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Summary

 

1.

 

Hubbell’s ‘Unified Neutral Theory of Biodiversity and Biogeography’ (UNTB) has generated
much controversy about both the realism of its assumptions and how well it describes the species
abundance dynamics in real communities.

 

2.

 

We fit a discrete-time version of Hubbell’s neutral model to long-term macro-moth (

 

Lepidoptera

 

)
community data from the Rothamsted Insect Survey (RIS) light-traps network in the United Kingdom.

 

3.

 

We relax the assumption of constant community size and use a hierarchical Bayesian approach
to show that the model does not fit the data well as it would need parameter values that are impossible.

 

4.

 

This is because the ecological communities fluctuate more than expected under neutrality.

 

5.

 

The model, as presented here, can be extended to include environmental stochasticity, density-
dependence, or changes in population sizes that are correlated between different species.
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Introduction

 

Understanding the dynamics of biodiversity remains a great
challenge for ecological science. Hubbell (2001) developed the
unified neutral theory of biodiversity and biogeography
(UNTB), a controversial theory of how biodiversity originates
and is maintained. Neutral models of community dynamics
are based on the assumption of ecological equivalence
between individuals and species, so that any variation in traits
between trophically similar species has no impact on their
overall abundance or their speciation rates (e.g. Gaston &
Chown 2005; McGill, Maurer & Weiser 2006). There are
many implementations (models) of neutrality, but the UNTB
on which this study is focused remains the best-known.

The UNTB applies to communities of trophically similar
species occurring in sympatry. It aims to explain the species
richness and relative species abundance on different spatio-
temporal scales: the ‘local’ or ‘ecological’ community is
defined as a group of  species that actually or potentially
compete in a local area for the same or similar resources
(Hubbell 2001), while the much larger regional species pool
or ‘metacommunity’ can be viewed as a regional collection of
local communities, the arena where speciation occurs and
the pool from which local communities are colonized
(Magurran 2005). Under the UNTB, the dynamics of local
communities are governed by birth and death events, and
species turnover due to local extinction and immigration

events taking place on an ecological time-scale, whereas changes
in composition of the regional species pool are ascribed to
global extinction and random speciation occurring on a much
larger (evolutionary) time-scale. The theory is neutral in the
sense that all ecological properties (per capita birth, death,
immigration and speciation rate) are considered identical for
all individuals regardless of their species’ identities. Hence,
changes in species abundances result only from demographic
stochasticity. Moreover, communities are treated as having a
fixed number of individuals (zero-sum assumption; Hubbell
2001, p. 54). Consequently, no new individual can be added to
an ecological community until a vacancy has been created,
essentially by a death. When the ecological community is
dynamically coupled to a regional species pool, a new recruit
to the community will be either an immigrant from the
regional species pool with probability 

 

m

 

, henceforth referred
to as the ‘immigration rate’, or an offspring of one of the species
present in the community at the previous time with probability
(1 – 

 

m

 

). The dynamics of the model community evolves then
as a random walk constrained by the fact that all species
abundances must sum to a constant, but absolute species
abundances increase and decrease stochastically. Hubbell
(2001) calls this particular version of demographic stochasticity
‘ecological drift’ by analogy with genetic drift (Kimura 1983),
and calls the resulting species abundance distribution (SAD)
the ‘zero-sum multinomial’ (ZSM) distribution.

Criticisms of Hubbell’s theory have concerned both its
assumptions and the resulting SAD. For example, Maurer
& McGill (2004) gave two ways in which species may be
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asymmetric. First, they may differ in their competitive ability
for limiting resources so that some species can limit the
population sizes of others by limiting their access to the
resources or reducing the abundance of resources. Second,
they may be differently adapted to environmental conditions
so that they react differently to environmental heterogeneity.
Engen 

 

et al

 

. (2002) analysed a community of tropical butter-
flies and found that the large component of variance was due
to ecological heterogeneity among species, strongly violating
the assumption of neutral community structure. Poulin (2004)
opposed the zero-sum assumption and gave the example of
helminth communities characterized by huge inequalities in
body sizes among species in the same community, defying
the assumption of saturation and the zero-sum dynamics.
However, Etienne, Alonso & Mckane (2007) have argued that
the zero-sum assumption is not critical.

