6<br>63                       | 0.51<br>1.1<br>3.62                 | extr=25<br>extr=22<br>extr=21                       | gdsl-like lipase acylhydrolase<br>carboxypeptidase cpds<br>glycosyl hydrolases family 18                                                                | 657<br>450<br>18,700,704                                   |
| 172<br>173<br>174<br>175               | SS1G_05337           SS1G_05368           SS1G_05434           SS1G_05449           SS1G_05454                                                                | 783<br>389<br>544<br>1742                | 2<br>6<br>63                       | 0.51<br>1.1<br>3.62                 | extr=25<br>extr=22<br>extr=21                       | gdsl-like lipase acylhydrolase<br>carboxypeptidase cpds<br>glycosyl hydrolases family 18<br>protein                                                     | 657<br>450<br>18,700,704                                   |
| 172<br>173<br>174<br>175<br>176        | SS1G_05337           SS1G_05368           SS1G_05434           SS1G_05449           SS1G_05454           SS1G_05493                                           | 783<br>389<br>544<br>1742<br>558         | 7<br>2<br>6<br>63<br>10            | 0.51<br>1.1<br>3.62<br>1.79         | extr=25<br>extr=22<br>extr=21<br>extr=27            | gdsl-like lipase acylhydrolase<br>carboxypeptidase cpds<br>glycosyl hydrolases family 18<br>protein<br>tannase subunit                                  | 657<br>450<br>18,700,704<br>7519                           |
| 172<br>173<br>174<br>175<br>176<br>177 | SS1G_05368           SS1G_05434           SS1G_05434           SS1G_05454           SS1G_05454           SS1G_05493           SS1G_05494                      | 783<br>389<br>544<br>1742<br>558<br>1138 | 7<br>2<br>6<br>63<br>10<br>26      | 0.51<br>1.1<br>3.62<br>1.79<br>2.28 | extr=25<br>extr=22<br>extr=21<br>extr=27<br>extr=27 | gdsl-like lipase acylhydrolase<br>carboxypeptidase cpds<br>glycosyl hydrolases family 18<br>protein<br>tannase subunit<br>wsc domain-containing protein | 657<br>450<br>18,700,704<br>7519<br>18,220,441,5           |
| 172<br>173<br>174<br>175<br>176<br>177 | SS1G_05368           SS1G_05368           SS1G_05434           SS1G_05454           SS1G_05454           SS1G_05493           SS1G_05494           0210_05494 | 783<br>389<br>544<br>1742<br>558<br>1138 | 10<br>2<br>6<br>6<br>3<br>10<br>26 | 0.51<br>1.1<br>3.62<br>1.79<br>2.28 | extr=25<br>extr=22<br>extr=21<br>extr=27<br>extr=27 | gdsl-like lipase acylhydrolase<br>carboxypeptidase cpds<br>glycosyl hydrolases family 18<br>protein<br>tannase subunit<br>wsc domain-containing protein | 657<br>450<br>18,700,704<br>7519<br>18,220,441,5<br>06,933 |

| 179        | SS1G_05609                             | 314               | 2           | 0.64                 | extr=22                       | enoyl- hydratase isomerase                                                                                          | 378                       |
|------------|----------------------------------------|-------------------|-------------|----------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------|
| 180        | SS1G_05612                             | 450               | 4           | 0.89                 | extr=27                       | prolyl aminopeptidase (secreted                                                                                     | 12697                     |
|            |                                        |                   |             |                      |                               | protein)                                                                                                            |                           |
| 181        | SS1G_05677                             | 520               | 1           | 0.19                 | extr=25                       | gmc oxidoreductase                                                                                                  | 73,205,199                |
| 182        | SS1G_05775                             | 396               | 5           | 1.26                 | extr=25                       | GHF 5 protein                                                                                                       | 150                       |
| 183        | SS1G_05784                             | 557               | 14          | 2.51                 | extr=27                       | glucan endoalpha-                                                                                                   | 3659                      |
| 10.1       |                                        |                   |             |                      |                               | glucosidase agn1                                                                                                    |                           |
| 184        | SS1G_05794                             | 311               | 0           | 0                    | extr=25                       | six-bladed beta-propeller -like                                                                                     | -                         |
|            |                                        |                   |             |                      |                               | protein                                                                                                             |                           |
| 185        | SS1G_05827                             | 160               | 2           | 1.25                 | extr=24                       | predicted protein                                                                                                   | -                         |
| 186        | SS1G_05832                             | 436               | 11          | 2.52                 | extr=26                       | GHF 28 protein                                                                                                      | 295                       |
| 187        | SS1G_05917                             | 336               | 11          | 3.27                 | extr=26                       | predicted protein                                                                                                   | -                         |
| 188        | SS1G_05925                             | 414               | 5           | 1.21                 | extr=27                       | aromatic peroxygenase                                                                                               | 1328                      |
| 189        | SS1G_05996                             | 253               | 3           | 1.19                 | extr=20                       | carbonic anhydrase                                                                                                  | 194                       |
| 190        | SS1G_06009                             | 395               | 4           | 1.01                 | extr=22                       | predicted protein                                                                                                   | -                         |
| 191        | SS1G_06037                             | 402               | 6           | 1.49                 | extr=27                       | exo-betaglucanase                                                                                                   | 150                       |
| 192        | SS1G_06068                             | 73                | 10          | 13.7                 | extr=27                       | predicted protein                                                                                                   | -                         |
| 193        | SS1G_06119                             | 176               | 0           | 0                    | extr=23                       | hypothetical protein                                                                                                | 13577                     |
|            |                                        |                   |             |                      |                               | SS1G_06119                                                                                                          |                           |
| 194        | SS1G_06230                             | 162               | 0           | 0                    | extr=27                       | cupin family protein                                                                                                | 6172                      |
| 195        | SS1G_06235                             | 447               | 2           | 0.45                 | extr=24                       | endo-rhamnogalacturonase f                                                                                          | 295                       |
| 196        | SS1G_06264                             | 800               | 8           | 1                    | extr=26                       | cellobiose dehydrogenase                                                                                            | 73,205,199                |
| 197        | SS1G_06333                             | 488               | 8           | 1.64                 | extr=27                       | histidine acid phosphatase                                                                                          | 328                       |
| 198        | SS1G_06349                             | 338               | 3           | 0.89                 | extr=26                       | nucleoside hydrolase                                                                                                | 1156                      |
| 199        | SS1G_06365                             | 550               | 6           | 1.09                 | extr=25                       | extracellular dihydrogeodin                                                                                         | 3,940,773,10              |
|            |                                        |                   |             |                      |                               | oxidase laccase                                                                                                     | 7,732                     |
| 200        | SS1G_06412                             | 237               | 7           | 2.95                 | extr=18                       | predicted protein                                                                                                   |                           |
| 201        | SS1G_06426                             | 863               | 1           | 0.12                 | extr=27                       | predicted protein                                                                                                   |                           |
| 202        | SS1G_06534                             | 252               | 6           | 2.38                 | extr=26                       | a chain fusarium oxysporum                                                                                          | 89                        |
|            |                                        |                   |             |                      |                               | trypsin at atomic resolution                                                                                        |                           |
| 203        | SS1G_06653                             | 372               | 0           | 0                    | extr=24                       | GHF 65                                                                                                              |                           |
| 204        | SS1G_06695                             | 424               | 5           | 1.18                 | extr=22                       | fad dependent oxidoreductase                                                                                        | 1266                      |
| 205        | SS1G_06742                             | 232               | 4           | 1.72                 | extr=25                       | scp-like extracellular protein                                                                                      | 188                       |
| 206        | SS1G_06747                             | 134               | 1           | 0.75                 | extr=23                       | predicted protein                                                                                                   |                           |
| 207        | SS1G_06817                             | 281               | 1           | 0.36                 | extr=23                       | predicted protein                                                                                                   |                           |
| 208        | SS1G_06890                             | 262               | 0           | 0                    | extr=23                       | predicted protein                                                                                                   |                           |
| 209        | SS1G_06942                             | 507               | 6           | 1.18                 | extr=23                       | cupredoxin (secreted protein)                                                                                       | -                         |
| 210        | SS1G_07015                             | 248               | 4           | 1.61                 | extr=26                       | malate dehydrogenase                                                                                                | IPR021851                 |
| 211        | SS1G_07022                             | 434               | 8           | 1.84                 | extr=25                       | histidine acid phosphatase                                                                                          | 328                       |
| 212        | SS1G_07027                             | 155               | 6           | 3.87                 | extr=26                       | predicted protein                                                                                                   |                           |
| 213        | SS1G_07039                             | 414               | 10          | 2.42                 | extr=26                       | rhamnogalacturonase b                                                                                               | 295                       |
| 214        | SS1G_07093                             | 383               | 4           | 1.04                 | extr=26                       | alpha beta-hydrolase                                                                                                | 12697                     |
| 215        | SS1G_07162                             | 867               | 8           | 0.92                 | extr=27                       | beta                                                                                                                | 93,301,915                |
| 216        | SS1G_07183                             | 173               | 4           | 2.31                 | extr=25                       | predicted protein                                                                                                   |                           |
| 217        | SS1G_07184                             | 533               | 2           | 0.38                 | extr=26                       | GHF 32 protein                                                                                                      | 251                       |
| 218        | SS1G_07224                             | 322               | 0           | 0                    | extr=18                       | predicted protein                                                                                                   |                           |
| 219        | SS1G_07230                             | 63                | 0           | 0                    | extr=25                       | predicted protein                                                                                                   |                           |
| 220        | SS1G_07268                             | 651               | 9           | 1.38                 | extr=18                       | protease s8 tripeptidyl                                                                                             | 9286                      |
|            |                                        |                   |             |                      |                               | peptidase                                                                                                           |                           |
| 221        | SS1G_07393                             | 761               | 9           | 1.18                 | extr=26                       | GHF 55 protein                                                                                                      | 12708                     |
| 222        | SS1G_07491                             | 121               | 7           | 5.79                 | extr=25                       | predicted protein                                                                                                   |                           |
| 223        | SS1G_07498                             | 434               | 0           | 0                    | extr=25                       | glucose-methanol-choline                                                                                            | 73,205,199                |
|            |                                        |                   |             |                      |                               | oxidoreductase                                                                                                      |                           |
| 224        | SS1G_07526                             | 353               | 3           | 0.85                 | extr=26                       | predicted protein                                                                                                   |                           |
| 225        | SS1G_07532                             | 188               | 2           | 1.06                 | extr=27                       | predicted protein                                                                                                   |                           |
| 226        | SS1G_07554                             | 261               | 5           | 1.92                 | extr=24                       | endobeta-xylanase                                                                                                   | 734                       |
| 227        | SS1G_07571                             | 333               | 3           | 0.9                  | extr=27                       | predicted protein                                                                                                   |                           |
| 228        | SS1G_07579                             | 590               | 6           | 1.02                 | extr=27                       | isoamyl alcohol                                                                                                     | 156,508,031               |
| 229        | SS1G_07613                             | 153               | 4           | 2.61                 | extr=20                       | phosphatidylglycerol                                                                                                | 2221                      |
|            |                                        |                   |             |                      |                               | phosphatidylinositol transfer                                                                                       |                           |
|            |                                        |                   |             |                      |                               | protein                                                                                                             |                           |
| 230        | SS1G_07639                             | 374               | 0           | 0                    | extr=25                       | acid phosphatase                                                                                                    | 4185                      |
| 231        | SS1G_07655                             | 569               | 9           | 1.58                 | extr=26                       | subtilisin-like protein                                                                                             | 9286                      |
| 232        | SS1G_07656                             | 327               | 4           | 1.22                 | extr=26                       | GHF 61 protein                                                                                                      | 3443                      |
| 233        | SS1G_07661                             | 182               | 4           | 2.2                  | extr=21                       | cutinase                                                                                                            | 1083                      |
| 234        | SS1G_07749                             | 203               | 0           | 0                    | extr=25                       | GHF 11 protein                                                                                                      | 457                       |
| 235        | SS1G_07780                             | 206               | 4           | 1.94                 | extr=23                       | predicted protein                                                                                                   |                           |
| 236        | SS1G_07836                             | 234               | 2           | 0.85                 | extr=24                       | acid protease partial                                                                                               | 1828                      |
| 237        | SS1G_07837                             | 263               | 0           | 0                    | extr=27                       | predicted protein                                                                                                   |                           |
| 238        | SS1G_07847                             | 798               | 11          | 1.38                 | extr=21                       | beta-d-glucoside                                                                                                    | 7,340,093,30              |
|            |                                        |                   |             |                      |                               | glucohydrolase                                                                                                      | 1,915                     |
| 239        |                                        |                   |             |                      |                               |                                                                                                                     |                           |
| 237        | SS1G_07863                             | 837               | 6           | 0.72                 | extr=26                       | cellobiose dehydrogenase                                                                                            | 73,205,199                |
| 240        | SS1G_07863<br>SS1G_07928               | 837<br>210        | 6<br>8      | 0.72<br>3.81         | extr=26<br>extr=24            | cellobiose dehydrogenase<br>transmembrane alpha-helix                                                               | 73,205,199<br>1822        |
| 240        | SS1G_07863<br>SS1G_07928               | 837<br>210        | 6<br>8      | 0.72 3.81            | extr=26<br>extr=24            | cellobiose dehydrogenase<br>transmembrane alpha-helix<br>domain-containing protein                                  | 73,205,199<br>1822        |
| 240<br>241 | SS1G_07863<br>SS1G_07928<br>SS1G_07942 | 837<br>210<br>373 | 6<br>8<br>6 | 0.72<br>3.81<br>1.61 | extr=26<br>extr=24<br>extr=27 | cellobiose dehydrogenase<br>transmembrane alpha-helix<br>domain-containing protein<br>polysaccharide lyase family 1 | 73,205,199<br>1822<br>544 |

|       |              |     |    |       |         | protein                         |              |
|-------|--------------|-----|----|-------|---------|---------------------------------|--------------|
| 242   | SS1G_08104   | 280 | 14 | 5     | extr=26 | acetyl xylan esterase           | 73,401,083   |
| 243   | SS1G_08110   | 171 | 4  | 2.34  | extr=27 | predicted protein               |              |
| 244   | SS1G_08128   | 71  | 11 | 15.49 | extr=21 | predicted protein               | 5980         |
| 245   | SS1G_08163   | 69  | 8  | 11.59 | extr=22 | predicted protein               |              |
| 246   | SS1G_08208   | 379 | 4  | 1.06  | extr=27 | a chain the 3-d structure of a  | 150          |
|       |              |     |    |       |         | trichoderma reesei b-           |              |
| 0.47  | 6616 00000   | 100 | 11 | 0.61  |         | mannanase from GHF 5            | 205          |
| 247   | SSIG_08229   | 422 | 11 | 2.61  | extr=27 | GHF 28 protein                  | 295          |
| 248   | SSIG_08361   | 563 | 11 | 1.95  | extr=25 | tannase subunit                 | /519         |
| 249   | SS1G_08493   | 417 | 20 | 4.8   | extr=26 | GHF 61 protein                  | 3443         |
| 250   | SS1G_08528   | 296 | 8  | 2.7   | extr=20 | major allergen asp f 2-like     | 13933        |
| 2.5.1 | 221 C 005 10 |     |    | 0.0   |         | protein                         |              |
| 251   | SSIG_08542   | 445 | 4  | 0.9   | extr=27 | predicted protein               |              |
| 252   | SS1G_08548   | 328 | 3  | 0.91  | extr=25 | six-bladed beta-propeller -like | -            |
|       |              |     |    |       |         | protein                         |              |
| 253   | SSIG_08566   | 204 | 4  | 1.96  | extr=22 | predicted protein               |              |
| 254   | SS1G_08621   | 263 | 4  | 1.52  | extr=21 | nuclease s1                     | 2265         |
| 255   | SS1G_08634   | 419 | 8  | 1.91  | extr=24 | extracellular exo-              | 295          |
| 256   | SS1G_08644   | 440 | 4  | 0.91  | extr=24 | lipase 3                        | 3583         |
| 257   | SS1G_08645   | 464 | 3  | 0.65  | extr=27 | fad binding domain-containing   | 1565         |
|       |              |     |    |       |         | protein                         |              |
| 258   | SS1G_08695   | 398 | 8  | 2.01  | extr=26 | class iii                       | 70,400,734   |
| 259   | SS1G_08698   | 393 | 11 | 2.8   | extr=27 | mg2+ transporter protein        | IPR000772    |
| 260   | SS1G_08706   | 113 | 4  | 3.54  | extr=26 | barwin-like endoglucanase       | 3330         |
| 261   | SS1G_08790   | 195 | 0  | 0     | extr=22 | predicted protein               |              |
| 262   | SS1G_08814   | 433 | 1  | 0.23  | extr=23 | oxalate decarboxylase           | 1,900,105,00 |
|       |              |     |    |       |         |                                 | 7,883        |
| 263   | SS1G_08858   | 337 | 8  | 2.37  | extr=21 | deuterolysin metalloprotease    | 2102         |
| 264   | SS1G_08889   | 719 | 8  | 1.11  | extr=26 | glutaminase                     | 8760         |
| 265   | SS1G_08892   | 268 | 18 | 6.72  | extr=26 | predicted protein               |              |
| 266   | SS1G_08894   | 384 | 6  | 1.56  | extr=27 | alpha beta-hydrolase            | 12697        |
| 267   | SS1G_08907   | 496 | 11 | 2.22  | extr=27 | predicted protein               |              |
| 268   | SS1G_08917   | 242 | 1  | 0.41  | extr=20 | betaglucan boisynthesis         | 5390         |
|       |              |     |    |       |         | protein                         |              |
| 269   | SS1G_09000   | 898 | 14 | 1.56  | extr=25 | carbohydrate-binding -like      | 10528        |
|       |              |     |    |       |         | protein                         |              |
| 270   | SS1G_09020   | 434 | 18 | 4.15  | extr=26 | -beta-d-glucan                  | 840          |
|       |              |     |    |       |         | cellobiohydrolase b             |              |
| 271   | SS1G_09050   | 435 | 22 | 5.06  | extr=24 | predicted protein               |              |
| 272   | SS1G_09060   | 916 | 5  | 0.55  | extr=25 | subtilisin-like protease        | 82           |
| 273   | SS1G_09129   | 575 | 11 | 1.91  | extr=22 | GHF 1 protein                   | 232          |
| 274   | SS1G_09130   | 297 | 4  | 1.35  | extr=25 | -                               | 13668        |
| 275   | SS1G_09143   | 366 | 0  | 0     | extr=19 | amidohydrolase 2                | 4909         |
| 276   | SS1G_09169   | 859 | 11 | 1.28  | extr=25 | predicted protein               |              |
| 277   | SS1G_09175   | 108 | 10 | 9.26  | extr=22 | predicted protein               |              |
| 278   | SS1G_09193   | 219 | 1  | 0.46  | extr=19 | isochorismatase family          | 857          |
| 279   | SS1G_09196   | 114 | 0  | 0     | extr=20 | predicted protein               |              |
| 280   | SS1G_09216   | 806 | 11 | 1.36  | extr=27 | GHF 55 protein                  | 12708        |
| 281   | SS1G_09219   | 342 | 2  | 0.58  | extr=26 | major royal jelly protein       | 3022         |
| 282   | SS1G_09225   | 574 | 6  | 1.05  | extr=25 | tripeptidyl peptidase a         | 9286         |
| 283   | SS1G_09232   | 190 | 4  | 2.11  | extr=25 | predicted protein               |              |
| 284   | SS1G_09248   | 76  | 8  | 10.53 | extr=19 | hydrophobin                     | 6766         |
| 285   | SS1G_09250   | 252 | 3  | 1.19  | extr=25 | iron-sulfur cluster-binding     | 1670         |
|       |              |     |    |       |         | rieske family domain protein    |              |
| 286   | SS1G_09251   | 303 | 8  | 2.64  | extr=26 | GHF 61 protein                  | 73,403,443   |
| 287   | SS1G_09268   | 613 | 6  | 0.98  | extr=26 | tripeptidyl-peptidase 1         | 9286         |
|       | _            |     |    |       |         | precursor                       |              |
| 288   | SS1G_09270   | 157 | 1  | 0.64  | extr=27 | hydrophobic surface binding     | IPR021054    |
|       | _            |     |    |       |         | protein a protein               |              |
| 289   | SS1G_09363   | 306 | 8  | 2.61  | extr=22 | predicted protein               |              |
| 290   | SS1G 09365   | 399 | 5  | 1.25  | extr=27 | endo-beta                       | 150          |
| 291   | SS1G 09366   | 754 | 4  | 0.53  | extr=20 | GHF 3 protein                   | 93,301,915   |
| 292   | SS1G 09475   | 534 | 6  | 1.12  | extr=27 | serine carboxypeptidase         | 450          |
| 293   | SS1G_09495   | 381 | 1  | 0.26  | extr=24 | paf acetylhydrolase family      | 3403         |
|       |              |     | -  |       |         | protein                         |              |
| 294   | SS1G_09693   | 133 | 4  | 3.01  | extr=27 | predicted protein               |              |
| 295   | SS1G 09782   | 267 | 4  | 1.5   | extr=25 | nuclease s1                     | 2265         |
| 296   | SS1G 09841   | 206 | 4  | 1.94  | extr=26 | predicted protein               | IPR018620    |
| 297   | SS1G 09844   | 189 | 4  | 2.12  | extr=27 | predicted protein               |              |
| 298   | SS1G 09861   | 588 | 14 | 2.38  | extr=22 | GHF 71 protein                  |              |
| 299   | SS1G_09866   | 403 | 5  | 1.24  | extr=25 | GHF 5 protein                   | 150          |
| 300   | SS1G_09882   | 136 | 1  | 0.74  | extr=23 | predicted protein               | 100          |
| 301   | SS1G_09909   | 713 | 2  | 0.28  | extr=25 | oligopentidase family protein   | 32,605,448   |
| 302   | SS1G_09959   | 447 | 10 | 2.24  | extr=26 | histidine acid phosphatase      | 32,000,440   |
| 502   |              |     | 10 | 2.27  |         | Phosphause                      | 520          |

| 303 | SS1G 09965   | 612   | 15     | 2.45  | extr=24     | sphingomyelin                   | IPR004843:   |
|-----|--------------|-------|--------|-------|-------------|---------------------------------|--------------|
| 200 | 5510_0000    | 012   | 10     | 2.10  |             | phosphodiesterase               | IPR008139;   |
|     |              |       |        |       |             | r r                             | IPR011160;   |
| 304 | SS1G 09982   | 203   | 4      | 1.97  | extr=21     | clock-controlled protein 6      | -            |
| 305 | SS1G_10038   | 562   | 7      | 1.25  | extr=27     | GHF 20 protein                  | 728          |
| 306 | SS1G_10071   | 361   | 6      | 1.66  | extr=26     | pectin lyase                    | 544          |
| 307 | SS1G_10078   | 518   | 8      | 1.50  | extr-22     | oxidase-like protein            | 1328         |
| 308 | SSIG_10070   | 107   | 2      | 1.54  | extr-19     | predicted protein               | 1520         |
| 300 | SS1G_10002   | 207   | 0      | 1.07  | extr=26     | endo beta xylanase              | 457          |
| 210 | SSIC_10092   | 110   | 0      | 2.26  | extr=24     | endobeta-xylanase               | 7240         |
| 211 | SSIG_10096   | 202   | 4      | 3.30  | ext = 24    |                                 | 1249         |
| 311 | SSIG_10104   | 203   | 4      | 1.97  | extr=20     | predicted protein               | 1005         |
| 312 | SSIG_10165   | 311   | 3      | 0.96  | extr=27     | CEF 8 protein                   | 1095         |
| 313 | SSIG_10167   | 360   | 8      | 2.22  | extr=27     | polygalacturonase I             | 295          |
| 314 | SS1G_10172   | 401   | 4      | 1     | extr=25     | outer membrane                  | 13449        |
|     |              |       |        |       |             | autotransporter protein         |              |
| 315 | SS1G_10266   | 414   | 5      | 1.21  | extr=27     | predicted protein               |              |
| 316 | SS1G_10452   | 174   | 8      | 4.6   | extr=26     | predicted protein               |              |
| 317 | SS1G_10482   | 322   | 4      | 1.24  | extr=24     | lysophospholipase a             | IPR001087;   |
|     |              |       |        |       |             |                                 | IPR013831;   |
| 318 | SS1G_10581   | 82    | 2      | 2.44  | extr=19     | predicted protein               |              |
| 319 | SS1G_10683   | 405   | 4      | 0.99  | extr=27     | aldose 1-epimerase              | 1263         |
| 320 | SS1G_10698   | 466   | 16     | 3.43  | extr=27     | polygalacturonase 3             | 295          |
| 321 |              | 482   | 1      | 0.21  | extr=27     | oxalate decarboxylase           | 19.007.883   |
| 322 | SS1G_10842   | 965   | 5      | 0.52  | extr-26     | predicted protein               | IPR001944    |
| 322 | SS1G_10845   | 368   | 5      | 1.36  | extr=20     | CHE 12 protein                  | п коотунч,   |
| 323 | SSIC_10043   | 201   | J<br>4 | 1.30  | exu-24      | alvoord hydrologo               |              |
| 524 | 5510_1080/   | 581   | 4      | 1.05  | extr=25     | giycosyi nydrolase              | 3663         |
| 325 | SSIG_108/5   | 516   | 2      | 0.39  | extr=26     | carboxylesterase                | 135          |
| 326 | SS1G_10949   | 600   | 5      | 0.83  | extr=23     | glucose oxidase                 | 73,205,199   |
| 327 | SS1G_10956   | 96    | 5      | 5.21  | extr=25     | predicted protein               |              |
| 328 | SS1G_11057   | 349   | 8      | 2.29  | extr=26     | polygalacturonase partial       | 295          |
| 329 | SS1G_11065   | 190   | 5      | 2.63  | extr=18     | predicted protein               |              |
| 330 | SS1G 11108   | 355   | 4      | 1.13  | extr=24     | predicted protein               |              |
| 331 | SS1G_11120   | 343   | 9      | 2.62  | extr=24     | predicted protein               |              |
| 332 | SS1G_11126   | 397   | 5      | 1.26  | extr=27     | major royal jelly protein       | 3022         |
| 332 | SS1G_11120   | 403   | 3      | 0.99  | extr-27     | carboxypentidase a2             | 246          |
| 224 | SSIC_11109   | 403   | 4      | 0.99  | $e_{xu}=20$ | predicted protein               | 240          |
| 225 | SSIG_11202   | 048   | 0      | 0.95  | exti=20     | predicted protein               |              |
| 335 | SSIG_11223   | 258   | 2      | 0.78  | extr=25     | predicted protein               | 100.000.070  |
| 336 | SS1G_11239   | 613   | 16     | 2.61  | extr=26     | wsc domain containing protein   | 182,209,362  |
| 337 | SS1G_11366   | 460   | 5      | 1.09  | extr=19     | vacuolar protease a             | 26           |
| 338 | SS1G_11382   | 655   | 11     | 1.68  | extr=25     | carboxypeptidase s1             | 450          |
| 339 | SS1G_11412   | 352   | 1      | 0.28  | extr=26     | quercetin -dioxygenase          | IPR011051;   |
|     |              |       |        |       |             |                                 | IPR013096;   |
|     |              |       |        |       |             |                                 | IPR014710    |
| 340 | SS1G 11468   | 232   | 2      | 0.86  | extr=23     | cas1 appressorium specific      | IPR021476    |
|     |              | -     |        |       |             | protein                         |              |
| 341 | SS1G 11499   | 197   | 2      | 1.02  | extr=19     | GHF 16 protein                  | IPR000757:   |
|     |              | - , , | _      |       |             | F                               | IPR008985:   |
|     |              |       |        |       |             |                                 | IPR013320    |
| 342 | \$\$1G 11535 | 775   | 7      | 0.0   | ovtr-26     | CHE 05 protein                  | п котоодо,   |
| 242 | SSIC_11555   | 222   | 2      | 0.5   | extr=26     | arabinogalactan ando bata       | - 7745       |
| 343 | 3310_11363   | 333   | 2      | 0.0   | €AU-20      | alaotosidese                    | //43         |
| 244 | SS1C 11(72   | 100   | 7      | C 40  | avt. 10     | galaciosidase                   |              |
| 544 | SSIG_110/3   | 108   | 1      | 0.48  | extr=18     | predicted protein               | -            |
| 345 | SSIG_11693   | 188   | 4      | 2.13  | extr=18     | predicted protein               |              |
| 346 | SS1G_11700   | 414   | 1      | 0.24  | extr=24     | GHF 18 protein                  | 704          |
| 347 | SS1G_11703   | 101   | 0      | 0     | extr=21     | gpi transamidase component      | 4113         |
|     |              |       |        |       |             | gpi16                           | ļ            |
| 348 | SS1G_11706   | 59    | 5      | 8.47  | extr=26     | predicted protein               |              |
| 349 | SS1G_11765   | 521   | 4      | 0.77  | extr=23     | alphaglucanase                  | 3659         |
| 350 | SS1G_11853   | 547   | 5      | 0.91  | extr=26     | carboxylesterase family protein | 13,507.859   |
| 351 | SS1G 11912   | 224   | 5      | 2.23  | extr=26     | necrosis and ethylene inducing  | 5630         |
| 551 | 5510_11712   | 227   | 5      | 2.23  | 2.1.120     | peptide 2 precursor             | 5650         |
| 352 | SS1G 11922   | 302   | 1      | 1 3 2 | extr=26     | extracellular endo- calpha-l-   | 4616         |
| 252 | \$\$1G_11027 | 627   | 10     | 1.52  | extr=20     | carbohydrate binding medula     | 3 040 772 10 |
| 555 | 5510_11927   | 057   | 10     | 1.37  | CAU-21      | family 20 metrin                | 3,740,773,10 |
| 254 | 6610 11020   | 500   | -      | 1.10  |             | ranning 20 protein              | 1,132        |
| 354 | SSIG_11930   | 508   | 6      | 1.18  | extr=26     | para-nitrobenzyl esterase       | 135          |
| 355 | SSIG_11988   | 659   | 5      | 0.76  | extr=24     | choline dehydrogenase           | 73,205,199   |
| 356 | SS1G_11992   | 238   | 4      | 1.68  | extr=26     | rhamnogalacturonan              | 657          |
|     |              |       |        |       |             | acetylesterase                  |              |
| 357 | SS1G_12017   | 515   | 14     | 2.72  | extr=26     | betaglucanosyltransferase       | 319,807,983  |
| 358 | SS1G_12024   | 454   | 5      | 1.1   | extr=23     | cell wall glucanase             | IPR000490;   |
|     | _            |       | -      |       |             |                                 | IPR013781:   |
|     |              |       |        |       |             |                                 | IPR017853:   |
| 359 | SS1G 12052   | 226   | 11     | 4 87  | extr=23     | predicted protein               |              |
| 360 | SS1G_12052   | 434   | 9      | 2.07  | extr=26     | extracellular exo-              | 205          |
| 261 | SS1G 12050   | 207   | 5      | 1.69  | extr=25     | endoglucanase ii                | 2/3          |
| 501 | 5510_12037   | 271   | 5      | 1.00  | UAU-2J      | endogiucanase II                | 5++5         |

