
����������
�������

Citation: Nurzijah, I.; Elbohy, O.A.;

Kanyuka, K.; Daly, J.M.; Dunham, S.

Development of Plant-Based Vaccines

for Prevention of Avian Influenza

and Newcastle Disease in Poultry.

Vaccines 2022, 10, 478. https://

doi.org/10.3390/vaccines10030478

Academic Editor: Caterina Lupini

Received: 4 February 2022

Accepted: 16 March 2022

Published: 19 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Development of Plant-Based Vaccines for Prevention of Avian
Influenza and Newcastle Disease in Poultry
Ika Nurzijah 1,2,3,† , Ola A. Elbohy 1,4,†, Kostya Kanyuka 2,5, Janet M. Daly 1 and Stephen Dunham 1,*

1 School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus,
Loughborough LE12 5RD, UK; ika.nurzijah@nottingham.ac.uk (I.N.); ola.elbohy@nottingham.ac.uk (O.A.E.);
janet.daly@nottingham.ac.uk (J.M.D.)

2 Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK;
kostya.kanyuka@niab.com

3 Faculty of Pharmacy, Universitas Muhammadiyah Purwokerto, Purwokerto 53182, Indonesia
4 Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
5 National Institute of Agricultural Botany (NIAB), 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
* Correspondence: stephen.dunham@nottingham.ac.uk; Tel.: +44-115-951-6580
† These authors contributed equally to this work.

Abstract: Viral diseases, including avian influenza (AI) and Newcastle disease (ND), are an important
cause of morbidity and mortality in poultry, resulting in significant economic losses. Despite the
availability of commercial vaccines for the major viral diseases of poultry, these diseases continue
to pose a significant risk to global food security. There are multiple factors for this: vaccine costs
may be prohibitive, cold chain storage for attenuated live-virus vaccines may not be achievable, and
commercial vaccines may protect poorly against local emerging strains. The development of transient
gene expression systems in plants provides a versatile and robust tool to generate a high yield of
recombinant proteins with superior speed while managing to achieve cost-efficient production. Plant-
derived vaccines offer good stability and safety these include both subunit and virus-like particle
(VLP) vaccines. VLPs offer potential benefits compared to currently available traditional vaccines,
including significant reductions in virus shedding and the ability to differentiate between infected
and vaccinated birds (DIVA). This review discusses the current state of plant-based vaccines for
prevention of the AI and ND in poultry, challenges in their development, and potential for expanding
their use in low- and middle-income countries.

Keywords: plant-based vaccines; avian influenza virus; Newcastle disease virus; haemagglutinin
protein; Agrobacterium tumefaciens; Nicotiana benthamiana; transient expression; virus-like particles

1. Introduction

Poultry are a major source of animal protein, particularly chicken. The worldwide
chicken population is over 20 billion birds and production systems range from intensive
units, containing over 100,000 birds, to small backyard flocks. Poultry provide not only a
valuable supply of dietary protein but also an important source of income in rural areas of
developing countries. Viral diseases continue to threaten poultry production and cause
significant economic loss through mortality and reduced growth. Avian influenza (AI)
and Newcastle disease (ND) are the most prevalent viral infections in poultry. Given
their economic and societal impact, both ND and some forms of AI are notifiable to the
World Organisation of Animal Health (OIE). Control of AI and ND relies heavily on
vaccination, and intensive systems underpin this with high levels of biosecurity. Despite
the availability of AI and ND vaccines, outbreaks of AI and ND will likely persist due to
issues with commercial vaccines. Commercial AI and ND vaccines are expensive, require
cold chain storage, and often poorly protect against local emerging strains, which limits
their benefits for low-resource markets. Therefore, there is an urgent need for vaccines
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that can be produced at relatively low cost, are stable and can be readily adapted to local
virus variants. Plant-based vaccines offer such advantages and are suitable for use in
developing economies. This review addresses the current state of plant-based vaccines for
the prevention of AI and ND, challenges in their development, and potential for expanding
their use in low- and middle-income countries. In particular, we highlight the development
of plant-based virus-like particle (VLP) vaccines against AI and ND.

2. Avian Influenza Virus (AIV)

Influenza viruses belong to the family Orthomyxoviridae, which is comprised of seven
genera [1]. Avian influenza is caused by the species Influenza A virus (IAV) in the genus
Alphainfluenzavirus. Virus particles are spherical, approximately 100 nm in diameter, or
filamentous, about 300 nm in length [2]. The virus particle is covered with glycoprotein
spikes of haemagglutinin (HA), which represents nearly 80% of the total surface proteins,
and neuraminidase (NA), which represents 17% of the total surface proteins (Figure 1).
Matrix protein 2 (M2) is a minor surface protein, with around 16 to 20 molecules per
virus particle. The host-cell-derived lipid membrane covers a matrix of M1 protein, which
surrounds the virus particle core. Within the M1 matrix are the nuclear export protein (NEP)
and the ribonucleoprotein (RNP) complex, which is composed of eight viral negative-sense
RNA segments covered with nucleoprotein (NP) and the RNA-dependent RNA polymerase
(RdRp), comprised of two basic and one acidic polymerase subunit (PB1, PB2, and PA).
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Avian influenza viruses (AIV) are classified into 16 HA and 9 NA subtypes, which
occur in many different combinations (e.g., H5N1). Due to the segmented nature of the
RNA genome, reassortment can occur during co-infection with different AIV subtypes.
Where this involves exchange of the HA and/or NA segments, it is referred to as “antigenic
shift”. In addition, replication is error prone and the viral polymerase lacks proofreading
activity, resulting in considerable genetic drift over time, which can lead to “antigenic
drift” and the ability of emergent viruses to escape natural or vaccine-induced immune
responses [3]. Avian influenza viruses can also be classified into two pathotypes. Low
pathogenic avian influenza (LPAI) viruses are the most common but, nonetheless, can
have a significant economic impact. During the late 1990s, poultry-adapted H9N2 became
endemic in several different countries in the Middle East, Asia, Africa, and Europe. In
chickens, LPAI H9N2 infections can produce mild to intense respiratory disease signs,
significant economic loss due to reduced egg production, elevated rates of morbidity, and
up to 20% mortality [4]. Occasionally, mutation in the HA of H5 and H7 LPAI strains
results in the acquisition of a polybasic cleavage site, giving rise to highly pathogenic avian
influenza (HPAI) viruses. These produce intense, generalised disease in chickens, turkeys,
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and other gallinaceous poultry; mortality can reach 100% in a few days. In acute cases,
lesions include cyanosis and oedema of the head, comb and wattle; oedema and inflamed
shanks and feet due to subcutaneous haemorrhages; petechial haemorrhages on visceral
organs and in muscles; and bloody oral and nasal discharges [5]. On the other hand, in
peracute cases, death may occur in the absence of clinical signs.

