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Summary

 

• Here, the contribution of stomatal and nonstomatal factors to photosynthetic
inhibition under water stress in four tropical C

 

4

 

 grasses was investigated (

 

Panicum
coloratum

 

, 

 

Bothriochloa bladhii

 

, 

 

Cenchrus ciliaris

 

 and 

 

Astrebla lappacea

 

).
• Plants were grown in well watered soil, and then the effects of soil drying were
measured on leaf gas exchange, chlorophyll 

 

a

 

 fluorescence and water relations.
• During the drying cycle, leaf water potential (

 

Ψ

 

leaf

 

) and relative water content
(RWC) decreased from 

 

c

 

. 

 

−

 

0.4 to 

 

−

 

2.8 MPa and 100–40%, respectively. The CO

 

2

 

assimilation rates (

 

A

 

) and quantum yield of PSII (

 

Φ

 

PSII

 

) of all four grasses decreased
rapidly with declining RWC. High CO

 

2

 

 concentration (2500 µl l

 

−

 

1

 

) had no effect
on 

 

A

 

 or 

 

Φ

 

PSII

 

 at any stage of the drying cycle. Electron transport capacity and dark
respiration rates were unaltered by drought. The CO

 

2

 

 compensation concentrations
of 

 

P. coloratum

 

 and 

 

C. ciliaris

 

 rose sharply when leaf RWC fell below 70%. In

 

P. coloratum

 

, 5% CO

 

2

 

 did not prevent the decline of O

 

2

 

 evolution rates under water
stress.
• We conclude that inhibition of photosynthesis in the four C

 

4

 

 grasses under water
stress is dependent mainly on biochemical limitations.
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Abbreviations

 

A

 

: CO

 

2

 

 assimilation rate, 

 

C

 

i

 

: intercellular CO

 

2

 

 concentration, [CO

 

2

 

]: CO

 

2

 

 concentra-
tion, 

 

Φ

 

PSII

 

: quantum yield of photosystem II of light-adapted leaves, 

 

F

 

v

 

/

 

F

 

m

 

: photo-
chemical efficiency of dark-adapted leaves, 

 

Γ

 

: CO

 

2

 

 compensation concentration,
: O

 

2

 

 evolution rate, 

 

g

 

: stomatal conductance, PEPC: phospho

 

eno

 

lpyruvate car-
boxylase, Rubisco: ribulose-1,5-bisphosphate carboxylase/oxygenase, RWC: rela-
tive water content, 

 

Ψ

 

leaf

 

: leaf water potential.
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Introduction

 

About half of the world grasses fix atmospheric CO

 

2

 

 via the
C

 

4

 

 photosynthetic pathway (Hattersley, 1992) and C

 

4

 

 grass-
lands contribute approximately 20% of global primary produc-
tivity (Ehleringer 

 

et al

 

., 1997). In Australia, C

 

4

 

 grasses dominate
the vegetation of the vast grasslands and rangelands, which

are characterized by frequent droughts (Hattersley, 1992).
The Australian C

 

4

 

 grasslands form the basis of a large, but
low-intensity, pastoral industry and significant effort has gone
into modelling plant and animal productivity to minimize
land degradation in the face of unpredictable rainfall, which
is likely to increase under global climate change (McKeon

 

et al

 

., 1990, 1998). Central to predicting the effects of water
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availability and climate change on productivity, and for
developing effective management strategies of C

 

4

 

 grass-
lands, is a sound understanding of the physiological responses
of C

 

4

 

 grasses to drought, particularly the process of CO

 

2

 

fixation.
C

 

4

 

 photosynthesis is characterized by the operation of a
CO

 

2

 

-concentrating mechanism which serves to raise the CO

 

2

 

concentration ([CO

 

2

 

]) at the site of ribulose-1,5-bisphosphate
carboxylase/oxygenase (Rubisco) sufficiently to nearly suppress
photorespiration and saturate photosynthesis in air despite
the small [CO

 

2

 