| 362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS1G_12083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.27                                                                                                                                                                                                                                         | extr=26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GHF 115 protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS1G 12191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.79                                                                                                                                                                                                                                         | extr=27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | endobeta-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 331                                                                                                                                                                                 |
| 364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS1G 12198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 593                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.84                                                                                                                                                                                                                                         | extr=24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | gmc oxidoreductase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 73 205 199                                                                                                                                                                          |
| 365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS1G_12100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.26                                                                                                                                                                                                                                         | extr=24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | glucooligosaccharida oxidasa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 156 508 031                                                                                                                                                                         |
| 303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SSIG_12200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.20                                                                                                                                                                                                                                         | exti=20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | glucooligosaccitatide oxidase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 130,308,031                                                                                                                                                                         |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SSIG_12210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.40                                                                                                                                                                                                                                         | exti=25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9280                                                                                                                                                                                |
| 307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SSIG_12262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.89                                                                                                                                                                                                                                         | extr=26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | predicted protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 000 710 00                                                                                                                                                                        |
| 368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SSIG_12263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.91                                                                                                                                                                                                                                         | extr=27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | protein tos l precursor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,028,710,29                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                   |
| 369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS1G_12287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.84                                                                                                                                                                                                                                         | extr=19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | predicted protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |
| 370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS1G_12320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.07                                                                                                                                                                                                                                         | extr=18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GHF 16 protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IPR000757;                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IPR008985;                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IPR013320                                                                                                                                                                           |
| 371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS1G_12336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.55                                                                                                                                                                                                                                         | extr=22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | chitin binding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IPR004302                                                                                                                                                                           |
| 372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS1G 12361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.41                                                                                                                                                                                                                                         | extr=27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | predicted protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |
| 373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.13                                                                                                                                                                                                                                         | extr=18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | predicted protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |
| 374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS1G_12383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 75                                                                                                                                                                                                                                         | extr-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | histidine acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 328                                                                                                                                                                                 |
| 375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$\$1G_12413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.07                                                                                                                                                                                                                                         | extr=26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | carboyypantidasa s1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 450                                                                                                                                                                                 |
| 276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SSIC_12415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.57                                                                                                                                                                                                                                         | cxu=20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | carboxypeptidase s1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 450                                                                                                                                                                                 |
| 370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SSIG_12499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.38                                                                                                                                                                                                                                         | exu=18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | carboxypeptidase si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 430                                                                                                                                                                                 |
| 3//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SSIG_12500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.07                                                                                                                                                                                                                                         | extr=22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | carboxypeptidase y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 450                                                                                                                                                                                 |
| 378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SSIG_12509                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.59                                                                                                                                                                                                                                         | extr=23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | domain protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IPR002482;                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IPR018392;                                                                                                                                                                          |
| 379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS1G_12513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.97                                                                                                                                                                                                                                         | extr=26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | domain-containing protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IPR018392                                                                                                                                                                           |
| 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS1G_12609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.39                                                                                                                                                                                                                                         | extr=20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sterigmatocystin biosynthesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1328                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | peroxidase stcc protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                     |
| 381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS1G_12648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.97                                                                                                                                                                                                                                         | extr=26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | predicted protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |
| 382                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS1G_12721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.65                                                                                                                                                                                                                                         | extr=24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | predicted protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |
| 383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS1G 12724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.34                                                                                                                                                                                                                                         | extr=26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |
| 384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS1G 12765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.46                                                                                                                                                                                                                                         | extr=26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CEF 15 protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IPR000254                                                                                                                                                                           |
| 385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS1G_12007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 70                                                                                                                                                                                                                                         | extr=20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cutinasa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1083                                                                                                                                                                                |
| 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SSIC_12907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.01                                                                                                                                                                                                                                         | $e_{A}u = 27$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | uncharacterized series rich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1005                                                                                                                                                                                |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3310_12917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.21                                                                                                                                                                                                                                         | exu=20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | uncharacterized serine-fich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1622                                                                                                                                                                                |
| 207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0010 10007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                         | . 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                     |
| 387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SSIG_12927                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.99                                                                                                                                                                                                                                         | extr=21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | predicted protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |
| 388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS1G_12930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.81                                                                                                                                                                                                                                         | extr=25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GHF 17 protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 332                                                                                                                                                                                 |
| 389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS1G_12937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.54                                                                                                                                                                                                                                         | extr=26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | glycosyl hydrolase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3663                                                                                                                                                                                |
| 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS1G_12938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.56                                                                                                                                                                                                                                         | extr=26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | extracellular proline-serine rich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | #######################################                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ############                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ##                                                                                                                                                                                  |
| 391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS1G 12961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                            | extr=18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | predicted protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |
| 392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS1G 13035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                            | extr=27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | predicted protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |
| 393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS1G_13036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.28                                                                                                                                                                                                                                         | extr=26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | multicopper oxidase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3,940,773,10                                                                                                                                                                        |
| 575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5510_15050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.20                                                                                                                                                                                                                                         | enu-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | inditeopper oxiduse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 732                                                                                                                                                                               |
| 30/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS1G 13115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.9/                                                                                                                                                                                                                                         | extr-27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | predicted protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,132                                                                                                                                                                               |
| 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SSIG_13115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.2                                                                                                                                                                                                                                          | extr=20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | predicted protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |
| 393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SSIG_13120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2                                                                                                                                                                                                                                          | exti=20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10202                                                                                                                                                                               |
| 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SSIG_13199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.76                                                                                                                                                                                                                                         | extr=25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | extracenular aldonolactonase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10282                                                                                                                                                                               |
| 397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SSIG_13255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.73                                                                                                                                                                                                                                         | extr=27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GHF 3 protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 93,301,915                                                                                                                                                                          |
| 398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SSIG_13277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 ' 1' 1                                                                                                                                                                                                                                     | extr=27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | serine threenine rich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                     |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.22                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | serine-uneonne nen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                   |
| 399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS1G_13364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.49                                                                                                                                                                                                                                         | extr=25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tyrosinase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 264                                                                                                                                                                               |
| 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS1G_13364<br>SS1G_13371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 610<br>203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.49                                                                                                                                                                                                                                         | extr=25<br>extr=20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tyrosinase<br>predicted protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 264                                                                                                                                                                               |
| 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS1G_13364<br>SS1G_13371<br>SS1G_13385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 610<br>203<br>501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3<br>4<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.49<br>1.97<br>0.4                                                                                                                                                                                                                          | extr=25<br>extr=20<br>extr=21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tyrosinase<br>predicted protein<br>actin patch protein 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 264<br>9949                                                                                                                                                                       |
| 400<br>401<br>402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SS1G_13364<br>SS1G_13371<br>SS1G_13385<br>SS1G_13386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 610<br>203<br>501<br>238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{r}     4 \\     3 \\     4 \\     2 \\     4 \\     4 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.49<br>1.97<br>0.4<br>1.68                                                                                                                                                                                                                  | extr=25<br>extr=20<br>extr=21<br>extr=27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tyrosinase<br>predicted protein<br>actin patch protein 1<br>cutinase                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -<br>264<br>9949<br>1083                                                                                                                                                            |
| 400<br>401<br>402<br>403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SS1G_13364<br>SS1G_13371<br>SS1G_13385<br>SS1G_13386<br>SS1G_13394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 610<br>203<br>501<br>238<br>167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{r}     4 \\     3 \\     4 \\     2 \\     4 \\     6 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $     \begin{array}{r}       1.22 \\       0.49 \\       1.97 \\       0.4 \\       1.68 \\       3.59 \\     \end{array} $                                                                                                                  | extr=25<br>extr=20<br>extr=21<br>extr=27<br>extr=18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tyrosinase<br>predicted protein<br>actin patch protein 1<br>cutinase<br>predicted protein                                                                                                                                                                                                                                                                                                                                                                                                                                  | -<br>264<br>9949<br>1083                                                                                                                                                            |
| 400<br>401<br>402<br>403<br>404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SS1G_13364<br>SS1G_13371<br>SS1G_13385<br>SS1G_13386<br>SS1G_13394<br>SS1G_13472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 610<br>203<br>501<br>238<br>167<br>537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $     \begin{array}{r}       1.22 \\       0.49 \\       1.97 \\       0.4 \\       1.68 \\       3.59 \\       1.49 \\       \end{array} $                                                                                                  | extr=25<br>extr=20<br>extr=21<br>extr=27<br>extr=18<br>extr=26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tyrosinase<br>predicted protein<br>actin patch protein 1<br>cutinase<br>predicted protein<br>alpha-                                                                                                                                                                                                                                                                                                                                                                                                                        | -<br>264<br>9949<br>1083<br>12.809.260                                                                                                                                              |
| $     \begin{array}{r}       399 \\       400 \\       401 \\       402 \\       403 \\       404 \\       405 \\       405     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SS1G_13364<br>SS1G_13371<br>SS1G_13385<br>SS1G_13386<br>SS1G_13394<br>SS1G_13472<br>SS1G_13501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 610<br>203<br>501<br>238<br>167<br>537<br>661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{r} 1.22 \\ 0.49 \\ 1.97 \\ 0.4 \\ 1.68 \\ 3.59 \\ 1.49 \\ 0.45 \\ \end{array} $                                                                                                                                              | extr=25<br>extr=20<br>extr=21<br>extr=27<br>extr=18<br>extr=26<br>extr=25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tyrosinase<br>predicted protein<br>actin patch protein 1<br>cutinase<br>predicted protein<br>alpha-<br>alpha-<br>alpha-                                                                                                                                                                                                                                                                                                                                                                                                    | - 264<br>9949<br>1083<br>12,809,260<br>5592                                                                                                                                         |
| $     \begin{array}{r}       399 \\       400 \\       401 \\       402 \\       403 \\       404 \\       405 \\       406 \\     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SS1G_13364           SS1G_13371           SS1G_13385           SS1G_13386           SS1G_13394           SS1G_13472           SS1G_13501           SS1G_13589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 610<br>203<br>501<br>238<br>167<br>537<br>661<br>394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $     \begin{array}{r}       1.22 \\       0.49 \\       1.97 \\       0.4 \\       1.68 \\       3.59 \\       1.49 \\       0.45 \\       1.78 \\     \end{array} $                                                                        | extr=25<br>extr=20<br>extr=21<br>extr=27<br>extr=18<br>extr=26<br>extr=25<br>extr=26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tyrosinase<br>predicted protein<br>actin patch protein 1<br>cutinase<br>predicted protein<br>alpha-<br>alpha-l-rhamnosidase<br>plc-like phosphodiesterase                                                                                                                                                                                                                                                                                                                                                                  | - 264<br>9949<br>1083<br>12,809,260<br>5592                                                                                                                                         |
| $ \begin{array}{r} 399\\ 400\\ 401\\ 402\\ 403\\ 404\\ 405\\ 406\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SS1G_13364           SS1G_13371           SS1G_13385           SS1G_13386           SS1G_13394           SS1G_13472           SS1G_13501           SS1G_13589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 610<br>203<br>501<br>238<br>167<br>537<br>661<br>394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{r} 1.22 \\ 0.49 \\ 1.97 \\ 0.4 \\ 1.68 \\ 3.59 \\ 1.49 \\ 0.45 \\ 1.78 \\ \end{array} $                                                                                                                                      | extr=25<br>extr=20<br>extr=21<br>extr=27<br>extr=18<br>extr=26<br>extr=25<br>extr=26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tyrosinase<br>predicted protein<br>actin patch protein 1<br>cutinase<br>predicted protein<br>alpha-<br>alpha-l-rhamnosidase<br>plc-like phosphodiesterase<br>protein                                                                                                                                                                                                                                                                                                                                                       | - 264<br>9949<br>1083<br>12,809,260<br>5592                                                                                                                                         |
| $     \begin{array}{r}       399 \\       400 \\       401 \\       402 \\       403 \\       404 \\       405 \\       406 \\       407 \\       407     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SS1G_13364           SS1G_13371           SS1G_13385           SS1G_13386           SS1G_13394           SS1G_13472           SS1G_13501           SS1G_13589           SS1G_13592                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 610<br>203<br>501<br>238<br>167<br>537<br>661<br>394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{r} 1.22 \\ 0.49 \\ 1.97 \\ 0.4 \\ 1.68 \\ 3.59 \\ 1.49 \\ 0.45 \\ 1.78 \\ 3.24 \\ \end{array} $                                                                                                                              | extr=25<br>extr=20<br>extr=21<br>extr=27<br>extr=18<br>extr=26<br>extr=25<br>extr=26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tyrosinase<br>predicted protein<br>actin patch protein 1<br>cutinase<br>predicted protein<br>alpha-<br>alpha-l-rhamnosidase<br>plc-like phosphodiesterase<br>protein<br>predicted protein                                                                                                                                                                                                                                                                                                                                  | - 264<br>9949<br>1083<br>12,809,260<br>5592                                                                                                                                         |
| 400<br>401<br>402<br>403<br>404<br>405<br>406<br>406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SS1G_13364           SS1G_13371           SS1G_13371           SS1G_13385           SS1G_13386           SS1G_13394           SS1G_13472           SS1G_13501           SS1G_13589           SS1G_13599           SS1G_1269                                                                                                                                                                                                                                                                                                                                                                                                                                    | 610<br>203<br>501<br>238<br>167<br>537<br>661<br>394<br>401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 1.22 \\ 0.49 \\ 1.97 \\ 0.4 \\ 1.68 \\ 3.59 \\ 1.49 \\ 0.45 \\ 1.78 \\ \hline 3.24 \\ 2.26 \end{array}$                                                                                                                    | extr=25<br>extr=20<br>extr=21<br>extr=27<br>extr=18<br>extr=26<br>extr=25<br>extr=26<br>extr=26<br>extr=26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tyrosinase<br>predicted protein<br>actin patch protein 1<br>cutinase<br>predicted protein<br>alpha-<br>alpha-1-rhamnosidase<br>plc-like phosphodiesterase<br>protein<br>predicted protein<br>predicted protein                                                                                                                                                                                                                                                                                                             | - 264<br>9949<br>1083<br>12,809,260<br>5592<br>-                                                                                                                                    |
| 400<br>401<br>402<br>403<br>404<br>405<br>406<br>407<br>407<br>408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SS1G_13364           SS1G_13371           SS1G_13385           SS1G_13386           SS1G_13394           SS1G_13472           SS1G_13501           SS1G_13589           SS1G_13599           SS1G_13668           SS1G_13668                                                                                                                                                                                                                                                                                                                                                                                                                                   | 610<br>203<br>501<br>238<br>167<br>537<br>661<br>394<br>401<br>177<br>751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.22<br>0.49<br>1.97<br>0.4<br>1.68<br>3.59<br>1.49<br>0.45<br>1.78<br>3.24<br>3.24<br>2.26                                                                                                                                                  | extr=25<br>extr=20<br>extr=21<br>extr=27<br>extr=18<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tyrosinase<br>predicted protein<br>actin patch protein 1<br>cutinase<br>predicted protein<br>alpha-<br>alpha-l-rhamnosidase<br>plc-like phosphodiesterase<br>protein<br>predicted protein<br>predicted protein                                                                                                                                                                                                                                                                                                             | - 264<br>9949<br>1083<br>12,809,260<br>5592<br>-                                                                                                                                    |
| 400<br>401<br>402<br>403<br>404<br>405<br>406<br>407<br>408<br>407<br>408<br>409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SS1G_13364           SS1G_13371           SS1G_13385           SS1G_13386           SS1G_13394           SS1G_13394           SS1G_13501           SS1G_13589           SS1G_13599           SS1G_13682           SS1G_13682                                                                                                                                                                                                                                                                                                                                                                                                                                   | 610<br>203<br>501<br>238<br>167<br>537<br>661<br>394<br>401<br>177<br>754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $     \begin{array}{r}       4 \\       3 \\       4 \\       4 \\       6 \\       8 \\       3 \\       7 \\       7 \\       13 \\       4 \\       3 \\       2 \\       4 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\      5 \\       5 \\       5 \\       5 \\       5 \\       5 \\     $                                                        | $\begin{array}{c} 1.22\\ 0.49\\ 1.97\\ 0.4\\ 1.68\\ 3.59\\ 1.49\\ 0.45\\ 1.78\\ \hline 3.24\\ 2.26\\ 0.4\\ \hline 0.6\\ 0.4\\ \hline \end{array}$                                                                                            | extr=25<br>extr=20<br>extr=21<br>extr=27<br>extr=18<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tyrosinase<br>predicted protein<br>actin patch protein 1<br>cutinase<br>predicted protein<br>alpha-<br>alpha-<br>alpha-l-rhamnosidase<br>plc-like phosphodiesterase<br>protein<br>predicted protein<br>predicted protein<br>predicted protein                                                                                                                                                                                                                                                                              | - 264<br>9949<br>1083<br>12,809,260<br>5592<br>-                                                                                                                                    |
| $\begin{array}{r} 399\\ 400\\ 401\\ 402\\ 403\\ 404\\ 405\\ 406\\ \hline \\ 407\\ 408\\ 409\\ 410\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SS1G_13364           SS1G_13371           SS1G_13385           SS1G_13386           SS1G_13394           SS1G_13394           SS1G_13501           SS1G_13589           SS1G_13599           SS1G_13668           SS1G_13682           SS1G_1372                                                                                                                                                                                                                                                                                                                                                                                                               | 610<br>203<br>501<br>238<br>167<br>537<br>661<br>394<br>401<br>177<br>754<br>510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{r}     4 \\     3 \\     4 \\     2 \\     4 \\     6 \\     8 \\     3 \\     7 \\     7 \\     13 \\     4 \\     3 \\     36 \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 1.22\\ 0.49\\ 1.97\\ 0.4\\ 1.68\\ 3.59\\ 1.49\\ 0.45\\ 1.78\\ \hline 3.24\\ 2.26\\ 0.4\\ \hline 7.06\\ \end{array}$                                                                                                        | extr=25<br>extr=20<br>extr=21<br>extr=27<br>extr=18<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=19<br>extr=24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tyrosinase<br>predicted protein<br>actin patch protein 1<br>cutinase<br>predicted protein<br>alpha-<br>alpha-l-rhamnosidase<br>plc-like phosphodiesterase<br>protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein                                                                                                                                                                                                                                              | - 264<br>9949<br>1083<br>12,809,260<br>5592<br>-                                                                                                                                    |
| $\begin{array}{r} 399\\ 400\\ 401\\ 402\\ 403\\ 404\\ 405\\ 406\\ \hline 406\\ \hline 407\\ 408\\ 409\\ 410\\ 411\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SS1G_13364           SS1G_13371           SS1G_13385           SS1G_13386           SS1G_13394           SS1G_13394           SS1G_13501           SS1G_13509           SS1G_13599           SS1G_13668           SS1G_13732           SS1G_13736                                                                                                                                                                                                                                                                                                                                                                                                              | 610<br>203<br>501<br>238<br>167<br>537<br>661<br>394<br>401<br>177<br>754<br>510<br>508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{r}     4 \\     3 \\     4 \\     2 \\     4 \\     6 \\     8 \\     3 \\     7 \\     7 \\     13 \\     4 \\     3 \\     36 \\     5 \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 1.22\\ 0.49\\ 1.97\\ 0.4\\ 1.68\\ 3.59\\ 1.49\\ 0.45\\ 1.78\\ \hline 3.24\\ 2.26\\ 0.4\\ \hline 7.06\\ 0.98\\ \hline \end{array}$                                                                                          | extr=25<br>extr=20<br>extr=21<br>extr=27<br>extr=18<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=19<br>extr=24<br>extr=26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tyrosinase<br>predicted protein<br>actin patch protein 1<br>cutinase<br>predicted protein<br>alpha-<br>alpha-l-rhamnosidase<br>plc-like phosphodiesterase<br>protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>protein rds1                                                                                                                                                                                    | - 264<br>9949<br>1083<br>12,809,260<br>5592<br>                                                                                                                                     |
| $\begin{array}{r} 399\\ 400\\ 401\\ 402\\ 403\\ 404\\ 405\\ 406\\ \hline 406\\ \hline 407\\ 408\\ 409\\ \hline 410\\ 411\\ 412\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SS1G_13364           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13385           SS1G_13386           SS1G_13394           SS1G_1394           SS1G_13501           SS1G_13589           SS1G_13589           SS1G_13682           SS1G_13732           SS1G_13736           SS1G_13764                                                                                                                                                                                                                                                                                                                           | 610<br>203<br>501<br>238<br>167<br>537<br>661<br>394<br>401<br>177<br>754<br>510<br>508<br>271                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ \begin{array}{r}     4 \\     3 \\     4 \\     2 \\     4 \\     6 \\     8 \\     3 \\     7 \\     7 \\     13 \\     4 \\     3 \\     36 \\     5 \\     3 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 1.22\\ 0.49\\ 1.97\\ 0.4\\ 1.68\\ 3.59\\ 1.49\\ 0.45\\ 1.78\\ \hline 3.24\\ 2.26\\ 0.4\\ \hline 7.06\\ 0.98\\ 1.11\\ \end{array}$                                                                                          | extr=25<br>extr=20<br>extr=21<br>extr=27<br>extr=18<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=19<br>extr=24<br>extr=24<br>extr=26<br>extr=23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tyrosinase<br>predicted protein<br>actin patch protein 1<br>cutinase<br>predicted protein<br>alpha-<br>alpha-l-rhamnosidase<br>plc-like phosphodiesterase<br>protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>protein rds1<br>predicted protein                                                                                                                                                                                    | - 264<br>9949<br>1083<br>12,809,260<br>5592<br>                                                                                                                                     |
| $\begin{array}{r} 399\\ 400\\ 401\\ 402\\ 403\\ 404\\ 405\\ 406\\ \hline 406\\ \hline 407\\ 408\\ 409\\ \hline 410\\ 411\\ \hline 412\\ \hline 413\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SS1G_13364           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13385           SS1G_13385           SS1G_1394           SS1G_1394           SS1G_1394           SS1G_13501           SS1G_13589           SS1G_13599           SS1G_13682           SS1G_13732           SS1G_13736           SS1G_13764           SS1G_13809                                                                                                                                                                                                                                                                                   | 610           203           501           238           167           537           661           394           401           177           754           510           508           271           603                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{r}     4 \\     3 \\     4 \\     2 \\     4 \\     6 \\     8 \\     3 \\     7 \\     \hline     13 \\     4 \\     3 \\     36 \\     5 \\     3 \\     11 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{r} 1.22\\ 0.49\\ 1.97\\ 0.4\\ 1.68\\ 3.59\\ 1.49\\ 0.45\\ 1.78\\ \hline 3.24\\ 2.26\\ 0.4\\ \hline 7.06\\ 0.98\\ 1.11\\ 1.82\\ \end{array}$                                                                                   | extr=25<br>extr=20<br>extr=21<br>extr=27<br>extr=18<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=19<br>extr=24<br>extr=26<br>extr=22<br>extr=22<br>extr=22<br>extr=22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tyrosinase<br>predicted protein<br>actin patch protein 1<br>cutinase<br>predicted protein<br>alpha-<br>alpha-l-rhamnosidase<br>plc-like phosphodiesterase<br>protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>protein rds1<br>predicted protein<br>glucoamylase p                                                                                                   | - 264<br>9949<br>1083<br>12,809,260<br>5592<br>                                                                                                                                     |
| $\begin{array}{r} 399\\ 400\\ 401\\ 402\\ 403\\ 404\\ 405\\ 406\\ \hline 406\\ \hline 407\\ 408\\ 409\\ 410\\ \hline 411\\ 412\\ \hline 413\\ 414\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SS1G_13364           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13385           SS1G_13385           SS1G_1394           SS1G_1394           SS1G_1394           SS1G_13501           SS1G_13589           SS1G_13599           SS1G_13682           SS1G_13732           SS1G_13764           SS1G_13809           SS1G_13860                                                                                                                                                                                                                                                                                   | 610           203           501           238           167           537           661           394           401           177           754           510           508           271           603           317                                                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{r}     4 \\     3 \\     4 \\     2 \\     4 \\     6 \\     8 \\     3 \\     7 \\     \hline     13 \\     4 \\     3 \\     36 \\     5 \\     3 \\     11 \\     15 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 1.22\\ 0.49\\ 1.97\\ 0.4\\ 1.68\\ 3.59\\ 1.49\\ 0.45\\ 1.78\\ \hline 3.24\\ 2.26\\ 0.4\\ \hline 7.06\\ 0.98\\ 1.11\\ 1.82\\ 4.73\\ \hline \end{array}$                                                                     | extr=25<br>extr=20<br>extr=21<br>extr=27<br>extr=18<br>extr=26<br>extr=25<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=24<br>extr=24<br>extr=23<br>extr=23<br>extr=27<br>extr=22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tyrosinase<br>predicted protein<br>actin patch protein 1<br>cutinase<br>predicted protein<br>alpha-<br>alpha-l-rhamnosidase<br>plc-like phosphodiesterase<br>protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>protein rds1<br>predicted protein<br>glucoamylase p<br>GHF 45 protein                                                                                                                                                                     | - 264<br>9949<br>1083<br>12,809,260<br>5592<br>- 5592<br><br>- 13668<br><br>68,600,723<br>2015                                                                                      |
| $\begin{array}{r} 399\\ 400\\ 401\\ 402\\ 403\\ 404\\ 405\\ 406\\ \hline 406\\ 407\\ 408\\ 409\\ 410\\ 411\\ 412\\ 413\\ 414\\ 415\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SS1G_13364           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13385           SS1G_13386           SS1G_13394           SS1G_13591           SS1G_13589           SS1G_13599           SS1G_13688           SS1G_13682           SS1G_13732           SS1G_13736           SS1G_13764           SS1G_13809           SS1G_13860           SS1G_13881                                                                                                                                                                                                                                                           | 610           203           501           238           167           537           661           394           401           177           754           510           508           271           603           317           179                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{r}       4 \\       3 \\       4 \\       4 \\       6 \\       8 \\       3 \\       7 \\       13 \\       4 \\       3 \\       36 \\       5 \\       3 \\       11 \\       15 \\       2 \\       2       \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 1.22\\ 0.49\\ 1.97\\ 0.4\\ 1.68\\ 3.59\\ 1.49\\ 0.45\\ 1.78\\ \hline 3.24\\ 2.26\\ 0.4\\ \hline 7.06\\ 0.98\\ 1.11\\ 1.82\\ 4.73\\ 1.12\\ \end{array}$                                                                     | extr=25<br>extr=20<br>extr=21<br>extr=27<br>extr=18<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=24<br>extr=24<br>extr=24<br>extr=23<br>extr=27<br>extr=27<br>extr=27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tyrosinase<br>predicted protein<br>actin patch protein 1<br>cutinase<br>predicted protein<br>alpha-<br>alpha-l-rhamnosidase<br>plc-like phosphodiesterase<br>protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>glucoamylase p<br>GHF 45 protein<br>chlorogenic acid esterase                                                                                                                                                                             | -<br>264<br>9949<br>1083<br>12,809,260<br>5592<br>-<br>-<br>13668<br>-<br>68,600,723<br>2015<br>135                                                                                 |
| $\begin{array}{r} 399\\ 400\\ 401\\ 402\\ 403\\ 404\\ 405\\ 406\\ \hline 406\\ \hline 407\\ 408\\ 409\\ 410\\ 411\\ 412\\ 413\\ 414\\ 415\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SS1G_13364           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13385           SS1G_13386           SS1G_13394           SS1G_13591           SS1G_13589           SS1G_13589           SS1G_13599           SS1G_13668           SS1G_13668           SS1G_13732           SS1G_13736           SS1G_13809           SS1G_13860           SS1G_13881                                                                                                                                                                                                                                                           | 610           203           501           238           167           537           661           394           401           177           754           510           508           271           603           317           179                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{r}       4 \\       3 \\       4 \\       4 \\       6 \\       8 \\       3 \\       7 \\       7 \\       13 \\       4 \\       3 \\       36 \\       5 \\       3 \\       11 \\       15 \\       2 \\       2   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 1.22\\ 0.49\\ 1.97\\ 0.4\\ 1.68\\ 3.59\\ 1.49\\ 0.45\\ 1.78\\ \hline 3.24\\ 2.26\\ 0.4\\ \hline 7.06\\ 0.98\\ 1.11\\ 1.82\\ 4.73\\ 1.12\\ \end{array}$                                                                     | extr=25<br>extr=20<br>extr=21<br>extr=27<br>extr=18<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=24<br>extr=24<br>extr=24<br>extr=22<br>extr=23<br>extr=27<br>extr=25<br>extr=27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tyrosinase<br>predicted protein<br>actin patch protein 1<br>cutinase<br>predicted protein<br>alpha-<br>alpha-<br>alpha-l-rhamnosidase<br>plc-like phosphodiesterase<br>protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>protein rds1<br>predicted protein<br>glucoamylase p<br>GHF 45 protein<br>chlorogenic acid esterase<br>precursor                                                                                                                                      | -<br>264<br>9949<br>1083<br>12,809,260<br>5592<br>-<br>-<br>13668<br>-<br>68,600,723<br>2015<br>135                                                                                 |
| $\begin{array}{r} 399\\ 400\\ 401\\ 402\\ 403\\ 404\\ 405\\ 406\\ \hline \\ 406\\ \hline \\ 407\\ 408\\ 409\\ 410\\ 411\\ 412\\ 413\\ 414\\ 415\\ \hline \\ 416\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SS1G_13364           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13385           SS1G_13385           SS1G_13394           SS1G_13591           SS1G_13589           SS1G_13589           SS1G_13589           SS1G_13668           SS1G_13668           SS1G_13732           SS1G_13766           SS1G_13764           SS1G_13809           SS1G_13881           SS1G_13935                                                                                                                                                                                                                 | 610           203           501           238           167           537           661           394           401           177           754           510           508           271           603           317           179           512                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{r}     4 \\     3 \\     4 \\     2 \\     4 \\     6 \\     8 \\     3 \\     7 \\     7 \\     13 \\     4 \\     3 \\     36 \\     5 \\     3 \\     11 \\     15 \\     2 \\     17 \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 1.22\\ 0.49\\ 1.97\\ 0.4\\ 1.68\\ 3.59\\ 1.49\\ 0.45\\ 1.78\\ \hline 3.24\\ 2.26\\ 0.4\\ \hline 7.06\\ 0.98\\ 1.11\\ 1.82\\ 4.73\\ 1.12\\ \hline 3.32\\ \end{array}$                                                       | extr=25<br>extr=20<br>extr=21<br>extr=27<br>extr=18<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=19<br>extr=24<br>extr=27<br>extr=27<br>extr=27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tyrosinase<br>predicted protein<br>actin patch protein 1<br>cutinase<br>predicted protein<br>alpha-<br>alpha-l-rhamnosidase<br>plc-like phosphodiesterase<br>protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>glucoamylase p<br>GHF 45 protein<br>chlorogenic acid esterase<br>precursor<br>ibr domain-containing protein                                                                                     | - 264<br>9949<br>1083<br>12,809,260<br>5592<br>-<br>-<br>-<br>-<br>13668<br>-<br>68,600,723<br>2015<br>135<br>5730                                                                  |
| $\begin{array}{r} 399\\ -400\\ -401\\ -402\\ -403\\ -404\\ -405\\ -406\\ -407\\ -408\\ -409\\ -410\\ -411\\ -412\\ -413\\ -414\\ -415\\ -416\\ -417\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SS1G_13364           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13385           SS1G_13385           SS1G_1394           SS1G_1394           SS1G_1394           SS1G_13501           SS1G_13599           SS1G_13682           SS1G_13682           SS1G_13732           SS1G_13764           SS1G_13809           SS1G_13860           SS1G_13935           SS1G_13935                                                                                                                                                                                                                    | 610           203           501           238           167           537           661           394           401           177           754           510           508           271           603           317           179           512           97                                                                                                                                                                                                                                                                                                               | $ \begin{array}{r}     4 \\     3 \\     4 \\     2 \\     4 \\     6 \\     8 \\     3 \\     7 \\     7 \\     13 \\     4 \\     3 \\     36 \\     5 \\     3 \\     11 \\     15 \\     2 \\     17 \\     2   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 1.22\\ 0.49\\ 1.97\\ 0.4\\ 1.68\\ 3.59\\ 1.49\\ 0.45\\ 1.78\\ \hline 3.24\\ 2.26\\ 0.4\\ \hline 7.06\\ 0.98\\ 1.11\\ 1.82\\ 4.73\\ 1.12\\ \hline 3.32\\ 2.06\end{array}$                                                   | extr=25<br>extr=20<br>extr=21<br>extr=27<br>extr=18<br>extr=26<br>extr=25<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tyrosinase<br>predicted protein<br>actin patch protein 1<br>cutinase<br>predicted protein<br>alpha-1-rhamnosidase<br>plc-like phosphodiesterase<br>protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>glucoamylase p<br>GHF 45 protein<br>chlorogenic acid esterase<br>precursor<br>ibr domain-containing protein<br>predicted protein                                                                          | - 264<br>9949<br>1083<br>12,809,260<br>5592<br>                                                                                                                                     |
| $\begin{array}{r} 399\\ -400\\ -401\\ -402\\ -403\\ -404\\ -405\\ -406\\ -407\\ -408\\ -409\\ -410\\ -411\\ -412\\ -413\\ -414\\ -415\\ -416\\ -417\\ -418\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SS1G_13364           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13385           SS1G_13385           SS1G_1394           SS1G_1394           SS1G_1394           SS1G_13501           SS1G_13599           SS1G_13682           SS1G_13682           SS1G_13732           SS1G_13764           SS1G_13809           SS1G_13809           SS1G_13881           SS1G_13935           SS1G_13965                                                                                                                                                                                               | 610           203           501           238           167           537           661           394           401           177           754           510           508           271           603           317           179           512           97           510                                                                                                                                                                                                                                                                                                 | $ \begin{array}{r}     4 \\     3 \\     4 \\     2 \\     4 \\     6 \\     8 \\     3 \\     7 \\     7 \\     13 \\     4 \\     3 \\     36 \\     5 \\     3 \\     11 \\     15 \\     2 \\     \hline     17 \\     2 \\     5 \\     5 \\     3 \\     11 \\     15 \\     2 \\     5 \\     3 \\     11 \\     15 \\     2 \\     5 \\     3 \\     11 \\     15 \\     2 \\     5 \\     3 \\     11 \\     15 \\     2 \\     5 \\     3 \\     11 \\     15 \\     2 \\     5 \\     3 \\     11 \\     15 \\     2 \\     5 \\     3 \\     11 \\     15 \\     2 \\     5 \\     3 \\     11 \\     15 \\     2 \\     5 \\     3 \\     11 \\     15 \\     2 \\     5 \\     3 \\     11 \\     15 \\     2 \\     5 \\     3 \\     11 \\     15 \\     2 \\     5 \\     5 \\     3 \\     11 \\     15 \\     2 \\     5 \\     5 \\     3 \\     11 \\     15 \\     2 \\     5 \\     5 \\     3 \\     10 \\     10 \\     5 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10 \\     10$                      | $\begin{array}{c} 1.22\\ 0.49\\ 1.97\\ 0.4\\ 1.68\\ 3.59\\ 1.49\\ 0.45\\ 1.78\\ \hline 3.24\\ 2.26\\ 0.4\\ \hline 7.06\\ 0.98\\ 1.11\\ 1.82\\ 4.73\\ 1.12\\ \hline 3.32\\ 2.06\\ 1.16\end{array}$                                            | extr=25<br>extr=20<br>extr=21<br>extr=27<br>extr=18<br>extr=26<br>extr=25<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=25<br>extr=26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tyrosinase predicted protein actin patch protein 1 cutinase predicted protein alpha- alpha-l-rhamnosidase plc-like phosphodiesterase protein predicted protein predicted protein predicted protein predicted protein predicted protein predicted protein glucoamylase p GHF 45 protein chlorogenic acid esterase precursor ibr domain-containing protein predicted protein predicted protein                                                                                                                               | - 264<br>9949<br>1083<br>12,809,260<br>5592<br>                                                                                                                                     |
| 399           400           401           402           403           404           405           406           407           408           409           410           411           412           413           414           415           416           417           418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SS1G_13364           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13385           SS1G_13385           SS1G_1394           SS1G_1394           SS1G_13501           SS1G_13599           SS1G_13599           SS1G_13682           SS1G_13732           SS1G_13736           SS1G_13764           SS1G_13764           SS1G_13880           SS1G_13935           SS1G_13985           SS1G_13985           SS1G_13985           SS1G_13985           SS1G_13985                                                                                                                               | 610           203           501           238           167           537           661           394           401           177           754           510           508           271           603           317           179           512           97           519                                                                                                                                                                                                                                                                                                 | $ \begin{array}{r}     4 \\     3 \\     4 \\     2 \\     4 \\     6 \\     8 \\     3 \\     7 \\     7 \\     7 \\     13 \\     4 \\     3 \\     36 \\     5 \\     3 \\     11 \\     15 \\     2 \\     \hline     17 \\     2 \\     6 \\     6 \\     2 \\     7 \\     7 \\     2 \\     6 \\     6 \\     2 \\     7 \\     7 \\     2 \\     6 \\     6 \\     7 \\     7 \\     2 \\     6 \\     7 \\     7 \\     2 \\     6 \\     7 \\     7 \\     2 \\     6 \\     7 \\     7 \\     2 \\     6 \\     7 \\     7 \\     2 \\     6 \\     7 \\     7 \\     2 \\     6 \\     7 \\     7 \\     2 \\     6 \\     7 \\     7 \\     2 \\     6 \\     7 \\     7 \\     7 \\     2 \\     6 \\     7 \\     7 \\     7 \\     2 \\     6 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\     7 \\    $ | $\begin{array}{c} 1.22\\ 0.49\\ 1.97\\ 0.4\\ 1.68\\ 3.59\\ 1.49\\ 0.45\\ 1.78\\ \hline 3.24\\ 2.26\\ 0.4\\ \hline 7.06\\ 0.98\\ 1.11\\ 1.82\\ 4.73\\ 1.12\\ \hline 3.32\\ 2.06\\ \hline 1.16\\ 1.62\end{array}$                              | extr=25<br>extr=20<br>extr=21<br>extr=27<br>extr=18<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=25<br>extr=26<br>extr=26<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=27<br>extr=26<br>extr=27<br>extr=26<br>extr=26<br>extr=27<br>extr=26<br>extr=26<br>extr=27<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=27<br>extr=26<br>extr=26<br>extr=26<br>extr=27<br>extr=26<br>extr=26<br>extr=27<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=27<br>extr=26<br>extr=26<br>extr=26<br>extr=27<br>extr=26<br>extr=27<br>extr=26<br>extr=27<br>extr=26<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=2 | tyrosinase<br>predicted protein<br>actin patch protein 1<br>cutinase<br>predicted protein<br>alpha-<br>alpha-l-rhamnosidase<br>plc-like phosphodiesterase<br>protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>glucoamylase p<br>GHF 45 protein<br>chlorogenic acid esterase<br>precursor<br>ibr domain-containing protein<br>predicted protein                                                                                     | - 264<br>9949<br>1083<br>12,809,260<br>5592<br>                                                                                                                                     |
| $\begin{array}{r} 399\\ 400\\ 401\\ 402\\ 403\\ 404\\ 405\\ 406\\ \hline 406\\ 407\\ 408\\ 409\\ 410\\ 411\\ 412\\ 413\\ 414\\ 415\\ \hline 416\\ 417\\ 418\\ 419\\ 419\\ 415\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS1G_13364           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13385           SS1G_13385           SS1G_1394           SS1G_1394           SS1G_1394           SS1G_13501           SS1G_13589           SS1G_13589           SS1G_13589           SS1G_13682           SS1G_13766           SS1G_13764           SS1G_13764           SS1G_13764           SS1G_13880           SS1G_13881           SS1G_13935           SS1G_13965           SS1G_13982           SS1G_14007           OS1G_14007                                                                                      | 610           203           501           238           167           537           661           394           401           177           754           510           508           271           603           317           179           512           97           519           151                                                                                                                                                                                                                                                                                   | $ \begin{array}{r}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 1.22\\ 0.49\\ 1.97\\ 0.4\\ 1.68\\ 3.59\\ 1.49\\ 0.45\\ 1.78\\ \hline 3.24\\ 2.26\\ 0.4\\ \hline 7.06\\ 0.98\\ 1.11\\ 1.82\\ 4.73\\ 1.12\\ \hline 3.32\\ 2.06\\ 1.16\\ 1.99\\ \hline .99\\ \hline \end{array}$              | extr=25<br>extr=20<br>extr=21<br>extr=27<br>extr=18<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=25<br>extr=25<br>extr=25<br>extr=26<br>extr=25<br>extr=27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tyrosinase<br>predicted protein<br>actin patch protein 1<br>cutinase<br>predicted protein<br>alpha-<br>alpha-l-rhamnosidase<br>plc-like phosphodiesterase<br>protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>glucoamylase p<br>GHF 45 protein<br>chlorogenic acid esterase<br>precursor<br>ibr domain-containing protein<br>predicted protein                                                                                                          | - 264<br>9949<br>1083<br>12,809,260<br>5592<br>                                                                                                                                     |
| $\begin{array}{r} 399\\ -400\\ -401\\ -402\\ -403\\ -404\\ -405\\ -406\\ -407\\ -408\\ -409\\ -410\\ -411\\ -412\\ -413\\ -414\\ -415\\ -416\\ -417\\ -418\\ -419\\ -420\\ -420\\ -420\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ -402\\ $ | SS1G_13364           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13385           SS1G_13385           SS1G_1394           SS1G_1394           SS1G_13501           SS1G_13501           SS1G_13589           SS1G_13589           SS1G_13599           SS1G_13682           SS1G_13682           SS1G_13732           SS1G_13764           SS1G_13809           SS1G_13860           SS1G_13860           SS1G_13935           SS1G_13965           SS1G_13982           SS1G_14007           SS1G_14041                                                                                     | 610           203           501           238           167           537           661           394           401           177           754           510           508           271           603           317           179           512           97           519           151           207                                                                                                                                                                                                                                                                     | $ \begin{array}{r}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 1.22\\ 0.49\\ 1.97\\ 0.4\\ 1.68\\ 3.59\\ 1.49\\ 0.45\\ 1.78\\ \hline 3.24\\ 2.26\\ 0.4\\ \hline 7.06\\ 0.98\\ 1.11\\ 1.82\\ 4.73\\ 1.12\\ \hline 3.32\\ 2.06\\ 1.16\\ 1.99\\ 0\\ \end{array}$                              | extr=25<br>extr=20<br>extr=21<br>extr=27<br>extr=18<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=24<br>extr=24<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tyrosinase<br>predicted protein<br>actin patch protein 1<br>cutinase<br>predicted protein<br>alpha-<br>alpha-<br>alpha-l-rhamnosidase<br>plc-like phosphodiesterase<br>protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>glucoamylase p<br>GHF 45 protein<br>chlorogenic acid esterase<br>precursor<br>ibr domain-containing protein<br>predicted protein                                                                                                | - 264<br>9949<br>1083<br>12,809,260<br>5592<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>68,600,723<br>2015<br>135<br>5730<br>-<br>-<br>135<br>-<br>-<br>-<br>135 |
| $\begin{array}{r} 399\\ -400\\ -401\\ -402\\ -403\\ -404\\ -405\\ -406\\ -407\\ -408\\ -409\\ -410\\ -411\\ -412\\ -413\\ -414\\ -415\\ -416\\ -417\\ -418\\ -419\\ -420\\ -421\\ -421\\ -421\\ -421\\ -408\\ -408\\ -409\\ -421\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ -408\\ $ | SS1G_13364           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13385           SS1G_13385           SS1G_1394           SS1G_13501           SS1G_13501           SS1G_13589           SS1G_13589           SS1G_13599           SS1G_13682           SS1G_13682           SS1G_13736           SS1G_13764           SS1G_13809           SS1G_13860           SS1G_13881           SS1G_13935           SS1G_13982           SS1G_14007           SS1G_14007           SS1G_14133                                                                                                         | 610           203           501           238           167           537           661           394           401           177           754           510           508           271           603           317           179           512           97           519           151           207           285                                                                                                                                                                                                                                                       | $ \begin{array}{r}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 1.22\\ 0.49\\ 1.97\\ 0.4\\ 1.68\\ 3.59\\ 1.49\\ 0.45\\ 1.78\\ \hline 3.24\\ 2.26\\ 0.4\\ 7.06\\ 0.98\\ 1.11\\ 1.82\\ 4.73\\ 1.12\\ \hline 3.32\\ 2.06\\ 1.16\\ 1.99\\ 0\\ 0\\ 0\\ \end{array}$                             | extr=25<br>extr=20<br>extr=21<br>extr=27<br>extr=18<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=24<br>extr=24<br>extr=24<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tyrosinase<br>predicted protein<br>actin patch protein 1<br>cutinase<br>predicted protein<br>alpha-<br>alpha-l-rhamnosidase<br>plc-like phosphodiesterase<br>protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>protein rds1<br>predicted protein<br>glucoamylase p<br>GHF 45 protein<br>chlorogenic acid esterase<br>precursor<br>ibr domain-containing protein<br>predicted protein<br>triacylglycerol lipase<br>predicted protein<br>predicted protein<br>predicted protein | -<br>264<br>9949<br>1083<br>12,809,260<br>5592<br>-<br>-<br>-<br>13668<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                             |
| $\begin{array}{r} 399\\ 400\\ 401\\ 402\\ 403\\ 404\\ 405\\ 406\\ \hline \\ 406\\ \hline \\ 407\\ 408\\ 409\\ 410\\ 411\\ 412\\ 413\\ 414\\ 415\\ \hline \\ 416\\ 417\\ 418\\ 419\\ 420\\ 421\\ 422\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SS1G_13364           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13385           SS1G_13386           SS1G_13394           SS1G_13591           SS1G_13589           SS1G_13589           SS1G_13599           SS1G_13682           SS1G_13682           SS1G_13736           SS1G_13736           SS1G_13764           SS1G_13809           SS1G_13881           SS1G_13965           SS1G_13982           SS1G_14007           SS1G_14007           SS1G_14133           SS1G_14160                                                                                                                             | 610           203           501           238           167           537           661           394           401           177           754           510           508           271           603           317           179           512           97           519           151           207           285           345                                                                                                                                                                                                                                         | $ \begin{array}{r}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 1.22\\ 0.49\\ 1.97\\ 0.4\\ 1.68\\ 3.59\\ 1.49\\ 0.45\\ 1.78\\ \hline 3.24\\ 2.26\\ 0.4\\ 7.06\\ 0.98\\ 1.11\\ 1.82\\ 4.73\\ 1.12\\ \hline 3.32\\ 2.06\\ 1.16\\ 1.99\\ 0\\ 0\\ 1.45\\ \end{array}$                          | extr=25<br>extr=20<br>extr=21<br>extr=27<br>extr=18<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=24<br>extr=24<br>extr=24<br>extr=23<br>extr=27<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=27<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=27<br>extr=26<br>extr=26<br>extr=26<br>extr=27<br>extr=26<br>extr=27<br>extr=27<br>extr=25<br>extr=27<br>extr=25<br>extr=27<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=2 | tyrosinase<br>predicted protein<br>actin patch protein 1<br>cutinase<br>predicted protein<br>alpha-<br>alpha-<br>alpha-l-rhamnosidase<br>plc-like phosphodiesterase<br>protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>glucoamylase p<br>GHF 45 protein<br>chlorogenic acid esterase<br>precursor<br>ibr domain-containing protein<br>predicted protein<br>triacylglycerol lipase<br>predicted protein<br>glucoamylase p                                                    | - 264<br>9949<br>1083<br>12,809,260<br>5592<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                          |
| $\begin{array}{r} 399\\ -400\\ -401\\ -402\\ -403\\ -404\\ -405\\ -406\\ -407\\ -408\\ -409\\ -410\\ -411\\ -412\\ -413\\ -414\\ -415\\ -416\\ -417\\ -418\\ -416\\ -417\\ -418\\ -419\\ -420\\ -421\\ -422\\ -423\\ -423\\ -423\\ -423\\ -423\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ -400\\ $ | SS1G_13364           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13385           SS1G_13385           SS1G_1394           SS1G_1394           SS1G_13501           SS1G_13501           SS1G_13599           SS1G_13599           SS1G_13682           SS1G_13682           SS1G_13732           SS1G_13764           SS1G_13764           SS1G_13809           SS1G_13809           SS1G_13860           SS1G_13935           SS1G_13935           SS1G_13982           SS1G_14007           SS1G_14041           SS1G_14133           SS1G_14160           SS1G_14184                      | 610           203           501           238           167           537           661           394           401           177           754           510           508           271           603           317           179           512           97           519           151           207           285           345                                                                                                                                                                                                                                         | $ \begin{array}{r}     4 \\     3 \\     4 \\     2 \\     4 \\     6 \\     8 \\     3 \\     7 \\     7 \\     13 \\     4 \\     3 \\     36 \\     5 \\     3 \\     11 \\     15 \\     2 \\     17 \\     2 \\     6 \\     3 \\     0 \\     0 \\     5 \\     30 \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 1.22\\ 0.49\\ 1.97\\ 0.4\\ 1.68\\ 3.59\\ 1.49\\ 0.45\\ 1.78\\ \hline \\ 3.24\\ 2.26\\ 0.4\\ \hline 7.06\\ 0.98\\ 1.11\\ 1.82\\ 4.73\\ 1.12\\ \hline \\ 3.32\\ 2.06\\ 1.16\\ 1.99\\ 0\\ 0\\ 0\\ 1.45\\ 13.39\\ \end{array}$ | extr=25<br>extr=20<br>extr=21<br>extr=27<br>extr=18<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=26<br>extr=25<br>extr=25<br>extr=26<br>extr=25<br>extr=25<br>extr=25<br>extr=25<br>extr=26<br>extr=26<br>extr=26<br>extr=27<br>extr=26<br>extr=27<br>extr=27<br>extr=26<br>extr=27<br>extr=26<br>extr=27<br>extr=27<br>extr=26<br>extr=27<br>extr=26<br>extr=27<br>extr=26<br>extr=27<br>extr=26<br>extr=27<br>extr=26<br>extr=26<br>extr=27<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=27<br>extr=26<br>extr=27<br>extr=26<br>extr=26<br>extr=26<br>extr=27<br>extr=26<br>extr=27<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=27<br>extr=26<br>extr=27<br>extr=26<br>extr=27<br>extr=26<br>extr=27<br>extr=27<br>extr=25<br>extr=27<br>extr=25<br>extr=27<br>extr=25<br>extr=26<br>extr=27<br>extr=27<br>extr=25<br>extr=26<br>extr=26<br>extr=27<br>extr=27<br>extr=27<br>extr=25<br>extr=26<br>extr=26<br>extr=27<br>extr=27<br>extr=25<br>extr=26<br>extr=26<br>extr=27<br>extr=27<br>extr=25<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=27<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=27<br>extr=27<br>extr=26<br>extr=27<br>extr=26<br>extr=27<br>extr=26<br>extr=26<br>extr=26<br>extr=27<br>extr=27<br>extr=27<br>extr=26<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=26<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=26<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=2 | tyrosinase<br>predicted protein<br>actin patch protein 1<br>cutinase<br>predicted protein<br>alpha-<br>alpha-l-rhamnosidase<br>plc-like phosphodiesterase<br>protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>glucoamylase p<br>GHF 45 protein<br>chlorogenic acid esterase<br>precursor<br>ibr domain-containing protein<br>predicted protein<br>triacylglycerol lipase<br>predicted protein<br>fg-gap repeat<br>GHF 61 protein                        | -<br>264<br>9949<br>1083<br>12,809,260<br>5592<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                     |
| $\begin{array}{r} 399\\ -400\\ -401\\ -402\\ -403\\ -404\\ -405\\ -406\\ -407\\ -408\\ -409\\ -410\\ -411\\ -412\\ -413\\ -416\\ -417\\ -418\\ -416\\ -417\\ -418\\ -419\\ -420\\ -421\\ -422\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -402\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ -423\\ $ | SS1G_13364           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13371           SS1G_13385           SS1G_13385           SS1G_1394           SS1G_1394           SS1G_13501           SS1G_13501           SS1G_13599           SS1G_13599           SS1G_13682           SS1G_13682           SS1G_13732           SS1G_13764           SS1G_13764           SS1G_13764           SS1G_13809           SS1G_13860           SS1G_13935           SS1G_13935           SS1G_13965           SS1G_13982           SS1G_14007           SS1G_14007           SS1G_14133           SS1G_14160           SS1G_14184 | 610           203           501           238           167           537           661           394           401           177           754           510           508           271           603           317           179           97           512           97           512           97           512           271           512           97           512           97           512           271           512           97           512           271           512           97           512           207           285           345           224 | $ \begin{array}{r}     4 \\     3 \\     4 \\     2 \\     4 \\     6 \\     8 \\     3 \\     7 \\     7 \\     7 \\     13 \\     4 \\     3 \\     36 \\     5 \\     3 \\     11 \\     15 \\     2 \\     17 \\     2 \\     6 \\     3 \\     0 \\     0 \\     5 \\     30 \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 1.22\\ 0.49\\ 1.97\\ 0.4\\ 1.68\\ 3.59\\ 1.49\\ 0.45\\ 1.78\\ \hline 3.24\\ 2.26\\ 0.4\\ \hline 7.06\\ 0.98\\ 1.11\\ 1.82\\ 4.73\\ 1.12\\ \hline 3.32\\ 2.06\\ 1.16\\ 1.99\\ 0\\ 0\\ 1.45\\ 13.39\\ \hline \end{array}$    | extr=25       extr=25       extr=21       extr=27       extr=26       extr=26       extr=26       extr=26       extr=27       extr=27       extr=27       extr=25       extr=26       extr=27       extr=27       extr=27       extr=25       extr=25       extr=25       extr=25       extr=25       extr=25       extr=26       extr=27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tyrosinase<br>predicted protein<br>actin patch protein 1<br>cutinase<br>predicted protein<br>alpha-<br>alpha-l-rhamnosidase<br>plc-like phosphodiesterase<br>protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>predicted protein<br>glucoamylase p<br>GHF 45 protein<br>chlorogenic acid esterase<br>precursor<br>ibr domain-containing protein<br>predicted protein<br>triacylglycerol lipase<br>predicted protein<br>fg-gap repeat<br>GHF 61 protein<br>CEF 4 protein       | -<br>264<br>9949<br>1083<br>12,809,260<br>5592<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                     |