3. Newcastle Disease Virus

The causative agent of ND was initially called Newcastle disease virus (NDV). After
classification as a member of the family Paramyxoviridae, it was renamed Avian paramyxovirus-
1 (genus Avulavirus). However, the ICTV recently reclassified paramyxoviruses based on
phylogenetic distances between the complete large (L) protein amino acid sequences.
Therefore, the official nomenclature of the species that causes ND is Avian orthoavulavirus 1
(AOaV-1), genus Orthoavulavirus, subfamily Avulavirinae [1]. Nonetheless, NDV is still in
common usage.

Based on disease severity in chickens, NDV strains are further classified into four
pathotypes: (i) asymptomatic enteric (considered as clinically non-problematic); (ii) lento-
genic (causing subclinical to mild respiratory infections in younger birds); (iii) mesogenic
(causing respiratory infection with low mortality); and (iv) velogenic (causing high morbid-
ity and up to 100% mortality). Velogenic viruses can be further divided into two categories:
viscerotropic velogenic viruses cause acute lethal infection and occasional haemorrhagic
lesions in the intestines, and neurotropic velogenic viruses cause neurological and respi-
ratory disorders [6,7]. NDV can be transmitted to healthy birds through oropharyngeal
secretions and faecal matter. Susceptible birds can be infected by inhaling contaminated
dust or aerosolised virus or by the ingestion of virus shed in bird droppings.

NDV is an enveloped virus with a non-segmented negative-sense RNA genome. The
genome of NDV encodes six structural proteins: nucleoprotein (NP), phosphoprotein (P),
matrix protein (M), fusion protein (F), haemagglutinin-neuraminidase (HN), and large
polymerase (L) (Figure 2). The HN, F, and M proteins are tightly linked to the viral envelope.
Anchored to and protruding from the viral envelope are HN and F glycoproteins. HN
and F mediate viral entry into the host cell and virus particle release. Furthermore, upon
infection, neutralising antibodies are directed against both the HN and F proteins [8].
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Figure 2. Graphical representation of the Newcastle disease virus particle structure. Anchored to
the surface of the virus particle envelope are haemagglutinin-neuraminidase (HN) and fusion (F)
glycoproteins. Matrix (M) proteins are peripherally attached to the NDV envelope. The interior of the
virus particle is composed of negative-sense single-stranded RNA and RNA-associated nucleoprotein
(NP), phosphoprotein (P), and large polymerase (L). Adapted from [9].
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The non-glycosylated M protein is peripherally attached to the inner surface of the
viral envelope and involved in the morphogenesis and budding of NDV. NP is the most
abundant protein in NDV particles. NP encapsidates the RNA genome to protect it from
host nucleases. Each NP subunit is predicted to be associated with six nucleotides of
RNA. The combination of NP-RNA is termed “nucleocapsid core”. Two additional viral
proteins, P and L, are bound to the core forming a herringbone-like ribonucleoprotein (RNP)
complex. The RNP complex can be visualised with electron microscopy using negative
staining [10]. The RNP complex is associated with transcription and replication processes,
which determine NDV virulence [11].

The nucleocapsid RNA serves as a template for transcription and replication by the
viral RdRp, which consists of L and P proteins [8]. Apart from these structural proteins,
the accessory proteins, V and W, are generated during P gene transcription by means
of RNA editing in the virus-infected cells [12]. V protein has been suggested to direct
host-immune evasion upon NDV infection, whereas the function of the W protein remains
elusive [13–15].

4. Overview of Vaccines for AI and ND Immunisation

The different types of vaccine licensed or under development for AI and ND may be
classified into six groups: (1) inactivated, (2) live-attenuated, (3) subunit, (4) vector-based,
(5) DNA, and (6) VLP (Table 1).

Inactivated vaccines have a long history of use for the control of AI; similarly, ND
vaccines have been used since the 1940s [16]. A number of inactivated AI vaccines are
commercially available. These include monovalent inactivated vaccines comprising either
H5 or H7 strains, bivalent vaccines with H5 and H7 strains, and both monovalent and
bivalent vaccines with homologous or heterologous NA [17]. Both live-attenuated and
inactivated vaccines, developed from non-pathogenic and lentogenic NDV isolates (e.g.,
LaSota and Hitchner B1), are the most commonly administered for the control of NDV [7,18].
However, there is evidence that LaSota-based vaccines are no longer effective against newly
evolved NDV strains [7,19]. Protection afforded by inactivated vaccines depends on the
quantity of antigen in each dose and how well matched the vaccine is to circulating viruses.
Inactivated vaccines also require the use of an appropriate adjuvant. Live-attenuated
virus vaccines have the potential for reversion to virulence and recombination with field
virus. Consequently, live-attenuated AI vaccines against any subtype are generally not
recommended for use in poultry. However, the use of both live-attenuated and inactivated
vaccines does not allow for easy differentiation of infected from vaccinated animals (DIVA),
which can make diagnosis and control more difficult [20].

The most rationally designed vaccines to meet the full criteria for an excellent NDV
vaccine are the recombinant genotype-matched live-attenuated vaccines. The vaccine
candidates are generated by reverse genetic technology and attenuated by modification
of the multibasic cleavage site to a monobasic site in the F protein. These vaccines can
protect against circulating virulent strains in certain regions and significantly reduce the
viral shedding. In addition, they are compatible with a DIVA strategy. However, genotype-
matched live-attenuated vaccines are not widely used as these are often geographically
specific and require cold chain storage [9].