] in the atmosphere (Hatch, 1987). C

 

4

 

 plants
have relatively small stomatal conductance (

 

g

 

), which dec-
reases water loss while maintaining rapid rates of photo-
synthesis. This is sometimes interpreted as conferring their
inherent resistance to drought. Most research into the
response of photosynthesis to water stress has been on C

 

3

 

plants (Cornic, 1994; Lawlor, 1995; Lawlor & Cornic, 2002).
In C

 

3

 

 species, water stress can reduce CO

 

2

 

 assimilation rates
(

 

A

 

) of leaves through stomatal and nonstomatal factors
(Cornic, 1994, 2001; Kramer & Boyer, 1995; Lawlor, 1995;
Lawlor & Cornic, 2002). Stomata are very sensitive to the
plant’s water status and reduced 

 

g

 

 under soil water deficit
represents one of the early indicators of water stress (Cowan,
1981). Small 

 

g

 

, without a proportional decrease in photosyn-
thetic potential (

 

A

 

pot

 

, the value under unstressed conditions)
causes a concomitant reduction in intercellular [CO

 

2

 

] (

 

C

 

i

 

)
and hence, 

 

A

 

. This stomatal phase of water stress is character-
ized by the restoration of 

 

A

 

 to 

 

A

 

pot

 

 following the removal of
stomatal limitation by raising ambient [CO

 

2

 

], increasing 

 

C

 

i

 

,
or rehydration (Vassey & Sharkey, 1989; Cornic, 2001; Lawlor
& Cornic, 2002). As water stress progresses, there is evidence
that nonstomatal factors become progressively more impor-
tant (Lawlor, 1995, 2002). This is diagnosed by the inability
of high [CO

 

2

 

] to restore 

 

A

 

 to 

 

A

 

pot

 

, which may be accompanied
by reduced RuBP and ATP pools, or sucrose synthesis (Vassey
& Sharkey, 1989; Gimenez 

 

et al

 

., 1992; Tezara 

 

et al

 

., 1999).
These nonstomatal effects may be the result of direct drought
effect on photosynthetic biochemistry (Lawlor, 2002), or
stomatal-related CO

 

2

 

 deprivation (Vassey & Sharkey, 1989;
Meyer & Genty, 1999) or both (Lawlor & Cornic, 2002).

Research on the effect of drought on C

 

4

 

 photosynthesis has
been carried out largely on monocotyledonous grasses, partic-
ularly with the two major C

 

4

 

 crops, maize and sorghum, and
to a lesser extent sugarcane. Inhibition of 

 

A

 

 in maize is mainly
due to stomatal closure (Lal & Edwards, 1996; Saccardy 

 

et al

 

.,
1996; Foyer 

 

et al

 

., 1998). Drought had either no effect on the
activity of photosynthetic enzymes (Saccardy 

 

et al

 

., 1996;
Castrillo 

 

et al

 

., 2001), or the reductions were too small to
account for the photosynthetic inhibition (Lal & Edwards,
1996). However, large changes in the content of metabolites
with small 

 

A

 

, suggests that biochemical processes are altered
(Lawlor & Fock, 1978). Foyer 

 

et al

 

. (1998) suggested that
changes in activities of phosphoenolpyruvate carboxylase
(PEPC), sucrose phosphate synthase and nitrate reductase in

water stressed maize leaves serve to balance carbon and nitro-
gen metabolism with the prevailing 

 

A

 

. Unlike maize, neither
elevated [CO

 

2

 