Moreover, the performance of the ZSM has been the centre
of  a debate. McGill (2003) argued that the log-normal dis-
tribution provides a better fit than the ZSM for the tropical
tree community on Barro Colorado Island in Panama;
Volkov 

 

et al

 

. (2003) claimed the opposite; Etienne & Olff
(2004) found again that the log-normal distribution performs
slightly better, and later that the ZSM performs either as well
as or slightly better than the Poisson log-normal (Etienne &
Olff  2005). In contrast, Williamson & Gaston (2005) maintain
that neither distribution is a suitable SAD.

Arguments about whether a function fits an empirical
relative abundance slightly better than another are unlikely to
advance the field (Harte 2003; McGill 

 

et al

 

. 2007). In reality,
all these disputes may be beside the point: most of the previous
tests of  the neutral theory have been limited to examining
the consistency of  the empirical abundance-frequency
distributions of  local communities with the equilibrium
predictions of the neutral theory. However, as mentioned by
Wootton (2005), such tests are weak because the observed
and predicted data are ranked by abundance, guaranteeing
that both functions decline monotonically. On the other
hand, because the abundance curves assume equilibrium, the
differences in the results might be merely caused by environ-
mental changes. Indeed, over the last 30 years or so, ecologists
have been moving away from the equilibrium ideas (e.g.
Wallington, Hobbs & Moore 2005). The UNTB is a dynamical
model (Alonso, Etienne & McKane 2006), so it can be exam-
ined without assuming equilibrium as we proceed here by
using long-term time series, with the zero-sum assumption
relaxed. This is one of the first times that the neutral model is
tested on temporal data (but see Etienne 

 

et al

 

. 2007). Most of
the previous studies have either looked at data from a single
sample or temporally pooled several samples, for example,
Alonso & McKane (2004) used some early Rothamsted moth
data sets published by C. B. Williams in the 1940s (Fisher, Corbet
& Williams 1943) by pooling samples over a 4-year period.

We proceed by fitting a discrete-time version of the UNTB
to long-term moth community time series with the zero-sum
assumption relaxed; we then ask whether it makes ecologically
sensible predictions, that is, if  the parameter estimates are
realistic. In particular, we ask whether the changes in species

abundances can be explained by the neutral model with a
realistic community size.

Ecological processes are often observed incompletely with
large and unknown amounts of measurement error or process
uncertainty. Understanding and eventually predicting such
processes requires a modelling framework which is capable of
accommodating these uncertainties. The Bayesian approach
to statistical inference turns out to be well-suited to this
purpose (e.g. Anderson 1998); in particular the refined
hierarchical Bayesian framework (e.g. Gelman 

 

et al

 

. 2003)
adopted in this study. We are unaware of studies that have
used the hierarchical Bayesian framework to examine the
neutral theory. Etienne & Olff  (2004, 2005) used a Bayesian
approach to estimate the SAD, but their models did not have
a hierarchical structure and did not model the community
dynamics, only the abundance distribution.

Given that a significant number of ecologists are still
unclear about the rationale for using such an approach, we
devote the rest of this introductory section to a brief  review of
the principles of the Bayesian analysis and the hierarchical
Bayesian modelling; we refer readers interested in more details
to the appropriate literature such as Gelman 

 

et al

 

. (2003).