Subunit vaccines are efficient at inducing humoral and cellular immune responses
against specific viral proteins without the risk of handling live virus during vaccine produc-
tion or reversion to virulence. However, subunit vaccines have a more restricted antigenic
repertoire than attenuated viral vaccines; as such, it is important to ensure that the elicited
immune responses provide robust protection against viral challenge. For example, an
ND subunit vaccine that is derived from a single glycoprotein may be poorly immuno-
genic; the use of both NDV F and HN leads to a broader antibody response that provides
greater protection against viral challenge [21]. In addition, subunit vaccines may be poorly
immunogenic due to misfolding of protein or poor identification by the immune system.
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Viral vector-based vaccines for NDV induce strong humoral and cellular immune
responses. The common poultry viruses, such as Fowlpox virus (FPV), Herpesvirus of turkeys
(HVT), and Infectious bursal disease virus, have been used as vectors for expressing and
delivering NDV F and HN proteins in chickens [22]. Recombinant FPV (the main vector
used in approved AI vaccines) and HVT have also been used for AI vaccines as well as
recombinant NDV containing H5 or H7 AIV gene inserts. Vector-based vaccines can be
delivered by aerosol spray or eye drops at the hatchery to minimises administration costs.
The use of FPV as a vector is only limited to chickens, and they must be naïve to the fowlpox
vector for immunisation to be efficient. Pre-existing maternally derived antibodies against
the virus vector can inhibit the replication of the vaccines, limiting the immune response.
This is essentially the major hurdle for application of vector-based vaccines [20,23].

Table 1. Common types of vaccine and their respective advantages and disadvantages; modified
from [24].

Vaccine Advantages Disadvantages

Inactivated vaccine
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DNA vaccines, in which gene segments encoding viral proteins are cloned into an
expression plasmid, have been in development for AI and ND for 15 to 20 years. They
offer the advantages of being safe (non-infectious) and effective at inducing cell-mediated
immunity, but they are poor at inducing antibody responses, typically require multiple
doses, and are therefore unsuitable for mass immunisation of poultry [9]. Non-replicating,
haemagglutinin-based H5 RNA particle, H5 expressed baculovirus, and H5 DNA vaccines
have been licensed for use in chickens since 2015; however, their usage has been limited [5].

VLPs form structures resembling that of the target virus particles but are unable to
replicate because they lack nucleic acid. The particulate nature of VLPs enable their uptake
by dendritic cells (DCs) for processing and presentation by major histocompatibility com-
plex (MHC) class II. Their self-adjuvanting effect stimulates DC maturation and migration,
leading to innate immune response stimulation [25,26]. Many VLPs that maintain virus
receptor binding regions are capable of targeting and penetrating cells via their normal
receptor. VLPs can therefore be processed via the MHC class I pathway, leading to the
activation of CD8+ T-cells; such a cellular immune response is often critical to the control of
infections by intracellular pathogens such as viruses. The ability of VLPs to target DCs is a
significant feature of VLP vaccines that is crucial for the stimulation of innate and adaptive
immune responses. Due to potent activation of dendritic cells, VLPs are less susceptible to
immune tolerance [27].

The functional NDV VLP requires the assembly of viral envelope proteins consisting
of F, HN, and M proteins, which complicate the production steps without the appropriate
expression system [28,29]. On the contrary, influenza HA is able to self-assemble into
VLPs under suitable conditions. The technical challenges for the generation of VLPs from
enveloped viruses (enveloped VLPs/eVLPs) such as AIV and NDV remain a major hurdle
to the success of this technology going forward. The stability of eVLPs requires thorough
considerations of the appropriate temperature, shear force, and processes that are used in
purification. Improper purification may lead to degradation of VLPs and a consequent
reduction in immunogenicity. Most often, this leads to more complex downstream process-
ing than conventional vaccines [30]. Alternative approaches for the assembly of VLPs are
also being investigated, including the development of “hybrid” VLPs, which use the core
of one virus as a scaffold for the surface glycoproteins of another virus. Hepatitis B cores
(HBc) are one example of this, where the HBc structure has been used as a VLP core to
present surface antigens from heterologous viruses including HIV, foot and mouth disease
virus, and influenza A (reviewed in [31]). Such hybrid VLPs may offer a universal platform
for VLP production and have the advantage of producing non-enveloped particles, which
are inherently more stable than enveloped VLPs [32].
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However, the technology for eVLPs production has shown significant advances. Re-
cently, the Canadian biotechnology company Medicago reported that Health Canada
approved the new drug submission (NDS) for a plant-based seasonal human influenza
recombinant vaccine for scientific review. This is a quadrivalent virus-like particle (QVLP)
vaccine including the HA of two influenza A virus subtypes and two lineages of influenza
B virus transiently expressed using Agrobacterium tumefaciens-mediated transient transfor-
mation (also known as ‘agroinfiltration’). The QVLP vaccine elicited both homologous and
heterologous antibody responses at higher doses, with the introduction of adjuvant having
little or no effect. In the first phase III efficacy study, the candidate vaccine also reliably
elicited both homologous and heterologous CD4+ T helper cells identified by generation
of interferon-gamma (IFN-γ), interleukin-2 (IL-2) and/or tumour necrosis factor alpha
(TNF-α) [33].

5. Pipeline for Production of Plant-Based Vaccines

The production of plant-based virus vaccines involves the transfer of the target virus
gene into the plant for protein expression (Figure 3). The initial step is the choice of antigen
from the virus. Viral glycoproteins are excellent antigens for veterinary vaccines as they are
usually the main targets for virus-neutralising antibodies.