] nor re-watering restored A to control values in
water-stressed sorghum and sugarcane leaves, indicating that
nonstomatal factors (i.e. impaired metabolism) are responsi-
ble for photosynthetic inhibition (Contouransel et al., 1996;
Du et al., 1996; Massacci et al., 1996). Therefore, there are
conflicting opinions about the response of photosynthesis
to drought in C4 crops. Further, little is known about the
response of photosynthesis in wild C4 grasses to water stress.
This study was therefore undertaken to investigate the effect
of drought on the photosynthesis of wild C4 grasses, focusing
on four tropical species used for pasture. Two species (Astrebla
lappacea and Bothriochloa bladhii ) are native to northern Aus-
tralia and two (Cenchrus ciliaris and Panicum coloratum) are
introduced, and have become widely spread. Astrebla lappacea
and P. coloratum belong to the NAD malic enzyme (NAD-
ME) biochemical subtype while B. bladhii and C. ciliaris are
NADP-ME. The main aims of this study were to determine
the effects of drought on their photosynthesis and to assess the
role of stomatal vs nonstomatal factors in the inhibition of
photosynthesis in these grasses under water stress. To this end,
leaf gas exchange, chlorophyll a (chla) fluorescence, O2 evo-
lution and water relations were measured at ambient and
elevated [CO2] in greenhouse-grown, potted plants grown
without drought, and then exposed to drying soil, contrasted
with well-watered plants.

Materials and Methods

Plant culture

Seeds of four tropical C4 grass species (A. lappacea (Lindl.)
Domin, B. bladhii Kuntze, C. ciliaris L. and P. coloratum L.),
obtained from Grass Seeds Australia and Queensland Agricul-
tural Seeds (Toowoomba, Australia), were germinated in potting
soil in 0.5-l pots, in a naturally lit glasshouse (Rothamsted
Research, Harpenden, UK) in May–June 2000 (10-h daylength
with supplementary illumination to give minimum of c.
400 µmol m−2 s−1 of photosynthetic active radiation (PAR)
and an average of c. 600 µmol m−2 s−1; average day and night
temperatures were 25°C and 18°C, respectively. Two
seedlings were transplanted into 2-l pots containing soil that
had been premixed with slow-release fertilizer, and were
watered regularly. There were 20 pots per species. Three weeks
after transplantation, watering was withheld from half the
pots of each species, while it was continued for the other half.
Measurements were made in the subsequent drying cycle,
which lasted for approximately 7 d.

Gas exchange measurements

Gas exchange measurements were made on attached, recently
expanded leaves of all four species using a six-chamber open
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gas exchange system (Lawlor et al., 1989). Conditions in the
chambers were 28°C, leaf-to-air vapour pressure deficit
(VPD) of 1.0 kPa and PAR photon flux of 1000 µmol
quanta m−2 s−1 supplied by metal-halide photoflood lamps
(Wotan, Philips, Holland). The middle section of each leaf
was placed in the (2 × 5 cm2) chamber, which was covered with
black cloth. After 30 min dark-adaptation, dark respiration
rates (Rd) and dark-adapted photochemical efficiency (Fv/Fm)
were measured. The cloth was then removed and leaves
allowed to reach steady-state CO2 uptake in the light at a
chamber [CO2] of 350 µl l−1 for 1.5–2 h, after which A and
light-adapted quantum yield of photosystem II (ΦPSII) were
measured. Chamber [CO2] was then raised to 2500 µl l−1,
and A and ΦPSII measured again after 1.5–2 h. The high
[CO2] of 2500 µl l−1 was chosen to ensure that drought-
induced stomatal limitations of photosynthesis are overcome
(Lawlor, 1995).

Chlorophyll a fluorescence

Chlorophyll a fluorescence was measured concurrently
with gas exchange using an OS-100 (Opti-Sciences, MA,
USA) modulated fluorometer. The optic fibre probe could
be removed and replaced in a fixed position over each gas
exchange chamber using metal guides. Fv/Fm and ΦPSII
were calculated as Fv = Fm−F0 and (Fm′−Fs)/Fm′, respectively
(Genty et al., 1989) (F0, fluorescence of a dark-adapted
leaf with all PSII reaction centres open; Fm, maximal
fluorescence of a dark-adapted leaf with all PSII reaction
centres closed following a saturating light pulse; Fs, fluo-
rescence during steady state of photosynthesis; Fm′, maximal
fluorescence of a light-adapted leaf with all PSII reaction
centres closed following a saturating light pulse) (van Kooten
& Snel, 1990).