| 424 | SS1G_14237 | 283 | 6  | 2.12 | extr=24 | gas1-like protein      | -          |
|-----|------------|-----|----|------|---------|------------------------|------------|
| 425 | SS1G_14289 | 278 | 6  | 2.16 | extr=26 | CEF 16 protein         | 734        |
| 426 | SS1G_14293 | 573 | 1  | 0.17 | extr=26 | glucose oxidase        | 73,205,199 |
| 427 | SS1G_14321 | 364 | 3  | 0.82 | extr=26 | gpi anchored           | 775        |
| 428 | SS1G_14379 | 188 | 4  | 2.13 | extr=18 | predicted protein      | -          |
| 429 | SS1G_14441 | 525 | 7  | 1.33 | extr=27 | triacylglycerol lipase | 135        |
| 430 | SS1G_14449 | 395 | 10 | 2.53 | extr=26 | extracellular exo-     | 295        |
| 431 | SS1G_14497 | 661 | 7  | 1.06 | extr=24 | GHF 76 protein         | 3663       |
| 432 | SS1G_14515 | 45  | 0  | 0    | extr=20 | predicted protein      | -          |

Appendix 2: The 499 genes which make up the refined *B.cinerea* secretome

| Gene | Refined    | maturelen  | % C  | numcs         | WoLF P-SORT | PFAM          |
|------|------------|------------|------|---------------|-------------|---------------|
| no.  | Secretome  |            |      |               |             |               |
| 1    | BC1T_00003 | 302        | 1.32 | 4             | extr=26     | -             |
| 2    | BC1T_00109 | 265        | 0.38 | 1             | extr=26     | 12138         |
| 3    | BC1T_00198 | 495        | 1.01 | 5             | extr=23     | 06824         |
| 4    | BC1T_00226 | 414        | 0.48 | 2             | extr=25     | -             |
| 5    | BC1T 00230 | 361        | 1.66 | 6             | extr=27     | 00295         |
| 6    | BC1T 00233 | 568        | 2.29 | 13            | extr=23     | -             |
| 7    | BC1T 00240 | 640        | 1.41 | 9             | extr=23     | 00295.04063   |
| 8    | BC1T_00245 | 770        | 0.39 | 3             | extr=27     | 07971         |
| 9    | BC1T_00246 | 162        | 1.85 | 3             | extr=19     | -             |
| 10   | BC1T_00279 | 367        | 0.82 | 3             | extr=26     | _             |
| 11   | BC1T_00308 | 309        | 2.27 | 7             | extr=24     | 00657         |
| 12   | BC1T_00376 | 502        | 0.6  | 3             | extr=27     | 01735         |
| 13   | BC1T_00384 | 489        | 1.02 | 5             | extr=24     | 00450         |
| 13   | BC1T_00409 | 371        | 1.62 | 6             | extr=25     | 00722         |
| 15   | BC1T_00448 | 699        | 1.02 | 8             | extr=27     | -             |
| 16   | BC1T_00455 | 510        | 0.39 | 2             | extr-25     | 01532         |
| 17   | BC1T_00514 | 163        | 2 45 | 2<br>4        | extr=25     | -             |
| 17   | BC1T_00529 | 211        | 3 32 | 7             | extr=26     |               |
| 10   | BC1T_00545 | 423        | 0.95 | 1             | extr-27     | 00026         |
| 20   | BC1T_00572 | 253        | 1 10 | 3             | extr=27     | -             |
| 20   | BC1T_00576 | 331        | 0.01 | 3             | extr=26     | 00331         |
| 21   | BC1T_00594 | 230        | 0.91 | 2             | extr=26     | 01670         |
| 22   | BC1T_00574 | 320        | 0.61 | 2             | extr=27     | 01005         |
| 23   | BC1T_00630 | 529        | 1.02 | 10            | extr=27     | 07510         |
| 24   | BC1T_00642 | 406        | 1.72 | 5             | extr=27     | 00150         |
| 25   | BC1T_00680 | 400<br>650 | 2.12 | 14            | extr=26     | 00150         |
| 20   | BC1T_00089 | 407        | 1.01 | 14<br>5       | extr=27     | - 00135 07850 |
| 27   | BC1T_00837 | 152        | 1.01 | 2             | extr-10     | 00133,07837   |
| 20   | BC1T_00878 | 132        | 0.82 | <u>2</u><br>1 | extr=26     | 01/25         |
| 29   | BC1T_00806 | 135        | 2.06 | 4             | extr=23     | 01425         |
| 21   | BC1T_00012 | 212        | 0.22 | 4             | extr=25     | -             |
| 22   | BC1T_00912 | 126        | 2.17 | 1             | extr=24     | 00344         |
| 32   | BC1T_00922 | 200        | 2.5  | 4             | extr=19     | 03443         |
| 24   | BC1T_00958 | 200        | 3.5  | 1             | extr=10     | -             |
| 25   | BC1T_00900 | 107        | 2.4  | 4             | extr-26     | -             |
| 35   | BC1T_00977 | 569        | 1.06 | 6             | extr=22     | 00286         |
| 27   | BC1T_00978 | 242        | 0.99 | 2             | extr=20     | 09280         |
| 37   | BC1T_00991 | 342        | 2.00 | 10            | extr=25     | 00248         |
| 38   | BC1T_01000 | 276        | 2.99 | 10            | extr=25     | 01670         |
| 39   | BC11_01008 | 370        | 1.00 | 4             | extr=20     | 06766         |
| 40   | DC1T_01012 | 80         | 10   | 0             | exti=20     | 08788         |
| 41   | BC11_01015 | 122        | 3.28 | 4             | extr=20     | -             |
| 42   | BC11_01016 | 185        | 2.19 | 4             | extr=25     | -             |
| 43   | BC11_01020 | 373        | 1.04 | 0             | extr=20     | 09280         |
| 44   | DC11_01031 | 342        | 0.58 | 2             | extr=20     | 12709         |
| 45   | DC11_01033 | /88        | 1.27 | 10            | extr=20     | 12/08         |
| 46   | DC11_01059 | 230        | 0.4/ | 20            | extr=25     | -             |
| 4/   | DC11_01004 | 830        | 1.29 | 10            | extr=25     | -             |
| 48   | BCI1_010/3 | /06        | 1.42 | 10            | extr=22     | 09280         |
| 49   | BCIT_01077 | 35         | 0    | 0             | extr=21     | -             |
| 50   | BCIT_01080 | 225        | 0.44 | 1             | extr=18     | 12138         |
| 51   | BCTT_01152 | 461        | 1.08 | 5             | extr=26     | -             |