The target gene can be amplified via PCR-based methods, but usually, the gene is
synthesised, which removes the need to isolate and handle highly pathogenic viruses. The
design of the expression construct usually involves codon optimisation of the virus gene for
expression in plants to increase the protein yield. Nevertheless, optimising an increasing
percentage of codons does not necessarily lead to an improvement in protein espression
levels above a certain level. Moreover, the extent of codon optimisation required may vary
depending on the gene [34]. Undesired introns and RNA motifs can also be removed if the
gene is synthesised. Flanking restriction sites should be added to ease the cloning process.
There are some additional sequences that may be added at the 5′ untranslated region (UTR)
such as a Kozak sequence to enhance initiation of translation of the gene [35] and a signal
peptide to direct protein translocation. Typically, a peptide tag such as six histidine residues
(6-His) is added at the carboxy terminal to enable affinity-based purification.

Protein expression can be achieved by transient or stable transformation of plants
(reviewed in [36]). In stable transformation, the desired gene is permanently incorporated
into the plant cell genome via nuclear or plastid integration to generate transgenic lines.
Transformation is achieved using A. tumefaciens or, where this is not possible, biolistic
or microparticle bombardment. The disadvantage of this system is that it is more time
consuming, the protein yield is relatively low, and the random nature of entry into the plant
nucleus can affect the transgene expression due to epigenetic regulation and silencing phe-
nomena. Post-transcriptional gene silencing (PTGS) is a natural defence of the plant against
pathogenic or heterologous RNA, and this phenomenon affects the transgene expression
levels. Co-expression of silencing gene suppressors such as Cucumber mosaic virus (CMV)
2b or Tomato bushy stunt virus (TBSV) p19 with the transgene leads to improved expression
levels in plants [37–40]. In contrast, transient transformation involves the production of
the desired protein without integration into the plant cell genome. Transient expression
systems may also use agroinfiltration for delivery of the vector containing the desired
gene into plant cells for recombinant protein expression [41]. Agroinfiltration refers to
the introduction of the A. tumefaciens containing the vector into the extracellular spaces of
the plant leaf by a needleless syringe or under a vacuum (Figure 3). Transient expression
is a simple method that allows the production of high yields of protein in as little as 3
to 7 days [42,43]. Transient expression also diminishes regulatory and public concerns
regarding the use of genetically modified plants and transgene spread via pollen or seeds.
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A. tumefaciens, which is a soil bacterium that is responsible for tumour formation
in plants, has been modified for use in the delivery of desired genes without tumour
formation [45] by disabling the tumour-controlling genes of the Ti plasmid. A variety of
‘disarmed’ A. tumefaciens strains with different marker genes have been developed that
may have differing translational efficiencies in different plant species [46]. The addition of
acetosyringone, a potent enhancer of A. tumefaciens virulence genes, in the infiltration buffer
can improve the transformation efficiency and recombinant protein production levels [39].
The density of the bacterial culture is a crucial factor to consider. Low culture densities lead
to low protein yields, while high densities can lead to host cell death [46].

Binary vectors are the standard of choice for the generation of transgenic plants. The
term binary reflects the combination of T-DNA binary vector and vir helper plasmid that
originate from the disarmed Ti plasmid of A. tumefaciens. A convenient feature of binary
vectors is that they accommodate replication in multiple hosts (E. coli and A. tumefaciens).
The T-DNA portion of binary vectors is flanked by left and right border sequences; this
portion also consists of multiple cloning sites and plant selectable markers. The vir gene is
located outside the T-DNA portion and is important to facilitate transfer and integration of
T-DNA into the plant genome. Adjacent to the vir gene are bacterial selectable markers and
a bacterial origin of replication (ori) [47].

Alternatively, plant virus vectors designated as first-generation virus expression vec-
tors are also used for stable genetic transformation. This system is essentially an entire
virus genome encoding the gene of interest, which may be fused to the viral coat protein
(CP) to avoid vector instability. The first-generation expression vectors present several
limitations, particularly the need of multiple promoters and size constraints [48].

The use of second-generation expression plasmids that can carry larger size genes have
overcome problems of low protein production [41,49]. These “deconstructed vectors” con-
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tain the gene(s) of interest and the essential plant virus elements needed for replication [50].
Typically, for deconstructed vectors, the CP gene is removed from the viral backbone along
with modification of the 3′ and 5′ UTRs as well as the addition of a suppressor of gene
silencing [51]. Many plant viruses have been used as viral backbones for deconstructed
vectors including Tobacco mosaic virus (TMV), Turnip vein clearing virus (TVCV), Potato virus
X (PVX), Cowpea mosaic virus (CPMV), and the DNA genome geminivirus Bean yellow dwarf
virus (BeYDV) (Table 2). The pEAQ-HT vector is based on CPMV and produces high
levels of proteins through high translational efficiency without virus replication [52]. The
pEAQ-HT vector was further modified to generate pHREAC, in which synthetic 5′ UTRs
enhance expression. pHREAC is also designed with type IIS restriction enzymes, for easier
cloning [43].

Table 2. List of commonly used RNA and DNA plant virus-based deconstructed vectors for Agrobac-
terium tumefaciens-mediated transient transformation in planta.

Vector Name Vector Backbone Features and Modification(s) References

Magnifection system
developed by Icon Genetics,

Germany (MagnICON)

Hybrid between TMV and
TVCV

Consist of 3 modules:

a. 5′ module: Arabidopsis actin 2 (ACT2)
promoter, TMV polymerase and
movement protein genes;

b. 3′ module: gene of interest (GOI) fused to
viral coat protein (CP) and nos terminator;

c. PhiC31 integrase gene (from Streptomyces
phage C31)

[50,53]

pEAQ-HT CPMV

• Based on a deleted version of CPMV
RNA-2 and uses the 5′ and 3′ UTRs from
CPMV RNA-2

• Removal of the upstream AUG codons of 5′

UTR to enhance translational efficiency
• Incorporation of p19 sequence from Tomato

bushy stunt virus into the T-DNA region

[41,52,54]

pHREAC CPMV
• Modification of synthetic 5′ UTR from

CPMV-HT [43]

TRBO
(TMV-RNA-overexpression) TMV

• Deletion of TMV splicing sites
• Addition of RNA-dependent

RNA-polymerase (RdRp)
• Deletion of TMV CP to allow addition of

GOI(s) beside the 3′ UTR

[55]

pBID4 TMV
• Consist of binary vector pBI121 and TMV
• Replacement of TMV CP gene by the GOI(s)

resulting in self-replicating vector
[56]