 

Bayesian analysis and the hierarchical Bayesian 

framework

 

BAYESIAN

 

 

 

ANALYSIS

 

Bayesian analysis is an alternative approach to statistical
inference that is increasingly used to evaluate ecological
models and hypotheses (Ellison 2004). A Bayesian analysis
starts with the formulation of a probabilistic model, 

 

p 

 

(

 

y 

 

| 

 

θ

 

),
intended to describe the distribution of the data, condition-
ally on the unknown parameter(s) of interest, 

 

θ

 

 

 

∈

 

 

 

Θ

 

. A prior
distribution, 

 

p

 

(

 

θ

 

), is subsequently formulated to convey the
analyst’s state of knowledge about the plausible parameter
values before observing the data. As data become available,
the prior distribution is updated to the posterior distribution,

 

p

 

(

 

θ

 

 | 

 

y

 

), via the Bayes’ theorem:

eqn 1

The lack of  relevant prior information about plausible
parameter values leads to the use of so-called non-informative or
‘vague’ priors such as uniform distributions on large compact
regions or centred normal distributions with large variance.

The posterior distribution is the target of the Bayesian
inference as it conveys all necessary information about the
parameter(s) of interest. Bayesian conclusions are essentially
made in terms of probabilistic statements about plausible
parameter values or outcomes of future observations.

 

THE

 

 

 

H IERARCHICAL

 

 

 

BAYESIAN

 

 

 

FRAMEWORK

 

A hierarchical Bayesian (HB) model is a multilevel Bayesian
model. This means parameters in the likelihood depend on
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other parameters not mentioned herein, which themselves
require priors that may depend on new parameters; the process
coming to an end when no new parameters are introduced.
The HB modelling provides a flexible way of representing
complex phenomena through a series of simple structures.
Berlinier (1996) and Wikle & Hooten (2006) delineate three
basic stages in the HB modelling of hidden processes namely,
the data or sampling model, the process model and the
parameter model which are intended to be conditionally
linked in a hierarchical structure usually consisting of the
sampling model at the lowest level.

 

The sampling, the process and the parameter models

 

The sampling model specifies the distribution of the data, 

 

y

 

,
conditionally on the state, 

 

x

 

, of  the process of interest. It takes
into account, for example, the fact that only a proportion of
statistical units are sampled. We refer to the parameters
involved in this stage as ‘data parameters’ hereafter denoted
by 

 

β

 

. The capture probability is an example of such a parameter.
The process model describes the actual growth process. The
parameters involved in this stage are referred to as ‘process
parameters’ and denoted by 

 

α

 

. The demographic rates: the
birth rate, the death or the immigration rates are examples of
process parameters. The parameter model consists of prior
elicitation for the lately introduced parameter for both the
data model and the process model.

 

Posterior estimation and Markov chain Monte Carlo 
(MCMC) method

 

The target of inference is 

 

p 

 

(

 

x

 

, 

 

θ

 

 | 

 

y

 

), the joint distribution of
the process and the vector parameter 

 

θ

 

 = (

 

α

 

, 

 

β

 

) conditionally
on the observed data, which derives from the Bayes’ theorem as

eqn 2

The derivation of  the posterior distribution via eqn 2 is
usually difficult in practice due to the normalizing constant
which typically involves a high-dimensional integral with no
analytic solution and thus requires a resort to numerical
methods of  approximation such as MCMC (e.g. Gilks,
Richardson & Spiegelhalter 1996). MCMC methods make it
possible to sample from distributions with complex algebraic
forms, so subsequent inferences can be based on posterior
summaries of the quantities of interest or functions of them
calculated from the samples.

 

Materials and methods

 

DATA

 

We use three long-term (> 25 years) time series of macro moths
(

 

Lepidoptera

 

) from the Rothamsted Insect Survey’s (RIS) large-scale
light-trap network in the United Kingdom (Woiwod & Harrington
1994). Two are from a small piece of woodland on the Rothamsted
farm in Hertfordshire (Geescroft I and II), and the third in

woodland on the edge of a large National Nature Reserve in rural
mid-Wales (Tregaron). Each data set consists of annual species
totals. The numbers of species and years for the different data sets
are: Geescroft I (352, 40); Geescroft II (319, 26); Tregaron (371, 28).
Overall, the observed species’ abundances proved to vary sensibly in
consecutive years, with many species being not observed in some
years. The sample characteristics for the three full data sets are
summarized in Table 1, whereas three typical species’ trajectories
are displayed in Fig. 1.