| 52                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC1T_01204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 800                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | extr=27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00187,07250,09118                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 53                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC1T_01234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 356                                                                                                                                                                                                                                                                                                                                                                                   | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | extr=25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00295                                                                                                                                                                                                                                                                                     |
| 54                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC1T 01286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 225                                                                                                                                                                                                                                                                                                                                                                                   | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | extr=26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00450                                                                                                                                                                                                                                                                                     |
| 55                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC1T_01260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 168                                                                                                                                                                                                                                                                                                                                                                                   | 2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | extr=20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12607                                                                                                                                                                                                                                                                                     |
| 55                                                                                                                                                                                                                                                                                                                                                                                                                                     | DC11_01307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 400                                                                                                                                                                                                                                                                                                                                                                                   | 2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CXII=22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12077                                                                                                                                                                                                                                                                                     |
| 56                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC11_01393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 170                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | extr=26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13577                                                                                                                                                                                                                                                                                     |
| 57                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC1T_01397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 212                                                                                                                                                                                                                                                                                                                                                                                   | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | extr=24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00026                                                                                                                                                                                                                                                                                     |
| 58                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC1T_01444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70                                                                                                                                                                                                                                                                                                                                                                                    | 14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | extr=25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                         |
| 59                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC1T 01472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 305                                                                                                                                                                                                                                                                                                                                                                                   | 1.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | extr=22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                         |
| 60                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC1T_01612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 232                                                                                                                                                                                                                                                                                                                                                                                   | 3.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | extr-26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                         |
| 00                                                                                                                                                                                                                                                                                                                                                                                                                                     | DC1T_01012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 232<br>5(7                                                                                                                                                                                                                                                                                                                                                                            | 1.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CAU-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                         |
| 61                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC11_01015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 507                                                                                                                                                                                                                                                                                                                                                                                   | 1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | extr=26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0/519                                                                                                                                                                                                                                                                                     |
| 62                                                                                                                                                                                                                                                                                                                                                                                                                                     | BCIT_01617                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 453                                                                                                                                                                                                                                                                                                                                                                                   | 2.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | extr=27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00295                                                                                                                                                                                                                                                                                     |
| 63                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC1T_01628                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 423                                                                                                                                                                                                                                                                                                                                                                                   | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | extr=20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 01328                                                                                                                                                                                                                                                                                     |
| 64                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC1T_01630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 656                                                                                                                                                                                                                                                                                                                                                                                   | 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | extr=22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00732,05199                                                                                                                                                                                                                                                                               |
| 65                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC1T 01674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 278                                                                                                                                                                                                                                                                                                                                                                                   | 2.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | extr=24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 03067                                                                                                                                                                                                                                                                                     |
| 66                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC1T_01719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 807                                                                                                                                                                                                                                                                                                                                                                                   | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | extr=26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00732 05199                                                                                                                                                                                                                                                                               |
| 67                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC1T_01778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 470                                                                                                                                                                                                                                                                                                                                                                                   | 2.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | extr-27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00331.00734                                                                                                                                                                                                                                                                               |
| 07                                                                                                                                                                                                                                                                                                                                                                                                                                     | DC1T_01778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 470                                                                                                                                                                                                                                                                                                                                                                                   | 2.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 1 I<br>- 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | exu-27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00551,00754                                                                                                                                                                                                                                                                               |
| 68                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC11_01/89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 594                                                                                                                                                                                                                                                                                                                                                                                   | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | extr=26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00/32,05199                                                                                                                                                                                                                                                                               |
| 69                                                                                                                                                                                                                                                                                                                                                                                                                                     | BCIT_01/94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 421                                                                                                                                                                                                                                                                                                                                                                                   | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | extr=26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00026                                                                                                                                                                                                                                                                                     |
| 70                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC1T_01803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 632                                                                                                                                                                                                                                                                                                                                                                                   | 1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | extr=23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 09286                                                                                                                                                                                                                                                                                     |
| 71                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC1T_01872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 328                                                                                                                                                                                                                                                                                                                                                                                   | 1.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | extr=25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                         |
| 72                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC1T_01874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 475                                                                                                                                                                                                                                                                                                                                                                                   | 1.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | extr=22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10287.10290                                                                                                                                                                                                                                                                               |
| 73                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC1T_01886                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 61                                                                                                                                                                                                                                                                                                                                                                                    | 3.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | extr-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                         |
| 73                                                                                                                                                                                                                                                                                                                                                                                                                                     | DC1T_01000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 216                                                                                                                                                                                                                                                                                                                                                                                   | 5.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | extr=10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                           |
| /4                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC11_01890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 510                                                                                                                                                                                                                                                                                                                                                                                   | 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | extr=25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                         |
| 75                                                                                                                                                                                                                                                                                                                                                                                                                                     | BCIT_01923                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 458                                                                                                                                                                                                                                                                                                                                                                                   | 0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | extr=27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00295                                                                                                                                                                                                                                                                                     |
| 76                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC1T_02003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 353                                                                                                                                                                                                                                                                                                                                                                                   | 1.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | extr=24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00295                                                                                                                                                                                                                                                                                     |
| 77                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC1T_02011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 310                                                                                                                                                                                                                                                                                                                                                                                   | 1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | extr=26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                         |
| 78                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC1T 02012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 247                                                                                                                                                                                                                                                                                                                                                                                   | 2.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | extr=25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                         |
| 79                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC1T_02016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 504                                                                                                                                                                                                                                                                                                                                                                                   | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | extr-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00135                                                                                                                                                                                                                                                                                     |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                     | DC1T_02021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 606                                                                                                                                                                                                                                                                                                                                                                                   | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | oxtr=25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00732.05100                                                                                                                                                                                                                                                                               |
| 80                                                                                                                                                                                                                                                                                                                                                                                                                                     | DC11_02021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 000                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | exti-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00752,05199                                                                                                                                                                                                                                                                               |
| 81                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC11_02036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 332                                                                                                                                                                                                                                                                                                                                                                                   | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | extr=26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00150                                                                                                                                                                                                                                                                                     |
| 82                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC1T_02060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 143                                                                                                                                                                                                                                                                                                                                                                                   | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | extr=25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                         |
| 83                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC1T_02163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119                                                                                                                                                                                                                                                                                                                                                                                   | 3.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | extr=26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 07249                                                                                                                                                                                                                                                                                     |
| 84                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC1T_02314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 487                                                                                                                                                                                                                                                                                                                                                                                   | 1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | extr=25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00328                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                        | DC1T 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                           |
| 85                                                                                                                                                                                                                                                                                                                                                                                                                                     | BCTT 02333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 379                                                                                                                                                                                                                                                                                                                                                                                   | 4.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | extr=26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00686                                                                                                                                                                                                                                                                                     |
| 85                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC1T_02333<br>BC1T_02364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 379<br>759                                                                                                                                                                                                                                                                                                                                                                            | 4.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | extr=26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00686                                                                                                                                                                                                                                                                                     |
| 85<br>86                                                                                                                                                                                                                                                                                                                                                                                                                               | BC1T_02333<br>BC1T_02364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 379<br>759<br>400                                                                                                                                                                                                                                                                                                                                                                     | 4.22<br>0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | extr=26<br>extr=21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00686<br>00933,01915,14310                                                                                                                                                                                                                                                                |
| 85<br>86<br>87                                                                                                                                                                                                                                                                                                                                                                                                                         | BC1T_02333<br>BC1T_02364<br>BC1T_02365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 379           759           400                                                                                                                                                                                                                                                                                                                                                       | 4.22<br>0.53<br>1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | extr=26<br>extr=21<br>extr=27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00686<br>00933,01915,14310<br>-                                                                                                                                                                                                                                                           |
| 85<br>86<br>87<br>88                                                                                                                                                                                                                                                                                                                                                                                                                   | BC1T_02333<br>BC1T_02364<br>BC1T_02365<br>BC1T_02388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 379       759       400       203                                                                                                                                                                                                                                                                                                                                                     | 4.22<br>0.53<br>1.25<br>3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16<br>4<br>5<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | extr=26<br>extr=21<br>extr=27<br>extr=23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00686<br>00933,01915,14310<br>-<br>-                                                                                                                                                                                                                                                      |
| 85<br>86<br>87<br>88<br>89                                                                                                                                                                                                                                                                                                                                                                                                             | BC11_02333<br>BC1T_02364<br>BC1T_02365<br>BC1T_02388<br>BC1T_02410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 379       759       400       203       989                                                                                                                                                                                                                                                                                                                                           | 4.22<br>0.53<br>1.25<br>3.94<br>0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16<br>4<br>5<br>8<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | extr=26<br>extr=21<br>extr=27<br>extr=23<br>extr=26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00686<br>00933,01915,14310<br>-<br>-<br>01301,10435,13363,13364                                                                                                                                                                                                                           |
| 85<br>86<br>87<br>88<br>89<br>90                                                                                                                                                                                                                                                                                                                                                                                                       | BC11_02333<br>BC1T_02364<br>BC1T_02365<br>BC1T_02388<br>BC1T_02410<br>BC1T_02480                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 379       759       400       203       989       41                                                                                                                                                                                                                                                                                                                                  | 4.22<br>0.53<br>1.25<br>3.94<br>0.61<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16<br>4<br>5<br>8<br>6<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | extr=26<br>extr=21<br>extr=27<br>extr=23<br>extr=26<br>extr=19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00686<br>00933,01915,14310<br>-<br>-<br>01301,10435,13363,13364<br>-                                                                                                                                                                                                                      |
| 85<br>86<br>87<br>88<br>89<br>90<br>91                                                                                                                                                                                                                                                                                                                                                                                                 | BC11_02333<br>BC1T_02364<br>BC1T_02365<br>BC1T_02388<br>BC1T_02410<br>BC1T_02480<br>BC1T_02486                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 379       759       400       203       989       41       516                                                                                                                                                                                                                                                                                                                        | 4.22<br>0.53<br>1.25<br>3.94<br>0.61<br>0<br>1.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16       4       5       8       6       0       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | extr=26<br>extr=21<br>extr=27<br>extr=23<br>extr=26<br>extr=19<br>extr=26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00686<br>00933,01915,14310<br>-<br>-<br>01301,10435,13363,13364<br>-<br>07519                                                                                                                                                                                                             |
| 85<br>86<br>87<br>88<br>89<br>90<br>91<br>92                                                                                                                                                                                                                                                                                                                                                                                           | BC11_02333<br>BC1T_02364<br>BC1T_02365<br>BC1T_02388<br>BC1T_02410<br>BC1T_02480<br>BC1T_02486<br>BC1T_02487                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 379       759       400       203       989       41       516       504                                                                                                                                                                                                                                                                                                              | 4.22<br>0.53<br>1.25<br>3.94<br>0.61<br>0<br>1.94<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16       4       5       8       6       0       10       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | extr=26<br>extr=21<br>extr=27<br>extr=23<br>extr=26<br>extr=19<br>extr=26<br>extr=27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00686<br>00933,01915,14310<br>-<br>-<br>01301,10435,13363,13364<br>-<br>07519<br>00135                                                                                                                                                                                                    |
| 85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>92                                                                                                                                                                                                                                                                                                                                                                                     | BC11_02333<br>BC1T_02364<br>BC1T_02365<br>BC1T_02388<br>BC1T_02410<br>BC1T_02480<br>BC1T_02486<br>BC1T_02487<br>BC1T_02487<br>BC1T_02492                                                                                                                                                                                                                                                                                                                                                                                                                       | 379       759       400       203       989       41       516       504       386                                                                                                                                                                                                                                                                                                    | 4.22<br>0.53<br>1.25<br>3.94<br>0.61<br>0<br>1.94<br>0.4<br>0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16       4       5       8       6       0       10       2       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | extr=26<br>extr=21<br>extr=27<br>extr=23<br>extr=26<br>extr=19<br>extr=26<br>extr=27<br>extr=23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00686<br>00933,01915,14310<br>-<br>-<br>01301,10435,13363,13364<br>-<br>07519<br>00135<br>11790                                                                                                                                                                                           |
| 85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>92<br>93                                                                                                                                                                                                                                                                                                                                                                               | BC11_02333<br>BC1T_02364<br>BC1T_02365<br>BC1T_02388<br>BC1T_02410<br>BC1T_02480<br>BC1T_02480<br>BC1T_02487<br>BC1T_02487<br>BC1T_02492<br>BC1T_02541                                                                                                                                                                                                                                                                                                                                                                                                         | 379       759       400       203       989       41       516       504       386       252                                                                                                                                                                                                                                                                                          | 4.22<br>0.53<br>1.25<br>3.94<br>0.61<br>0<br>1.94<br>0.4<br>0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16       4       5       8       6       0       10       2       3       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | extr=26<br>extr=21<br>extr=27<br>extr=23<br>extr=26<br>extr=19<br>extr=26<br>extr=27<br>extr=27<br>extr=20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00686<br>00933,01915,14310<br>-<br>-<br>01301,10435,13363,13364<br>-<br>07519<br>00135<br>11790<br>02443                                                                                                                                                                                  |
| 85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>93<br>94                                                                                                                                                                                                                                                                                                                                                                         | BC11_02333<br>BC1T_02364<br>BC1T_02365<br>BC1T_02388<br>BC1T_02410<br>BC1T_02480<br>BC1T_02480<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02541<br>BC1T_02541                                                                                                                                                                                                                                                                                                                                                                                           | 379       759       400       203       989       41       516       504       386       252       421                                                                                                                                                                                                                                                                                | 4.22<br>0.53<br>1.25<br>3.94<br>0.61<br>0<br>1.94<br>0.4<br>0.78<br>1.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16       4       5       8       6       0       10       2       3       4       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | extr=26<br>extr=21<br>extr=27<br>extr=23<br>extr=26<br>extr=19<br>extr=26<br>extr=27<br>extr=27<br>extr=23<br>extr=20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00686<br>00933,01915,14310<br>-<br>-<br>01301,10435,13363,13364<br>-<br>07519<br>00135<br>11790<br>03443<br>02965                                                                                                                                                                         |
| 85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95                                                                                                                                                                                                                                                                                                                                                                         | BC11_02333<br>BC1T_02364<br>BC1T_02365<br>BC1T_02388<br>BC1T_02410<br>BC1T_02480<br>BC1T_02480<br>BC1T_02487<br>BC1T_02492<br>BC1T_02541<br>BC1T_02591                                                                                                                                                                                                                                                                                                                                                                                                         | 379         759         400         203         989         41         516         504         386         252         431                                                                                                                                                                                                                                                            | $\begin{array}{r} 4.22\\ 0.53\\ 1.25\\ 3.94\\ 0.61\\ 0\\ 1.94\\ 0.4\\ 0.78\\ 1.59\\ 1.62\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16         4         5         8         6         0         10         2         3         4         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | extr=26         extr=21         extr=27         extr=23         extr=26         extr=26         extr=27         extr=27         extr=20         extr=22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00686<br>00933,01915,14310<br>-<br>-<br>01301,10435,13363,13364<br>-<br>07519<br>00135<br>11790<br>03443<br>02065                                                                                                                                                                         |
| 85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96                                                                                                                                                                                                                                                                                                                                                                   | BC11_02333<br>BC1T_02364<br>BC1T_02365<br>BC1T_02388<br>BC1T_02410<br>BC1T_02480<br>BC1T_02480<br>BC1T_02487<br>BC1T_02492<br>BC1T_02492<br>BC1T_02541<br>BC1T_02591<br>BC1T_02623                                                                                                                                                                                                                                                                                                                                                                             | 379         759         400         203         989         41         516         504         386         252         431         402                                                                                                                                                                                                                                                | $\begin{array}{r} 4.22\\ 0.53\\ 1.25\\ 3.94\\ 0.61\\ 0\\ 1.94\\ 0.4\\ 0.78\\ 1.59\\ 1.62\\ 2.24\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16         4         5         8         6         0         10         2         3         4         7         9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | extr=26         extr=21         extr=27         extr=23         extr=26         extr=27         extr=27         extr=23         extr=22         extr=27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00686<br>00933,01915,14310<br>-<br>-<br>01301,10435,13363,13364<br>-<br>07519<br>00135<br>11790<br>03443<br>02065<br>00128,09260                                                                                                                                                          |
| 85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97                                                                                                                                                                                                                                                                                                                                                             | BC11_02333<br>BC1T_02364<br>BC1T_02365<br>BC1T_02388<br>BC1T_02410<br>BC1T_02480<br>BC1T_02480<br>BC1T_02487<br>BC1T_02492<br>BC1T_02492<br>BC1T_02541<br>BC1T_02591<br>BC1T_02623<br>BC1T_02643                                                                                                                                                                                                                                                                                                                                                               | 379         759         400         203         989         41         516         504         386         252         431         402         122                                                                                                                                                                                                                                    | $\begin{array}{r} 4.22\\ 0.53\\ 1.25\\ 3.94\\ 0.61\\ 0\\ 1.94\\ 0.4\\ 0.78\\ 1.59\\ 1.62\\ 2.24\\ 6.56\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16         4         5         8         6         0         10         2         3         4         7         9         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | extr=26         extr=21         extr=27         extr=23         extr=26         extr=27         extr=27         extr=23         extr=22         extr=27         extr=20         extr=27         extr=22         extr=27         extr=22         extr=27         extr=25                                                                                                                                                                                                                                                                                                                                                                                                 | 00686<br>00933,01915,14310<br>-<br>-<br>01301,10435,13363,13364<br>-<br>07519<br>00135<br>11790<br>03443<br>02065<br>00128,09260<br>-                                                                                                                                                     |
| 85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98                                                                                                                                                                                                                                                                                                                                                       | BC11_02333<br>BC1T_02364<br>BC1T_02365<br>BC1T_02388<br>BC1T_02410<br>BC1T_02480<br>BC1T_02480<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02492<br>BC1T_02591<br>BC1T_02623<br>BC1T_02643<br>BC1T_02676                                                                                                                                                                                                                                                                                                                                                 | 379         759         400         203         989         41         516         504         386         252         431         402         122         102                                                                                                                                                                                                                        | $\begin{array}{r} 4.22\\ 0.53\\ 1.25\\ 3.94\\ 0.61\\ 0\\ 1.94\\ 0.4\\ 0.78\\ 1.59\\ 1.62\\ 2.24\\ 6.56\\ 7.84\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16         4         5         8         6         0         10         2         3         4         7         9         8         8         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | extr=26         extr=21         extr=27         extr=23         extr=26         extr=27         extr=27         extr=23         extr=20         extr=27                                                                                                                                                                                                                                                                                                                                 | 00686<br>00933,01915,14310<br>-<br>-<br>01301,10435,13363,13364<br>-<br>07519<br>00135<br>11790<br>03443<br>02065<br>00128,09260<br>-<br>-                                                                                                                                                |
| 85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99                                                                                                                                                                                                                                                                                                                                                 | BC11_02333<br>BC1T_02364<br>BC1T_02365<br>BC1T_02388<br>BC1T_02410<br>BC1T_02480<br>BC1T_02480<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02591<br>BC1T_02591<br>BC1T_02623<br>BC1T_02643<br>BC1T_02676<br>BC1T_02701                                                                                                                                                                                                                                                                                                                                   | 379         759         400         203         989         41         516         504         386         252         431         402         122         102         117                                                                                                                                                                                                            | $\begin{array}{r} 4.22\\ 0.53\\ 1.25\\ 3.94\\ 0.61\\ 0\\ 1.94\\ 0.4\\ 0.78\\ 1.59\\ 1.62\\ 2.24\\ 6.56\\ 7.84\\ 8.55\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16         4         5         8         6         0         10         2         3         4         7         9         8         8         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | extr=26         extr=21         extr=27         extr=23         extr=26         extr=19         extr=27         extr=23         extr=22         extr=27                                                                                                                                                                                                                                                                                                 | 00686<br>00933,01915,14310<br>-<br>-<br>01301,10435,13363,13364<br>-<br>07519<br>00135<br>11790<br>03443<br>02065<br>00128,09260<br>-<br>-<br>-<br>-                                                                                                                                      |
| 85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>99                                                                                                                                                                                                                                                                                                                                           | BC11_02333<br>BC1T_02364<br>BC1T_02365<br>BC1T_02388<br>BC1T_02410<br>BC1T_02480<br>BC1T_02480<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02591<br>BC1T_02591<br>BC1T_02643<br>BC1T_02676<br>BC1T_02701<br>BC1T_02702                                                                                                                                                                                                                                                                                                                     | 379         759         400         203         989         41         516         504         386         252         431         402         122         102         117         328                                                                                                                                                                                                | $\begin{array}{r} 4.22\\ 0.53\\ 1.25\\ 3.94\\ 0.61\\ 0\\ 1.94\\ 0.4\\ 0.78\\ 1.59\\ 1.62\\ 2.24\\ 6.56\\ 7.84\\ 8.55\\ 0.3\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16         4         5         8         6         0         10         2         3         4         7         9         8         10         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | extr=26         extr=21         extr=27         extr=23         extr=19         extr=26         extr=27         extr=23         extr=20         extr=22         extr=25         extr=22         extr=27         extr=27                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00686<br>00933,01915,14310<br>-<br>-<br>01301,10435,13363,13364<br>-<br>07519<br>00135<br>11790<br>03443<br>02065<br>00128,09260<br>-<br>-<br>-<br>-                                                                                                                                      |
| 85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>97<br>98<br>99<br>100                                                                                                                                                                                                                                                                                                                                    | BC11_02333<br>BC1T_02364<br>BC1T_02365<br>BC1T_02388<br>BC1T_02410<br>BC1T_02480<br>BC1T_02480<br>BC1T_02486<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02591<br>BC1T_02591<br>BC1T_02591<br>BC1T_02643<br>BC1T_02643<br>BC1T_02676<br>BC1T_02701<br>BC1T_02702<br>BC1T_02714                                                                                                                                                                                                                                                                           | 379         759         400         203         989         41         516         504         386         252         431         402         122         102         117         328         221                                                                                                                                                                                    | $\begin{array}{r} 4.22\\ 0.53\\ 1.25\\ 3.94\\ 0.61\\ 0\\ 1.94\\ 0.4\\ 0.78\\ 1.59\\ 1.62\\ 2.24\\ 6.56\\ 7.84\\ 8.55\\ 0.3\\ 5.61\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16         4         5         8         6         0         10         2         3         4         7         9         8         10         1         18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | extr=26         extr=21         extr=27         extr=23         extr=19         extr=26         extr=27         extr=23         extr=20         extr=22         extr=27         extr=22         extr=27         extr=22         extr=27         extr=22         extr=25         extr=22         extr=22         extr=27         extr=27         extr=27                                                                                                                                                                                                                                                                                                                 | 00686<br>00933,01915,14310<br>-<br>-<br>01301,10435,13363,13364<br>-<br>07519<br>00135<br>11790<br>03443<br>02065<br>00128,09260<br>-<br>-<br>-<br>-<br>-                                                                                                                                 |
| 85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>90<br>100                                                                                                                                                                                                                                                                                                                                    | BC11_02333<br>BC1T_02364<br>BC1T_02365<br>BC1T_02365<br>BC1T_02388<br>BC1T_02410<br>BC1T_02480<br>BC1T_02480<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02541<br>BC1T_02541<br>BC1T_02623<br>BC1T_02643<br>BC1T_02676<br>BC1T_02701<br>BC1T_02701<br>BC1T_02714<br>BC1T_02714                                                                                                                                                                                                                                                             | 379         759         400         203         989         41         516         504         386         252         431         402         122         102         117         328         321         727                                                                                                                                                                        | $\begin{array}{r} 4.22\\ 0.53\\ 1.25\\ 3.94\\ 0.61\\ 0\\ 1.94\\ 0.4\\ 0.78\\ 1.59\\ 1.62\\ 2.24\\ 6.56\\ 7.84\\ 8.55\\ 0.3\\ 5.61\\ 1.22\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16         4         5         8         6         0         10         2         3         4         7         9         8         10         1         18         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=26<br>extr=21<br>extr=27<br>extr=23<br>extr=26<br>extr=19<br>extr=26<br>extr=27<br>extr=23<br>extr=20<br>extr=22<br>extr=27<br>extr=27<br>extr=27<br>extr=27<br>extr=22<br>extr=27<br>extr=27                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00686<br>00933,01915,14310<br>-<br>-<br>01301,10435,13363,13364<br>-<br>07519<br>00135<br>11790<br>03443<br>02065<br>00128,09260<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                         |
| 85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102                                                                                                                                                                                                                                                                                                                            | BC11_02333<br>BC1T_02364<br>BC1T_02365<br>BC1T_02388<br>BC1T_02410<br>BC1T_02480<br>BC1T_02480<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02541<br>BC1T_02591<br>BC1T_02591<br>BC1T_02623<br>BC1T_02643<br>BC1T_02676<br>BC1T_02701<br>BC1T_02701<br>BC1T_02714<br>BC1T_02731                                                                                                                                                                                                                                                             | 379         759         400         203         989         41         516         504         386         252         431         402         122         102         117         328         321         737                                                                                                                                                                        | $\begin{array}{r} 4.22\\ 0.53\\ 1.25\\ 3.94\\ 0.61\\ 0\\ 1.94\\ 0.4\\ 0.78\\ 1.59\\ 1.62\\ 2.24\\ 6.56\\ 7.84\\ 8.55\\ 0.3\\ 5.61\\ 1.22\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16         4         5         8         6         0         10         2         3         4         7         9         8         10         1         18         9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | extr=26         extr=21         extr=27         extr=28         extr=26         extr=27         extr=27         extr=20         extr=27                                                                                                                                                                                                                                                                                                 | 00686<br>00933,01915,14310<br>-<br>-<br>01301,10435,13363,13364<br>-<br>07519<br>00135<br>11790<br>03443<br>02065<br>00128,09260<br>-<br>-<br>-<br>-<br>-<br>12708                                                                                                                        |
| 85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>90<br>100<br>101<br>102<br>103                                                                                                                                                                                                                                                                                                               | BC11_02333<br>BC1T_02364<br>BC1T_02365<br>BC1T_02388<br>BC1T_02410<br>BC1T_02480<br>BC1T_02480<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02591<br>BC1T_02591<br>BC1T_02643<br>BC1T_02643<br>BC1T_02676<br>BC1T_02701<br>BC1T_02701<br>BC1T_02714<br>BC1T_02731<br>BC1T_02738                                                                                                                                                                                                                                                             | 379         759         400         203         989         41         516         504         386         252         431         402         122         102         117         328         321         737         594                                                                                                                                                            | $\begin{array}{r} 4.22\\ 0.53\\ 1.25\\ 3.94\\ 0.61\\ 0\\ 1.94\\ 0.78\\ 1.59\\ 1.62\\ 2.24\\ 6.56\\ 7.84\\ 8.55\\ 0.3\\ 5.61\\ 1.22\\ 2.36\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16         4         5         8         6         0         10         2         3         4         7         9         8         10         1         18         9         14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | extr=26         extr=21         extr=27         extr=23         extr=26         extr=27         extr=23         extr=22         extr=27                                                                                                                                                                                 | 00686<br>00933,01915,14310<br>-<br>-<br>01301,10435,13363,13364<br>-<br>07519<br>00135<br>11790<br>03443<br>02065<br>00128,09260<br>-<br>-<br>-<br>-<br>12708<br>03659                                                                                                                    |
| 85           86           87           88           89           90           91           92           93           94           95           96           97           98           99           100           101           102           103                                                                                                                                                                                       | BC11_02333<br>BC1T_02364<br>BC1T_02365<br>BC1T_02388<br>BC1T_02410<br>BC1T_02480<br>BC1T_02480<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02591<br>BC1T_02591<br>BC1T_02643<br>BC1T_02643<br>BC1T_02643<br>BC1T_02676<br>BC1T_02701<br>BC1T_02701<br>BC1T_02714<br>BC1T_02731<br>BC1T_02738<br>BC1T_02740                                                                                                                                                                                                                                 | 379         759         400         203         989         41         516         504         386         252         431         402         122         102         117         328         321         737         594         403                                                                                                                                                | $\begin{array}{r} 4.22\\ 0.53\\ 1.25\\ 3.94\\ 0.61\\ 0\\ 1.94\\ 0.4\\ 0.78\\ 1.59\\ 1.62\\ 2.24\\ 6.56\\ 7.84\\ 8.55\\ 0.3\\ 5.61\\ 1.22\\ 2.36\\ 1.24\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{c} 16 \\ 4 \\ 5 \\ 8 \\ 6 \\ 0 \\ 10 \\ 2 \\ 3 \\ 4 \\ 7 \\ 9 \\ 8 \\ 8 \\ 10 \\ 1 \\ 18 \\ 9 \\ 14 \\ 5 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | extr=26         extr=21         extr=27         extr=28         extr=26         extr=27         extr=20         extr=27         extr=27         extr=27         extr=27         extr=27         extr=27         extr=27         extr=27         extr=22         extr=27         extr=22         extr=22         extr=22         extr=27         extr=22         extr=22         extr=22         extr=22         extr=22                                                                                                                                                                                                                                                 | 00686<br>00933,01915,14310<br>-<br>-<br>01301,10435,13363,13364<br>-<br>07519<br>00135<br>11790<br>03443<br>02065<br>00128,09260<br>-<br>-<br>-<br>-<br>-<br>12708<br>03659<br>-                                                                                                          |
| 85           86           87           88           89           90           91           92           93           94           95           96           97           98           99           100           101           102           103           104                                                                                                                                                                         | BC11_02333<br>BC1T_02364<br>BC1T_02365<br>BC1T_02388<br>BC1T_02410<br>BC1T_02480<br>BC1T_02480<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02591<br>BC1T_02591<br>BC1T_02643<br>BC1T_02643<br>BC1T_02676<br>BC1T_02676<br>BC1T_02701<br>BC1T_02714<br>BC1T_02731<br>BC1T_02738<br>BC1T_02740<br>BC1T_02755                                                                                                                                                                                                                                 | 379         759         400         203         989         41         516         504         386         252         431         402         122         102         117         328         321         737         594         403         224                                                                                                                                    | $\begin{array}{r} 4.22\\ 0.53\\ 1.25\\ 3.94\\ 0.61\\ 0\\ 1.94\\ 0.4\\ 0.78\\ 1.59\\ 1.62\\ 2.24\\ 6.56\\ 7.84\\ 8.55\\ 0.3\\ 5.61\\ 1.22\\ 2.36\\ 1.24\\ 0.89\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{c} 16 \\ 4 \\ 5 \\ 8 \\ 6 \\ 0 \\ 10 \\ 2 \\ 3 \\ 4 \\ 7 \\ 9 \\ 8 \\ 8 \\ 10 \\ 1 \\ 18 \\ 9 \\ 14 \\ 5 \\ 2 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | extr=26         extr=21         extr=27         extr=28         extr=26         extr=19         extr=27         extr=22         extr=27                                                                                                                                                                                 | 00686<br>00933,01915,14310<br>-<br>-<br>01301,10435,13363,13364<br>-<br>07519<br>00135<br>11790<br>03443<br>02065<br>00128,09260<br>-<br>-<br>-<br>-<br>-<br>12708<br>03659<br>-<br>-<br>-                                                                                                |
| 85           86           87           88           89           90           91           92           93           94           95           96           97           98           99           100           101           102           103           104           105                                                                                                                                                           | BC11_02333<br>BC1T_02364<br>BC1T_02365<br>BC1T_02365<br>BC1T_02388<br>BC1T_02410<br>BC1T_02480<br>BC1T_02480<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02591<br>BC1T_02591<br>BC1T_02643<br>BC1T_02643<br>BC1T_02676<br>BC1T_02701<br>BC1T_02701<br>BC1T_02714<br>BC1T_02731<br>BC1T_02738<br>BC1T_02740<br>BC1T_02755<br>BC1T_02790                                                                                                                                                                                                     | 379         759         400         203         989         41         516         504         386         252         431         402         122         102         117         328         321         737         594         403         224         232                                                                                                                        | $\begin{array}{r} 4.22\\ 0.53\\ 1.25\\ 3.94\\ 0.61\\ 0\\ 1.94\\ 0.4\\ 0.78\\ 1.59\\ 1.62\\ 2.24\\ 6.56\\ 7.84\\ 8.55\\ 0.3\\ 5.61\\ 1.22\\ 2.36\\ 1.24\\ 0.89\\ 0.86\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{c} 16 \\ 4 \\ 5 \\ 8 \\ 6 \\ 0 \\ 10 \\ 2 \\ 3 \\ 4 \\ 7 \\ 9 \\ 8 \\ 8 \\ 10 \\ 1 \\ 18 \\ 9 \\ 14 \\ 5 \\ 2 \\ 2 \\ 2 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | extr=26         extr=21         extr=27         extr=26         extr=19         extr=27         extr=27         extr=22         extr=27         extr=22         extr=22         extr=22                                                                                                                                                 | 00686<br>00933,01915,14310<br>-<br>-<br>01301,10435,13363,13364<br>-<br>07519<br>00135<br>11790<br>03443<br>02065<br>00128,09260<br>-<br>-<br>-<br>-<br>12708<br>03659<br>-<br>-<br>-<br>01828                                                                                            |
| 85           86           87           88           89           90           91           92           93           94           95           96           97           98           99           100           101           102           103           104           105           106                                                                                                                                             | BC11_02333<br>BC11_02364<br>BC1T_02365<br>BC1T_02365<br>BC1T_02388<br>BC1T_02410<br>BC1T_02480<br>BC1T_02480<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02492<br>BC1T_02591<br>BC1T_02591<br>BC1T_02591<br>BC1T_02643<br>BC1T_02643<br>BC1T_02643<br>BC1T_02701<br>BC1T_02701<br>BC1T_02702<br>BC1T_02714<br>BC1T_02731<br>BC1T_02738<br>BC1T_02740<br>BC1T_02755<br>BC1T_02790<br>BC1T_02834                                                                                                                                                           | 379         759         400         203         989         41         516         504         386         252         431         402         122         102         117         328         321         737         594         403         224         232         151                                                                                                            | $\begin{array}{r} 4.22\\ 0.53\\ 1.25\\ 3.94\\ 0.61\\ 0\\ 1.94\\ 0.4\\ 0.78\\ 1.59\\ 1.62\\ 2.24\\ 6.56\\ 7.84\\ 8.55\\ 0.3\\ 5.61\\ 1.22\\ 2.36\\ 1.24\\ 0.89\\ 0.86\\ 5.3\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{c} 16 \\ 4 \\ 5 \\ 8 \\ 6 \\ 0 \\ 10 \\ 2 \\ 3 \\ 4 \\ 7 \\ 9 \\ 8 \\ 8 \\ 10 \\ 1 \\ 18 \\ 9 \\ 14 \\ 5 \\ 2 \\ 2 \\ 8 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | extr=26         extr=21         extr=27         extr=26         extr=19         extr=26         extr=27         extr=20         extr=22         extr=27         extr=21         extr=22         extr=21         extr=22         extr=21         extr=22         extr=21         extr=22         extr=21         extr=22         extr=21         extr=22         extr=21                                                                 | 00686<br>00933,01915,14310<br>-<br>-<br>01301,10435,13363,13364<br>-<br>07519<br>00135<br>11790<br>03443<br>02065<br>00128,09260<br>-<br>-<br>-<br>-<br>12708<br>03659<br>-<br>-<br>01828<br>-                                                                                            |
| 85           86           87           88           89           90           91           92           93           94           95           96           97           98           99           100           101           102           103           104           105           106           107                                                                                                                               | BC11_02333<br>BC1T_02364<br>BC1T_02365<br>BC1T_02365<br>BC1T_02388<br>BC1T_02410<br>BC1T_02480<br>BC1T_02480<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02492<br>BC1T_02591<br>BC1T_02591<br>BC1T_02591<br>BC1T_02591<br>BC1T_02643<br>BC1T_02643<br>BC1T_02643<br>BC1T_02701<br>BC1T_02701<br>BC1T_02714<br>BC1T_02731<br>BC1T_02738<br>BC1T_02740<br>BC1T_02755<br>BC1T_02790<br>BC1T_02834<br>BC1T_02834                                                                                                                                             | 379         759         400         203         989         41         516         504         386         252         431         402         122         102         117         328         321         737         594         403         224         232         151         560                                                                                                | $\begin{array}{r} 4.22\\ 0.53\\ 1.25\\ 3.94\\ 0.61\\ 0\\ 1.94\\ 0.4\\ 0.78\\ 1.59\\ 1.62\\ 2.24\\ 6.56\\ 7.84\\ 8.55\\ 0.3\\ 5.61\\ 1.22\\ 2.36\\ 1.24\\ 0.89\\ 0.86\\ 5.3\\ 1.58\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{c} 16 \\ 4 \\ 5 \\ 8 \\ 6 \\ 0 \\ 10 \\ 2 \\ 3 \\ 4 \\ 7 \\ 9 \\ 8 \\ 8 \\ 10 \\ 1 \\ 18 \\ 9 \\ 14 \\ 5 \\ 2 \\ 2 \\ 8 \\ 9 \\ 9 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | extr=26         extr=21         extr=27         extr=23         extr=26         extr=19         extr=27         extr=22         extr=27         extr=21         extr=22         extr=22         extr=21         extr=22         extr=22         extr=21         extr=22         extr=21         extr=22         extr=22         extr=22         extr=24                                                                                 | 00686<br>00933,01915,14310<br>-<br>-<br>01301,10435,13363,13364<br>-<br>07519<br>00135<br>11790<br>03443<br>02065<br>00128,09260<br>-<br>-<br>-<br>-<br>12708<br>03659<br>-<br>-<br>01828<br>-<br>00286                                                                                   |
| 85           86           87           88           89           90           91           92           93           94           95           96           97           98           99           100           101           102           103           104           105           106           107           108                                                                                                                 | BC11_02333<br>BC1T_02364<br>BC1T_02365<br>BC1T_02388<br>BC1T_02410<br>BC1T_02480<br>BC1T_02480<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02591<br>BC1T_02591<br>BC1T_02591<br>BC1T_02591<br>BC1T_02591<br>BC1T_02643<br>BC1T_02643<br>BC1T_02701<br>BC1T_02702<br>BC1T_02714<br>BC1T_02731<br>BC1T_02738<br>BC1T_02740<br>BC1T_02755<br>BC1T_02790<br>BC1T_02834<br>BC1T_02944<br>BC1T_02944                                                                                                                                             | 379         759         400         203         989         41         516         504         386         252         431         402         122         102         117         328         321         737         594         403         224         232         151         569         410                                                                                    | $\begin{array}{r} 4.22\\ 0.53\\ 1.25\\ 3.94\\ 0.61\\ 0\\ 1.94\\ 0.4\\ 0.78\\ 1.59\\ 1.62\\ 2.24\\ 6.56\\ 7.84\\ 8.55\\ 0.3\\ 5.61\\ 1.22\\ 2.36\\ 1.24\\ 0.89\\ 0.86\\ 5.3\\ 1.58\\ 0.24\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{c} 16 \\ 4 \\ 5 \\ 8 \\ 6 \\ 0 \\ 10 \\ 2 \\ 3 \\ 4 \\ 7 \\ 9 \\ 8 \\ 8 \\ 10 \\ 1 \\ 18 \\ 9 \\ 14 \\ 5 \\ 2 \\ 2 \\ 8 \\ 9 \\ 1 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | extr=26         extr=21         extr=27         extr=26         extr=19         extr=26         extr=27         extr=20         extr=22         extr=27         extr=21         extr=22         extr=19         extr=18                 | 00686<br>00933,01915,14310<br>-<br>-<br>01301,10435,13363,13364<br>-<br>07519<br>00135<br>11790<br>03443<br>02065<br>00128,09260<br>-<br>-<br>-<br>12708<br>03659<br>-<br>-<br>01828<br>-<br>09286<br>04185                                                                               |
| 85           86           87           88           89           90           91           92           93           94           95           96           97           98           99           100           101           102           103           104           105           106           107           108           109                                                                                                   | BC11_02333<br>BC1T_02364<br>BC1T_02365<br>BC1T_02388<br>BC1T_02410<br>BC1T_02480<br>BC1T_02480<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02591<br>BC1T_02591<br>BC1T_02591<br>BC1T_02591<br>BC1T_02643<br>BC1T_02643<br>BC1T_02702<br>BC1T_02701<br>BC1T_02702<br>BC1T_02714<br>BC1T_02731<br>BC1T_02738<br>BC1T_02740<br>BC1T_02740<br>BC1T_02790<br>BC1T_02834<br>BC1T_02944<br>BC1T_02944<br>BC1T_02965                                                                                                                               | 379         759         400         203         989         41         516         504         386         252         431         402         122         102         117         328         321         737         594         403         224         232         151         569         419                                                                                    | $\begin{array}{r} 4.22\\ 0.53\\ 1.25\\ 3.94\\ 0.61\\ 0\\ 1.94\\ 0.4\\ 0.78\\ 1.59\\ 1.62\\ 2.24\\ 6.56\\ 7.84\\ 8.55\\ 0.3\\ 5.61\\ 1.22\\ 2.36\\ 1.24\\ 0.89\\ 0.86\\ 5.3\\ 1.58\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\$  | $ \begin{array}{c} 16 \\ 4 \\ 5 \\ 8 \\ 6 \\ 0 \\ 10 \\ 2 \\ 3 \\ 4 \\ 7 \\ 9 \\ 8 \\ 8 \\ 10 \\ 1 \\ 18 \\ 9 \\ 14 \\ 5 \\ 2 \\ 2 \\ 8 \\ 9 \\ 14 \\ 5 \\ 2 \\ 2 \\ 8 \\ 9 \\ 1 \\ 14 \\ 5 \\ 2 \\ 2 \\ 8 \\ 9 \\ 1 \\ 1 \\ 14 \\ 5 \\ 2 \\ 2 \\ 1 \\ 14 \\ 5 \\ 2 \\ 2 \\ 1 \\ 14 \\ 5 \\ 2 \\ 2 \\ 1 \\ 14 \\ 5 \\ 2 \\ 2 \\ 1 \\ 14 \\ 5 \\ 2 \\ 2 \\ 1 \\ 14 \\ 5 \\ 2 \\ 2 \\ 1 \\ 14 \\ 5 \\ 2 \\ 2 \\ 1 \\ 14 \\ 5 \\ 2 \\ 2 \\ 1 \\ 14 \\ 5 \\ 2 \\ 2 \\ 1 \\ 14 \\ 5 \\ 2 \\ 2 \\ 1 \\ 14 \\ 5 \\ 2 \\ 2 \\ 1 \\ 14 \\ 5 \\ 2 \\ 2 \\ 1 \\ 14 \\ 5 \\ 2 \\ 2 \\ 1 \\ 14 \\ 5 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$                                                                                                                                                                                   | extr=26         extr=21         extr=27         extr=26         extr=19         extr=26         extr=27         extr=20         extr=27         extr=21         extr=22         extr=21         extr=22         extr=21         extr=22         extr=21         extr=22         extr=21         extr=22         extr=21         extr=22         extr=19         extr=18                                                 | 00686<br>00933,01915,14310<br>-<br>-<br>01301,10435,13363,13364<br>-<br>07519<br>00135<br>11790<br>03443<br>02065<br>00128,09260<br>-<br>-<br>-<br>12708<br>03659<br>-<br>-<br>01828<br>-<br>09286<br>04185<br>02021                                                                      |
| 85           86           87           88           89           90           91           92           93           94           95           96           97           98           99           100           101           102           103           104           105           106           107           108           109           110                                                                                     | BC11_02333<br>BC1T_02364<br>BC1T_02365<br>BC1T_02388<br>BC1T_02410<br>BC1T_02480<br>BC1T_02480<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02591<br>BC1T_02591<br>BC1T_02591<br>BC1T_02591<br>BC1T_02643<br>BC1T_02643<br>BC1T_02766<br>BC1T_02701<br>BC1T_02714<br>BC1T_02731<br>BC1T_02738<br>BC1T_02740<br>BC1T_02740<br>BC1T_02755<br>BC1T_02790<br>BC1T_02834<br>BC1T_02944<br>BC1T_02965<br>BC1T_02986                                                                                                                               | 379         759         400         203         989         41         516         504         386         252         431         402         122         102         117         328         321         737         594         403         224         232         151         569         419         149                                                                        | $\begin{array}{r} 4.22\\ 0.53\\ 1.25\\ 3.94\\ 0.61\\ 0\\ 1.94\\ 0.4\\ 0.78\\ 1.59\\ 1.62\\ 2.24\\ 6.56\\ 7.84\\ 8.55\\ 0.3\\ 5.61\\ 1.22\\ 2.36\\ 1.24\\ 0.89\\ 0.86\\ 5.3\\ 1.58\\ 0.24\\ 2.68\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{c} 16 \\ 4 \\ 5 \\ 8 \\ 6 \\ 0 \\ 10 \\ 2 \\ 3 \\ 4 \\ 7 \\ 9 \\ 8 \\ 8 \\ 10 \\ 1 \\ 18 \\ 9 \\ 14 \\ 5 \\ 2 \\ 2 \\ 8 \\ 9 \\ 14 \\ 5 \\ 2 \\ 2 \\ 8 \\ 9 \\ 1 \\ 4 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | extr=26         extr=21         extr=27         extr=26         extr=27         extr=28         extr=27         extr=20         extr=27         extr=21         extr=22         extr=24                                 | 00686<br>00933,01915,14310<br>-<br>-<br>01301,10435,13363,13364<br>-<br>07519<br>00135<br>11790<br>03443<br>02065<br>00128,09260<br>-<br>-<br>-<br>-<br>12708<br>03659<br>-<br>-<br>01828<br>-<br>01828<br>-<br>09286<br>04185<br>02221                                                   |
| 85           86           87           88           89           90           91           92           93           94           95           96           97           98           99           100           101           102           103           104           105           106           107           108           109           110                                                                                     | BC11_02333<br>BC1T_02364<br>BC1T_02365<br>BC1T_02388<br>BC1T_02410<br>BC1T_02480<br>BC1T_02480<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02591<br>BC1T_02591<br>BC1T_02591<br>BC1T_02591<br>BC1T_02643<br>BC1T_02643<br>BC1T_02766<br>BC1T_02701<br>BC1T_02714<br>BC1T_02731<br>BC1T_02738<br>BC1T_02740<br>BC1T_02740<br>BC1T_02740<br>BC1T_02740<br>BC1T_02790<br>BC1T_02834<br>BC1T_02944<br>BC1T_02944<br>BC1T_02986<br>BC1T_0338                                                                                                    | 379         759         400         203         989         41         516         504         386         252         431         402         122         102         117         328         321         737         594         403         224         232         151         569         419         149         238                                                            | $\begin{array}{r} 4.22\\ 0.53\\ 1.25\\ 3.94\\ 0.61\\ 0\\ 1.94\\ 0.4\\ 0.78\\ 1.59\\ 1.62\\ 2.24\\ 6.56\\ 7.84\\ 8.55\\ 0.3\\ 5.61\\ 1.22\\ 2.36\\ 1.24\\ 0.89\\ 0.86\\ 5.3\\ 1.58\\ 0.24\\ 2.68\\ 2.1\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{c} 16 \\ 4 \\ 5 \\ 8 \\ 6 \\ 0 \\ 10 \\ 2 \\ 3 \\ 4 \\ 7 \\ 9 \\ 8 \\ 8 \\ 10 \\ 1 \\ 18 \\ 9 \\ 14 \\ 5 \\ 2 \\ 2 \\ 8 \\ 9 \\ 1 \\ 4 \\ 5 \\ 1 \\ 4 \\ 5 \\ 1 \\ 4 \\ 5 \\ 2 \\ 2 \\ 8 \\ 9 \\ 1 \\ 4 \\ 5 \\ 2 \\ 2 \\ 8 \\ 9 \\ 1 \\ 4 \\ 5 \\ 2 \\ 3 \\ 9 \\ 1 \\ 4 \\ 5 \\ 2 \\ 3 \\ 9 \\ 1 \\ 4 \\ 5 \\ 2 \\ 3 \\ 9 \\ 1 \\ 4 \\ 5 \\ 2 \\ 3 \\ 9 \\ 1 \\ 4 \\ 5 \\ 2 \\ 3 \\ 9 \\ 1 \\ 4 \\ 5 \\ 2 \\ 3 \\ 9 \\ 1 \\ 4 \\ 5 \\ 3 \\ 9 \\ 1 \\ 4 \\ 5 \\ 3 \\ 9 \\ 1 \\ 4 \\ 5 \\ 3 \\ 9 \\ 1 \\ 4 \\ 5 \\ 3 \\ 9 \\ 1 \\ 4 \\ 5 \\ 3 \\ 9 \\ 1 \\ 4 \\ 5 \\ 3 \\ 9 \\ 1 \\ 4 \\ 5 \\ 3 \\ 9 \\ 1 \\ 4 \\ 5 \\ 3 \\ 9 \\ 1 \\ 4 \\ 5 \\ 5 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$                                                                                                              | extr=26         extr=21         extr=27         extr=26         extr=26         extr=27         extr=22         extr=27         extr=21                                                                                                                                                                                                                                                                                                                 | 00686<br>00933,01915,14310<br>-<br>-<br>01301,10435,13363,13364<br>-<br>07519<br>00135<br>11790<br>03443<br>02065<br>00128,09260<br>-<br>-<br>-<br>-<br>12708<br>03659<br>-<br>-<br>01828<br>-<br>09286<br>04185<br>02221<br>00734                                                        |
| 85           86           87           88           89           90           91           92           93           94           95           96           97           98           99           100           101           102           103           104           105           106           107           108           109           110           111                                                                       | BC11_02333<br>BC1T_02364<br>BC1T_02365<br>BC1T_02388<br>BC1T_02410<br>BC1T_02480<br>BC1T_02480<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02591<br>BC1T_02591<br>BC1T_02591<br>BC1T_02591<br>BC1T_02643<br>BC1T_02643<br>BC1T_02701<br>BC1T_02702<br>BC1T_02701<br>BC1T_02714<br>BC1T_02738<br>BC1T_02740<br>BC1T_02740<br>BC1T_02740<br>BC1T_02740<br>BC1T_02740<br>BC1T_02790<br>BC1T_02834<br>BC1T_02944<br>BC1T_02944<br>BC1T_02986<br>BC1T_03038<br>BC1T_03045                                                                       | 379         759         400         203         989         41         516         504         386         252         431         402         122         102         117         328         321         737         594         403         224         232         151         569         419         149         238         116                                                | $\begin{array}{r} 4.22\\ 0.53\\ 1.25\\ 3.94\\ 0.61\\ 0\\ 1.94\\ 0.4\\ 0.78\\ 1.59\\ 1.62\\ 2.24\\ 6.56\\ 7.84\\ 8.55\\ 0.3\\ 5.61\\ 1.22\\ 2.36\\ 1.24\\ 0.89\\ 0.86\\ 5.3\\ 1.58\\ 0.24\\ 2.68\\ 2.1\\ 0.86\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{c} 16 \\ 4 \\ 5 \\ 8 \\ 6 \\ 0 \\ 10 \\ 2 \\ 3 \\ 4 \\ 7 \\ 9 \\ 8 \\ 8 \\ 10 \\ 1 \\ 18 \\ 9 \\ 14 \\ 5 \\ 2 \\ 2 \\ 8 \\ 9 \\ 1 \\ 4 \\ 5 \\ 1 \\ 1 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | extr=26         extr=21         extr=27         extr=26         extr=19         extr=26         extr=27         extr=20         extr=27         extr=21         extr=26         extr=21         extr=26                                                                                 | 00686<br>00933,01915,14310<br>-<br>-<br>01301,10435,13363,13364<br>-<br>07519<br>00135<br>11790<br>03443<br>02065<br>00128,09260<br>-<br>-<br>-<br>-<br>12708<br>03659<br>-<br>-<br>01828<br>-<br>09286<br>04185<br>02221<br>00734<br>02089                                               |
| 85           86           87           88           89           90           91           92           93           94           95           96           97           98           99           100           101           102           103           104           105           106           107           108           109           111           112           113                                                         | BC11_02333<br>BC1T_02364<br>BC1T_02365<br>BC1T_02388<br>BC1T_02410<br>BC1T_02480<br>BC1T_02480<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02541<br>BC1T_02541<br>BC1T_02541<br>BC1T_02591<br>BC1T_02541<br>BC1T_0263<br>BC1T_02676<br>BC1T_02701<br>BC1T_02702<br>BC1T_02701<br>BC1T_02731<br>BC1T_02731<br>BC1T_02738<br>BC1T_02740<br>BC1T_02740<br>BC1T_02740<br>BC1T_02790<br>BC1T_02834<br>BC1T_02944<br>BC1T_02944<br>BC1T_02986<br>BC1T_03038<br>BC1T_03045<br>BC1T_03065                                                          | 379         759         400         203         989         41         516         504         386         252         431         402         122         102         117         328         321         737         594         403         224         232         151         569         419         149         238         116         41                                     | $\begin{array}{r} 4.22\\ 0.53\\ 1.25\\ 3.94\\ 0.61\\ 0\\ 1.94\\ 0.4\\ 0.78\\ 1.59\\ 1.62\\ 2.24\\ 6.56\\ 7.84\\ 8.55\\ 0.3\\ 5.61\\ 1.22\\ 2.36\\ 1.24\\ 0.89\\ 0.86\\ 5.3\\ 1.58\\ 0.24\\ 2.68\\ 2.1\\ 0.86\\ 0\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ \begin{array}{c} 16 \\ 4 \\ 5 \\ 8 \\ 6 \\ 0 \\ 10 \\ 2 \\ 3 \\ 4 \\ 7 \\ 9 \\ 8 \\ 8 \\ 10 \\ 1 \\ 18 \\ 9 \\ 14 \\ 5 \\ 2 \\ 2 \\ 8 \\ 9 \\ 1 \\ 4 \\ 5 \\ 1 \\ 0 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | extr=26         extr=21         extr=27         extr=26         extr=27         extr=27         extr=20         extr=22         extr=27         extr=21         extr=22         extr=21         extr=24                                                                                                                                                                 | 00686<br>00933,01915,14310<br>-<br>-<br>01301,10435,13363,13364<br>-<br>07519<br>00135<br>11790<br>03443<br>02065<br>00128,09260<br>-<br>-<br>-<br>12708<br>03659<br>-<br>-<br>01828<br>-<br>09286<br>04185<br>02221<br>00734<br>02089<br>-                                               |
| 85           86           87           88           89           90           91           92           93           94           95           96           97           98           99           100           101           102           103           104           105           106           107           108           109           110           111           112           113                                           | BC11_02333<br>BC1T_02364<br>BC1T_02365<br>BC1T_02388<br>BC1T_02410<br>BC1T_02480<br>BC1T_02480<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02541<br>BC1T_02541<br>BC1T_02591<br>BC1T_02541<br>BC1T_02591<br>BC1T_02643<br>BC1T_02643<br>BC1T_02701<br>BC1T_02701<br>BC1T_02701<br>BC1T_02701<br>BC1T_02731<br>BC1T_02740<br>BC1T_02740<br>BC1T_02740<br>BC1T_02755<br>BC1T_02790<br>BC1T_02944<br>BC1T_02944<br>BC1T_02944<br>BC1T_02944<br>BC1T_02965<br>BC1T_03045<br>BC1T_03065<br>BC1T_03070                                           | 379         759         400         203         989         41         516         504         386         252         431         402         122         102         117         328         321         737         594         403         224         232         151         569         419         149         238         116         41         372                         | $\begin{array}{r} 4.22\\ 0.53\\ 1.25\\ 3.94\\ 0.61\\ 0\\ 1.94\\ 0.4\\ 0.78\\ 1.59\\ 1.62\\ 2.24\\ 6.56\\ 7.84\\ 8.55\\ 0.3\\ 5.61\\ 1.22\\ 2.36\\ 1.24\\ 0.89\\ 0.86\\ 5.3\\ 1.58\\ 0.24\\ 2.68\\ 2.1\\ 0.86\\ 0\\ 0\\ 5.4\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{c} 16 \\ 4 \\ 5 \\ 8 \\ 6 \\ 0 \\ 10 \\ 2 \\ 3 \\ 4 \\ 7 \\ 9 \\ 8 \\ 8 \\ 10 \\ 1 \\ 18 \\ 9 \\ 14 \\ 5 \\ 2 \\ 2 \\ 8 \\ 9 \\ 1 \\ 4 \\ 5 \\ 1 \\ 0 \\ 2 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | extr=26         extr=21         extr=27         extr=26         extr=26         extr=27         extr=22         extr=27         extr=26         extr=19         extr=26         extr=21         extr=24         extr=27                                                                                                                                                                                                                 | 00686<br>00933,01915,14310<br>-<br>-<br>01301,10435,13363,13364<br>-<br>07519<br>00135<br>11790<br>03443<br>02065<br>00128,09260<br>-<br>-<br>-<br>-<br>12708<br>03659<br>-<br>-<br>01828<br>-<br>09286<br>04185<br>02221<br>00734<br>02089<br>-<br>00026                                 |
| 85           86           87           88           89           90           91           92           93           94           95           96           97           98           99           100           101           102           103           104           105           106           107           108           109           110           111           112           113           114                             | BC11_02333<br>BC1T_02364<br>BC1T_02365<br>BC1T_02388<br>BC1T_02410<br>BC1T_02480<br>BC1T_02480<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02541<br>BC1T_02591<br>BC1T_02591<br>BC1T_02591<br>BC1T_02633<br>BC1T_02643<br>BC1T_02676<br>BC1T_02701<br>BC1T_02701<br>BC1T_02701<br>BC1T_02702<br>BC1T_02714<br>BC1T_02731<br>BC1T_02740<br>BC1T_02740<br>BC1T_02740<br>BC1T_02755<br>BC1T_02790<br>BC1T_02834<br>BC1T_02944<br>BC1T_02965<br>BC1T_02944<br>BC1T_02965<br>BC1T_03038<br>BC1T_03065<br>BC1T_03070<br>BC1T_03070               | 379         759         400         203         989         41         516         504         386         252         431         402         122         102         117         328         321         737         594         403         224         232         151         569         419         149         238         116         41         372         562             | $\begin{array}{r} 4.22\\ 0.53\\ 1.25\\ 3.94\\ 0.61\\ 0\\ 1.94\\ 0.4\\ 0.78\\ 1.59\\ 1.62\\ 2.24\\ 6.56\\ 7.84\\ 8.55\\ 0.3\\ 5.61\\ 1.22\\ 2.36\\ 1.24\\ 0.89\\ 0.86\\ 5.3\\ 1.58\\ 0.24\\ 2.68\\ 2.1\\ 0.86\\ 0\\ 0\\ 0.54\\ 1.96\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{c} 16 \\ 4 \\ 5 \\ 8 \\ 6 \\ 0 \\ 10 \\ 2 \\ 3 \\ 4 \\ 7 \\ 9 \\ 8 \\ 8 \\ 10 \\ 1 \\ 18 \\ 9 \\ 14 \\ 5 \\ 2 \\ 2 \\ 8 \\ 9 \\ 1 \\ 4 \\ 5 \\ 1 \\ 0 \\ 2 \\ 11 \\ 11 \\ 11 \\ 12 \\ 12 \\ 12 \\ 12 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | extr=26         extr=21         extr=27         extr=28         extr=26         extr=27         extr=20         extr=27         extr=21         extr=22         extr=21         extr=26         extr=21         extr=24         extr=27                                                                                                                                                                                                 | 00686<br>00933,01915,14310<br>-<br>-<br>01301,10435,13363,13364<br>-<br>07519<br>00135<br>11790<br>03443<br>02065<br>00128,09260<br>-<br>-<br>-<br>-<br>12708<br>03659<br>-<br>-<br>01828<br>-<br>01828<br>-<br>09286<br>04185<br>02221<br>00734<br>02089<br>-<br>00026<br>07510          |
| 85           86           87           88           89           90           91           92           93           94           95           96           97           98           99           100           101           102           103           104           105           106           107           108           109           110           111           112           113           114           115               | BC11_02333<br>BC1T_02364<br>BC1T_02365<br>BC1T_02388<br>BC1T_02410<br>BC1T_02480<br>BC1T_02480<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02541<br>BC1T_02591<br>BC1T_02591<br>BC1T_02591<br>BC1T_02643<br>BC1T_02643<br>BC1T_02643<br>BC1T_02701<br>BC1T_02701<br>BC1T_02701<br>BC1T_02701<br>BC1T_02702<br>BC1T_02714<br>BC1T_02738<br>BC1T_02740<br>BC1T_02740<br>BC1T_02755<br>BC1T_02740<br>BC1T_02790<br>BC1T_02834<br>BC1T_02944<br>BC1T_02944<br>BC1T_02965<br>BC1T_02945<br>BC1T_03038<br>BC1T_03065<br>BC1T_03070<br>BC1T_03086 | 379         759         400         203         989         41         516         504         386         252         431         402         122         102         117         328         321         737         594         403         224         232         151         569         419         149         238         116         41         372         562             | $\begin{array}{r} 4.22\\ 0.53\\ 1.25\\ 3.94\\ 0.61\\ 0\\ 1.94\\ 0.4\\ 0.78\\ 1.59\\ 1.62\\ 2.24\\ 6.56\\ 7.84\\ 8.55\\ 0.3\\ 5.61\\ 1.22\\ 2.36\\ 1.24\\ 0.89\\ 0.86\\ 5.3\\ 1.58\\ 0.24\\ 2.68\\ 2.1\\ 0.86\\ 0\\ 0\\ 0.54\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ 1.96\\ $ | $ \begin{array}{c} 16 \\ 4 \\ 5 \\ 8 \\ 6 \\ 0 \\ 10 \\ 2 \\ 3 \\ 4 \\ 7 \\ 9 \\ 8 \\ 8 \\ 10 \\ 1 \\ 18 \\ 9 \\ 14 \\ 5 \\ 2 \\ 2 \\ 8 \\ 9 \\ 14 \\ 5 \\ 2 \\ 2 \\ 8 \\ 9 \\ 1 \\ 4 \\ 5 \\ 1 \\ 0 \\ 2 \\ 11 \\ 5 \\ 5 \\ 1 \\ 0 \\ 2 \\ 11 \\ 5 \\ 5 \\ 1 \\ 0 \\ 2 \\ 11 \\ 5 \\ 5 \\ 1 \\ 0 \\ 2 \\ 11 \\ 5 \\ 5 \\ 1 \\ 0 \\ 2 \\ 11 \\ 5 \\ 5 \\ 1 \\ 0 \\ 2 \\ 11 \\ 5 \\ 5 \\ 1 \\ 0 \\ 2 \\ 11 \\ 5 \\ 5 \\ 1 \\ 0 \\ 2 \\ 11 \\ 5 \\ 5 \\ 1 \\ 0 \\ 2 \\ 11 \\ 5 \\ 5 \\ 1 \\ 0 \\ 2 \\ 11 \\ 5 \\ 5 \\ 1 \\ 0 \\ 2 \\ 11 \\ 5 \\ 5 \\ 1 \\ 0 \\ 2 \\ 11 \\ 5 \\ 5 \\ 1 \\ 0 \\ 2 \\ 11 \\ 5 \\ 5 \\ 1 \\ 0 \\ 2 \\ 11 \\ 5 \\ 5 \\ 1 \\ 0 \\ 2 \\ 11 \\ 5 \\ 5 \\ 1 \\ 0 \\ 2 \\ 11 \\ 5 \\ 5 \\ 1 \\ 0 \\ 2 \\ 11 \\ 5 \\ 5 \\ 1 \\ 0 \\ 2 \\ 11 \\ 5 \\ 1 \\ 0 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$ | extr=26         extr=21         extr=27         extr=26         extr=19         extr=27         extr=21         extr=26         extr=21         extr=24         extr=27         extr=27                                                                                 | 00686<br>00933,01915,14310<br>-<br>-<br>01301,10435,13363,13364<br>-<br>07519<br>00135<br>11790<br>03443<br>02065<br>00128,09260<br>-<br>-<br>-<br>-<br>12708<br>03659<br>-<br>-<br>01828<br>-<br>01828<br>-<br>09286<br>04185<br>02221<br>00734<br>02089<br>-<br>00026<br>07519<br>00125 |
| 85           86           87           88           89           90           91           92           93           94           95           96           97           98           99           100           101           102           103           104           105           106           107           108           109           110           111           112           113           114           115           116 | BC11_02333<br>BC1T_02364<br>BC1T_02365<br>BC1T_02388<br>BC1T_02410<br>BC1T_02480<br>BC1T_02480<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02487<br>BC1T_02591<br>BC1T_02591<br>BC1T_02591<br>BC1T_02591<br>BC1T_02591<br>BC1T_02643<br>BC1T_02643<br>BC1T_02643<br>BC1T_02701<br>BC1T_02702<br>BC1T_02701<br>BC1T_02702<br>BC1T_02714<br>BC1T_02731<br>BC1T_02738<br>BC1T_02740<br>BC1T_02740<br>BC1T_02740<br>BC1T_02834<br>BC1T_02944<br>BC1T_02965<br>BC1T_02986<br>BC1T_03038<br>BC1T_03045<br>BC1T_03070<br>BC1T_03097                             | 379         759         400         203         989         41         516         504         386         252         431         402         122         102         117         328         321         737         594         403         224         232         151         569         419         149         238         116         41         372         562         480 | $\begin{array}{r} 4.22\\ 0.53\\ 1.25\\ 3.94\\ 0.61\\ 0\\ 1.94\\ 0.4\\ 0.78\\ 1.59\\ 1.62\\ 2.24\\ 6.56\\ 7.84\\ 8.55\\ 0.3\\ 5.61\\ 1.22\\ 2.36\\ 1.24\\ 0.89\\ 0.86\\ 5.3\\ 1.58\\ 0.24\\ 2.68\\ 2.1\\ 0.86\\ 0\\ 0\\ 0.54\\ 1.96\\ 1.04\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 16 \\ 4 \\ 5 \\ 8 \\ 6 \\ 0 \\ 10 \\ 2 \\ 3 \\ 4 \\ 7 \\ 9 \\ 8 \\ 8 \\ 10 \\ 1 \\ 18 \\ 9 \\ 14 \\ 5 \\ 2 \\ 2 \\ 2 \\ 8 \\ 9 \\ 1 \\ 4 \\ 5 \\ 1 \\ 0 \\ 2 \\ 11 \\ 5 \\ 1 \\ 0 \\ 2 \\ 11 \\ 5 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | extr=26         extr=21         extr=27         extr=26         extr=19         extr=27         extr=20         extr=27         extr=21         extr=26         extr=21         extr=26         extr=27         extr=27         extr=21         extr=22         extr=24         extr=27         extr=28 | 00686<br>00933,01915,14310<br>-<br>-<br>01301,10435,13363,13364<br>-<br>07519<br>00135<br>11790<br>03443<br>02065<br>00128,09260<br>-<br>-<br>-<br>-<br>12708<br>03659<br>-<br>-<br>01828<br>-<br>09286<br>04185<br>02221<br>00734<br>02089<br>-<br>00026<br>07519<br>00135               |