PVX vector PVX

• Removal of PVX CP gene and triple gene
block

• Addition of Potato virus A suppressor of
gene silencing

• Addition 5′ UTR upstream GOI open
reading frame

[57]

BeYDV Geminivirus

• Deletion of BeYDV movement and CP
genes

• Addition of p19 gene into the expression
cassettes

[58]

The expression method, protein yield, and cost are factors to consider when selecting
plants to use for expression [59]. They should have a rapid growth rate and elevated
protein production. Potato (Solanum tuberosum cv. Kennebec) and tobacco (Nicotiana spp.)
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are commonly used for production of recombinant proteins because they are amenable
to genetic alteration. Nicotiana benthamiana is frequently used for recombinant protein
expression due to its susceptibility to most of the plant viruses as a result of a defective
form of host RdRp [60]. The interest in developing edible vaccines in low-and middle-
income countries also motivates the use of other staple crops such as corn (Zea mays) and
rice (Oryza sativa).

The downstream processing of recombinant protein(s) expressed in plants includes
protein extraction, filtration, and purification to remove plant tissue contaminants [61].
Protein extraction begins with grinding of infiltrated leaves in the presence of an extraction
buffer, which should be optimised with the appropriate pH, salinity, and supplemented
with protease inhibitors to ensure protein stability and prevent proteolysis [62–64]. Leaves
can be dried prior to protein extraction to reduce the volume of buffers required [65].
Ultrafiltration can be used for concentration, but direct use of filtered plant extract has
been reported for VLP vaccines, which would provide a cost-effective method for vaccine
preparation [66,67].

Vaccine candidates are finally assessed using model or target animal species to demon-
strate their efficacy and safety [68]. The efficacy of vaccine candidates is thoroughly evalu-
ated based on the ability to confer protection against viral challenge. The ideal veterinary
viral vaccines should be able to induce humoral and T-cell-mediated immune responses
that are able to prevent viraemia or reduce viral loads to prevent virus shedding. A safety
profile of vaccine candidates must be evaluated at a very high dose (overdose) on the most
susceptible animals by different routes of administration [69]. A safe vaccine is expected to
exhibit low or zero adverse reactions.

5.1. Plant-Based Vaccines against Avian Influenza

Most published studies describing plant expression for AIV vaccine preparation have
used on HPAI H5 HA as a prototypical antigen. This is likely due to the interest in
developing such vaccines for human administration, with the potential for H5 to be a
serious zoonotic disease. Thus, mice rather than chickens are often used as a model for
assessing immunogenicity and protective efficacy of the vaccines. For poultry, vaccine
development aims to protect against a range of HPAI and LPAI viruses including HPAI
viruses H5 and H7, and LPAI H9N2 [4]. Examples of avian influenza plant-based vaccines
are summarised in Table 3.

Early studies using transient expression in N. benthamiana focused on the expression
of full-length HA. For example, the HA of an H7 AIV synthesised with modifications
including a Kozak sequence, PR1a signal peptide, a C-terminal 6xHis tag for purification,
and an endoplasmic retention signal (SEKDEL) was cloned into the pEAQ-HT vector,
which was then co-infiltrated with a vector (pJL3:p19) containing the viral gene-silencing
suppressor p19 from Tomato bushy stunt virus [70]. Gene expression was measured by RT-
qPCR to determine that mRNA expression peaked at day 6 post-infiltration. On the other
hand, in a study comparing expression in alfalfa, lettuce, and soybean, despite having the
highest transcription rate determined by RT-qPCR, lettuce had the lowest protein expression
levels [71]. The authors also compared different signal peptides to target expression to
different cell compartments (the ER, apoplastic spaces or protein bodies) and found the
highest level of expression in alfalfa leaves with a signal peptide targeting the apoplastic
space. Mortimer et al. [72] also used vectors that targeted expression to different cell
compartments (apoplastic spaces, chloroplasts and cytoplasm) and compared transient (in
N. benthamiana) and transgenic (in N. tabacum) expression of full-length HA and HA missing
the transmembrane domain. The study found that for the full-length HA, expression was
highest in the apoplastic spaces, whereas the truncated form accumulated at higher levels
in the ER. The authors speculated that the SEKDEL-tagged H5 may be less stable than
the tagged truncated form. They were able to extract apoplast-targeted H5 protein by
simply infiltrating the leaves with buffer containing Triton X-100 followed by low-speed
centrifugation of whole leaves. Avoiding the need to homogenise the leaves reduces
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contamination with plant intracellular proteins and insoluble plant material. In another
study, expression of the extracellular domain of an H5 HA was targeted to N. tabacum seeds
using two regulatory sequences of seed storage protein genes from Phaseolus vulgaris [73].
The rationale for this was that due to their function, seeds accumulate high levels of protein
and dehydration enables longer-term storage with reduced protein degradation. Chickens
were immunised with two doses, 28 days apart, of crude seed extracts with Montanide
adjuvant. Antibody responses, measured by haemagglutination inhibition, were predicted
to be sufficient to be protective; however, no virus challenge was performed, and the
responses were not compared with chickens immunised with leaf-produced protein.

The immunogenicity of recombinant proteins can be improved by oligomerisation,
for example, by attaching proteins to nanoparticles using SpyTag/SpyCatcher technol-
ogy [74]. Disadvantages of this technology are that it requires purified antigens and is
patented. Lower-cost alternatives to generate oligomers have been explored. Fusion of
the ectodomain of H5 HA with the intrinsic trigger motif of GCN4 enables the expression
of HA trimers. The addition of the tailpiece sequence from the C-terminal sequence of
mouse IgM (which cross-links trimers via disulphide bonds), homo-antiparallel peptides
or homodimer proteins leads to oligomerisation of the trimers. Crude leaf extracts were
used to immunise mice; extracts containing HA oligomers were found to induce higher
titres of neutralising antibody than extracts containing HA trimers [75]. Similarly, more
chickens survived a lethal challenge after immunisation with crude leaf extracts containing
HA oligomers than with trimers [67].