Leaf water relations

Leaf water relations were measured at the end of gas exchange
measurements. The leaves were cut and relative water content
(RWC) and leaf water potential (Ψleaf) were determined as
described by Ghannoum et al., 2002.

CO2 compensation concentration

Equilibrium CO2 compensation concentration (Γ) of detached
leaves of P. coloratum and C. ciliaris was measured on leaf
sections enclosed in an illuminated sealed chamber, cooled by
a fan, containing a pump that circulated gas through an
infrared gas analyser (Tezara et al., 1999). Air temperature,
measured with a thermocouple inside the chamber, averaged
(mean ± SE) 29.8 ± 0.8°C. Once [CO2] reached a steady
state, the RWC of the leaf sections was determined. In the
most severely water-stressed leaves [CO2] did not reach an
equilibrium but increased slowly.

O2 electrode measurements

The rate of O2 evolution ( ) was measured (Walker, 1987)
on leaf sections of P. coloratum in an oxygen electrode chamber
(LD2/2; Hansatech Instruments, Norfolk, UK). Illumination
at the leaf surface in the chamber was 1000 µmol m−2 s−1, and
temperature was maintained at 27°C. The leaf chamber
was flushed for 5 min with 5% CO2 (50 000 µl l−1) using
gas mixing pumps (Wösthoff, Bochum, Germany) before
measuring .

Data analysis

The effects of species and [CO2] was analysed by two-way
analysis of variance () with species and [CO2] as
independent variables and RWC as a covariate. Plotted data
were fitted with the function that gave the best fit (linear,
polynomial or exponential).

Results

Leaf gas exchange and chla fluorescence

There was a strong, linear relationship between Ψleaf and
RWC for three (P. coloratum, B. bladhii and C. ciliaris) out
of the four C4 grass species (Fig. 1). In A. lappacea, RWC
changed little as Ψleaf decreased to −1.5 MPa. Below this
value, RWC declined steeply (Fig. 1). However, the Ψleaf vs
RWC relationships did not differ significantly between species
(P(species) > 0.05). The rest of the data is presented against
RWC because it is a better indicator than Ψleaf for metabolic
function (Sinclair & Ludlow, 1985).

A declined substantially and progressively with decreasing
RWC, although the pattern varied significantly (P(species) <
0.001) between the four species (Fig. 2). A became negative
around a RWC of 50% in P. coloratum, B. bladhii and C.
ciliaris (Fig. 2a–c) and 60% for A. lappacea (Fig. 2d). Elevated
[CO2] (2500 µl CO2 l

−1) had no significant effect (  >
0.05) on A at any point on the A /RWC relationship for any
of the species (Fig. 2). Dark respiration rates ranged between
−0.5 and −4.0 µmol m−2 s−1, was similar between species
(P(species) > 0.05) and the linear fits of Rd against RWC were
not significant, except for a slight negative trend in C. ciliaris
(data not shown). Stomatal conductance, measured at both
ambient and elevated [CO2], declined rapidly with increasing
water stress (data not shown). Similar to A, g showed slightly
different sensitivity to drought among the grasses (P(species) <
0.05). Nevertheless, the relationship between A and g can be
described by a common relationship for the four grasses,
which was distinct for each measurement [CO2] (  <
0.001) (Fig. 3). The relationship between A and g was best
fitted with a polynomial, rather than linear, function with an
inflection point around a RWC of 80% (A ≈ 23 µmol m−2 s−1

and g ≈ 0.15 mol m2 s−1 at ambient [CO2]) (Fig. 3a). This

JO2

JO2

P([CO2 ])

P([CO2 ])
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coincided with a sharp rise in calculated Ci at both ambient
[CO2] (data not shown).