| 118 | BC1T 03205 | 205 | 0     | 0    | extr=24 | -                       |
|-----|------------|-----|-------|------|---------|-------------------------|
| 119 | BC1T_03220 | 910 | 0.77  | 7    | extr=24 | 00732.05199             |
| 120 | BC1T_03208 | 177 | 0.56  | 1    | extr-25 | 00702,00177             |
| 120 | DC1T_03296 | 256 | 0.30  | 1    | exti-25 | -                       |
| 121 | BCI1_03406 | 256 | 0.39  | 1    | extr=25 | 01328                   |
| 122 | BC1T_03412 | 28  | 0     | 0    | extr=19 | -                       |
| 123 | BC1T_03464 | 422 | 2.61  | 11   | extr=27 | 00295                   |
| 124 | BC1T 03557 | 186 | 2.15  | 4    | extr=26 | 07510                   |
| 125 | BC1T_03560 | 306 | 2.27  | 0    | extr-25 | _                       |
| 123 | DC1T_03500 | 570 | 2.27  | )    | CAU-25  | -                       |
| 126 | BCI1_03567 | 994 | 0.2   | 2    | extr=25 | 01301,10435,13363,13364 |
| 127 | BC1T_03579 | 413 | 0.48  | 2    | extr=26 | 00026                   |
| 128 | BC1T_03590 | 262 | 2.29  | 6    | extr=26 | 00457,00734             |
| 129 | BC1T_03591 | 63  | 9.52  | 6    | extr=19 | -                       |
| 120 | PC1T_02506 | 122 | 0.91  | 1    | ovtr-22 |                         |
| 130 | BC11_03390 | 125 | 0.01  | 1    | exu-25  | -                       |
| 131 | BCIT_03619 | 425 | 2.35  | 10   | extr=26 | 00295                   |
| 132 | BC1T_03710 | 553 | 1.63  | 9    | extr=25 | 00450                   |
| 133 | BC1T 03711 | 531 | 2.07  | 11   | extr=23 | 00450.05388             |
| 134 | BC1T_03813 | 482 | 0.21  | 1    | extr-24 | 00190 07883             |
| 125 | DC1T_02840 | 204 | 2.46  | 7    | outr-24 | 00170,07003             |
| 155 | DC11_03649 | 284 | 2.40  | /    | exu=20  | -                       |
| 136 | BCIT_03859 | 351 | 1.14  | 4    | extr=24 | 01301                   |
| 137 | BC1T_03881 | 383 | 1.04  | 4    | extr=23 | 03663                   |
| 138 | BC1T_03886 | 516 | 0.39  | 2    | extr=26 | 00135                   |
| 139 | BC1T_03951 | 809 | 8.03  | 65   | extr=25 | -                       |
| 140 | BC1T_03076 | 546 | 1.47  | 8    | extr=25 | 08386                   |
| 140 | BC11_03970 | 340 | 1.47  | 0    | exu-23  | 08380                   |
| 141 | BCIT_03977 | 166 | 2.41  | 4    | extr=20 | -                       |
| 142 | BC1T_04043 | 593 | 0.34  | 2    | extr=25 | 00732,05199             |
| 143 | BC1T_04089 | 235 | 0.43  | 1    | extr=25 | -                       |
| 144 | BC1T_04092 | 511 | 0.2   | 1    | extr=26 | 00264                   |
| 145 | BC1T_0/11/ | 176 | 1.14  | 2    | extr-18 | -                       |
| 145 | DC1T_04114 | 170 | 1.14  | 2    | exu=16  | -                       |
| 146 | BCTT_04233 | 389 | 1.03  | 4    | extr=26 | 01263                   |
| 147 | BC1T_04246 | 412 | 3.64  | 15   | extr=27 | 00295                   |
| 148 | BC1T_04267 | 189 | 0.53  | 1    | extr=24 | -                       |
| 149 | BC1T 04280 | 41  | 7.32  | 3    | extr=21 | -                       |
| 150 | BC1T_04347 | 174 | 3 4 5 | 6    | extr=20 | -                       |
| 151 | BC1T_0/368 | 218 | 0     | 0    | extr-27 |                         |
| 151 | DC1T_04506 | 210 | 0     | 0    | exu-27  | -                       |
| 152 | BCI1_04506 | 84  | 15.5  | 13   | extr=27 | -                       |
| 153 | BC1T_04515 | 364 | 1.65  | 6    | extr=25 | -                       |
| 154 | BC1T_04521 | 143 | 5.59  | 8    | extr=25 | -                       |
| 155 | BC1T 04660 | 132 | 6.06  | 8    | extr=26 | -                       |
| 156 | BC1T_04810 | 250 | 2.4   | 6    | extr=26 | 00089                   |
| 157 | BC1T_0/010 | 368 | 0.27  | 1    | extr-24 | 03403                   |
| 137 | DC1T_04025 | 265 | 10.27 | 1 07 | CAU-24  | 03403                   |
| 158 | BCIT_04935 | 265 | 10.2  | 27   | extr=27 | -                       |
| 159 | BC1T_04947 | 295 | 1.02  | 3    | extr=23 | 03663                   |
| 160 | BC1T_04955 | 518 | 1.16  | 6    | extr=24 | 00141                   |
| 161 | BC1T 04994 | 480 | 1.67  | 8    | extr=26 | 05270.09206             |
| 162 | BC1T_05010 | 551 | 1.00  | 6    | extr-26 | 01412                   |
| 102 | DC1T_05022 | 017 | 1.07  | 0    | CAU-20  | 14021                   |
| 163 | BC11_05033 | 217 | 1.38  | 3    | extr=26 | 14021                   |
| 164 | BCIT_05056 | 191 | 1.05  | 2    | extr=27 | -                       |
| 165 | BC1T_05076 | 353 | 0.85  | 3    | extr=25 | -                       |
| 166 | BC1T 05134 | 128 | 6.25  | 8    | extr=25 | -                       |
| 167 | BC1T_05199 | 188 | 2.13  | 4    | extr-20 | 01083                   |
| 107 | DC1T 05442 | 206 | 1.21  |      | ovtr_07 | 01000                   |
| 108 | BC11_03442 | 500 | 1.51  | 4    | exu=27  | -                       |
| 169 | BCIT_05455 | 343 | 2.04  | 7    | extr=26 | 00704                   |
| 170 | BC1T_05478 | 180 | 1.11  | 2    | extr=18 | -                       |
| 171 | BC1T_05479 | 112 | 1.79  | 2    | extr=20 | -                       |
| 172 | BC1T_05488 | 392 | 0.26  | 1    | extr=24 | 05426                   |
| 172 | BC1T_05517 | 549 | 1.64  | 9    | extr-27 | 01565 08031             |
| 173 | DC1T_05520 | 720 | 2 10  | 22   | ontr-27 | 02650                   |
| 174 | встт_05539 | /20 | 5.19  | 23   | extr=26 | 03039                   |
| 175 | BCIT_05542 | 277 | 2.17  | 6    | extr=27 | -                       |
| 176 | BC1T_05576 | 248 | 2.82  | 7    | extr=26 | 11790                   |
| 177 | BC1T 05590 | 71  | 0     | 0    | extr=18 | -                       |
| 178 | BC1T_05646 | 163 | 2.45  | 4    | extr=25 | -                       |
| 170 | BC1T_05659 | 114 | 0     |      | extr-25 |                         |
| 1/9 | DC11_03030 | 750 | 1.22  | 10   | CAU-2J  | -                       |
| 180 | BCIT_05/65 | /58 | 1.32  | 10   | extr=22 | 09286                   |
| 181 | BC1T_05866 | 87  | 6.9   | 6    | extr=24 | -                       |
| 182 | BC1T_05885 | 357 | 1.96  | 7    | extr=26 | -                       |
| 183 | BC1T 05925 | 301 | 1.99  | 6    | extr=24 | -                       |
| 100 |            |     | /     | ~    |         |                         |

|   | 184 | BC1T_05961 | 258 | 2.33 | 6        | extr=23 | 00295             |
|---|-----|------------|-----|------|----------|---------|-------------------|
|   | 185 | BC1T_05976 | 142 | 1.41 | 2        | extr=24 | -                 |
|   | 186 | BC1T 05986 | 419 | 0.48 | 2        | extr=23 | 01565             |
|   | 187 | BC1T_06005 | 40  | 2.5  | 1        | extr=21 |                   |
|   | 188 | BC1T_06019 | 121 | 5 79 | 7        | extr-22 | _                 |
|   | 100 | DC1T_06025 | 400 | 4.41 | 22       | oxtr=26 | 00734 00840       |
|   | 189 | BCIT_00033 | 499 | 4.41 | 22       | exti=20 | 11227             |
|   | 190 | BCI1_06114 | 334 | 2.4  | 8        | extr=24 | 11327             |
|   | 191 | BC1T_06211 | 119 | 3.36 | 4        | extr=25 | -                 |
|   | 192 | BC1T_06237 | 383 | 1.04 | 4        | extr=24 | 01425             |
|   | 193 | BC1T_06274 | 174 | 1.72 | 3        | extr=27 | 01083             |
|   | 194 | BC1T 06310 | 226 | 1.33 | 3        | extr=24 | 05630             |
|   | 195 | BC1T_06314 | 160 | 1.25 | 2        | extr=24 | -                 |
|   | 106 | BC1T_06328 | 625 | 0.48 | 3        | extr-27 | 05592             |
| - | 190 | DC1T_06224 | 400 | 1.2  | 5        | extr=26 | 01565             |
| _ | 197 | BC11_00334 | 499 | 1.2  | 0        | exu=20  | 01303             |
|   | 198 | BCIT_06369 | 239 | 1.6/ | 4        | extr=27 | 01083             |
|   | 199 | BC1T_06380 | 79  | 0    | 0        | extr=22 | 00795             |
|   | 200 | BC1T_06463 | 531 | 1.51 | 8        | extr=25 | 00128,09260       |
|   | 201 | BC1T_06509 | 466 | 6.01 | 28       | extr=25 | 01522             |
|   | 202 | BC1T_06546 | 440 | 2.05 | 9        | extr=25 | 02065             |
|   | 203 | BC1T_06727 | 153 | 0    | 0        | extr=18 | 12296             |
| - | 204 | BC1T_06769 | 525 | 2 29 | 12       | extr-25 | -                 |
| - | 204 | BC1T_06815 | 012 | 2.2) | 27       | extr=25 |                   |
| _ | 205 | BC11_00813 | 912 | 2.90 | 21       | exti=23 | -                 |
|   | 206 | BCI1_06836 | 505 | 0.59 | 3        | extr=24 | 00082,05922       |
|   | 207 | BCIT_06840 | 217 | 0.46 | 1        | extr=27 | 01095             |
|   | 208 | BC1T_06893 | 493 | 1.22 | 6        | extr=19 | 00067             |
|   | 209 | BC1T_07052 | 217 | 5.53 | 12       | extr=23 | 03211             |
|   | 210 | BC1T_07058 | 473 | 1.69 | 8        | extr=25 | 03659             |
|   | 211 | BC1T 07073 | 204 | 1.96 | 4        | extr=26 | 11937             |
| - | 212 | BC1T_07101 | 835 | 0.6  | 5        | extr=27 | 05592             |
|   | 212 | BC1T_07110 | 784 | 0.80 | 7        | extr=24 | 00933 01915 1/310 |
| - | 213 | DC1T_07140 | 544 | 1.1  | 6        | extr=25 | 00/50             |
|   | 214 | BC11_07149 | 344 | 1.1  | 0        | exti=25 | 00430             |
|   | 215 | BCI1_0/160 | 273 | 2.2  | 6        | extr=25 | -                 |
|   | 216 | BC1T_07173 | 232 | 1.72 | 4        | extr=26 | -                 |
|   | 217 | BC1T_07175 | 83  | 7.23 | 6        | extr=27 | -                 |
|   | 218 | BC1T_07215 | 582 | 1.2  | 7        | extr=25 | 00728             |
|   | 219 | BC1T_07220 | 541 | 1.48 | 8        | extr=25 | 10528             |
|   | 220 | BC1T 07275 | 735 | 0.95 | 7        | extr=23 | -                 |
|   | 221 | BC1T_07314 | 266 | 0.75 | 2        | extr=19 | -                 |
|   | 221 | BC1T_07319 | 760 | 1 18 | 9        | extr-26 | 12708             |
| - | 222 | DC1T_07317 | 226 | 0    | 0        | extr=20 | 12700             |
|   | 223 | DC1T_07320 | 320 | 0    | 0        | CAU-21  | -                 |
|   | 224 | BCI1_0/4// | 40  | 2.5  | 1        | extr=19 | -                 |
|   | 225 | BCIT_07482 | 468 | 0.64 | 3        | extr=23 | 01565             |
|   | 226 | BC1T_07483 | 433 | 0.92 | 4        | extr=27 | 03583             |
|   | 227 | BC1T_07521 | 386 | 0.52 | 2        | extr=26 | 00026             |
|   | 228 | BC1T_07527 | 367 | 1.63 | 6        | extr=27 | 00544             |
|   | 229 | BC1T_07558 | 353 | 0.28 | 1        | extr=18 | 04488             |
|   | 230 | BC1T 07577 | 61  | 1.64 | 1        | extr=23 | -                 |
|   | 231 | BC1T_07608 | 289 | 0.69 | 2        | extr=25 | 13668             |
|   | 231 | BC1T_07611 | 73  | 11   | 8        | extr-20 | -                 |
| - | 232 | DC1T_07620 | 556 | 0.54 | 2        | extr=20 | -                 |
| _ | 233 | BC11_07620 | 330 | 0.34 | 3        | exti=20 | 01019             |
|   | 234 | BCIT_0/622 | /59 | 0.92 | /        | extr=26 | 00933,01915,14310 |
|   | 235 | BC1T_07637 | 539 | 1.11 | 6        | extr=27 | 00135             |
|   | 236 | BC1T_07653 | 307 | 1.63 | 5        | extr=24 | 03443             |
|   | 237 | BC1T_07658 | 356 | 1.12 | 4        | extr=25 | 03443             |
|   | 238 | BC1T_07770 | 492 | 1.22 | 6        | extr=22 | 02225,04389       |
|   | 239 | BC1T 07778 | 457 | 1.53 | 7        | extr=25 | -                 |
|   | 240 | BC1T 07794 | 822 | 1.09 | 9        | extr=26 | 00732.05199       |
|   | 2/1 | BC1T_07820 | 528 | 17   | 9        | extr=24 | 00128 09260       |
| - | 2+1 | BC1T_07822 | 580 | 0.34 | 2        | extr=25 | 00150 03442       |
| - | 242 | DC11_07054 | 201 | 0.54 | <u> </u> | outr-25 | 00130,03442       |
| - | 243 | DC11_07834 | 201 | 0    | 0        | exu=23  | -                 |
| - | 244 | BCII_0/899 | 218 | 1.83 | 4        | extr=26 | 01083             |
|   | 245 | BC1T_07945 | 299 | 2.68 | 8        | extr=27 | 00722             |
|   | 246 | BC1T_07949 | 211 | 5.69 | 12       | extr=26 | -                 |
|   | 247 | BC1T_07950 | 312 | 9.29 | 29       | extr=23 | -                 |
|   | 248 | BC1T_07951 | 395 | 6.08 | 24       | extr=24 | -                 |
|   | 249 | BC1T 07974 | 289 | 1.38 | 4        | extr=27 | 00135,07859       |
| - |     |            |     |      | L        |         | ,                 |

| 2   | 50  | BC1T_08033 | 349 | 2.29 | 8      | extr=26 | 00295       |
|-----|-----|------------|-----|------|--------|---------|-------------|
| 2   | 51  | BC1T_08058 | 220 | 1.82 | 4      | extr=21 | -           |
| 2   | 52  | BC1T_08063 | 352 | 1 14 | 4      | extr=26 | -           |
| -   | 52  | BC1T_08101 | 320 | 0.3  | 1      | extr-10 |             |
|     | .55 | DC1T_00101 | 32) | 0.5  | 1      | CAU-17  | -           |
| 2   | 54  | BC11_08100 | 305 | 2.47 | 9      | extr=25 | -           |
| 2   | 55  | BC1T_08110 | 403 | 1.24 | 5      | extr=27 | 03022       |
| 2   | 56  | BC1T_08253 | 563 | 1.78 | 10     | extr=26 | 07519       |
| 2   | 57  | BC1T 08280 | 223 | 1.79 | 4      | extr=21 | 00188       |
| 2   | 59  | BC1T_08308 | 371 | 3.23 | 12     | extr-26 | 01822 11790 |
|     | .50 | DC1T_00300 | 011 | 0.27 | 12     | CAU-20  | 01022,11750 |
| 2   | .59 | BC11_08314 | 211 | 2.37 | 5      | extr=26 | 01085       |
| 2   | .60 | BCIT_08354 | 602 | 1.5  | 9      | extr=26 | 09286       |
| 2   | 61  | BC1T_08363 | 78  | 12.8 | 10     | extr=26 | -           |
| 2   | 62  | BC1T_08370 | 284 | 1.76 | 5      | extr=23 | 00332       |
| 2   | 63  | BC1T 08372 | 636 | 0.31 | 2      | extr=24 | 06964       |
| 2   | 64  | BC1T_08393 | 384 | 1.04 | 4      | extr=25 | 00026       |
| 2   | 65  | BC1T_08414 | 153 | 2.61 | 1      | extr-26 | -           |
|     | .05 | DC1T_00442 | 155 | 2.01 | 4      | CAU-20  | -           |
|     | .66 | BC11_08442 | 155 | 3.8/ | 0      | extr=25 | -           |
| 2   | .67 | BCIT_08544 | 522 | 4.6  | 24     | extr=22 | 01822,09362 |
| 2   | .68 | BC1T_08574 | 264 | 1.89 | 5      | extr=27 | 08787       |
| 2   | .69 | BC1T_08580 | 147 | 4.08 | 6      | extr=25 | -           |
| 2   | 70  | BC1T 08585 | 487 | 4.52 | 22     | extr=26 | 01822,09362 |
| 2   | 71  | BC1T_08615 | 825 | 0.24 | 2      | extr=26 | -           |
| 2   | 72  | BC1T_08635 | 189 | 2.12 | 4      | extr-26 | _           |
|     | 72  | DC1T_00033 | 202 | 1.02 | 4      | extr=25 | -           |
|     | .13 | BC11_08038 | 202 | 1.98 | 4      | extr=25 | -           |
| 2   | .74 | BCIT_08658 | 403 | 0.99 | 4      | extr=25 | 00246       |
| 2   | 75  | BC1T_08692 | 199 | 3.02 | 6      | extr=27 | 03443       |
| 2   | 76  | BC1T_08735 | 132 | 3.79 | 5      | extr=27 | 07249       |
| 2   | 77  | BC1T 08748 | 476 | 0.84 | 4      | extr=26 | -           |
| 2   | 78  | BC1T_08749 | 189 | 0.53 | 1      | extr-18 | -           |
| 2   | 70  | BC1T_08751 | 180 | 0.53 | 1      | extr-18 |             |
|     | .19 | DC1T_00755 | 522 | 0.55 | 1      | exu=10  | -           |
| 2   | .80 | BC11_08/55 | 523 | 1.15 | 6      | extr=27 | 00686,00723 |
| 2   | 81  | BC1T_08757 | 584 | 1.71 | 10     | extr=25 | 08450       |
| 2   | 82  | BC1T_08801 | 685 | 0.29 | 2      | extr=23 | -           |
| 2   | 83  | BC1T_08831 | 653 | 1.68 | 11     | extr=25 | 00450       |
| 2   | 84  | BC1T 08904 | 293 | 0.34 | 1      | extr=26 | -           |
| 2   | 85  | BC1T_08911 | 37  | 27   | 1      | extr-19 | -           |
|     | 000 | BC1T_08024 | 264 | 0.76 | 2      | extr=25 | 00722       |
|     | .00 | DC1T_00021 | 204 | 0.70 | 2      | exu=23  | 11227       |
| 2   | 87  | BC11_08931 | 230 | 0.87 | 2      | extr=24 | 11327       |
| 2   | 88  | BCIT_08975 | 771 | 0.91 | 1      | extr=26 | -           |
| 2   | 89  | BC1T_08989 | 438 | 2.28 | 10     | extr=27 | 01341       |
| 2   | 90  | BC1T_08990 | 392 | 3.06 | 12     | extr=26 | 00150,00734 |
| 2   | 91  | BC1T 09000 | 272 | 0    | 0      | extr=23 | 00544       |
| 2   | 92  | BC1T_09013 | 551 | 0.73 | 4      | extr=26 | 00135       |
|     | 02  | BC1T_00020 | 380 | 1.03 | 1      | extr=20 | 00401       |
| 2   | .95 | DC1T_09029 | 122 | 1.05 | 4      | exu-21  | 00491       |
| 2   | .94 | BC11_09054 | 133 | 3.01 | 4      | extr=26 | -           |
| 2   | .95 | BCIT_09084 | 122 | 6.56 | 8      | extr=24 | -           |
| 2   | .96 | BC1T_09106 | 308 | 0.65 | 2      | extr=24 | -           |
| 2   | .97 | BC1T_09121 | 563 | 1.24 | 7      | extr=24 | 00135,07859 |
| 2   | .98 | BC1T_09122 | 322 | 0    | 0      | extr=21 | -           |
| 2   | 99  | BC1T_09146 | 789 | 1.52 | 12     | extr=26 | 01522       |
| 3   | 00  | BC1T_00180 | 336 | 2.38 | 8      | extr-24 | 02102       |
|     | 01  | DC1T_00100 | 612 | 2.30 | 7      | ovtr-24 | 01565 08021 |
|     | 01  | BC11_09190 | 013 | 1.14 | 7      | extr=26 | 01505,08051 |
| 3   | 02  | BCIT_09210 | 360 | 1.39 | 5      | extr=25 | 00150       |
| 3   | 03  | BC1T_09240 | 433 | 0.23 | 1      | extr=25 | 00190,07883 |
| 3   | 04  | BC1T_09364 | 414 | 0.72 | 3      | extr=24 | 01328       |
| 3   | 05  | BC1T_09391 | 518 | 0.58 | 3      | extr=26 | 00135       |
| 3   | 06  | BC1T 09495 | 490 | 2.04 | 10     | extr=27 | 07519       |
| 2   | 07  | BC1T 09564 | 526 | 1.33 | 7      | extr=26 | 05577       |
|     | 00  | BC1T_00545 | 303 | 1.02 | ,      | extr=25 | 05577       |
| - 3 | 00  | DC11_07303 | 202 | 1.02 | 4<br>5 | CAU-2J  | 00199       |
| 3   | 09  | BCTT_09594 | 303 | 1.05 | 3      | extr=2/ | 00188       |
| 3   | 10  | BCIT_09613 | 315 | 0    | 0      | extr=18 | 03345       |
| 3   | 11  | BC1T_09644 | 538 | 1.12 | 6      | extr=25 | 00135       |
| 3   | 12  | BC1T_09656 | 494 | 0.4  | 2      | extr=25 | -           |
| 3   | 13  | BC1T 09657 | 310 | 1.29 | 4      | extr=21 | -           |
| 2   | 14  | BC1T_09694 | 527 | 1 33 | 7      | extr=27 | 00135 07859 |
|     | 15  | BC1T 00790 | 510 | 0.30 | 2      | extr-10 | -           |
| 1 3 | 1.5 | DC11_07/07 | 517 | 0.37 | 4      | UAU-17  | -           |
| 316 | BC1T_09791 | 436   | 0.92 | 4    | extr=27    | -                 |
|-----|------------|-------|------|------|------------|-------------------|
| 317 | BC1T_09803 | 291   | 1.37 | 4    | extr=25    | -                 |
| 318 | BC1T_09829 | 312   | 2.88 | 9    | extr=25    | -                 |
| 319 | BC1T_09883 | 399   | 1.5  | 6    | extr=25    | 12697             |
| 320 | BC1T_09892 | 341   | 2.93 | 10   | extr=27    | 09792             |
| 321 | BC1T_09968 | 140   | 5    | 7    | extr=23    | -                 |
| 322 | BC1T_09991 | 873   | 1.72 | 15   | extr=24    | -                 |
| 323 | BC1T_09997 | 575   | 1.04 | 6    | extr=25    | 01425             |
| 324 | BC1T_10075 | 363   | 0.83 | 3    | extr=20    | 04909             |
| 325 | BC1T_10091 | 493   | 1.22 | 6    | extr=26    | 00135,07859       |
| 326 | BC1T_10095 | 504   | 0.79 | 4    | extr=26    | 13668             |
| 327 | BC1T_10164 | 327   | 0.92 | 3    | extr=22    | 00300             |
| 328 | BC1T_10221 | 868   | 0.92 | 8    | extr=26    | 00933,01915,14310 |
| 329 | BC1T_10229 | 333   | 2.4  | 8    | extr=23    | 03211             |
| 330 | BC1T_10231 | 867   | 0.92 | 8    | extr=27    | 00933,01915,14310 |
| 331 | BC1T_10246 | 173   | 2.31 | 4    | extr=26    | -                 |
| 332 | BC1T_10247 | 493   | 0.41 | 2    | extr=25    | 00251             |
| 333 | BC1T_10306 | 223   | 1.79 | 4    | extr=25    | 05630             |
| 334 | BC1T_10322 | 301   | 1.33 | 4    | extr=26    | 04616             |
| 335 | BC1T_10329 | 648   | 1.54 | 10   | extr=27    | 00394,07731,07732 |
| 336 | BC1T_10341 | 447   | 0.22 | 1    | extr=25    | 02156             |
| 337 | BC1T_10379 | 369   | 3.25 | 12   | extr=26    | -                 |
| 338 | BC1T_10381 | 1147  | 1.39 | 16   | extr=25    | -                 |
| 339 | BC1T_10397 | 394   | 1.52 | 6    | extr=26    | -                 |
| 340 | BC1T_10445 | 70    | 4.29 | 3    | extr=24    | -                 |
| 341 | BC1T_10462 | 114   | 1.75 | 2    | extr=20    | -                 |
| 342 | BC1T_10466 | 429   | 2.33 | 10   | extr=26    | -                 |
| 343 | BC1T_10473 | 713   | 0.84 | 6    | extr=26    | -                 |
| 344 | BC1T_10475 | 392   | 1.53 | 6    | extr=27    | -                 |
| 345 | BC1T_10486 | 488   | 0.61 | 3    | extr=25    | -                 |
| 346 | BC1T_10695 | 310   | 2.58 | 8    | extr=26    | -                 |
| 347 | BC1T_10768 | 365   | 1.1  | 4    | extr=26    | 00775             |
| 348 | BC1T_10788 | 476   | 0    | 0    | extr=26    | 00732,05199       |
| 349 | BC1T_10789 | 302   | 0.66 | 2    | extr=26    | 03664             |
| 350 | BCIT_10/91 | 298   | 2.68 | 8    | extr=24    | 13933             |
| 351 | BCIT_10/9/ | 498   | 0.6  | 3    | extr=27    | 04616             |
| 352 | BCIT_10827 | 694   | 0.43 | 3    | extr=24    | 08760             |
| 353 | BCIT_10861 | 95    | 4.21 | 4    | extr=22    | -                 |
| 354 | BCIT_108/2 | 338   | 0.59 | 2    | extr=25    | 12006             |
| 355 | BCIT_10880 | 434   | 4.15 | 18   | extr=26    | 00840             |
| 356 | BCIT_11080 | 191   | 0    | 0    | extr=24    | -                 |
| 357 | BCIT_11113 | 438   | 0.91 | 4    | extr=23    | 01055,15802       |
| 358 | BC11_11134 | 279   | 2.15 | 0    | extr=24    | 12440             |
| 359 | BCIT_11139 | 304   | 0.99 | 3    | extr=24    | 00205             |
| 300 | DC1T_11143 | 302   | 2.21 | 0    | extr=26    | 00293             |
| 301 | DC1T_11144 | 511   | 0.90 | 3    | extr=20    | 01095             |
| 302 | BC1T_11259 | 571   | 1 22 | 0    | extr=24    | -                 |
| 303 | BC1T 11200 | 365   | 0.82 | 3    | extr-2/    | 01156             |
| 304 | BC1T 11200 | 309   | 0.82 | 1    | extr-20    | 13668             |
| 365 | BC1T_11302 | 487   | 1.64 | 8    | extr-25    | 00328             |
| 367 | BC1T_11403 | 95    | 0.47 | 0    | extr=27    |                   |
| 369 | BC1T 11405 | 405   | 0.25 | 1    | extr-25    | 00704             |
| 360 | BC1T_11407 | 620   | 0.23 | 6    | extr-27    | 00933 01915 14310 |
| 370 | BC1T 11503 | 80    | 75   | 6    | extr=22    | -                 |
| 370 | BC1T_11556 | 638   | 1.1  | 7    | extr=19    | 01565.08031       |
| 371 | BC1T_11606 | 137   | 1.1  | 2    | extr=26    | -                 |
| 372 | BC1T_11690 | 367   | 2.18 | 8    | extr=24    | 00544             |
| 373 | BC1T_11698 | 340   | 2.94 | 10   | extr=26    | 00445             |
| 375 | BC1T_11751 | 434   | 1.84 | 8    | extr=24    | 00328             |
| 376 | BC1T 11795 | 263   | 1.52 | 4    | extr=27    | 11937             |
| 377 | BC1T 11826 | 387   | 3.62 | . 14 | extr=26    | -                 |
| 378 | BC1T 11835 | 451   | 0.89 | 4    | extr=25    | 00328             |
| 379 | BC1T 11891 | 146   | 0.68 | 1    | extr=26    | -                 |
| 380 | BC1T 11898 | 275   | 1.82 | 5    | extr=25    | 00332             |
| 381 | BC1T 11909 | 392   | 3.06 | 12   | extr=26    | 00295             |
| 201 |            | ~ ~ = | 2.00 |      | <u>- v</u> | _ · · =           |