Table 3. Examples of avian influenza plant-based vaccines.

Antigen Expression Host Immunity Notes References

HA (H7) N. benthamiana Not mentioned Transient expression [70]

HA1 Alfalfa, soybean, and
lettuce Not mentioned

Expression targeted to
ER, apoplastic space
and protein bodies

[71]

Full-length and
truncated HA (H5)

N. benthamiana, N.
tabacum

Specific immune response
in mice and chicken

Targeting of different
cell compartments [72]

HA (H5) N. tabacum HAI antibody raised in
chickens

Targeted expression in
seeds [73]

Oligomeric HA (H5) N. benthamiana Neutralising antibody in
chicken and mice

Oligomerisation
achieved by several

approaches
[75–77]

HA+M2 VLPs (H6) N. benthamiana 1 Neutralising antibody in
chicken

Co-expression of M2
and HA increased yield

of VLPs
[78]

HA Arabidopsis thaliana HA-specific antibodies and
mucosal antibodies in mice Oral administration [79]

Truncated HA (H5) N. benthamiana Specific antibodies in mice
and ferrets

Intranasal
administration [80]

M2e peptide (H5) N. tabacum Not mentioned Stable transfection [81]

M2e fused to ricin toxin
B chain (H5) Duckweed Specific antibodies against

M2e peptide in mice
Oral administration to

mice [82]

HA (H5) Duckweed
Neutralising antibodies

and protective immunity in
birds

Oil-in-water emulsion
protected chickens [83]

1 N. benthamiana lacking plant-specific N-glycan residues.

Although HA will self-assemble to produce VLPs, it was reported that infiltration of
equal amounts of A. tumefaciens transformed with the pEAQ-HT vector expressing HA
and M2 enhanced VLP production compared to HA alone [78]. The authors also used N.
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benthamania plants engineered to significantly reduce xylosylated and/or core alpha1,3-
fucosylated glycan structures resulting in more vertebrate-like N-glycosylation patterns [80].
A single dose of VLPs formulated with Montanide adjuvant elicited comparable immune
responses, measured by haemagglutination inhibition, and better protection in chickens,
against challenge with a heterologous virus, compared to two doses of a commercially
available traditional inactivated oil-in-water vaccine. The authors estimated that 1 kg of
plant material would produce sufficient doses of VLP vaccine for the immunisation of up
to 30,000 chickens; such a cost-effective approach is vital to allow the widespread use of
vaccines for poultry, particularly in resource-poor settings.

In most studies that tested the protective efficacy and/or immunogenicity of plant-
expressed proteins in vivo, the protein is administered by intramuscular (IM) immunisation
with an adjuvant. However, the induction of an immune response including secretory
immunoglobulin A (sIgA) antibodies at mucosal surfaces, where pathogens such as AIV
and NDV invade, is expected to afford better protection than a purely systemic immune
response. One study demonstrated that oral administration of freeze-dried leaf powders
from transgenic A. thaliana expressing H5 HA in the ER induced robust immune responses
in mice and protected them from lethal challenge [79]. They found that saponin was
more effective as an adjuvant than cholera toxin or flagellin. In another study, mice
and ferrets inoculated intranasally with truncated H5 HA protein produced by transient
expression of N. benthamiana with a mucosal adjuvant (c-di-GMP) were protected from
virus challenge [80].

There have been numerous reports of the expression of M2e peptide in plants (e.g., [81]).
The 23 amino acid peptide is the extracellular domain of M2 and is highly conserved among
all influenza A viruses, making it a candidate for a universal vaccine (i.e., effective against
all subtypes). Tarasenko et al. [81] found that expression failed if a longer sequence (43
amino acids) was encoded, presumably because this included the transmembrane domain,
which forms an ion channel. However, short peptides are usually poorly immunogenic.
Oral immunisation with four doses of the M2e peptide fused to ricin toxin B chain in
nuclear-transformed duckweed induced a specific antibody response (measured by ELISA)
in mice [82]. However, it was necessary to administer partially purified preparations
by gastric gavage because the mice would not eat the duckweed, whether it was fresh
or lyophilised, even when mixed with dry feed. On the other hand, supplementation
of chicken feed with duckweed is advocated, particularly for developing countries, as a
source of protein instead of soya bean or fishmeal supplements [84]. A further advantage
of duckweed is that it can be cultivated in bioreactors, providing a relatively contained
system that minimises the potential for accidental release of genetically modified (i.e., stably
transfected) plants into the environment.

In recent years, there has been increasing awareness of the importance of antibodies to
NA as a component of a protective immune response [85]. Although antibodies to NA do
not prevent infection, they can significantly reduce disease severity and can provide het-
erologous immunity. Similarly, the potential value of including the highly conserved NP in
vaccines to provide cross-protective T-cell-mediated immunity in the event of an antigenic
mismatch between the HA of vaccine and circulating HA has long been recognised [86],
though this has been explored less in relation to plant-based vaccines.

5.2. Plant-Based Vaccines against Newcastle Disease Virus

The production of NDV VLP vaccines has yet to be implemented in plants. Neverthe-
less, plant expression systems have been shown to be a robust system for the production of
NDV structural proteins, particularly glycoproteins F and HN (Table 4). Plant expression
systems can ensure proper folding and post-translational modifications of NDV glycopro-
teins. These are crucial factors for future development of plant-based NDV VLP.

Initially, recombinant HN protein was produced using transgenic plant cell cultures.
In 2006, Dow AgroSciences received approval from the United States Department of
Agriculture (USDA) for the first HN-based NDV vaccine produced in a tobacco-derived
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suspension cell line, although they did not bring the vaccine to market. Three doses of the
vaccine injected subcutaneously was reported to show 90% protection against lethal NDV
challenge in chickens [87].

Table 4. Plant-based vaccines against Newcastle disease.