There was some scatter in ΦPSII data, which is most likely
due to variations in photosynthetic capacity and optical
characteristics among the different leaves and plants at the
various stages of the drying cycles. However, ΦPSII declined
with RWC (Fig. 4) for all the species although they did not
differ significantly (P(species) > 0.05). The relationship between
A and ΦPSII remained linear throughout the drying cycle
(Fig. 5). The ΦPSII was unaffected by elevated [CO2]
(  > 0.05) and Fv/Fm was similar among the C4 grasses
(P(species) > 0.05) and insensitive to water stress (Fig. 4).

CO2 compensation concentration

The CO2 compensation point, Γ, was measured on two of the
four C4 grasses and ranged between 5 and 12 µl l−1 for well-
watered leaf sections of P. coloratum and C. ciliaris (Fig. 6). It
was little affected by water stress down to a RWC of 70%, but
rose sharply below a RWC of 60% (Fig. 6). It was possible to
determine Γ of only a few severely water-stressed leaves
because [CO2] in the chamber did not reach a steady state, but
increased steadily.

O2 evolution rates

In order to test whether very high [CO2] can restore
photosynthetic activity in the water-stressed leaves,  was
measured in leaf sections of P. coloratum at 5% CO2. The 
ranged between 28 µmol m−2 s−1 and 42 µmol m−2 s−1 (Fig. 7),
which corresponded well with A measured by gas exchange
(Fig. 2a). In the water-stressed leaves,  declined in a
curvilinear fashion with RWC. However, small  were still
detectable (6–7 µmol m−2 s−1) at a RWC of 40% (Fig. 7).

Discussion

The relationship between Ψleaf and RWC was linear in three
and curvilinear in one species. This may be attributed to
differences in cell wall elasticity and/or osmotic adjustment
among the C4 grasses ( Jones, 1978; Kobayashi & Hori,
2000). In all four C4 grasses, photosynthesis was very sensitive
to water stress, measured as loss of RWC or more negative
water potential. Similar results have been reported with C3
(Stuhlfauth et al., 1990; Ortiz-Lopez et al., 1991; Tezara
et al., 1999) and C4 (Lawlor & Fock, 1978; Du et al., 1996;
Lal & Edwards, 1996; Saccardy et al., 1996; Saliendra et al.,
1996) species. Importantly, A (and ΦPSII) of both well-
watered and water-stressed plants were not significantly
enhanced by [CO2] as high as 2500 µl l−1 (0.25%) in the gas
exchange chamber. Massacci et al. (1996) and Williams et al.
(2001) reported similar results with sorghum. Because of the
presence of a CO2-concentrating mechanism, photosynthesis
operates at near CO2-saturation in well-watered C4 plants

P([CO2 ])

JO2

JO2

JO2

JO2

Fig. 1 The relationship between leaf water potential (Ψleaf) and relative 
water content (RWC) in four tropical C4 grasses growing in a drying soil. 
Each data point is from a different leaf. The lines are best fits for (a) 
Panicum coloratum (y = −3.4 + 0.030x, r2 = 0.90), (b) Bothriochloa 
bladhii (y = −3.9 + 0.034x, r2 = 0.80), (c) Cenchrus ciliaris (y = −4.2 + 
0.038x, r2 = 0.81) and (d) Astrebla lappacea (y = 98 + 0.296(1 − e–x/0.45)).
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(Osmond et al., 1982; von Caemmerer, 2000). The A /Ci
response curve of C4 leaves is characterized by a steep initial
slope and an abrupt saturation at a Ci around 100–150 µl l−1

(von Caemmerer & Furbank, 1999). The operational Ci
(which corresponds to ambient [CO2]) depends on a number
of environmental factors, such as light and nitrogen supply
(Ghannoum et al., 1997; Ghannoum & Conroy, 1998). In

Fig. 3 The relationship between CO2 assimilation rates (A) and 
stomatal conductance ( g) in Panicum coloratum (closed circles), 
Bothriochloa bladhii (closed triangles), Cenchrus ciliaris (open 
circles) and Astrebla lappacea (open triangles) growing in a drying 
soil. Each data point is from a different leaf. A and g were measured 
at 28°C, 1000 µmol quanta m−2 s−1, leaf-to-air vapour pressure 
deficit (VPD) of 1.0 kPa, at a [CO2] of 350 µl l−1 (a) or 2500 µl l−1 
(b). The lines are polynomial fits for all data points at ambient 
(y = −6 + 274x − 335x2, r2 = 0.96) and elevated (y = −6 + 1808x 
− 12184x2, r2 = 0.80) [CO2].