| -     |            |      |      |    |         |             |
|-------|------------|------|------|----|---------|-------------|
| 382   | BC1T_11941 | 201  | 2.49 | 5  | extr=21 | -           |
| 383   | BC1T_12003 | 127  | 4.72 | 6  | extr=21 | -           |
| 384   | BC1T 12117 | 562  | 0.89 | 5  | extr=26 | 00732.05199 |
| 385   | BC1T_12131 | 229  | 0    | 0  | extr=25 | 03636       |
| 296   | BC1T_12132 | 081  | 0.51 | 5  | extr-25 | 03632 03636 |
| 207   | DC1T_12132 | 559  | 0.31 | 2  | extr=27 | 06064       |
| 38/   | DC1T_12130 | 536  | 0.30 | 2  | exu=27  | 00904       |
| 388   | BCI1_12139 | 523  | 0.76 | 4  | extr=27 | 00135       |
| 389   | BC1T_12145 | 618  | 0.81 | 5  | extr=26 | 00754,09118 |
| 390   | BC1T_12157 | 379  | 0.79 | 3  | extr=22 | 00491       |
| 391   | BC1T_12169 | 119  | 5.04 | 6  | extr=23 | -           |
| 392   | BC1T 12171 | 340  | 1.76 | 6  | extr=26 | -           |
| 393   | BC1T_12174 | 486  | 0.62 | 3  | extr=24 | 05426       |
| 304   | BC1T_12220 | 1132 | 0.62 | 7  | extr-26 | -           |
| 205   | DC1T_12220 | 102  | 0.02 | 2  | extr=26 | 00125       |
| 395   | DC1T_12249 | 495  | 0.01 | 3  | extr=20 | 00133       |
| 396   | BCIT_12292 | 519  | 1.16 | 6  | extr=22 | -           |
| 397   | BC1T_12343 | 916  | 0.55 | 5  | extr=27 | 00082,06280 |
| 398   | BC1T_12374 | 170  | 2.35 | 4  | extr=26 | -           |
| 399   | BC1T_12379 | 277  | 5.05 | 14 | extr=25 | 01083       |
| 400   | BC1T_12449 | 414  | 1.21 | 5  | extr=26 | 01328       |
| 401   | BC1T 12450 | 371  | 0    | 0  | extr=27 | -           |
| 402   | BC1T 12455 | 335  | 3.28 | 11 | extr=26 | _           |
| 403   | BC1T_12478 | 397  | 1.26 | 5  | extr-25 | 00150       |
| 403   | DC1T_12470 | 357  | 1.20 | 5  | extr=26 | 00544       |
| 404   | DC1T_12517 | 304  | 1.05 | 0  | ext1-20 | 00344       |
| 405   | BCIT_12522 | 6/1  | 2.09 | 14 | extr=26 | -           |
| 406   | BC1T_12525 | 408  | 0.74 | 3  | extr=27 | 01328       |
| 407   | BC1T_12529 | 106  | 1.89 | 2  | extr=21 | -           |
| 408   | BC1T_12537 | 486  | 1.03 | 5  | extr=25 | 01565       |
| 409   | BC1T_12619 | 294  | 2.04 | 6  | extr=26 | 11327       |
| 410   | BC1T 12627 | 452  | 2.43 | 11 | extr=26 | 03856       |
| 411   | BC1T 12680 | 212  | 1.42 | 3  | extr=27 | -           |
| 412   | BC1T 12725 | 156  | 0    | 0  | extr-18 | 12296       |
| 412   | BC1T_12723 | 121  | 2.48 | 3  | extr-18 | 12290       |
| 413   | DC1T_12732 | 121  | 2.40 | 5  | exti-10 | -           |
| 414   | BCIT_12/4/ | 80   | 9.3  | 8  | extr=25 | -           |
| 415   | BCIT_12/53 | 166  | 4.82 | 8  | extr=24 | -           |
| 416   | BC1T_12766 | 157  | 1.27 | 2  | extr=27 | -           |
| 417   | BC1T_12776 | 596  | 1.01 | 6  | extr=26 | 09286       |
| 418   | BC1T_12793 | 886  | 2.37 | 21 | extr=27 | -           |
| 419   | BC1T_12859 | 975  | 0.82 | 8  | extr=27 | 01055       |
| 420   | BC1T_12867 | 169  | 1.78 | 3  | extr=27 | -           |
| 421   | BC1T 12914 | 519  | 1.93 | 10 | extr=26 | 01735       |
| 422   | BC1T 12927 | 210  | 19   | 4  | extr-26 | -           |
| 422   | BC1T_12021 | 161  | 1.9  | 2  | extr=20 |             |
| 423   | DC1T_12022 | 569  | 1.24 | 10 | CAU-21  | -           |
| 424   | DC1T_12952 | 308  | 1.70 | 10 | extr=20 | 0/519       |
| 425   | BCI1_13123 | 254  | 0    | U  | extr=2/ | 00057,13472 |
| 426   | BC1T_13137 | 438  | 2.05 | 9  | extr=21 | 00295       |
| 427   | BC1T_13139 | 305  | 1.64 | 5  | extr=25 | 03443       |
| 428   | BC1T_13153 | 1140 | 0.35 | 4  | extr=27 | -           |
| 429   | BC1T_13158 | 307  | 0.98 | 3  | extr=19 | -           |
| 430   | BC1T_13289 | 185  | 4.32 | 8  | extr=25 | -           |
| 431   | BC1T_13367 | 148  | 1.35 | 2  | extr=23 | 00295       |
| /32   | BC1T_13386 | 590  | 0.51 | 3  | extr-25 | 00732 05199 |
| 422   | DC1T_13300 | 622  | 0.01 | 6  | extr=24 | 00752,05177 |
| 435   | DC1T_13443 | 023  | 0.90 | 0  | exu=24  | -           |
| 434   | BCIT_13543 | 341  | 0.59 | 2  | extr=25 | -           |
| 435   | BCI1_13645 | 203  | 0    | 0  | extr=23 | 00457       |
| 436   | BC1T_13659 | 1110 | 4.23 | 47 | extr=25 | 03659       |
| 437   | BC1T_13714 | 407  | 1.97 | 8  | extr=26 | 00135       |
| 438   | BC1T_13815 | 548  | 1.82 | 10 | extr=26 | 07519       |
| 439   | BC1T_13846 | 30   | 0    | 0  | extr=21 | -           |
| 440   | BC1T 13855 | 446  | 1.35 | 6  | extr=26 | -           |
| 441   | BC1T_13862 | 335  | 4,48 | 15 | extr=26 | 02015       |
| 442   | BC1T 13870 | 68   | 11.8 | 8  | extr-22 | -           |
| 442   | BC1T 12001 | 338  | 0.2  | 1  | ovtr-25 |             |
| 443   | DC11_13001 | 555  | 0.3  | 0  | cAu-2J  | -           |
| 444   | BC11_13903 | 202  | 1.42 | 8  | extr=23 | 00884       |
| 445   | BCIT_13938 | 366  | 0    | 0  | extr=26 | -           |
| 1 110 |            |      | 0.01 | 5  |         | 00105 05050 |
| 446   | BC1T_13960 | 548  | 0.91 | 3  | extr=2/ | 00135,07859 |

| 448 | BC1T_14009 | 238 | 1.68 | 4  | extr=25 | -                 |
|-----|------------|-----|------|----|---------|-------------------|
| 449 | BC1T_14012 | 659 | 0.76 | 5  | extr=24 | 00732,05199       |
| 450 | BC1T_14014 | 261 | 0    | 0  | extr=24 | -                 |
| 451 | BC1T_14030 | 515 | 2.72 | 14 | extr=27 | 03198,07983       |
| 452 | BC1T_14101 | 364 | 1.1  | 4  | extr=26 | 00246             |
| 453 | BC1T_14129 | 143 | 1.4  | 2  | extr=27 | -                 |
| 454 | BC1T_14136 | 68  | 2.94 | 2  | extr=24 | -                 |
| 455 | BC1T_14153 | 239 | 1.67 | 4  | extr=25 | 01828             |
| 456 | BC1T_14154 | 208 | 0    | 0  | extr=24 | -                 |
| 457 | BC1T_14164 | 852 | 0.94 | 8  | extr=24 | 00933,01915,14310 |
| 458 | BC1T_14177 | 504 | 1.39 | 7  | extr=26 | 08031             |
| 459 | BC1T_14299 | 330 | 2.12 | 7  | extr=24 | -                 |
| 460 | BC1T_14317 | 248 | 2.02 | 5  | extr=26 | 00445             |
| 461 | BC1T_14330 | 553 | 1.27 | 7  | extr=26 | 00732,05199       |
| 462 | BC1T 14348 | 181 | 0.55 | 1  | extr=26 | -                 |
| 463 | BC1T 14349 | 692 | 1.3  | 9  | extr=25 | 00394,07731,07732 |
| 464 | BC1T 14398 | 314 | 2.23 | 7  | extr=24 | 01266             |
| 465 | BC1T 14415 | 220 | 3.18 | 7  | extr=24 | 01083             |
| 466 | BC1T 14418 | 148 | 0    | 0  | extr=20 | -                 |
| 467 | BC1T 14469 | 394 | 2.54 | 10 | extr=25 | -                 |
| 468 | BC1T 14481 | 231 | 3.46 | 8  | extr=26 | -                 |
| 469 | BC1T 14501 | 208 | 1.92 | 4  | extr=25 | -                 |
| 470 | BC1T 14535 | 98  | 2.04 | 2  | extr=23 | -                 |
| 471 | BC1T 14570 | 432 | 0.46 | 2  | extr=23 | 00388             |
| 472 | BC1T 14591 | 444 | 1.8  | 8  | extr=26 | 00450             |
| 473 | BC1T 14698 | 554 | 1.44 | 8  | extr=23 | -                 |
| 474 | BC1T 14702 | 581 | 3.96 | 23 | extr=23 | 00840             |
| 475 | BC1T 14711 | 223 | 1.79 | 4  | extr=26 | 11327             |
| 476 | BC1T 14714 | 333 | 0.6  | 2  | extr=22 | 00710             |
| 477 | BC1T 14733 | 239 | 0    | 0  | extr=26 | -                 |
| 478 | BC1T 14944 | 399 | 2.01 | 8  | extr=26 | 00704.00734       |
| 479 | BC1T 14954 | 113 | 3.54 | 4  | extr=23 | 03330             |
| 480 | BC1T 14974 | 494 | 1.01 | 5  | extr=25 | 00141             |
| 481 | BC1T 14990 | 644 | 0.62 | 4  | extr=26 | 00264             |
| 482 | BC1T 15017 | 229 | 2.62 | 6  | extr=21 | 03443             |
| 483 | BC1T 15041 | 270 | 1.11 | 3  | extr=24 | 10282             |
| 484 | BC1T_15095 | 125 | 0    | 0  | extr=23 | -                 |
| 485 | BC1T 15118 | 381 | 2.1  | 8  | extr=25 | 00295             |
| 486 | BC1T_15341 | 105 | 1.9  | 2  | extr=24 | -                 |
| 487 | BC1T_15524 | 358 | 6.15 | 22 | extr=27 | -                 |
| 488 | BC1T_15542 | 175 | 2.29 | 4  | extr=26 | -                 |
| 489 | BC1T_15641 | 656 | 0.76 | 5  | extr=25 | 00930             |
| 490 | BC1T 15643 | 258 | 1.55 | 4  | extr=24 | 02265             |
| 491 | BC1T_15646 | 180 | 6.11 | 11 | extr=19 | -                 |
| 492 | BC1T_15663 | 672 | 0.3  | 2  | extr=25 | 00326,05448       |
| 493 | BC1T_15784 | 409 | 3.91 | 16 | extr=26 | 03856             |
| 494 | BC1T 15977 | 388 | 3.87 | 15 | extr=24 | -                 |
| 495 | BC1T 16006 | 189 | 0    | 0  | extr=26 | 01161             |
| 496 | BC1T_16107 | 76  | 13.2 | 10 | extr=24 | -                 |
| 497 | BC1T 16127 | 419 | 0.95 | 4  | extr=25 | 00135             |
| 498 | BC1T_16238 | 296 | 1.01 | 3  | extr=26 | -                 |
| 499 | BC1T_16413 | 58  | 1.72 | 1  | extr=27 | -                 |

Appendix 3: Secretome sequence sets mapped across the *S. sclerotiorum* refined secretome.

a) The secretome (1060 genes)





e) Small, cysteine rich proteins mapped across the *S.sclerotiorum* genome (red). No proteins were mapped onto the chromosome 10, 11, 12, 13 and 15. Hydrophobin domain protein SS1G\_09248 mapped in blue.

f) 12 Genes in the refined secretome unique only to *S.sclerotiorum*.



g) Distribution of the 30 gene sequences found only in S. sclerotiorum and B. cinerea



# Appendix 4.1: Plant polysaccharide degrading proteins

| Gene<br>No. | Gene ID           | Interpro<br>accession | Annotation           | PFAM  | Annotation from EST library in BROAD        |
|-------------|-------------------|-----------------------|----------------------|-------|---------------------------------------------|
| 1           | SS1G_03602        | IPR010720             | Alpha-L-             | 6964  | alpha-N-arabinofuranosidase A precursor     |
|             |                   |                       | arabinofuranosidase, |       |                                             |
|             |                   |                       | C-terminal           |       |                                             |
| 2           | SS1G_07661        | IPR000675             | Cutinase             | 1083  | cutinase                                    |
| 3           | SS1G_08104        | IPR000675             | Cutinase             | 1083  | acetyl xylan esterase                       |
| 4           | SS1G_12907        | IPR000675             | Cutinase             | 1083  | cutinase                                    |
| 5           | SS1G_13386        | IPR000675             | Cutinase             | 1083  | cutinase                                    |
| 6           | SS1G_13809        | IPR011613             | GHF15                | 723   | glucoamylase precursor                      |
| 7           | SS1G_07162        | IPR002772             | GHF3 C-terminal      | 1915  | beta-glucosidase 1 precursor                |
|             |                   |                       | domain               |       |                                             |
| 8           | SS1G_07847        | IPR002772             | GHF3 C-terminal      | 1915  | beta-glucosidase 2 precursor                |
|             |                   |                       | domain               |       |                                             |
| 9           | SS1G_09366        | IPR002772             | GHF3 C-terminal      | 1915  | periplasmic beta-glucosidase precursor      |
|             |                   |                       | domain               |       |                                             |
| 10          | SS1G_13255        | IPR002772             | GHF3 C-terminal      | 1915  | beta-glucosidase 1 precursor                |
|             | <b>6646</b> 00000 | 1000                  | domain               | 10.11 |                                             |
| 11          | SS1G_00892        | IPR016288             | GHF6                 | 1341  | exoglucanase-6A precursor                   |
| 12          | SS1G_04541        | IPR008902             | GHF/8                | 5592  | hypothetical protein similar to alpha-L-    |
| 10          |                   |                       | <b>GUIDE</b> 0       |       | rhamnosidase A                              |
| 13          | SS1G_13501        | IPR008902             | GHF78                | 5592  | hypothetical protein similar to alpha-      |
| 1.4         | 0010 04660        | IDD000111             |                      | 2065  | rhamnosidase                                |
| 14          | SSIG_04662        | IPR000111             | Glycoside hydrolase, | 2065  | alpha-galactosidase A precursor             |
| 1.7         | 0010 10101        | 10001000              | clanGH-D             | 221   |                                             |
| 15          | SSIG_12191        | IPR001000             | GHF10                | 331   | endo-1,4-beta-xylanase C precursor          |
| 16          | SS1G_03618        | IPR001137             | GHF11                | 457   | endo-1,4-beta-xylanase B precursor          |
| 17          | SSIG_07/49        | IPR001137             | GHF11                | 457   | endo-1,4-beta-xylanase B                    |
| 18          | SSIG_10092        | IPR001137             | GHF11                | 457   | endo-1,4-beta-xylanase B                    |
| 19          | SSIG_00501        | IPR002594             | GHF12                | 1670  | endoglucanase A precursor                   |
| 20          | SSIG_02369        | IPR002594             | GHF12                | 1670  | endoglucanase A precursor                   |
| 21          | SSIG_09250        | IPR002594             | GHF12                | 16/0  | hypothetical protein similar to iron-sulfur |
| 22          | 0010 10004        | 10000000              | CUE17                | 222   | cluster-binding protein                     |
| 22          | 5516_12024        | IPR000490             | GHF1/                | 552   | nypotnetical protein similar to             |
| 22          | SS1C 12020        | IDD000400             | CHE17                | 222   | mannoprotein MP03                           |
| 23          | SSIG_12930        | IPR000490             |                      | 205   | glucal 1,5-beta-glucosidase precursor       |
| 24          | SSIG_01009        | IPR000743             | CUE28                | 293   | by polygalacturollase precursor             |
| 23          | 3310_02399        | IF K000743            | UHF28                | 293   | rhamnogalacturonan hydrolasa                |
| 26          | SS1G 02553        | IDD000743             | CHE28                | 205   | hypothetical protein similar to avo         |
| 20          | 3510_02555        | II K000743            | 0111/20              | 295   | rhampogalacturonase B                       |
| 27          | SS1G 03540        | IPR000743             | GHE28                | 205   | hypothetical protein similar to evo-        |
| 21          | 5510_03540        | II 1000745            | 0111 20              | 275   | rhamnogalacturonase B                       |
| 28          | SS1G_04177        | IPR000743             | GHF28                | 295   | polygalacturonase 5                         |
| 29          | SS1G_04207        | IPR000743             | GHF28                | 295   | polygalacturonase precursor                 |
| 30          | SS1G_04552        | IPR000743             | GHF28                | 295   | polygalacturonase precursor                 |
| 31          | SS1G_05832        | IPR000743             | GHF28                | 295   | polygalacturonase precursor                 |
| 32          | SS1G_06235        | IPR000743             | GHF28                | 295   | hypothetical protein similar to             |
| 32          | 5516_00255        | 111000715             | 0111 20              | 275   | rhamnogalacturonase                         |
| 33          | SS1G 07039        | IPR000743             | GHF28                | 295   | hypothetical protein similar to             |
| 00          | 5510_07007        | 11 1100007 10         | 0111 20              | 270   | rhamnogalacturonan hydrolase                |
| 34          | SS1G 08229        | IPR000743             | GHF28                | 295   | hypothetical protein similar to             |
|             |                   |                       |                      |       | rhamnogalacturonase A precursor             |
| 35          | SS1G 08634        | IPR000743             | GHF28                | 295   | exopolygalacturonase precursor              |
| 36          | SS1G_10167        | IPR000743             | GHF28                | 295   | polygalacturonase precursor                 |
| 37          | SS1G_10698        | IPR000743             | GHF28                | 295   | polygalacturonase precursor                 |
| 38          | SS1G_11057        | IPR000743             | GHF28                | 295   | polygalacturonase precursor                 |
| 39          | SS1G_12057        | IPR000743             | GHF28                | 295   | polygalacturonase precursor                 |
| 40          | SS1G_14449        | IPR000743             | GHF28                | 295   | exo-polygalacturonase                       |
| 41          | SS1G_01005        | IPR000322             | GHF31                | 1055  | alpha-glucosidase precursor                 |
| 42          | SS1G_01083        | IPR000322             | GHF31                | 1055  | alpha-glucosidase precursor                 |
| 43          | SS1G_02781        | IPR001944             | GHF35                | 1301  | hypothetical protein similar to beta-       |
|             |                   |                       |                      |       | galactosidase                               |

| 44 | SS1G_03647                      | IPR001944      | GHF35                | 1301 | hypothetical protein similar to beta-      |
|----|---------------------------------|----------------|----------------------|------|--------------------------------------------|
| 15 | SS1C 10942                      | IDD001044      | CHE25                | 1201 | galactosidase                              |
| 43 | 3510_10642                      | IF K001944     | ОПГЭЭ                | 1501 | galactosidase                              |
| 46 | SS1G_11922                      | IPR006710      | GHF43                | 4616 | hypothetical protein similar to endo-1,5-  |
|    |                                 |                |                      |      | alpha-L-arabinase                          |
| 47 | SS1G_01828                      | IPR000334      | GHF45                | 2015 | endoglucanase-5                            |
| 48 | SS1G_13860                      | IPR000334      | GHF45                | 2015 | endoglucanase-5                            |
| 49 | SS1G_04468                      | IPR001382      | GHF47                | 1532 | hypothetical protein similar to            |
| 50 | 0010 00450                      | IDD001547      | OUE?                 | 150  | mannosidase MsdS                           |
| 50 | SSIG_00458                      | IPR001547      | GHF5                 | 150  | endoglucanase precursor                    |
| 52 | SSIG_00740                      | IPR001547      | CHE5                 | 150  | hypothetical protein similar to mannanase  |
| 32 | 3310_00891                      | IPK001347      | ОПГЭ                 | 150  | endoglucanase III                          |
| 53 | SS1G 03387                      | IPR001547      | GHF5                 | 150  | endoglucanase E precursor                  |
| 54 | SS1G_05775                      | IPR001547      | GHF5                 | 150  | glucan 1,3-beta-glucosidase precursor      |
| 55 | SS1G_06037                      | IPR001547      | GHF5                 | 150  | glucan 1,3-beta-glucosidase precursor      |
| 56 | SS1G_08208                      | IPR001547      | GHF5                 | 150  | hypothetical protein similar to endo-beta- |
|    |                                 |                |                      |      | 1,4-mannanase                              |
| 57 | SS1G_09365                      | IPR001547      | GHF5                 | 150  | glucan 1,3-beta-glucosidase precursor      |
| 58 | SS1G_09866                      | IPR001547      | GHF5                 | 150  | hypothetical protein similar to beta-1,6-  |
| 50 | CC1C 01929                      | IDD005102      |                      | 2442 | galactanase                                |
| 59 | SSIG_01838                      | IPR005103      | GHF01                | 3443 | nypotnetical protein similar to            |
| 60 | SS1G 03041                      | IPR005103      | GHE61                | 3//3 | hypothetical protein similar to Cel61h     |
| 61 | SS1G_03041                      | IPR005103      | GHF61                | 3443 | conserved hypothetical protein             |
| 62 | <u>SS1G_07050</u><br>SS1G_08493 | IPR005103      | GHF61                | 3443 | conserved hypothetical protein             |
| 63 | SS1G_09251                      | IPR005103      | GHF61                | 3443 | hypothetical protein similar to            |
| 00 | 5510_07201                      | 11 110 00 100  |                      | 0110 | endoglucanase II                           |
| 64 | SS1G_12059                      | IPR005103      | GHF61                | 3443 | hypothetical protein similar to            |
|    | _                               |                |                      |      | endoglucanase B                            |
| 65 | SS1G_14160                      | IPR005103      | GHF61                | 3443 | hypothetical protein similar to            |
|    |                                 |                |                      |      | endoglucanase IV                           |
| 66 | SSIG_05192                      | IPR005195      | GHF65, central       | 3632 | hypothetical protein similar to glycosyl   |
| (7 | 0010 00004                      | 100001700      | catalytic            | 0.40 | hydrolase family 65 protein                |
| 6/ | SSIG_02334                      | IPR001722      | GHF/                 | 840  | exoglucanase 1 precursor                   |
| 60 | SSIC_04943                      | IPR001722      | CHF7                 | 840  | exoglucanase 1 precursor                   |
| 70 | SSIG_09020                      | IPR005197      | GHF71                | 3659 | hypothetical protein similar to mutanase   |
| 70 | SS1G_02347                      | IPR005197      | GHF71                | 3659 | hypothetical protein similar to alpha-1.3- |
|    |                                 |                |                      |      | glucanase                                  |
| 72 | SS1G_09861                      | IPR005197      | GHF71                | 3659 | hypothetical protein similar to alpha-1,3- |
|    |                                 |                |                      |      | glucanase                                  |
| 73 | SS1G_11765                      | IPR005197      | GHF71                | 3659 | hypothetical protein similar to mutanase   |
| 74 | SS1G_04850                      | IPR005198      | GHF76                | 3663 | mannan endo-1,6-alpha-mannosidase          |
| 75 | 0010 1007                       | IDD005100      | CUETC                | 2662 | DCW1 precursor                             |
| 15 | SSIG_10807                      | IPK005198      | GHF/0                | 3003 | hydrolase                                  |
| 76 | SS1G 12937                      | IPR005198      | GHF76                | 3663 | hypothetical protein similar to glycosyl   |
|    |                                 | 11 110 00 17 0 |                      | 2002 | hydrolase                                  |
| 77 | SS1G_14497                      | IPR005198      | GHF76                | 3663 | mannan endo-1,6-alpha-mannosidase          |
|    |                                 |                |                      |      | DCW1 precursor                             |
| 78 | SS1G_11585                      | IPR011683      | Glycosyl hydrolase   | 7745 | hypothetical protein similar to            |
|    |                                 |                | family 53            |      | arabinogalactan endo-1,4-beta-             |
| 70 | SS1C 00505                      | IDD012020      | Classes hadreless    | 7071 | galactosidase                              |
| 19 | 3310_00303                      | IPR012959      | family 92            | /9/1 | conserved hypothetical protein             |
| 80 | SS1G 02022                      | IPR012939      | Glycosyl hydrolase   | 7971 | conserved hypothetical protein             |
|    |                                 | /0/            | family 92            |      | Jr F-300m                                  |
| 81 | SS1G_04200                      | IPR012939      | Glycosyl hydrolase   | 7971 | hypothetical protein similar to alpha-1,2- |
|    |                                 |                | family 92            |      | mannosidase family protein                 |
| 82 | SS1G_01776                      | IPR006047      | Glycosyl hydrolase,  | 128  | alpha-amylase 1 precursor                  |
|    |                                 |                | tamily 13, catalytic |      |                                            |
|    | 8810 02205                      | IDD006047      | domain               | 100  |                                            |
| 83 | 2210_02282                      | 1PK006047      | family 13 containtia | 128  | aipita-amytase precursor                   |
|    |                                 |                | domain               |      |                                            |
| L  | 1                               | 1              | Sommin               | l    |                                            |

| 84 | SS1G_13472 | IPR006047 | Glycosyl hydrolase,  | 128 | alpha-amylase A type-3 precursor  |
|----|------------|-----------|----------------------|-----|-----------------------------------|
|    |            |           | family 13, catalytic |     |                                   |
|    |            |           | domain               |     |                                   |
| 85 | SS1G_02708 | IPR001087 | Lipase, GDSL         | 657 | conserved hypothetical protein)   |
| 86 | SS1G_03610 | IPR001087 | Lipase, GDSL         | 657 | conserved hypothetical protein    |
| 87 | SS1G_04095 | IPR001087 | Lipase, GDSL         | 657 | rhamnogalacturonan acetylesterase |
|    |            |           | -                    |     | precursor                         |
| 88 | SS1G_04592 | IPR001087 | Lipase, GDSL         | 657 | conserved hypothetical protein)   |
| 89 | SS1G_10482 | IPR001087 | Lipase, GDSL         | 657 | conserved hypothetical protein    |
| 90 | SS1G_14289 | IPR001087 | Lipase, GDSL         | 657 | conserved hypothetical protein    |
| 91 | SS1G_00040 | IPR002022 | Pectate lyase/Amb    | 544 | pectin lyase A precursor          |
|    |            |           | allergen             |     |                                   |
| 92 | SS1G_00238 | IPR002022 | Pectate lyase/Amb    | 544 | pectin lyase A precursor          |
|    |            |           | allergen             |     |                                   |
| 93 | SS1G_07942 | IPR002022 | Pectate lyase/Amb    | 544 | pectin lyase A precursor          |
|    |            |           | allergen             |     |                                   |
| 94 | SS1G_10071 | IPR002022 | Pectate lyase/Amb    | 544 | pectin lyase A precursor          |
|    |            |           | allergen             |     |                                   |

GHF: Glycoside Hydolase Family

#### Appendix 4.2: Lipid degrading proteins

|    | Gene ID    | Interpro   | Annotation                          | PFAM  |
|----|------------|------------|-------------------------------------|-------|
| 1  | SS1G_00877 | IPR002018  | Carboxylesterase_type B             | 00135 |
|    | SS1G_00077 | IPR002018  | Carboxylesterase, type B            | 00135 |
| 2  | SSIC_01472 | IDD002018  | Carboxylesterase, type D            | 00135 |
| 3  | SSIG_10873 | IF K002018 | Carboxylesterase, type B            | 00133 |
| 4  | SSIG_11853 | IPR002018  | Carboxylesterase, type B            | 00135 |
| 5  | SS1G_11930 | IPR002018  | Carboxylesterase, type B            | 00135 |
| 6  | SS1G_13881 | IPR002018  | Carboxylesterase, type B            | 00135 |
| 7  | SS1G_13982 | IPR002018  | Carboxylesterase, type B            | 00135 |
| 8  | SS1G_14441 | IPR002018  | Carboxylesterase, type B            | 00135 |
| 9  | SS1G_02708 | IPR001087  | Lipase, GDSL                        | 00657 |
| 10 | SS1G_03610 | IPR001087  | Lipase, GDSL                        | 00657 |
| 11 | SS1G_04095 | IPR001087  | Lipase, GDSL                        | 00657 |
| 12 | SS1G_04592 | IPR001087  | Lipase, GDSL                        | 00657 |
| 13 | SS1G_10482 | IPR001087  | Lipase, GDSL                        | 00657 |
| 14 | SS1G_14289 | IPR001087  | Lipase, GDSL                        | 00657 |
| 15 | SS1G_07661 | IPR000675  | Cutinase                            | 01083 |
| 16 | SS1G_08104 | IPR000675  | Cutinase                            | 01083 |
| 17 | SS1G_12907 | IPR000675  | Cutinase                            | 01083 |
| 18 | SS1G_13386 | IPR000675  | Cutinase                            | 01083 |
| 19 | SS1G_00332 | IPR000070  | Pectinesterase, catalytic           | 01095 |
| 20 | SS1G_00468 | IPR000070  | Pectinesterase, catalytic           | 01095 |
| 21 | SS1G_03286 | IPR000070  | Pectinesterase, catalytic           | 01095 |
| 22 | SS1G_10165 | IPR000070  | Pectinesterase, catalytic           | 01095 |
| 23 | SS1G_04030 | IPR002642  | Lysophospholipase, catalytic domain | 01735 |
| 24 | SS1G_04530 | IPR002642  | Lysophospholipase, catalytic domain | 01735 |
| 25 | SS1G_00233 | IPR002921  | Lipase, class 3                     | 01764 |
| 26 | SS1G_03160 | IPR002921  | Lipase, class 3                     | 01764 |

| 27 | SS1G_08644 | IPR005152 | Lipase, secreted          | 03583 |
|----|------------|-----------|---------------------------|-------|
| 28 | SS1G_07639 | IPR007312 | Phosphoesterase           | 04185 |
| 29 | SS1G_05493 | IPR011118 | Tannase/feruloyl esterase | 07519 |
| 30 | SS1G_08361 | IPR011118 | Tannase/feruloyl esterase | 07519 |