Antigen Host Notes References

HN (LaSota) N. benthamiana 1
Compared SP of HN

with sea anemone
equistatin

[88]

HN (LaSota) N. tabacum N/A [89]

F (LaSota) Zea mays
Neutralising

antibodies elicited in
chickens

[90,91]

F and HN (LaSota) Solanum tuberosum cv.
Kennebec

Humoral and
cell-mediated

immune responses in
mice

[88,92]

F and HN (LaSota) N. tabacum
ELISA 2 detection of
anti-NDV antibodies

in Rabbit
[93,94]

F and HN
(chicken/SPVC/Karachi) Zea mays

Specific locally
secreted IgY in

chickens
[95]

F (XJ-2/97) Oryza sativa Challenge of chickens [96]
1 Transient expression. 2 ELISA: enzyme-linked immunosorbent assay.

Attempts have also been made to express the NDV HN protein using Agrobacterium-
mediated transient expression systems. Gomez et al. (2009) tested several binary vector
constructs that varied with regards to a substitution of the native N-terminal signal peptide
(SP) of HN with the signal peptide of sea anemone equistatin (SPE) and addition of KDEL
at the C-terminus [88]. The construct with a native signal peptide and KDEL sequence
resulted in the highest protein yield. Interestingly, the substitution of a native signal
peptide with SPE was reported to disrupt protein folding and resulted in a low yield of
recombinant HN. The lack of plant-derived glycans, a result of inclusion of the KDEL
sequence, was indicated by a qualitative assay using PNGase F, an endoglycosidase that
cleaves oligosaccharides from N-linked glycoproteins [81].

The application of transgenic plants as edible vaccines has also been explored for ND
prevention. However, immune tolerance has long been considered a potential barrier for
development of a protective immune response from edible vaccines. Immune tolerance may
be an over-estimated problem for some species due to the ease of inducing oral tolerance in
the most common laboratory animals such as mice and rats. Interestingly, oral tolerance
has been shown to be much less of an issue in poultry older than 3 days of age, potentially
making edible vaccines more suitable for use in poultry [97]. Hahn et al. [89] explored the
use of transgenic tobacco for developing an edible vaccine for ND. In their system, the DNA
construct was derived from plant binary vector p221 and the expression of the HN gene
was driven by Cauliflower mosaic virus (CaMV) 35S promoter. Leaf disc transformation of
tobacco was carried out using A. tumefaciens EHA105 strain. Unfortunately, immunisation
of 6-week-old chickens using lyophilised tobacco leaf extract failed to induce production of
neutralising antibodies [89].

In contrast, animal studies suggested that recombinant HN and F expressed in trans-
genic potato were able to induce a mucosal immune response [92,98]. Adult Balb/c mice
were fed with potato leaves expressing either recombinant HN or F protein. Intestinal
washes were collected on day 36 and further analysed using ELISA and immunofluores-
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cence assays. The results indicated the presence of NDV-specific IgA secreting plasma cells
in the intestinal tissue that was comparable to the response induced by oral immunisation
with LaSota virus-soaked potato leaves. Furthermore, oral immunisation of mice with
transgenic potato expressing HN and F protein was also able to induce the production of
locally secreted IgY (avian IgG equivalent) and CD8+ T cells [92]. Similarly, the production
of locally secreted IgY was observed in chickens orally fed with transgenic corn expressing
F and HN protein [95].

The recombinant F protein has been successfully expressed and extracted from other
staple crops such as transgenic rice and corn [90,91,96]. The extracted F protein was able to
induce the production of neutralising antibodies post-challenge with a velogenic strain in
chickens [90,91]. The survival rates of chickens immunised with F protein were comparable
to those immunised with LaSota virus vaccine.

Another approach suggested the feasibility of producing concatenated F and HN
epitopes without a genetic fusion to M protein in transgenic tobacco [94]. The authors
established a DNA construct with four 96 base-pair tandem repeats of an HN epitope
followed by three 153 base-pair tandem repeats of an F epitope. An N-terminal 6xHis
tag and omega sequence as a ribosome binding site were attached upstream of the DNA
construct. Lastly, the authors also included the ER retention signal SEKDEL. In follow-
up studies, the authors reported that the transgenic plant extract was only moderately
immunogenic in rabbits. Using ELISA, the transgenic plant extract was shown to induce
lower production of anti-NDV antibodies in comparison to commercial NDV vaccines [94].

Some, but not all, viral glycoproteins are expressed at a low yield in plant transient
systems [99]. The influenza glycoprotein seems to be an exception to this issue. In contrast,
the expression of NDV HN from a velogenic strain using pEAQ-HT expression vector
shows a relatively low yield with plants showing severe tissue necrosis starting at day 5
post-infiltration (Nurzijah, unpublished data). The combination of low expression and
tissue necrosis in transient plant expression systems may be related to ER stress [100,101].
Complex viral glycoproteins undergo post-translational modification in the ER; discrep-
ancies between viral native host and plant cellular machinery may contribute, in some
instances, to improper N-glycosylation of viral glycoproteins [102–104]. N-glycans are
recognised as a signal to the ER quality control machinery in eukaryotic organisms. ER
quality control comprises enzymatic constituents: glycoprotein glucosyl transferase (UGGT)
and glucosidase II as well as ER chaperone proteins. This cellular machinery will retain mis-
folded secretory proteins in the ER [105–107], and the accumulated misfolded protein will
undergo degradation, and hence, low protein expression in plants. In theory, the amount
of misfolded protein can be reduced by extending the transit period of newly transcribed
protein in the ER. This has been carried out by targeting viral glycoproteins to sub cellular
organelles with the conjugation of C-terminus ER retention signal (KDEL/SEKDEL) or
replacing protein native signal peptide using those originated from plants [85]. Recently,
the use of heterologous chaperone proteins is receiving attention. Co-expression of hu-
man chaperone proteins calnexin and/or calreticulin was able to improve the expression
of human immunodeficiency virus (HIV) type 1 soluble gp140 in a N. benthamiana tran-
sient expression system. The benefit of this approach was also observed for other viral
glycoproteins derived from Epstein–Barr virus, Rift Valley fever virus and Chikungunya
virus [103].