Fig. 2 The CO2 assimilation (A, circles) and dark respiration (Rd, 
crosses) rates as a function of relative water content (RWC) in (a) 
Panicum coloratum, (b) Bothriochloa bladhii, (c) Cenchrus ciliaris 
and (d) Astrebla lappacea growing in a drying soil. A was measured 
at 28°C, 1000 µmol quanta m−2 s−1, leaf-to-air vapour pressure

deficit (VPD) of 1.0 kPa and ambient [CO2] of either 350 µl l−1 
(open circles) or 2500 µl l−1 (closed circles). Dark respiration (Rd) 
was measured at ambient [CO2] after 0.5 h dark adaptation. Each 
data point represents a different leaf. The lines are linear regression 
fits of all data points, except for A in (c), where data was fitted 
exponentially. Regression equations of A vs RWC are: (a) y = −18 
+ 0.58x, r2 = 0.77; (b) y = −33 + 0.76x, r2 = 0.76; (c) y = 0.86ex/26.4, 
r2 = 0.75; (d) y = −70 + 1.09x, r2 = 0.67.
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this study, gas exchange measurements were made at
1000 µmol quanta m−2 s−1, which represented the upper
limit where accurate ΦPSII measurements can be made (data
not shown). At this light intensity, the operational Ci is
expected to be on the saturated part of the A /Ci response curve
(Ghannoum et al., 1997), which explains the lack of CO2-
responsiveness of A in the well-watered and mildly water-
stressed C4 grasses in the present study and the similarity of A
at elevated [CO2], despite the much smaller g (Fig. 3).

However, as g decreases with water stress, the operational Ci
is expected to progressively move down to the CO2-responsive
region of the A /Ci curve (Long, 1999). Increasing CO2 supply
should then return A to that of the unstressed leaves (i.e. Apot).
But this did not occur in our study, indicating inhibition of
photosynthetic capacity under drought (Lawlor & Cornic,
2002). It is worth noting that due to the operation of a CO2-
concentrating mechanism, C4, compared with C3, photosyn-
thesis is less affected by the initial reduction in g (and hence
Ci) (Kawamitsu et al., 1993). Therefore, it is likely that, by the
time the reduction in g lowered the operational Ci to the CO2-
sensitive part of the C4 A /Ci curve, water stress was advanced
enough to cause a biochemical (nonstomatal) inhibition of
photosynthesis. This inhibition, whether permanent or recov-
erable on rehydration, was not alleviated by short-term
increases in ambient [CO2]. It has been suggested that the
metabolic inhibition of photosynthesis observed under drought
is the result of low Ci (due to reduced g) rather than a direct
effect of water stress (Vassey & Sharkey, 1989; Meyer &
Genty, 1999; Cornic, 2001). However, several lines of evi-
dence suggest that the photosynthetic inhibition observed in
our study under moderate to severe water stress was independ-
ent of CO2 supply. First, neither A nor ΦPSII were responsive
to high [CO2] during the early phase of the drying cycle,
when the decline in g (and stomatal heterogeneity if present),
was still not very large (Meyer & Genty, 1999; Sharkey &
Seemann, 1989). If the decline in A or ΦPSII was mainly the
result of reduced Ci, then increasing ambient [CO2] should
affect A or ΦPSII, at least in the early, mild stress phase (Lawlor
& Cornic, 2002). Second, photosynthetic O2 evolution was
measured in P. coloratum at 5% CO2. This very high [CO2]
has been used to overcome any stomatal limitation by forcing
CO2 to diffuse through the cuticle (Saccardy et al., 1996;
Tezara et al., 1999). However, 5% CO2 did not prevent the
decline in . Third, Γ was measured in P. coloratum and
C. ciliaris. Theoretically, Γ is independent of g and depends