# Appendix 4.3: Protein degrading proteins

|    |            | Interpro  |                                  |       |
|----|------------|-----------|----------------------------------|-------|
|    | Gene ID    | accession | Annotation                       | PFAM  |
| 1  | SS1G_00624 | IPR001461 | Peptidase A1                     | 00026 |
| 2  | SS1G_03181 | IPR001461 | Peptidase A1                     | 00026 |
| 3  | SS1G_03576 | IPR001461 | Peptidase A1                     | 00026 |
| 4  | SS1G_03629 | IPR001461 | Peptidase A1                     | 00026 |
| 5  | SS1G_03941 | IPR001461 | Peptidase A1                     | 00026 |
| 6  | SS1G_11366 | IPR001461 | Peptidase A1                     | 00026 |
| 7  | SS1G_03518 | IPR000209 | Peptidase S8/S53 domain          | 00082 |
| 8  | SS1G_04958 | IPR000209 | Peptidase S8/S53 domain          | 00082 |
| 9  | SS1G 07655 | IPR000209 | Peptidase S8/S53 domain          | 00082 |
| 10 | SS1G_09060 | IPR000209 | Peptidase S8/S53 domain          | 00082 |
| 11 | SS1G_09225 | IPR000209 | Peptidase S8/S53 domain          | 00082 |
| 12 | SS1G 09268 | IPR000209 | Peptidase S8/S53 domain          | 00082 |
| 13 | SS1G 12210 | IPR000209 | Peptidase S8/S53 domain          | 00082 |
| 14 |            | IPR001254 | Peptidase S1                     | 00089 |
|    |            |           | Peptidase M14, carboxypeptidase  |       |
| 15 | SS1G 11189 | IPR000834 | A                                | 00246 |
|    |            |           | Peptidase S9, prolvl             |       |
| 16 | SS1G 09909 | IPR001375 | oligopeptidase, catalytic domain | 00326 |
|    |            |           | Peptidase S10, serine            |       |
| 17 | SS1G 05449 | IPR001563 | carboxypeptidase                 | 00450 |
|    |            |           | Peptidase S10, serine            |       |
| 18 | SS1G 09475 | IPR001563 | carboxypeptidase                 | 00450 |
| _  |            |           | Peptidase S10, serine            |       |
| 19 | SS1G 11382 | IPR001563 | carboxypeptidase                 | 00450 |
|    |            |           | Peptidase S10, serine            |       |
| 20 | SS1G_12413 | IPR001563 | carboxypeptidase                 | 00450 |
|    |            |           | Peptidase S10, serine            |       |
| 21 | SS1G_12499 | IPR001563 | carboxypeptidase                 | 00450 |
|    |            |           | Peptidase S10, serine            |       |
| 22 | SS1G_12500 | IPR001563 | carboxypeptidase                 | 00450 |
| 23 | SS1G_02038 | IPR000250 | Peptidase G1                     | 01828 |
| 24 | SS1G_07836 | IPR000250 | Peptidase G1                     | 01828 |
| 25 | SS1G_08858 | IPR001384 | Peptidase M35, deuterolysin      | 02102 |
|    |            |           | Proteinase inhibitor,            |       |
| 26 | SS1G_11189 | IPR003146 | carboxypeptidase propeptide      | 02244 |
| 27 | SS1G_12500 | IPR008442 | Propeptide, carboxypeptidase Y   | 05388 |
| 28 | SS1G_03361 | IPR008758 | Peptidase S28                    | 05577 |
|    |            |           | Peptidase S8A, DUF1034 C-        |       |
| 29 | SS1G_09060 | IPR010435 | terminal                         | 06280 |
| 30 | SS1G_02857 | IPR015366 | Peptidase S53, propeptide        | 09286 |
| 31 | SS1G_03518 | IPR015366 | Peptidase S53, propeptide        | 09286 |
| 32 | SS1G_04958 | IPR015366 | Peptidase S53, propeptide        | 09286 |
| 33 | SS1G_07268 | IPR015366 | Peptidase S53, propeptide        | 09286 |
| 34 | SS1G_07655 | IPR015366 | Peptidase S53, propeptide        | 09286 |

| 35 | SS1G_09225 | IPR015366 | Peptidase S53, propeptide | 09286 |
|----|------------|-----------|---------------------------|-------|
| 36 | SS1G_09268 | IPR015366 | Peptidase S53, propeptide | 09286 |
| 37 | SS1G_12210 | IPR015366 | Peptidase S53, propeptide | 09286 |

| A 1º 🖉                                 |      | 4         |          | 41    |        | •       | •           |
|----------------------------------------|------|-----------|----------|-------|--------|---------|-------------|
| Annondiv 5.                            | Π hΔ | nrotomog  | licod ir | n tha | Crocc  | CHACIAC | comparison  |
| Appendix J.                            | 1110 | proteomes | uscu II  | i unc | CI U33 | species | comparison. |
| TT S S S S S S S S S S S S S S S S S S |      | T         |          |       |        |         | r r r r r r |

| No. | Species name                        | Fasta file of proteome downloaded                         |
|-----|-------------------------------------|-----------------------------------------------------------|
| 1   | Acremonium alcalophilum             | Acral2_GeneCatalog_proteins_20110414.aa.fasta             |
| 2   | Albugo laibachii                    | Albugo_laibachii.ENA1.16.pep.all.fasta                    |
| 3   | Alternaria brassicicola             | Alternaria_brassicicola_proteins.fasta                    |
| 4   | Aspergillus Comparative             | aspergillus_clavatus_1_proteins.fasta                     |
| 5   | Aspergillus Comparative             | aspergillus_flavus_2_proteins.fasta                       |
| 6   | Aspergillus Comparative             | aspergillus_fumigatus_1_proteins.fasta                    |
| 7   | Aspergillus Comparative             | aspergillus_nidulans_fgsc_a4_1_proteins.fasta             |
| 8   | Aspergillus Comparative             | aspergillus_niger_1_proteins.fasta                        |
| 9   | Aspergillus Comparative             | aspergillus_oryzae_1_proteins.fasta                       |
| 10  | Aspergillus Comparative             | aspergillus_terreus_1_proteins.fasta                      |
| 11  | Aspergillus Comparative             | Aspnid1_GeneCatalog_proteins_20110130.aa.fasta            |
| 12  | Aspergillus niger                   | Aspergillus_niger_v3_FilteredModels_proteins.fasta        |
| 13  | Aureobasidium pullulans             | Aurpu2p4.representatives.fasta                            |
| 14  | Batrachochytrium dendrobatidis      | batrachochytrium_dendrobatidis_1_proteins.fasta           |
| 15  | Batrachochytrium dendrobatidis      | Batde5_best_proteins.fasta                                |
| 16  | Baudoinia compniacensis             | Bauco1_GeneCatalog_proteins_20110511.aa.fasta             |
| 17  | Bjerkandera adusta                  | Bjead1_1_GeneCatalog_proteins_20110614.aa.fasta           |
| 18  | Blastomyces dermatitidis            | blastomyces_dermatitidis_atcc_18188_1_proteins.fasta      |
| 19  | Blastomyces dermatitidis            | blastomyces_dermatitidis_er-3_1_proteins.fasta            |
| 20  | Blastomyces dermatitidis            | blastomyces_dermatitidis_slh14081_1_proteins.fasta        |
| 21  | Blumeria graminis                   | bgh_dh14_v3.0_peptides.fasta                              |
| 22  | Botryosphaeria dothidea             | Botdo1_GeneCatalog_proteins_20111003.aa.fasta             |
| 23  | Botryotinia fuckeliana              | Botryotinia_fuckeliana.BotFuc_Aug2005.16.pep.all.fasta    |
| 24  | Botrytis cinerea                    | botrytis_cinereab05.101_proteins.fasta                    |
| 25  | Botrytis cinerea                    | botrytis_cinereab05.10_vankan1_proteins.fasta             |
| 26  | Botrytis cinerea                    | botrytis_cinereat41_proteins.fasta                        |
| 27  | Botrytis Cinerea                    | botrytis_cinerea_1_proteins.fasta                         |
| 28  | Botrytis cinerea                    | Botci1_GeneCatalog_proteins_20110903.aa.fasta             |
| 29  | Caenorhabditis elegans              | c_elegans_WS234_protein.fasta                             |
| 30  | Candida                             | candida_albicans_sc5314_assembly_21_1_proteins.fasta      |
| 31  | Candida                             | candida_albicans_wo1_1_proteins.fasta                     |
| 32  | Candida                             | candida_guilliermondii_1_proteins.fasta                   |
| 33  | Candida                             | candida_lusitaniae_1_proteins.fasta                       |
| 34  | Candida                             | candida_parapsilosis_1_proteins.fasta                     |
| 35  | Candida                             | candida_tropicalis_3_proteins.fasta                       |
| 36  | Candida                             | debaryomyces_hansenii_1_proteins.fasta                    |
| 37  | Candida                             | lodderomyces_elongisporus_1_proteins.fasta                |
| 38  | Candida Genome                      | C_dubliniensis_CD36_orf_trans_all.fasta                   |
| 39  | Candida Genome                      | C_glabrata_CBS138_version_s02-m01-r13_orf_trans_all.tasta |
| 40  | Cercospora zeae-maydis              | Cerzm1_GeneCatalog_proteins_20111029.aa.fasta             |
| 41  | Chaetomium globosum                 | chaetomium_globosum_1_proteins.fasta                      |
| 42  | Chaetomium globosum                 | Chagi_i_GeneModels_BroadGeneModels_aa.tasta               |
| 43  | Coccidioides group                  | coccidioides_immitis_n538.4_1_proteins.fasta              |
| 44  | Coccidioides group                  | coccidioides_immitis_rmscc_2394_1_proteins.iasta          |
| 45  | Coccidioides group                  | coccidioides_immitis_rmscc_5/05_1_proteins.lasta          |
| 40  | Cochlighelus heterostrophus         | Cocculotides_Infinitis_IS_5_proteins.fasta                |
| 47  | Cochilobolus heterostrophus         | CocheC4_1_GeneCatalog_proteins_20110824.aa.lasta          |
| 40  | Cochlichelus activus                | CocheCs_S_GeneCatalog_proteins_20110901.aa.tasta          |
| 49  | Colletetrichum                      | cocsal_GeneCatalog_proteins_20110010.aa.tasta             |
| 50  | Colletotrichum                      | colletotrichum bigginsianum imi 240062 1 proteins fasta   |
| 52  | Continuitionalia cinerea            | controutionum_mggmstanum_mm_349005_1_ptotems.tasta        |
| 52  | Coprinopsis cinerea                 | copiniopsis_cinerea_okayaina/#150_5_proteins.tasta        |
| 55  | Cryphopactria parasitica            | Lactaria_Ulcului_S23011-1102_1_pi0tellis.18818            |
| 54  | Cryptococcus peoformens yer cryb    | Cryptococcus peoformans H00 proteins facts                |
| 56  | Cryptococcus neoformans var. grubij | cryptococcus neoformans grubii h00 2 proteins fasta       |
| 57  | Dermatonbyte Comparative            | microsporum canis che 113/80 1 proteine fasta             |
| 59  | Dermatophyte Comparative            | microsporum_cans_cus_113400_1_proteins.tasta              |
| 50  | Dermatophyte Comparative            | microsporum_gypscum_cos_rroo93_1_protems.tasta            |

| 59  | Dermatophyte Comparative             | trichophyton_equinum_cbs127.97_1_proteins.fasta               |
|-----|--------------------------------------|---------------------------------------------------------------|
| 60  | Dermatophyte Comparative             | trichophyton_rubrum_cbs_118892_2_proteins.fasta               |
| 61  | Dermatophyte Comparative             | trichophyton_tonsurans_1_proteins.fasta                       |
| 62  | Dothistroma septosporum              | Dotse1_GeneCatalog_proteins_20100818.aa.fasta                 |
| 63  | Drosophila melanogaster              | dmel-all-translation-r5_48.fasta                              |
| 64  | Fomitiporia mediterranea             | Fomme1_GeneCatalog_proteins_20101122.aa.fasta                 |
| 65  | Fusarium Comparative                 | fusarium_graminearum_ph-1_3_proteins.fasta                    |
| 66  | Fusarium Comparative                 | fusarium_oxysporum_fsplycopersici_4287_2_proteins.fasta       |
| 67  | Fusarium Comparative                 | fusarium_verticillioides_7600_3_proteins.fasta                |
| 68  | Fusarium graminearum                 | Fusgr1_GeneCatalog_proteins_20110524.aa.fasta                 |
| 69  | Fusarium oxysporum                   | Fusox1_GeneCatalog_proteins_20110522.aa.fasta                 |
| 70  | Fusarium solani Nectria haematococca | Necha2_best_proteins.fasta                                    |
| 71  | Geomyces destructans                 | geomyces_destructans_20631-21_1_proteins.fasta                |
| 72  | Histoplasma capsulatum               | histoplasma_capsulatum_g186ar_2_proteins.fasta                |
| 73  | Histoplasma capsulatum               | histoplasma_capsulatum_h143_2_proteins.fasta                  |
| 74  | Histoplasma capsulatum               | histoplasma capsulatum h88_2 proteins.fasta                   |
| 75  | Histoplasma capsulatum               | histoplasma_capsulatum_nam1_1_proteins.fasta                  |
| 76  | Hyaloperonospora arabidopsidis       | Hyaloperonospora arabidopsidis.HyaAraEmoy2 2.0.16.pep.all.fas |
|     |                                      |                                                               |
| 77  | Hysterium pulicare                   | Hyspu1_GeneCatalog_proteins_20110209.aa.fasta                 |
| 78  | Laccaria bicolor                     | Lacbi2_GeneCatalog_proteins_20110203.aa.fasta                 |
| 79  | Leptosphaeria maculans               | Lepmu1_GeneCatalog_proteins_20110301.aa.fasta                 |
| 80  | Magnaporthe comparative              | gaeumannomyces_graminis_vartritici_r3-111a-                   |
|     |                                      | 1_1_proteins.fasta                                            |
| 81  | Magnaporthe comparative              | magnaporthe_oryzae_70-15_8_proteins.fasta                     |
| 82  | Magnaporthe comparative              | magnaporthe_poae_atcc_64411_1_proteins.fasta                  |
| 83  | Magnaporthe grisea                   | magnaporthe_grisea_moryzae_70-15_6_proteins.fasta             |
| 84  | Magnaporthe grisea                   | Maggr1_GeneCatalog_proteins_20110524.aa.fasta                 |
| 85  | Melampsora laricis-populina          | Mlaricis_populina.FrozenGeneCatalog_20110215.proteins.fasta   |
| 86  | Meloidogyne hapla                    | Meloidogyne_hapla.fasta                                       |
| 87  | Meloidogyne incognita                | Meloidogyne_incognita.fasta                                   |
| 88  | Mucor circinelloides                 | Mucor_circinelloides_v2_filtered_proteins.fasta               |
| 89  | Mycosphaerella fijiensis             | Mfijiensis_v2.FrozenGeneCatalog_20100402.proteins.fasta       |
| 90  | Mycosphaerella graminicola           | Mgraminicolav2.FilteredModels1.proteins.fasta                 |
| 91  | Mycosphaerella graminicola           | Mgraminicolav2.FrozenGeneCatalog20080910.proteins.fasta       |
| 92  | Myzus persicae                       | aphidbase_2.1_pep_with_product.fasta                          |
| 93  | Neurospora crassa                    | neurospora_crassa_or74afinished10_proteins.fasta              |
| 94  | Neurospora crassa                    | Neurospora_crassa.proteins.fasta                              |
| 95  | Neurospora discreta                  | Ndiscreta.FilteredModels2.proteins.fasta                      |
| 96  | Neurospora tetrasperma               | N.tetrasperma_matA_v2_FilteredModels.proteins.fasta           |
| 97  | Neurospora tetrasperma               | Ntetrasperma_mata.FilteredModels1.proteins.fasta              |
| 98  | Origins of Multicellularity          | allomyces_macrogynus_atcc_38327_3_proteins.fasta              |
| 99  | Origins of Multicellularity          | spizellomyces_punctatus_daom_br117_1_proteins.fasta           |
| 100 | Paracoccidioides brasiliensis        | paracoccidioides_brasiliensis_pb01_1_proteins.fasta           |
| 101 | Paracoccidioides brasiliensis        | paracoccidioides_brasiliensis_pb03_1_proteins.fasta           |
| 102 | Paracoccidioides brasiliensis        | paracoccidioides_brasiliensis_pb18_1_proteins.fasta           |
| 103 | Penicillium chrysogenum              | Pench1_GeneCatalog_proteins_20120123.aa.fasta                 |
| 104 | Phanerochaete chrysosporium          | BestModels2.1.proteins.fasta                                  |
| 105 | Phytophthora infestans               | Phytophthora_infestans.ASM14294v1.16.pep.all.fasta            |
| 106 | Phytophthora infestans               | phytophthora_infestans_t30-4_1_proteins.fasta                 |
| 107 | Phytophthora ramorum                 | Phytophthora_ramorum.ASM14973v1.16.pep.all.fasta              |
| 108 | Phytophthora sojae                   | Phytophthora_sojae.ASM14975v1.16.pep.all.fasta                |
| 109 | Puccinia graminis                    | Puccinia_graminis.proteins.fasta                              |
| 110 | Puccinia Group                       | puccinia_graminis_fsptritici_2_proteins.fasta                 |
| 111 | Puccinia Group                       | puccinia_triticina_1-1_bbbd_race_1_1_proteins.fasta           |
| 112 | Punctularia strigosozonata           | Punst1_GeneCatalog_proteins_20101026.aa.fasta                 |
| 113 | Pyrenophora teres f. teres           | Pyrtt1_GeneCatalog_proteins_20110408.aa.fasta                 |
| 114 | Pyrenophora tritici-repentis         | Pyrenophora_tritici_repentis_proteins.fasta                   |
| 115 | Pyrenophora tritici-repentis         | pyrenophora_tritici-repentis_1_proteins.fasta                 |
| 116 | Pythium ultimum                      | Pythium_ultimum.pug.16.pep.all.fasta                          |
| 117 | Rhizopus oryzae                      | rhizopus_oryzae_3_proteins.fasta                              |
| 118 | Rhytidhysteron rufulum               | Rhyru1_GeneCatalog_proteins_20110209.aa.fasta                 |
| 119 | Saccharomyces cerevisiae             | saccharomyces_cerevisiae_rm11-1a_1_proteins.fasta             |
| 120 | Schizosaccharomyces group            | schizosaccharomyces_cryophilus_oy26_3_proteins.fasta          |
| 121 | Schizosaccharomyces group            | schizosaccharomyces_japonicus_yfs275_4_proteins.fasta         |
| 122 | Schizosaccharomyces group            | schizosaccharomyces_octosporus_5_proteins.fasta               |

| 123 | Schizosaccharomyces group         | schizosaccharomyces_pombe_972h2_proteins.fasta          |
|-----|-----------------------------------|---------------------------------------------------------|
| 124 | Sclerotinia sclerotiorum          | Sclerotinia_sclerotiorum.ASM14694v1.16.pep.all.fasta    |
| 125 | Sclerotinia sclerotiorum          | sclerotinia_sclerotiorum_2_proteins.fasta               |
| 126 | Sclerotinia sclerotiorum          | Sclsc1_GeneCatalog_proteins_20110903.aa.fasta           |
| 127 | Septoria musiva                   | Sepmu1_GeneCatalog_proteins_20100915.aa.fasta           |
| 128 | Septoria populicola               | Seppo1_GeneCatalog_proteins_20110720.aa.fasta           |
| 129 | Serpula lacrymans                 | Serpula_lacrymans_S7_3_v2.proteins.fasta                |
| 130 | Serpula lacrymans                 | SerlaS7_9_2_GeneCatalog_proteins_20110916.aa.fasta      |
| 131 | Setosphaeria turcica              | Settu1_GeneCatalog_proteins_20110305.aa.fasta           |
| 132 | Sporisorium reilianum             | Sreilianum_prot.fasta                                   |
| 133 | Sporotrichum thermophile          | Spoth2_GeneCatalog_proteins_20101221.aa.fasta           |
| 134 | Stagonospora nodorum              | phaeosphaeria_nodorum_1_proteins.fasta                  |
| 135 | Stagonospora nodorum              | Stano2_GeneCatalog_proteins_20110506.aa.fasta           |
| 136 | Thielavia terrestris              | Thite2_GeneCatalog_proteins_20101221.aa.fasta           |
| 137 | Trametes versicolor               | Trave1_GeneCatalog_proteins_20101111.aa.fasta           |
| 138 | Trichoderma asperellum            | Trias1_GeneCatalog_proteins_20120305.aa.fasta           |
| 139 | Trichoderma atroviride            | Tatroviridev2_FrozenGeneCatalog_20100319.proteins.fasta |
| 140 | Trichoderma citrinoviride         | Trici1_GeneCatalog_proteins_20120925.aa.fasta           |
| 141 | Trichoderma harzianum             | Triha1_GeneCatalog_proteins_20120306.aa.fasta           |
| 142 | Trichoderma longibrachiatum       | Trilo1_GeneCatalog_proteins_20120926.aa.fasta           |
| 143 | Trichoderma reesei                | TrireRUTC30_1_GeneCatalog_proteins_20110526.aa.fasta    |
| 144 | Trichoderma reesei                | TreeseiV2_FilteredModelsv2.0.proteins.fasta             |
| 145 | Trichoderma reesei                | TreeseiV2_FrozenGeneCatalog20081022.proteins.fasta      |
| 146 | Trichoderma virens                | Tvirens_v2.FrozenGeneCatalog_20100318.proteins.fasta    |
| 147 | Tuber melanosporum from Genoscope | Tubme1_GeneCatalog_proteins_20111120.aa.fasta           |
| 148 | Uncinocarpus reesii               | uncinocarpus_reesii_2_proteins.fasta                    |
| 149 | Ustilago maydis                   | Ustilago_maydis.proteins.fasta                          |
| 150 | Ustilago maydis                   | ustilago_maydis_1_proteins.fasta                        |
| 151 | Verticillium dahliae              | Verda1_GeneCatalog_proteins_20110524.aa.fasta           |
| 152 | Verticillium group                | verticillium_albo-atrum_vams.102_1_proteins.fasta       |
| 153 | Verticillium group                | verticillium_dahliae_vdls.17_1_proteins.fasta           |
| 154 | Wolfiporia cocos                  | Wolco1_GeneCatalog_proteins_20100915.aa.fasta           |

| No. of    | No. of   |                              |      |        |        |               |      |                           |                   |         |
|-----------|----------|------------------------------|------|--------|--------|---------------|------|---------------------------|-------------------|---------|
| genes in  | genes in |                              |      |        |        |               |      |                           |                   |         |
| common    | common   |                              |      |        |        |               | Oxal |                           |                   | No      |
| with Ss   | with Ss  |                              |      |        |        |               | ate  |                           |                   | seqs in |
| secretome | secretom |                              |      |        |        |               | prod |                           |                   | genom   |
| (e-100)   | e (e-5)  | Species name                 | King | Phylum | Class  | Lifestyle     | ucer | Host species              | No of plant hosts | e       |
| 369       | 433      | Sclerotinia sclerotiorum     | Fung | Asco   | Leotio | Plant path    | OA   | Non Cereal Monocot /Dicot | Many              | 14503   |
| 369       | 433      | Sclerotinia sclerotiorum     | Fung | Asco   | Leotio | Plant path    | OA   | Non Cereal Monocot /Dicot | Many              |         |
| 269       | 399      | Botrytis cinerea             | Fung | Asco   | Leotio | Plant path    | OA   | Non Cereal Monocot /Dicot | Many              |         |
| 261       | 399      | Botryotinia fuckeliana       | Fung | Asco   | Leotio | Plant path    | OA   | Non Cereal Monocot /Dicot | Many              |         |
| 261       | 399      | Botrytis cinerea             | Fung | Asco   | Leotio | Plant path    | OA   | Non Cereal Monocot /Dicot | Many              |         |
| 261       | 399      | Botrytis cinerea             | Fung | Asco   | Leotio | Plant path    | OA   | Non Cereal Monocot /Dicot | Many              | 16448   |
| 261       | 399      | Botrytis cinerea             | Fung | Asco   | Leotio | Plant path    | OA   | Non Cereal Monocot /Dicot | Many              | 14998   |
| 267       | 398      | Botrytis cinerea             | Fung | Asco   | Leotio | Plant path    | OA   | Non Cereal Monocot /Dicot | Many              |         |
| 282       | 387      | Sclerotinia sclerotiorum     | Fung | Asco   | Leotio | Plant path    | OA   | Non Cereal Monocot /Dicot | Many              | 5131    |
| 140       | 331      | Botryosphaeria dothidea      | Fung | Asco   | Doth   | Plant path    |      | Dicot                     | Woody species     | 9555    |
| 113       | 323      | Colletotrichum graminicola   | Fung | Asco   | Sord   | Plant path    | OA   | Dicot                     | Many              | 12250   |
| 84        | 321      | Alternaria brassicicola      | Fung | Asco   | Doth   | Plant path    |      | Dicot                     | Many              | 10688   |
| 134       | 319      | Hysterium pulicare           | Fung | Asco   | Doth   | Saprophytic   |      |                           | Woody species     | 9251    |
| 103       | 318      | Colletotrichum higginsianum  | Fung | Asco   | Sord   | Plant path    |      | Cereal Monocot/ Dicot     | Few               | 12006   |
| 101       | 317      | Cochliobolus heterostrophus  | Fung | Asco   | Doth   | Plant path    |      | Cereal Monocot/ Dicot     | Few               | 9910    |
| 100       | 317      | Cochliobolus heterostrophus  | Fung | Asco   | Doth   | Plant path    |      | Cereal Monocot/ Dicot     | Many              | 12720   |
| 103       | 317      | Pyrenophora teres            | Fung | Asco   | Doth   | Plant path    |      | Cereal Monocot            | Few               | 11538   |
| 95        | 316      | Stagonospora nodorum         | Fung | Asco   | Doth   | Plant path    |      | Monocot                   | Many              | 9110    |
| 95        | 316      | Stagonospora nodorum         | Fung | Asco   | Doth   | Plant path    |      | Monocot                   | Many              | 12379   |
| 93        | 316      | Cochliobolus sativus         | Fung | Asco   | Doth   | Plant path    |      | Monocot                   | Many              | 13336   |
| 98        | 315      | Setosphaeria turcica         | Fung | Asco   | Doth   | Plant path    |      | Cereal Monocot            | Few               | 16257   |
|           |          |                              |      |        |        | Plant path/   |      |                           |                   |         |
| 95        | 313      | Fusarium oxysporum           | Fung | Asco   | Sord   | animal path   | OA   | Monocot/Dicot             | Many              | 13322   |
|           |          |                              |      |        |        | Plant path/   |      |                           |                   |         |
| 95        | 313      | Fusarium oxysporum           | Fung | Asco   | Sord   | animal path   | OA   | Dicot                     | Many              | 17701   |
| 84        | 310      | Leptosphaeria maculans       | Fung | Asco   | Doth   | Plant path    |      | Dicot                     | Many              | 23132   |
| 134       | 310      | Cryphonectria parasitica     | Fung | Asco   | Sord   | Plant path    |      | Dicot - Tree              | Many              | 13342   |
| 98        | 308      | Pyrenophora tritici-repentis | Fung | Asco   | Doth   | Plant path    |      | Cereal Monocot            | Many              | 12169   |
|           |          |                              |      |        |        | Saprophytic   |      |                           |                   |         |
| 118       | 308      | Rhytidhysteron rufulum       | Fung | Asco   | Doth   | /Plant path   | OA   |                           | Many              | 17459   |
| 115       | 308      | Aspergillus flavus           | Fung | Asco   | Euro   | Saprophytic / | OA   |                           | Many              | 12587   |

# Appendix 6: The cross species comparison between the 432 protein sequences in the *S. scleroriotum* refined sectrome and the homologous

|     |     |                              |      |      |      | animal path   |    |                      |                    |       |
|-----|-----|------------------------------|------|------|------|---------------|----|----------------------|--------------------|-------|
| 98  | 308 | Pyrenophora tritici-repentis | Fung | Asco | Doth | Plant path    |    | Cereal Monocot       | Many               | 11799 |
| 95  | 308 | Fusarium verticillioides     | Fung | Asco | Sord | Plant path    |    | Cereal Monocot/Dicot | Many               | 17708 |
| 89  | 307 | Gaeumannomyces graminis      | Fung | Asco | Sord | Plant Path    |    | Cereal Monocot       | Many               |       |
| 86  | 306 | Magnaporthe grisea           | Fung | Asco | Sord | Plant path    |    | Monocot              | Many               | 5799  |
| 86  | 306 | Magnaporthe grisea           | Fung | Asco | Sord | Plant path    |    | Monocot              | Many               | 11054 |
| 92  | 305 | Fusarium solani              | Fung | Asco | Sord | Plant path    |    | Dicot                | Many               |       |
| 90  | 304 | Fusarium graminearum         | Fung | Asco | Sord | Plant path    |    | Cereal Monocot       | Few                | 13321 |
| 90  | 304 | Fusarium graminearum         | Fung | Asco | Sord | Plant path    |    | Monoct/Dicot         | Many               | 11333 |
| 82  | 303 | Verticillium dahliae         | Fung | Asco | Sord | Plant path    |    | Dicot                | Many               | 10535 |
| 82  | 303 | Verticillium dahliae         | Fung | Asco | Sord | Plant path    |    | Dicot                | Many               | 10220 |
| 85  | 302 | Magnaporthe oryzae           | Fung | Asco | Sord | Plant path    |    | Cereal Monocot       | Few                | 11054 |
| 114 | 302 | Aspergillus oryzae           | Fung | Asco | Euro | Saprophytic   |    |                      | Many               |       |
| 89  | 300 | Cercospora zeae-maydis       | Fung | Asco | Doth | Plant path    |    | Cereal Monocot       | Few                | 6258  |
|     |     |                              |      |      |      | Saprophytic / |    |                      |                    |       |
| 108 | 298 | Aspergillus terreus          | Fung | Asco | Euro | animal path   |    |                      | Many               | 12063 |
|     |     |                              |      |      |      | Saprophytic / |    |                      |                    |       |
| 115 | 297 | Aspergillus fumigatus        | Fung | Asco | Euro | animal path   | OA |                      | Many               | 9887  |
| 106 | 296 | Penicillium chrysogenum      | Fung | Asco | Euro | Saprophytic   |    |                      |                    |       |
| 67  | 296 | verticillium albo-atrum      | Fung | Asco | Sord | Plant path    |    | Dicot                | Many               | 6522  |
|     |     |                              |      |      |      | Saprophytic / |    |                      |                    |       |
| 121 | 295 | Aspergillus niger            | Fung | Asco | Euro | animal path   | OA |                      |                    | 8592  |
| 107 | 292 | Aspergillus nidulans         | Fung | Asco | Euro | Saprophytic   |    |                      |                    | 10560 |
| 106 | 292 | Aspergillus nidulans         | Fung | Asco | Euro | Saprophytic   |    |                      |                    | 10406 |
|     |     |                              | _    |      |      | Saprophytic / |    |                      |                    |       |
| 82  | 292 | Chaetomium globosum          | Fung | Asco | Sord | animal path   |    |                      |                    | 12020 |
|     |     |                              | _    |      | ~ .  | Saprophytic / |    |                      |                    |       |
| 82  | 292 | Chaetomium globosum          | Fung | Asco | Sord | animal path   |    |                      |                    | 11124 |
| 99  | 290 | Mycosphaerella fijiensis     | Fung | Asco | Doth | Plant path    |    | Dicot                | Few                | 8907  |
| 76  | 289 | Neurospora crassa            | Fung | Asco | Sord | Saprophytic   |    |                      |                    | 15707 |
| 76  | 289 | Neurospora crassa            | Fung | Asco | Sord | Saprophytic   |    |                      |                    | 9907  |
| 95  | 288 | Dothistroma septosporum      | Fung | Asco | Doth | Plant path    |    | Dicot                | One (pine species) | 6312  |
| 75  | 287 | Neurospora tetrasperma       | Fung | Asco | Sord | Saprophytic   |    |                      |                    | 10380 |
| 75  | 287 | Neurospora tetrasperma       | Fung | Asco | Sord | Saprophytic   |    |                      |                    | 9948  |
| 68  | 287 | Magnaporthe poae             | Fung | Asco | Sord | Plant path    |    | Cereal Monocot       | Few                | 12991 |
|     |     |                              |      | 1.   |      | Saprophytic / |    |                      |                    | 01.15 |
| 89  | 286 | Trichoderma virens           | Fung | Asco | Sord | animal path   |    |                      |                    | 9143  |
| 92  | 285 | Trichoderma atroviride       | Fung | Asco | Sord | Saprophytic   |    |                      |                    | 9813  |
| 92  | 285 | Trichoderma asperellum       | Fung | Asco | Sord | Saprophytic   |    |                      |                    |       |
| 90  | 284 | Trichoderma_harzianum        | Fung | Asco | Sord | Saprophytic   |    | ~                    |                    |       |
| 87  | 283 | Mycosphaerella graminicola   | Fung | Asco | Doth | Plant path    |    | Cereal Monocot       | Few                | 13107 |
| 87  | 283 | Mycosphaerella graminicola   | Fung | Asco | Doth | Plant path    |    | Cereal Monocot       | Few                | 10933 |