6. Advantages of Plant-Based Vaccines

Ultimately, the future success of plant-based vaccines depends on their ability to
protect against infectious disease in a safe and cost-effective manner, and offer advan-
tages compared to conventional vaccine platforms. A number of studies have shown the
protective ability of plant-expressed vaccines to be equal to or greater than conventional
vaccines. In one study, H5 (HA) was synthesised from A/chicken/Indonesia/7/2003
(H5N1) (Indo/03) and expressed in duckweed. Birds immunised (IM) with the recombi-
nant H5 protein were fully protected against the homologous HPAI H5N1 challenge, with
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partial protection against heterologous virus challenge. The protection afforded by the
recombinant proteins was similar to a commercial inactivated whole virus vaccine [83].
In another trial, H5 HA (H5N1) oligomers and trimers were transiently expressed in N.
benthamiana, and the proteins were extracted and purified. Chickens were immunised
with the purified oligomers and trimers and survived against lethal virus challenge with
a protection rate of 92% for oligomers and 75% for trimers [75]. Regarding VLPs, H6 HA
was co-expressed with M2 in N. benthamiana. Birds were vaccinated twice (IM), with the
partially purified VLPs, which induced a high titre of antibody measured by HI. Virus
shedding was reduced significantly following heterologous LPAI H6N2 challenge in com-
parison with unvaccinated birds or those vaccinated with a conventional whole inactivated
H6N2 oil-emulsion vaccine prepared using eggs [78].

The production of traditional vaccines can be very expensive, especially the production
of killed virus vaccines for HPAI because of the requirement for high levels of containment
due to the zoonotic risk. In contrast, plant vaccine production has relatively low costs. The
plants are cheap, able to be grown relatively easily, and offer a safe production system
for recombinant proteins. The design of target gene(s) is now relatively trivial using gene
synthesis, which is now more affordable than before. The production of vaccine constructs
using gene synthesis allows the incorporation of features to improve the protein expression
as outlined above. The infiltration of plants is an easy method, with no need for expensive
equipment, allowing rapid vaccine production. The administration of plant vaccines can be
performed either parenterally or orally. Oral administration in feed allows vaccines to be
administered with relatively little purification, thus reducing the associated costs [108,109].
Edible vaccines, administered orally, can generate both systemic and mucosal immunity.
Plant vaccines can be stored at room temperature [110]. Yields of recombinant proteins,
when optimised, can be high [78]. Plants ease mass production without the need for
complicated procedures and equipment, which will be helpful for use in developing
countries [110].

The ability to produce vaccines that do not require cold-chain storage and transporta-
tion is highly desirable. There has been some success in realising this for plant-based
vaccines, for example, a tuberculosis vaccine expressed in tobacco or lettuce was stable
for six months at room temperature following lyophilisation [111]. Plant vaccines are free
from toxic substances and animal pathogens [112]. Plants have their own machinery for
assembly, folding, and glycosylation of the recombinant protein; generally, these do not
have the disadvantages associated with the glycosylation observed in yeast or bacterial
systems [113]. Furthermore, there have been significant efforts to engineer plants that show
a more mammalian glycosylation pattern [114].

7. Challenges for Oral Delivery of Plant-Based Vaccines?

Determining and delivering an appropriate dose of vaccine may be difficult, especially
when vaccines are administered orally. The effective dose may differ according to the type
of the vaccine, age, and weight of the bird. Multiple doses with the vaccine may lead to
immune tolerance, and a lower dose leads to poor immunogenicity. However, delivery
of vaccines via injection is not ideal in the majority of poultry-rearing systems due to the
high number of birds, but it may be suitable for small numbers of birds in backyard poultry
flocks [115].

Oral (immune) tolerance has been observed following exposure to or feeding of protein
antigens to animals. When an antigen is presented among the intestinal contents to the
mucosal immune system, it may induce oral tolerance, likely due to the activity of T
regulatory cells [116]. This may subsequently lead to a suboptimal immune response if
the body encounters the same antigen again during natural infection. Mucosal immune
tolerance has therefore been highlighted as a significant hurdle that must be overcome by
oral vaccines. [117]. Oral adjuvants have been used to try to overcome this problem, but
this raises concerns over the potential development of allergies to other food proteins [118].
VLPs do not need any adjuvant and may therefore overcome this problem, perhaps because
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VLPs are able to directly stimulate dendritic cells, leading to antigenic recognition and
the activation of T and B cells [27]. It is worth emphasising that most studies on oral
tolerance have been performed on mice or other mammals. Studies performed on chickens
have shown that oral tolerance can be induced in 1–3-day-old chicks, but in older chicks,
recombinant proteins elicit solid immune responses rather than tolerance [97].

8. Conclusions and Future Prospects

The prevalence of AI and ND infections in poultry worldwide poses a great risk for
food security, particularly in low- and middle-income countries. Rapid and cost-effective
vaccine production is certainly a pre-requisite for managing future outbreaks of poultry viral
diseases such as AI and ND. Recombinant AIV and NDV proteins expressed in plants can
induce humoral and T-cell-mediated immune responses comparable to commercial vaccines.
Additionally, transient plant expression systems can properly assemble influenza HA-based
VLPs, which further emphasise its role as a suitable host for production of VLP-based vac-
cines [119,120]. Although stable or transient gene expression can be used, transient expression
systems are favoured for rapid protein production. The application of disarmed A. tumefaciens
for plant transformation has ensured high yields of recombinant viral proteins [45]. Plant
vaccines are safe and the post-translational machinery ensures the immunogenic properties of
the recombinant protein are authentic [113]. Challenges related to expression of viral glyco-
proteins have recently begun to be addressed using chaperone proteins. Some plant vaccines
can be lyophilised, allowing them to be stored and distributed at room temperature [110].
The prospects for oral delivery of plant-derived vaccines in poultry is enticing, offering the
potential to reduce greatly the costs of purification [97,108,109]. The use of deconstructed
expression systems derived from plant viruses, which can carry larger genes, has circumvented
many problems of low protein production [50]. While the development of cheap and effective
plant-based vaccines faces developmental challenges, there have been notable successes, which
should encourage optimism for their future prospects.
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