JO2

Fig. 4 The quantum yield of PSII (ΦPSII, circles) and photochemical 
efficiency (Fv/Fm, crosses) as a function of relative water content 
(RWC) in four tropical C4 grasses growing in a drying soil. ΦPSII and 
Fv/Fm were measured concurrently with CO2 assimilation rates (A) 
and dark respiration (Rd), respectively. ΦPSII was measured at 28°C,

1000 µmol quanta m−2 s−1, leaf-to-air vapour pressure deficit (VPD) 
of 1.0 kPa and ambient [CO2] of either 350 µl l−1 (open circles) or 
2500 µl l−1 (closed circles). Fv/Fm was measured at ambient [CO2] 
after 0.5 h dark adaptation. The lines are linear regression 
fits of all data points, except for ΦPSII in (c), where data was fitted 
exponentially. Regression equations of ΦPSII vs relative water content 
(RWC) are: (a) y = −0.008 + 0.004x, r2 = 0.59; (b) y = −0.184 
+ 0.005x, r2 = 0.71; (c) y = 0.0.159ex/31.5, r2 = 0.65; (d) y = −0.193 
+ 0.005x, r2 = 0.35.
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Fig. 5 The relationship between CO2 assimilation rates (A) and 
quantum yield of PSII (ΦPSII) in four tropical C4 grasses growing in 
a drying soil: (a) Panicum coloratum, (b) Bothriochloa bladhii, (c) 
Cenchrus ciliaris and (d) Astrebla lappacea. A and  ΦPSII were measured 
at 28°C, 1000 µmol quanta m−2 s−1, leaf-to-air vapour pressure 
deficit (VPD) of 1.0 kPa and ambient [CO2] of either 350 µl l−1 (open 

circles) or 2500 µl l−1 (closed circles). The lines are linear regression fits 
of all data points: (a) y = 3 + 114x, r2 = 0.67; (b) y = −4 + 138x, 
r2 = 0.88; (c) y = 2 + 79x, r2 = 0.57; (d) y = −4 + 111x, r2 = 0.53).

Fig. 6 The equilibrium CO2 compensation concentration (Γ) of leaves 
of Panicum coloratum (filled circles) and Cenchrus ciliaris (open circles), 
detached from plants growing in a drying soil, as a function of relative 
water content (RWC). Each data point is from a different leaf. The line 
is an exponential fit of all data points (y = 11320e–x/12.43, r2 = 0.89).