| 72                                                                                                                                                                  | 279                                                                                     | Neurospora discreta                                                                                                                                                                                                                                                                                                                   | Fung                                                         | Asco                                                                                                                                                                                                                                                                                               | Sord                                                                                                                                                                                                                                | Saprophytic                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                                                    |                                              | 9907                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------------------------------|----------------------------------------------|-----------------------------------------------------------|
| 92                                                                                                                                                                  | 279                                                                                     | Thielavia terrestris                                                                                                                                                                                                                                                                                                                  | Fung                                                         | Asco                                                                                                                                                                                                                                                                                               | Sord                                                                                                                                                                                                                                | Saprophytic                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                                                    |                                              | 12380                                                     |
| 77                                                                                                                                                                  | 275                                                                                     | Sporotrichum thermophile                                                                                                                                                                                                                                                                                                              | Fung                                                         | Asco                                                                                                                                                                                                                                                                                               | Sord                                                                                                                                                                                                                                | Saprophytic                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                                                    |                                              | 8804                                                      |
|                                                                                                                                                                     |                                                                                         |                                                                                                                                                                                                                                                                                                                                       |                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     | Saprophytic /                                                                                                                                                                                                                                                                                                                                                                                                                     |    |                                                    |                                              |                                                           |
| 82                                                                                                                                                                  | 274                                                                                     | Aspergillus clavatus                                                                                                                                                                                                                                                                                                                  | Fung                                                         | Asco                                                                                                                                                                                                                                                                                               | Euro                                                                                                                                                                                                                                | animal path                                                                                                                                                                                                                                                                                                                                                                                                                       | OA |                                                    | Many                                         | 9120                                                      |
| 78                                                                                                                                                                  | 274                                                                                     | Trichoderma reesei                                                                                                                                                                                                                                                                                                                    | Fung                                                         | Asco                                                                                                                                                                                                                                                                                               | Sord                                                                                                                                                                                                                                | Saprophytic                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                                                    |                                              | 9852                                                      |
| 78                                                                                                                                                                  | 274                                                                                     | Trichoderma reesei                                                                                                                                                                                                                                                                                                                    | Fung                                                         | Asco                                                                                                                                                                                                                                                                                               | Sord                                                                                                                                                                                                                                | Saprophytic                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                                                    |                                              | 9129                                                      |
| 90                                                                                                                                                                  | 272                                                                                     | Septoria musiva                                                                                                                                                                                                                                                                                                                       | Fung                                                         | Asco                                                                                                                                                                                                                                                                                               | Doth                                                                                                                                                                                                                                | Plant path                                                                                                                                                                                                                                                                                                                                                                                                                        |    | Dicot                                              | Few                                          | 14503                                                     |
| 80                                                                                                                                                                  | 272                                                                                     | Trichoderma reesei                                                                                                                                                                                                                                                                                                                    | Fung                                                         | Asco                                                                                                                                                                                                                                                                                               | Sord                                                                                                                                                                                                                                | Saprophytic                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                                                    |                                              | 11863                                                     |
| 92                                                                                                                                                                  | 267                                                                                     | Septoria populicola                                                                                                                                                                                                                                                                                                                   | Fung                                                         | Asco                                                                                                                                                                                                                                                                                               | Doth                                                                                                                                                                                                                                | Plant path                                                                                                                                                                                                                                                                                                                                                                                                                        |    | Dicot                                              | Few                                          | 10233                                                     |
|                                                                                                                                                                     |                                                                                         |                                                                                                                                                                                                                                                                                                                                       |                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     | Saprophytic /                                                                                                                                                                                                                                                                                                                                                                                                                     |    |                                                    |                                              |                                                           |
|                                                                                                                                                                     |                                                                                         |                                                                                                                                                                                                                                                                                                                                       |                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     | animal path /                                                                                                                                                                                                                                                                                                                                                                                                                     |    |                                                    |                                              |                                                           |
| 99                                                                                                                                                                  | 267                                                                                     | Aspergillus niger                                                                                                                                                                                                                                                                                                                     | Fung                                                         | Asco                                                                                                                                                                                                                                                                                               | Euro                                                                                                                                                                                                                                | plant path                                                                                                                                                                                                                                                                                                                                                                                                                        |    |                                                    |                                              | 10680                                                     |
| 78                                                                                                                                                                  | 266                                                                                     | Trichoderma_citrinoviride                                                                                                                                                                                                                                                                                                             | Fung                                                         | Asco                                                                                                                                                                                                                                                                                               | Sord                                                                                                                                                                                                                                | Saprophytic                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                                                    |                                              |                                                           |
| 96                                                                                                                                                                  | 263                                                                                     | Baudoinia compniacensis                                                                                                                                                                                                                                                                                                               | Fung                                                         | Asco                                                                                                                                                                                                                                                                                               | Doth                                                                                                                                                                                                                                | Saprophytic                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                                                    |                                              | 8732                                                      |
|                                                                                                                                                                     |                                                                                         | Trichoderma_longibrachiatu                                                                                                                                                                                                                                                                                                            |                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |                                                    |                                              |                                                           |
| 75                                                                                                                                                                  | 262                                                                                     | m                                                                                                                                                                                                                                                                                                                                     | Fung                                                         | Asco                                                                                                                                                                                                                                                                                               | Sord                                                                                                                                                                                                                                | Saprophytic                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                                                    |                                              |                                                           |
| 51                                                                                                                                                                  | 262                                                                                     | Punctularia strigosozonata                                                                                                                                                                                                                                                                                                            | Fung                                                         | Basid                                                                                                                                                                                                                                                                                              | Agaric                                                                                                                                                                                                                              | Saprophytic                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                                                    |                                              | 11630                                                     |
| 36                                                                                                                                                                  | 255                                                                                     | Serpula lacrymans                                                                                                                                                                                                                                                                                                                     | Fung                                                         | Basid                                                                                                                                                                                                                                                                                              | Agaric                                                                                                                                                                                                                              | Saprophytic                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                                                    |                                              | 9739                                                      |
| 36                                                                                                                                                                  | 255                                                                                     | Serpula lacrymans                                                                                                                                                                                                                                                                                                                     | Fung                                                         | Basid                                                                                                                                                                                                                                                                                              | Agaric                                                                                                                                                                                                                              | Saprophytic                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                                                    |                                              | 14495                                                     |
| 52                                                                                                                                                                  | 242                                                                                     | Trametes versicolor                                                                                                                                                                                                                                                                                                                   | Fung                                                         | Basid                                                                                                                                                                                                                                                                                              | Agaric                                                                                                                                                                                                                              | Saprophytic                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                                                    |                                              |                                                           |
|                                                                                                                                                                     |                                                                                         |                                                                                                                                                                                                                                                                                                                                       |                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |                                                    | Many (Woody                                  |                                                           |
|                                                                                                                                                                     |                                                                                         |                                                                                                                                                                                                                                                                                                                                       |                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |                                                    | many (woody                                  |                                                           |
| 43                                                                                                                                                                  | 240                                                                                     | Bjerkandera adusta                                                                                                                                                                                                                                                                                                                    | Fung                                                         | Basdio                                                                                                                                                                                                                                                                                             | Agarico                                                                                                                                                                                                                             | Plant patho                                                                                                                                                                                                                                                                                                                                                                                                                       |    | Dicot                                              | species)                                     |                                                           |
| 43<br>55                                                                                                                                                            | 240<br>240                                                                              | Bjerkandera adusta<br>Acremonium alcalophilum                                                                                                                                                                                                                                                                                         | Fung<br>Fung                                                 | Basdio<br>Asco                                                                                                                                                                                                                                                                                     | Agarico<br>Sord                                                                                                                                                                                                                     | Plant patho<br>Saprophytic                                                                                                                                                                                                                                                                                                                                                                                                        |    | Dicot                                              | species)                                     | 9521                                                      |
| 43<br>55                                                                                                                                                            | 240<br>240                                                                              | Bjerkandera adusta<br>Acremonium alcalophilum<br>Phanerochaete                                                                                                                                                                                                                                                                        | Fung<br>Fung                                                 | Basdio<br>Asco                                                                                                                                                                                                                                                                                     | Agarico<br>Sord                                                                                                                                                                                                                     | Plant patho<br>Saprophytic                                                                                                                                                                                                                                                                                                                                                                                                        |    | Dicot                                              | species)                                     | 9521                                                      |
| 43<br>55<br>42                                                                                                                                                      | 240<br>240<br>235                                                                       | Bjerkandera adusta<br>Acremonium alcalophilum<br>Phanerochaete<br>chrysosporium                                                                                                                                                                                                                                                       | Fung<br>Fung<br>Fung                                         | Basdio<br>Asco<br>Basid                                                                                                                                                                                                                                                                            | Agarico<br>Sord<br>Agaric                                                                                                                                                                                                           | Plant patho<br>Saprophytic<br>Saprophytic                                                                                                                                                                                                                                                                                                                                                                                         |    | Dicot                                              | species)                                     | 9521                                                      |
| 43<br>55<br>42<br>48                                                                                                                                                | 240<br>240<br>235<br>232                                                                | Bjerkandera adusta<br>Acremonium alcalophilum<br>Phanerochaete<br>chrysosporium<br>Fomitiporia mediterranea                                                                                                                                                                                                                           | Fung<br>Fung<br>Fung<br>Fung                                 | Basdio<br>Asco<br>Basid<br>Basid                                                                                                                                                                                                                                                                   | Agarico<br>Sord<br>Agaric<br>Agaric                                                                                                                                                                                                 | Plant patho<br>Saprophytic<br>Saprophytic<br>Saprophytic                                                                                                                                                                                                                                                                                                                                                                          |    | Dicot                                              | Few                                          | 9521<br>12580                                             |
| 43<br>55<br>42<br>48<br>24                                                                                                                                          | 240<br>240<br>235<br>232<br>229                                                         | Bjerkandera adusta<br>Acremonium alcalophilum<br>Phanerochaete<br>chrysosporium<br>Fomitiporia mediterranea<br>Coprinopsis cinerea                                                                                                                                                                                                    | Fung<br>Fung<br>Fung<br>Fung<br>Fung                         | Basdio<br>Asco<br>Basid<br>Basid<br>Basid                                                                                                                                                                                                                                                          | Agarico<br>Sord<br>Agaric<br>Agaric<br>Agaric<br>Agaric                                                                                                                                                                             | Plant patho<br>Saprophytic<br>Saprophytic<br>Saprophytic<br>Saprophytic                                                                                                                                                                                                                                                                                                                                                           |    | Dicot                                              | Few                                          | 9521<br>12580                                             |
| 43<br>55<br>42<br>48<br>24                                                                                                                                          | 240<br>240<br>235<br>232<br>229                                                         | Bjerkandera adusta<br>Acremonium alcalophilum<br>Phanerochaete<br>chrysosporium<br>Fomitiporia mediterranea<br>Coprinopsis cinerea                                                                                                                                                                                                    | Fung<br>Fung<br>Fung<br>Fung<br>Fung                         | Basdio       Asco       Basid       Basid       Basid                                                                                                                                                                                                                                              | Agarico<br>Sord<br>Agaric<br>Agaric<br>Agaric<br>Leotiomyce                                                                                                                                                                         | Plant patho<br>Saprophytic<br>Saprophytic<br>Saprophytic<br>Saprophytic                                                                                                                                                                                                                                                                                                                                                           |    | Dicot                                              | Few                                          | 9521                                                      |
| 43<br>55<br>42<br>48<br>24<br>52                                                                                                                                    | 240<br>240<br>235<br>232<br>229<br>224                                                  | Bjerkandera adusta<br>Acremonium alcalophilum<br>Phanerochaete<br>chrysosporium<br>Fomitiporia mediterranea<br>Coprinopsis cinerea<br>Geomyces destructans                                                                                                                                                                            | Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung                 | Basdio       Asco       Basid       Basid       Basid       Asco                                                                                                                                                                                                                                   | Agarico<br>Sord<br>Agaric<br>Agaric<br>Agaric<br>Leotiomyce<br>tes                                                                                                                                                                  | Plant patho<br>Saprophytic<br>Saprophytic<br>Saprophytic<br>Saprophytic<br>Animal path                                                                                                                                                                                                                                                                                                                                            |    | Dicot                                              | Few                                          | 9521                                                      |
| 43<br>55<br>42<br>48<br>24<br>52<br>40                                                                                                                              | 240<br>240<br>235<br>232<br>229<br>224<br>215                                           | Bjerkandera adusta<br>Acremonium alcalophilum<br>Phanerochaete<br>chrysosporium<br>Fomitiporia mediterranea<br>Coprinopsis cinerea<br>Geomyces destructans<br>Wolfiporia cocos                                                                                                                                                        | Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung         | Basdio       Asco       Basid       Basid       Basid       Asco       Basid                                                                                                                                                                                                                       | Agarico<br>Sord<br>Agaric<br>Agaric<br>Agaric<br>Leotiomyce<br>tes<br>Agaric                                                                                                                                                        | Plant patho<br>Saprophytic<br>Saprophytic<br>Saprophytic<br>Saprophytic<br>Animal path<br>Saprophytic                                                                                                                                                                                                                                                                                                                             |    | Dicot                                              | Few                                          | 9521<br>12580<br>10535                                    |
| $ \begin{array}{r}     43 \\     55 \\     42 \\     48 \\     24 \\     52 \\     40 \\     29 \\ \end{array} $                                                    | 240<br>240<br>235<br>232<br>229<br>224<br>215<br>213                                    | Bjerkandera adusta<br>Acremonium alcalophilum<br>Phanerochaete<br>chrysosporium<br>Fomitiporia mediterranea<br>Coprinopsis cinerea<br>Geomyces destructans<br>Wolfiporia cocos<br>Laccaria bicolor                                                                                                                                    | Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung | Basdio         Asco         Basid         Basid         Basid         Asco         Basid         Asco         Basid         Basid         Basid                                                                                                                                                    | Agarico<br>Sord<br>Agaric<br>Agaric<br>Agaric<br>Leotiomyce<br>tes<br>Agaric<br>Agaric<br>Agaric                                                                                                                                    | Plant patho<br>Saprophytic<br>Saprophytic<br>Saprophytic<br>Saprophytic<br>Animal path<br>Saprophytic<br>Plant mutualist                                                                                                                                                                                                                                                                                                          |    | Dicot                                              | Few                                          | 9521<br>12580<br>10535<br>18204                           |
| $ \begin{array}{r}     43 \\     55 \\     42 \\     48 \\     24 \\     52 \\     40 \\     29 \\     35 \\   \end{array} $                                        | 240<br>240<br>235<br>232<br>229<br>224<br>215<br>213<br>212                             | Bjerkandera adusta<br>Acremonium alcalophilum<br>Phanerochaete<br>chrysosporium<br>Fomitiporia mediterranea<br>Coprinopsis cinerea<br>Geomyces destructans<br>Wolfiporia cocos<br>Laccaria bicolor<br>Tuber melanosporum                                                                                                              | Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung | Basdio         Asco         Basid         Basid         Basid         Asco         Basid         Asco         Basid         Asco         Basid         Asco         Basid         Asco         Basid         Asco                                                                                  | Agarico<br>Sord<br>Agaric<br>Agaric<br>Agaric<br>Leotiomyce<br>tes<br>Agaric<br>Agaric<br>Agaric<br>Peziz                                                                                                                           | Plant patho         Saprophytic         Saprophytic         Saprophytic         Saprophytic         Animal path         Saprophytic         Plant mutualist         Plant mutualist                                                                                                                                                                                                                                               |    | Dicot Dicot Ectomycorrhizal Dicot                  | Few<br>Few                                   | 9521<br>12580<br>10535<br>18204<br>8521                   |
| $ \begin{array}{r}     43 \\     555 \\     42 \\     48 \\     24 \\     52 \\     40 \\     29 \\     35 \\     28 \\ \end{array} $                               | 240<br>240<br>235<br>232<br>229<br>224<br>215<br>213<br>212<br>209                      | Bjerkandera adusta<br>Acremonium alcalophilum<br>Phanerochaete<br>chrysosporium<br>Fomitiporia mediterranea<br>Coprinopsis cinerea<br>Geomyces destructans<br>Wolfiporia cocos<br>Laccaria bicolor<br>Tuber melanosporum<br>Coprinopsis cinerea                                                                                       | Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung | Basdio         Asco         Basid         Basid         Basid         Asco         Basid         Asco         Basid         Asco         Basid         Basid         Basid         Basid         Basid         Basid         Basid         Basid         Basid                                     | Agarico<br>Sord<br>Agaric<br>Agaric<br>Agaric<br>Leotiomyce<br>tes<br>Agaric<br>Agaric<br>Agaric<br>Peziz<br>Agaric                                                                                                                 | Plant patho         Saprophytic         Saprophytic         Saprophytic         Saprophytic         Animal path         Saprophytic         Plant mutualist         Plant mutualist         Saprophytic                                                                                                                                                                                                                           |    | Dicot Dicot Ectomycorrhizal Dicot                  | Few<br>Few                                   | 9521<br>12580<br>10535<br>18204<br>8521<br>16150          |
| $ \begin{array}{r}     43 \\     55 \\     42 \\     48 \\     24 \\     52 \\     40 \\     29 \\     35 \\     28 \\ \end{array} $                                | 240<br>240<br>235<br>232<br>229<br>224<br>215<br>213<br>212<br>209                      | Bjerkandera adusta<br>Acremonium alcalophilum<br>Phanerochaete<br>chrysosporium<br>Fomitiporia mediterranea<br>Coprinopsis cinerea<br>Geomyces destructans<br>Wolfiporia cocos<br>Laccaria bicolor<br>Tuber melanosporum<br>Coprinopsis cinerea                                                                                       | Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung | Basdio         Asco         Basid         Basid         Asco         Basid         Asco         Basid         Asco         Basid         Asco         Basid         Basid         Basid         Asco         Basid         Asco         Basid                                                      | Agarico       Sord       Agaric       Agaric       Agaric       Leotiomyce       tes       Agaric       Agaric | Plant pathoSaprophyticSaprophyticSaprophyticSaprophyticAnimal pathSaprophyticPlant mutualistPlant mutualistSaprophyticSaprophyticSaprophytic                                                                                                                                                                                                                                                                                      |    | Dicot Dicot Ectomycorrhizal Dicot                  | Few<br>Few                                   | 9521<br>12580<br>10535<br>18204<br>8521<br>16150          |
| 43<br>55<br>42<br>48<br>24<br>52<br>40<br>29<br>35<br>28<br>133                                                                                                     | 240<br>240<br>235<br>232<br>229<br>224<br>215<br>213<br>212<br>209<br>208               | Bjerkandera adusta<br>Acremonium alcalophilum<br>Phanerochaete<br>chrysosporium<br>Fomitiporia mediterranea<br>Coprinopsis cinerea<br>Geomyces destructans<br>Wolfiporia cocos<br>Laccaria bicolor<br>Tuber melanosporum<br>Coprinopsis cinerea<br>Aureobasidium pullulans                                                            | Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung | Basdio         Asco         Basid         Basid         Basid         Asco         Basid                                         | Agarico       Sord       Agaric       Agaric       Agaric       Leotiomyce       tes       Agaric       Agaric       Agaric       Agaric       Agaric       Agaric       Agaric       Agaric       Agaric       Doth                | Plant pathoSaprophyticSaprophyticSaprophyticSaprophyticAnimal pathSaprophyticPlant mutualistPlant mutualistSaprophyticSaprophyticAnimal path                                                                                                                                                                                                                                                                                      |    | Dicot Dicot Ectomycorrhizal Dicot                  | Few<br>Few<br>Few<br>Many                    | 9521<br>12580<br>10535<br>18204<br>8521<br>16150          |
| 43<br>55<br>42<br>48<br>24<br>52<br>40<br>29<br>35<br>28<br>133                                                                                                     | 240<br>240<br>235<br>232<br>229<br>224<br>215<br>213<br>212<br>209<br>208               | Bjerkandera adusta<br>Acremonium alcalophilum<br>Phanerochaete<br>chrysosporium<br>Fomitiporia mediterranea<br>Coprinopsis cinerea<br>Geomyces destructans<br>Wolfiporia cocos<br>Laccaria bicolor<br>Tuber melanosporum<br>Coprinopsis cinerea<br>Aureobasidium pullulans                                                            | Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung | Basdio         Asco         Basid         Basid         Asco         Basid         Basid         Asco         Basid         Asco         Basid         Asco         Basid         Asco         Basid         Asco         Basid         Asco                                                       | Agarico       Sord       Agaric       Agaric       Agaric       Leotiomyce       tes       Agaric       Agaric       Agaric       Agaric       Agaric       Agaric       Agaric       Doth                                          | Plant pathoSaprophyticSaprophyticSaprophyticSaprophyticAnimal pathSaprophyticPlant mutualistPlant mutualistSaprophyticSaprophyticSaprophyticAnimal pathSaprophytic/animal pathSaprophytic/Saprophytic/////////////////////////////////////////////////////////////////////////////// <td></td> <td>Dicot  Ectomycorrhizal Dicot</td> <td>Few<br/>Few<br/>Many</td> <td>9521<br/>12580<br/>10535<br/>18204<br/>8521<br/>16150</td> |    | Dicot  Ectomycorrhizal Dicot                       | Few<br>Few<br>Many                           | 9521<br>12580<br>10535<br>18204<br>8521<br>16150          |
| $ \begin{array}{r}     43 \\     55 \\     42 \\     48 \\     24 \\     52 \\     40 \\     29 \\     35 \\     28 \\     133 \\     47 \\   \end{array} $         | 240<br>240<br>235<br>232<br>229<br>224<br>215<br>213<br>212<br>209<br>208<br>201        | Bjerkandera adusta<br>Acremonium alcalophilum<br>Phanerochaete<br>chrysosporium<br>Fomitiporia mediterranea<br>Coprinopsis cinerea<br>Geomyces destructans<br>Wolfiporia cocos<br>Laccaria bicolor<br>Tuber melanosporum<br>Coprinopsis cinerea<br>Aureobasidium pullulans<br>Blastomyces dermatitidis                                | Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung | Basdio         Asco         Basid         Basid         Asco         Basid         Basid         Basid         Basid         Asco         Basid         Asco         Basid         Asco         Basid         Asco         Basid         Asco         Basid         Asco                           | Agarico       Sord       Agaric       Agaric       Agaric       Leotiomyce       tes       Agaric       Agaric       Agaric       Agaric       Agaric       Agaric       Doth       Asco                                            | Plant patho         Saprophytic         Saprophytic         Saprophytic         Saprophytic         Animal path         Saprophytic         Plant mutualist         Plant mutualist         Saprophytic         // animal path         Saprophytic         // animal path         Saprophytic         // animal path         Saprophytic         // animal path                                                                   |    | Dicot  Ectomycorrhizal Dicot                       | Few<br>Few<br>Kany<br>Many<br>Mammals        | 9521<br>12580<br>10535<br>18204<br>8521<br>16150<br>10513 |
| 43<br>55<br>42<br>48<br>24<br>52<br>40<br>29<br>35<br>28<br>133<br>47                                                                                               | 240<br>240<br>235<br>232<br>229<br>224<br>215<br>213<br>212<br>209<br>208<br>208<br>201 | Bjerkandera adusta<br>Acremonium alcalophilum<br>Phanerochaete<br>chrysosporium<br>Fomitiporia mediterranea<br>Coprinopsis cinerea<br>Geomyces destructans<br>Wolfiporia cocos<br>Laccaria bicolor<br>Tuber melanosporum<br>Coprinopsis cinerea<br>Aureobasidium pullulans<br>Blastomyces dermatitidis                                | Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung | Basdio         Asco         Basid         Basid         Asco         Basid         Basid         Basid         Basid         Basid         Asco         Basid         Asco         Basid         Asco         Basid         Asco         Basid         Asco         Asco                           | Agarico       Sord       Agaric       Agaric       Agaric       Leotiomyce       tes       Agaric       Agaric       Agaric       Agaric       Agaric       Agaric       Agaric       Doth       Asco       Urediniomy              | Plant patho<br>Saprophytic<br>Saprophytic<br>Saprophytic<br>Saprophytic<br>Animal path<br>Saprophytic<br>Plant mutualist<br>Plant mutualist<br>Saprophytic<br>Saprophytic<br>Saprophytic /<br>animal path<br>Saprophytic /<br>animal path                                                                                                                                                                                         |    | Dicot  Ectomycorrhizal Dicot                       | Few<br>Few<br>Many<br>Mammals                | 9521<br>12580<br>10535<br>18204<br>8521<br>16150<br>10513 |
| $ \begin{array}{r}     43 \\     55 \\     42 \\     48 \\     24 \\     52 \\     40 \\     29 \\     35 \\     28 \\     133 \\     47 \\     20 \\ \end{array} $ | 240<br>240<br>235<br>232<br>229<br>224<br>215<br>213<br>212<br>209<br>208<br>201<br>200 | Bjerkandera adusta<br>Acremonium alcalophilum<br>Phanerochaete<br>chrysosporium<br>Fomitiporia mediterranea<br>Coprinopsis cinerea<br>Geomyces destructans<br>Wolfiporia cocos<br>Laccaria bicolor<br>Tuber melanosporum<br>Coprinopsis cinerea<br>Aureobasidium pullulans<br>Blastomyces dermatitidis<br>Melampsora laricis-populina | Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung | Basdio         Asco         Basid         Basid         Asco         Basid | Agarico       Sord       Agaric       Agaric       Agaric       Leotiomyce       tes       Agaric       Agaric       Peziz       Agaric       Doth       Asco       Urediniomy       cetes                                          | Plant patho<br>Saprophytic<br>Saprophytic<br>Saprophytic<br>Saprophytic<br>Animal path<br>Saprophytic<br>Plant mutualist<br>Plant mutualist<br>Saprophytic<br>Saprophytic /<br>animal path<br>Saprophytic /<br>animal path<br>Plant path (rust)                                                                                                                                                                                   |    | Dicot  Ectomycorrhizal Dicot  Dicot Dicot (poplar) | Few<br>Few<br>Many<br>Mammals<br>Few         | 9521<br>12580<br>10535<br>18204<br>8521<br>16150<br>10513 |
| $ \begin{array}{r}     43 \\     55 \\     42 \\     48 \\     24 \\     52 \\     40 \\     29 \\     35 \\     28 \\     133 \\     47 \\     20 \\ \end{array} $ | 240<br>240<br>235<br>232<br>229<br>224<br>215<br>213<br>212<br>209<br>208<br>201<br>200 | Bjerkandera adusta<br>Acremonium alcalophilum<br>Phanerochaete<br>chrysosporium<br>Fomitiporia mediterranea<br>Coprinopsis cinerea<br>Geomyces destructans<br>Wolfiporia cocos<br>Laccaria bicolor<br>Tuber melanosporum<br>Coprinopsis cinerea<br>Aureobasidium pullulans<br>Blastomyces dermatitidis<br>Melampsora laricis-populina | Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung<br>Fung | Basdio         Asco         Basid         Basid         Asco         Basid                            | Agarico       Sord       Agaric       Agaric       Agaric       Leotiomyce       tes       Agaric       Agaric       Peziz       Agaric       Doth       Asco       Urediniomy       cetes       Microbotry                         | Plant patho<br>Saprophytic<br>Saprophytic<br>Saprophytic<br>Saprophytic<br>Animal path<br>Saprophytic<br>Plant mutualist<br>Plant mutualist<br>Plant mutualist<br>Saprophytic<br>Saprophytic /<br>animal path<br>Saprophytic /<br>animal path<br>Plant path (rust)                                                                                                                                                                |    | Dicot  Ectomycorrhizal Dicot  Dicot Dicot (poplar) | Few<br>Few<br>Many<br>Many<br>Manmals<br>Few | 9521<br>12580<br>10535<br>18204<br>8521<br>16150<br>10513 |

| 43 | 196 | Blastomyces dermatitidis      | Fung    | Asco             | Asco     | Animal path   |                        |                 | 9522  |
|----|-----|-------------------------------|---------|------------------|----------|---------------|------------------------|-----------------|-------|
|    |     |                               |         |                  |          | Saprophytic / |                        |                 |       |
| 46 | 195 | Blastomyces dermatitidis      | Fung    | Asco             | Asco     | animal path   |                        |                 | 10089 |
|    |     |                               |         |                  |          | Saprophytic / |                        |                 |       |
| 41 | 186 | Coccidioides immitis          | Fung    | Asco             | Euas     | animal path   |                        |                 | 10463 |
|    |     |                               |         |                  |          | Saprophytic / |                        |                 |       |
| 39 | 186 | Coccidioides immitis          | Fung    | Asco             | Euas     | animal path   |                        |                 | 10593 |
| 42 | 185 | Uncinocarpus reesii           | Fung    | Asco             | Euro     | Saprophytic   |                        |                 | 7496  |
| 20 | 185 | Ustilago maydis               | Fung    | Basid            | Ustil    | Plant path    | Cereal Monocot         | Few             | 7798  |
| 20 | 185 | Ustilago maydis               | Fung    | Basid            | Ustil    | Plant path    | Cereal Monocot         | Few             | 6522  |
|    |     |                               |         |                  |          |               |                        | One (wheat with |       |
| 55 | 183 | Blumeria graminis             | Fung    | Asco             | Leotio   | Plant path    | Cereal Monocot         | some grasses)   |       |
| 23 | 182 | Puccinia graminis             | Fung    | Basid            | Pucc     | Plant path    | Cereal Monocot         | Few             | 20534 |
|    |     |                               |         |                  |          | Saprophytic / |                        |                 |       |
| 40 | 181 | Paracoccidioides brasiliensis | Fung    | Asco             | Euro     | animal path   |                        |                 | 9136  |
|    |     |                               |         |                  |          | Saprophytic / |                        |                 |       |
| 45 | 181 | Histoplasma capsulatum        | Fung    | Asco             | Asco     | animal path   |                        |                 | 14650 |
|    |     |                               |         |                  |          | Saprophytic / |                        |                 |       |
| 31 | 180 | Coccidioides immitis          | Fung    | Asco             | Euas     | animal path   |                        |                 | 10408 |
|    |     |                               |         |                  |          | Saprophytic / |                        |                 |       |
| 38 | 180 | Paracoccidioides brasiliensis | Fung    | Asco             | Euro     | animal path   |                        |                 | 11192 |
|    |     |                               |         |                  |          | Saprophytic / |                        |                 |       |
| 34 | 178 | Coccidioides immitis          | Fung    | Asco             | Euas     | animal path   |                        | Few             | 11124 |
|    |     |                               |         |                  |          | Saprophytic / |                        |                 |       |
| 41 | 178 | Histoplasma capsulatum        | Fung    | Asco             | Asco     | animal path   |                        |                 | 9428  |
|    |     |                               |         |                  |          | Saprophytic / |                        |                 |       |
| 38 | 177 | Paracoccidioides brasiliensis | Fung    | Asco             | Euro     | animal path   |                        |                 | 7876  |
|    |     |                               |         |                  |          | Saprophytic / |                        |                 |       |
| 45 | 176 | Histoplasma capsulatum        | Fung    | Asco             | Asco     | animal path   |                        |                 | 9233  |
| 22 | 175 | Puccinia graminis             | Fung    | Basid            | Pucc     | Plant path    | Cereal Monocot         | Many            | 18140 |
| 41 | 173 | Trichophyton equinum          | Fung    | Asco             | Euro     | Saprophytic   |                        |                 |       |
|    |     |                               |         |                  |          | Saprophytic / |                        |                 |       |
| 42 | 172 | Microsporum canis             | Fung    | Asco             | Euro     | animal path   |                        |                 |       |
|    |     |                               |         |                  |          | Saprophytic / |                        |                 |       |
| 47 | 171 | Microsporum gypseum           | Fung    | Asco             | Euro     | animal path   |                        |                 |       |
| 43 | 171 | Trichophyton rubrum           | Fung    | Asco             | Euro     | Saprophytic   |                        |                 |       |
| 41 | 171 | Trichophyton tonsurans        | Fung    | Asco             | Euro     | Saprophytic   |                        |                 |       |
|    |     |                               |         |                  |          | Saprophytic / |                        |                 |       |
| 42 | 171 | Histoplasma capsulatum        | Fung    | Asco             | Asco     | animal path   |                        |                 | 9532  |
| 14 | 170 | Puccinia triticina            | Fung    | Basid            | Pucc     | Plant path    |                        |                 | 15979 |
| 7  | 155 | Phytophthora ramorum          | Chromal | Heterokontophyta | Oomycota | Plant Path    | Dicot                  | Many            |       |
| 6  | 154 | Phytophthora sojae            | Chromal | Heterokontophyta | Oomycota | Plant Path    | Dicot (soy and lupins) | Few             |       |

| 4  | 152 | Phytophthora infestans    | Chromal  | Heterokontophyta   | Oomycota  | Plant path     | Dicot                | Many              | 8741  |
|----|-----|---------------------------|----------|--------------------|-----------|----------------|----------------------|-------------------|-------|
| 4  | 152 | Phytophthora infestans    | Chromal  | Heterokontophyta   | Oomycota  | Plant path     | Dicot                | Many              | 8741  |
| 9  | 138 | Spizellomyces punctatus   | Fung     | Chytrid            | Chytrid   | Saprophytic    |                      |                   |       |
|    |     |                           |          |                    |           | Saprophytic /  |                      |                   |       |
| 10 | 134 | Cryptococcus neoformans   | Fung     | Basid              | Agaric    | animal path    |                      |                   | 11609 |
|    |     |                           |          |                    |           | Saprophytic /  |                      |                   |       |
| 10 | 134 | Cryptococcus neoformans   | Fung     | Basid              | Agaric    | animal path    |                      |                   | 6967  |
| 7  | 131 | Rhizopus oryzae           | Fung     | Mucor              |           | Saprophytic    |                      |                   | 12169 |
|    |     | Hyaloperonospora          |          |                    |           |                |                      |                   |       |
| 4  | 128 | arabidopsidis             | Eukary   | Heterokontanophyta | Oomycete  | Plant Pathogen | Dicot                | One (arabidopsis) |       |
|    |     |                           | Chromal  |                    |           |                |                      |                   |       |
| 6  | 127 | Pythium ultimum           | veolata  | Heterokontophyta   | Oomycota  | Plant path     | Cereal Monocot-Dicot | Many              |       |
| 9  | 125 | Mucor circinelloides      | Fung     | Zygo               | Zygo      | Plant path     | Dicot                | Few               |       |
|    |     | Debaryomyces hansenii     |          |                    |           | Saprophytic /  |                      |                   |       |
| 10 | 103 | (Candida famata)          | Fung     | Asco               | Sacc      | animal path    |                      |                   |       |
| 3  | 99  | Albugo laibachii          | Chrom    | Heterokontophyta   | Oomycete  | Plant path     | Dicot                | one (arabidopsis) |       |
|    |     |                           |          |                    |           | Saprophytic /  |                      |                   |       |
| 4  | 94  | Candida guilliermondii    | Fung     | Asco               | Sacc      | animal path    |                      |                   | 5235  |
|    |     |                           |          |                    |           | Saprophytic /  |                      |                   |       |
| 11 | 88  | Candida dubliniensi       | Fung     | Asco               | Sacc      | animal path    |                      |                   |       |
|    |     |                           |          |                    |           | Saprophytic /  |                      |                   |       |
| 5  | 87  | Candida tropicalis        | Fung     | Asco               | Sacc      | animal path    |                      |                   | 5733  |
| 0  | 87  | Allomyces macrogynus      | Fung     | Blasto             | Blasto    | saprophytic    |                      |                   |       |
|    |     |                           |          |                    |           | Saprophytic /  |                      |                   |       |
| 8  | 85  | Candida parapsilosis      | Fung     | Asco               | Sacc      | animal path    |                      |                   | 5941  |
| 4  | 85  | Saccharomyces cerevisiae  | Fung     | Asco               | Sacc      | Saprophytic    |                      |                   | 12117 |
|    |     |                           |          |                    |           | Saprophytic /  |                      |                   |       |
| 9  | 84  | Candida albicans          | Fung     | Asco               | Sacc      | animal path    |                      |                   | 16447 |
|    |     |                           |          |                    |           | Saprophytic /  |                      |                   |       |
| 9  | 84  | Candida albicans          | Fung     | Asco               | Sacc      | animal path    |                      |                   | 6017  |
|    |     |                           |          |                    |           | Saprophytic /  |                      |                   |       |
| 6  | 84  | Candida lusitaniae        | Fung     | Asco               | Sacc      | animal path    |                      |                   | 5920  |
|    |     | Batrachochytrium          | _        |                    |           | Saprophytic /  |                      |                   |       |
| 2  | 81  | dendrobatidis             | Fung     | Chytrid            | Chytrid   | animal path    |                      | Many amphibians   | 11197 |
| 0  | 80  | Myzus persicae            | Animalia | Arthropoda         | Insecta   | Plant Pest     | Dicot                | Many              |       |
|    |     | Candida (lodderomyces     |          |                    |           | Saprophytic /  |                      |                   |       |
| 5  | 77  | elongisporus)             | Fung     | Asco               | Sacc      | animal path    | l                    |                   |       |
|    |     | Batrachochytrium          | _        |                    |           | Saprophytic /  |                      |                   |       |
| 1  | 76  | dendrobatidis             | Fung     | Chytrid            | Chytrid   | animal path    |                      |                   | 8818  |
| 5  | 76  | Schizosaccharomyces pombe | Fung     | Asco               | Schiz     | Saprophytic    |                      |                   | 4924  |
| 0  | 74  | Drosophila_melanogaster   | Animalia | Arthroppda         | Insecta   | Plant Pest     | Dicot (fuit)         | Many              |       |
| 0  | 71  | Caenorhabditis elegans    | Animal   | Nematoda           | Chromador | Bacterial      |                      |                   |       |

|   |    |                       |          |       | ea    | pathogen      |       |
|---|----|-----------------------|----------|-------|-------|---------------|-------|
|   |    | Schizosaccharomyces   |          |       |       |               |       |
| 6 | 69 | japonicus             | Fung     | Asco  | Schiz | Saprophytic   | 5178  |
|   |    | Schizosaccharomyces   |          |       |       |               |       |
| 6 | 64 | cryophilus            | Fung     | Asco  | Schiz | Saprophytic   | 5381  |
|   |    | Schizosaccharomyces   |          |       |       |               |       |
| 6 | 64 | octosporus            | Fung     | Asco  | Schiz | Saprophytic   | 4868  |
|   |    |                       |          |       |       | Saprophytic / |       |
| 4 | 61 | Candida glabrata      | Fung     | Asco  | Sacc  | animal path   |       |
| 0 | 58 | Meloidogyne incognita | Animalia | Nemat |       | Plant path    | 13072 |
| 0 | 55 | Meloidogyne hapla     | Animalia | Nemat |       | Plant path    | 12329 |

### Appendix 7: Field Trials results 2011.

Comparison between the presence of *S. sclerotiorum* DNA obtained from Burkard 7 day traps and the presence of OA in medium incubated field samples. 0= no detection , 1= positive detection.

| Date      | Spectrophotometer<br>OA event | Ss DNA | Date       | Spectrophotometer<br>OA event | Ss DNA |
|-----------|-------------------------------|--------|------------|-------------------------------|--------|
| 7.4.2011  | 0                             | 0      | 19.5.2011  | 0                             | 1      |
| 8.4.2011  | 0                             | 0      | 20.5.2011  | 1                             | 1      |
| 9.4.2011  | 0                             | 1      | 21.5.2011  | 0                             | 1      |
| 10.4.11   | 0                             | 1      | 22.5.2011  | 1                             | 1      |
| 11.4.2011 | 0                             | 1      | 23.5.2011  | 0                             | 1      |
| 12.4.2011 | 0                             | 1      | 24.5.2011  | 0                             | 1      |
| 13.4.2011 | 0                             | 1      | 25.5.2011  | 0                             | 1      |
| 14.4.2011 | 0                             | 1      | 26.5.2011  | 0                             | 1      |
| 15.4.2011 | 0                             | 1      | 27.5.2011  | 0                             | 1      |
| 16.4.2011 | 0                             | 0      | 28.5.2011  | 0                             | 1      |
| 17.4.2011 | 0                             | 0      | 29.5.2011  | 0                             | 1      |
| 18.4.2011 | 1                             | 0      | 30.5.2011  | 0                             | 1      |
| 19.4.2011 | 0                             | 1      | 31.5.2011  | 0                             | 1      |
| 20.4.2011 | 0                             | 1      | 1.6.2011   | 0                             | 1      |
| 21.4.2011 | 0                             | 0      | 2.6.2011   | 0                             | 1      |
| 22.4.2011 | 0                             | 0      | 3.6.2011   | 0                             | 1      |
| 23.4.2011 | 0                             | 1      | 4.6.2011   | 0                             | 1      |
| 24.4.2011 | 0                             | 0      | 5.6.2011   | 0                             | 1      |
| 25.4.2011 | 0                             | 0      | 6.6.2011   | 0                             | 1      |
| 26.4.2011 | 0                             | 0      | 7.6.2011   | 1                             | 1      |
| 27.4.2011 | 1                             | 0      | 8.6.2011   | 0                             | 1      |
| 28.4.2011 | 0                             | 0      | 9.6.2011   | 0                             | 1      |
| 29.4.2011 | 0                             | 0      | 10.6.2011  | 0                             | 1      |
| 30.4.2011 | 0                             | 0      | 11.6.2011  | 0                             | 1      |
| 1.5.2011  | 0                             | 0      | 12.6.2011  | 0                             | 1      |
| 2.5.2011  | 0                             | 0      | 13.6.2011  | 0                             | 1      |
| 3.5.2011  | 0                             | 0      | 14.6.2011  | 0                             | -      |
| 4.5.2011  | 0                             | 0      | 15.6.2011  | 1                             | -      |
| 5.5.2011  | 0                             | 0      | 16.6.2011  | 0                             | -      |
| 6.5.2011  | 1                             | 0      | 17.6.2011  | 0                             | -      |
| 7.5.2011  | 0                             | 1      | 18.6.2011  | 0                             | -      |
| 8.5.2011  | 0                             | 0      | 19.6.2011  | 1                             | -      |
| 9.5.2011  | 0                             | 1      | 20.6.2011  | 0                             | -      |
| 10.5.2011 | 0                             | 1      | 21.06.2011 | 0                             | -      |
| 11.5.2011 | 1                             | 1      | 22.06.2011 | 0                             | 1      |
| 12.5.2011 | 0                             | 0      | 23.06.2011 | 0                             | 1      |
| 13.5.2011 | 0                             | 1      | 24.06.2011 | 0                             | 1      |

| 14.5.2011 | 0 | 1 | 25.06.2011 | 0 | 1 |
|-----------|---|---|------------|---|---|
| 15.5.2011 | 0 | 1 | 26.06.2011 | 0 | 1 |
| 16.5.2011 | 0 | 0 | 27.06.2011 | 0 | 1 |
| 17.5.2011 | 0 | 1 | 28.06.2011 | 0 | 1 |
| 18.5.2011 | 0 | 1 |            |   |   |

#### Appendix 8: Field Trial results 2012.

Comparison between the presence of *S. sclerotiorum* DNA obtained from Burkard 7 day traps and detection of OA in medium incubated field samples using electrochemical and spectrophotmoter methods of detection. 0= no detection , 1= positive detection.

| Date       | HRP Electrode | <b>PB</b> electrode | Spectrophotometer | Ss DNA |
|------------|---------------|---------------------|-------------------|--------|
| 04/04/2012 | 0             | 0                   | 0                 | 1      |
| 05/04/2012 | 0             | 0                   | 0                 | 0      |
| 06/04/2012 | 0             | 0                   | 0                 | 1      |
| 07/04/2012 | 0             | 0                   | 0                 | 1      |
| 08/04/2012 | 0             | 0                   | 0                 | 1      |
| 09/04/2012 | 0             | 0                   | 0                 | 1      |
| 10/04/2012 | 1             | 1                   | 0                 | 1      |
| 11/04/2012 | 0             | 0                   | 0                 | 1      |
| 12/04/2012 | 0             | 0                   | 0                 | 1      |
| 13/04/2012 | 0             | 0                   | 0                 | 1      |
| 14/04/2012 | 0             | 0                   | 0                 | 1      |
| 15/04/2012 | 0             | 0                   | 0                 | 1      |
| 16/04/2012 | 0             | 0                   | 0                 | 1      |
| 17/04/2012 | 1             | 1                   | 0                 | 1      |
| 18/04/2012 | 0             | 0                   | 0                 | 1      |
| 19/04/2012 | 0             | 0                   | 0                 | 1      |
| 20/04/2012 | 0             | 0                   | 0                 | 1      |
| 21/04/2012 | 0             | 0                   | 0                 | 1      |
| 22/04/2012 | 0             | 0                   | 0                 | 1      |
| 23/04/2012 | 0             | 0                   | 0                 | 0      |
| 24/04/2012 | 1             | 0                   | 0                 | 1      |
| 25/04/2012 | 1             | 0                   | 0                 | 1      |
| 26/04/2012 | 0             | 0                   | 0                 | 1      |
| 27/04/2012 | 0             | 0                   | 0                 | 1      |
| 28/04/2012 | 1             | 0                   | 0                 | 1      |
| 29/04/2012 | 1             | 0                   | 0                 | 1      |
| 30/04/2012 | 1             | 1                   | 1                 | 0      |
| 01/05/2012 | 0             | 0                   | 0                 | 1      |
| 02/05/2012 | 0             | 0                   | 0                 | 0      |
| 03/05/2012 | 1             | 1                   | 0                 | 1      |
| 04/05/2012 | 1             | 1                   | 1                 | 1      |
| 05/05/2012 | 0             | 0                   | 0                 | 1      |
| 06/05/2012 | 1             | 1                   | 1                 | 1      |
| 07/05/2012 |               |                     | 1                 | 1      |
| 08/05/2012 | 1             | 1                   | 1                 | 1      |
| 09/05/2012 | 1             | 1                   | 1                 | 1      |
| 10/05/2012 | 1             | 1                   | 1                 | 1      |
| 11/05/2012 | 1             | 1                   | 1                 | 1      |
| 12/05/2012 | 1             | 1                   | 1                 | 1      |
| 14/05/2012 | 1             | 1                   | 1                 | 1      |
| 15/05/2012 | 1             | 1                   | 1                 | 1      |
| 16/05/2012 | 1             | 1                   | 1                 | 1      |
| 17/05/2012 | 1             | 1                   | 1                 | 1      |

| 18/05/2012 | 1 | 1 | 1 | 1 |
|------------|---|---|---|---|
| 19/05/2012 | 1 | 1 | 1 | 1 |
| 20/05/2012 | 0 | 0 | 0 | 1 |
| 21/05/2012 | 1 | 1 | 1 | 1 |
| 22/05/2012 | 0 | 0 | 1 | 1 |
| 23/05/2012 | 1 | 1 | 1 | 1 |
| 24/05/2012 | 1 | 1 | 1 | 1 |
| 25/05/2012 | 1 | 1 | 1 | 1 |
| 27/05/2012 | 1 | 1 | 1 | 1 |
| 28/05/2012 | 0 | 0 | 1 | 1 |
| 29/05/2012 | 0 | 0 | 0 | 1 |
| 30/05/2012 | 1 | 1 | 1 | 1 |
| 31/05/2012 | 0 | 0 | 1 | 1 |
| 01/06/2012 | 0 | 0 | 1 | 1 |
| 06/06/2012 | 1 | 1 | 0 | 1 |