Fig. 7 Rates of O2 evolution in detached leaves of Panicum 
coloratum as a function of relative water content (RWC). 
Measurements were made at 5% CO2. Each data point is 
from a different leaf. The line is an exponential fit of all data 
points (y = 6.8 + 0.22ex/20, r2 = 0.90).
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only on the balance between photosynthesis and respiration
(Farquhar et al., 1980). In well-watered C4 leaves, photores-
piration contributes very little to Γ because of the large [CO2]
in the bundle sheath which inhibits the oxygenase reaction of
Rubisco, and also because of the rapid and efficient refixation
by PEPC of photorespiratory CO2 (Ghannoum et al., 1998;
von Caemmerer & Furbank, 1999). While control leaves had
Γ typical of C4 photosynthesis (Morgan & Brown, 1980;
von Caemmerer & Furbank, 1999), it increased dramatically
below a RWC of 70–60%. This increase in Γ can only be
explained by the inability of stressed leaves to refix respired
CO2, as Rd continued under drought (Lawlor, 1995). Lastly,
the decline in leaf water relations was gradual in our study,
and photosynthesis was progressively impaired and stopped
approximately 7 d after watering was withheld. This rate of
drying is similar to that considered as slow in many controlled
environment experiments (Lal & Edwards, 1996; Saccardy
et al., 1996). Therefore, the photosynthetic inhibition is not
attributable to rapid drying, such as usually observed within
hours of detaching a leaf (Cornic, 1994; Saccardy et al.,
1996). Accordingly, all these results taken together suggest
that the decline in A and ΦPSII, under moderate to severe
water stress, was independent of ambient or internal [CO2].
This explanation is supported by results from growth experi-
ments with long-term exposure to elevated [CO2]. Seneweera
et al. (2001) reported that growth at high [CO2] does not alter
the relationship between A and RWC in P. coloratum growing
in drying soil under controlled environment, indicating that
exposure to elevated [CO2] per se has no direct effect on its
photosynthetic metabolism. A similar conclusion was reached
in a free air CO2 enrichment (FACE) study with sorghum
growing in the field under wet and dry conditions (Williams
et al., 2001). In both studies, elevated [CO2] alleviated the
stress effects on A and growth indirectly, by reducing g and
thus transpiration by the plant. This resulted in soil water sav-
ing, extending the period over which photosynthesis and
growth were active (Seneweera et al., 2001; Williams et al.,
2001). Further support for our conclusion comes from work
on the effect of drought on activities of key C3 and C4 cycle
enzymes in sorghum and sugarcane (Contouransel et al.,
1996; Du et al., 1996). In these studies, it was found that the
activity of Rubisco, PEPC, pyruvate, Pi dikinase and NADP-
ME decreased under water stress. However, these responses
are not always observed. For example, drought had no effect
on Rubisco activity in maize (Castrillo et al., 2001) or sugar-
cane (Saliendra et al., 1996), while PEPC activity increased
slightly in maize (Foyer et al., 1998) and sugarcane (Saliendra
et al., 1996). Therefore, it appears that water stress affects
enzyme activity differently in different C4 plants, suggesting
that other metabolic processes (e.g. ATP synthesis; Tezara
et al., 1999) might also be responsible for loss of photosyn-
thetic capacity.

Photochemical efficiency, as measured by dark-adapted Fv/
Fm was not significantly affected by water stress in any of the

C4 grasses. The resilience of Fv/Fm to water stress is commonly
reported in the literature (Stuhlfauth et al., 1990; Tezara et al.,
1999), indicating that electron transport capacity is unaltered
by water stress. However, ΦPSII declined concomitantly with
A under water stress, suggesting that the activity of the pho-
tosynthetic electron chain is finely tuned to that of CO2
assimilation in C4 plants, as has been previously observed
under various environmental conditions (Genty et al., 1989;
Loreto et al., 1995; Lal & Edwards, 1996). Interestingly, small
ΦPSII and  were measured when A had dropped to zero and
when leaves respired in the light under water stress. Similar
results were reported in sorghum (Loreto et al., 1995), and the
A :  ratio decreased under water stress in maize (Lal &
Edwards, 1996). These results, and those of Tezara et al.
(1999) for sunflower (a C3 plant), suggest that electron trans-
port capacity does not reflect CO2 assimilation faithfully in
C4 or C3 plants under water stress, and that alternative elec-
tron sinks, such as the Mehler reaction, are available. For
example, when the rates of O2 evolution and uptake were
measured in a number of C4 grasses, it was concluded that
significant O2 exchange can be associated with the Mehler
reaction in the light (K. Siebke, O. Ghannoum & S. von
Caemmerer, unpubl. data).

In conclusion, we demonstrated that the photosynthesis of
four tropical, wild C4 grasses is very sensitive to the leaf water
status, as measured by loss of RWC and water potential. The
drought-induced inhibition of photosynthesis in our study
was independent of ambient [CO2], suggesting it is of meta-
bolic, rather than stomatal, origin. These results imply that
the enhanced growth response of water-stressed C4 grasses
under elevated [CO2] is unlikely to be caused by the allevia-
tion of the adverse effects of drought on photosynthesis
(Ghannoum et al., 2000).
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