Because light-traps rely on the physiological and behavioural
response to light which may vary between species and families, we
also carried out the same analyses on a single species-rich family
alone, the geometrids (

 

Geometridae

 

), a moth family whose members
are known to respond in a similar way to light and are sampled
particularly efficiently by the RIS light-traps (Taylor & French
1974). The numbers of geometrid species in the three data sets are,
respectively, 135, 127 and 135.

 

MODEL

 

 

 

SPECIF ICATION

 

Under the UNTB, the dynamics of an arbitrary species are governed
by a generalized birth and death process (including speciation,

p x y p y x p x p( ,   )  (   , ) (   ) ( ).θ θ θ θ| | |∝

Fig. 1. Time evolution of the observed abundances of three species
arbitrarily selected from the Geescoft 2 data set. Top: common rustic
(Mesapamea secalis), middle: the clay (Mythimna farrago), bottom:
mottled pug (Epithecia exiguata). Similar trajectories are present in
the other data sets.

Table 1. Annual sample characteristics for the three full data sets

Data set Characteristics
Number of
species

Number of
individuals

Geescroft I 2·5 percentile 154·95 3179·87
Mean 180·05 5226·7
97·5 percentile 202·4 10167·78

Geescroft II 2·5 percentile 124·37 1788·25
Mean 159·69 3428·23
97·5 percentile 183·75 5833·12

Tregaron 2·5 percentile 225·4 9772·6
Mean 245·82 12715·93
97·5 percentile 262·65 18543·12
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emigration and immigration) (Volkov 

 

et al

 

. 2003). The UNTB
assumes that individuals die and reproduce continuously, but this is
unrealistic for many species (such as most of the moths considered
here) which have an annual life cycle. This suggests using a model
with discrete generations. We build a discrete-time neutral model of
(local) community dynamics which is identical to Hubbell’s UNTB
in all other aspects except in one detail: we relax the assumption of
a constant community size.

The UNTB makes the underlying assumption that all individuals
are equivalent, and hence each has the same probability of pro-
ducing offspring. For a discrete-time model, the process of
reproduction can be viewed as one of sampling individuals at
random (with replacement) from the current population to provide
offspring for the next generation. If we condition on the new
population size, the number of individuals of a species is binomially
distributed with probability of success equal to the proportion of
individuals of the focal species in the current population (the whole
community is then drawn from a multinomial distribution). Crucially
for us here, the variance in the number of offspring is related to the
total population size, so that the more variation we see in the
numbers of a species in a neutral community over time, the smaller
the community size. This is because, when population size increases,
the variance of the binomial distribution increases but the coefficient of
variation decreases. Hence, the variation in the proportion of the
focal species in the community decreases. This is exactly analogous
to genetic drift, where the variation in allele frequencies can be used
to estimate the effective population size (e.g. Waples 1989). In the
same way, the variation in species frequencies can be used to estimate
the ‘effective’ community size. We develop this argument more
formally below.

We wish to emphasize that because we are considering the
dynamics over short time-scales (evolutionarily speaking), we can
reasonably assume that speciation (which is a rare event) does not occur,
and restrict our attention to the ecological dynamics of the species.

 

The process model

 

Throughout, 

 

N

 

i,t

 

 denotes the number of individuals of species 

 

i

 

 in the
community at time 

 

t

 

. So, 

 

J

 

t

 

 = 

 

Σ

 

i

 

N

 

i,t

 

 and 

 

C

 

i,t

 

 = 

 

N

 

i,t

 

 

 

×

 

 (

 

J

 

t

 

)

 

–1

 

 denote,
respectively, the community size and the relative abundance of
species 

 

i

 

 in the community at time 

 

t

 

. We designate by 

 

P

 

i

 

 the relative
abundance of species 

 

i

 

 in the metacommunity, which is considered
constant over an ecological time-scale where the local community
dynamics are examined, and 

 

m

 

t

 

 denotes the immigration rate (i.e.
the proportion of immigrants in the local community) at time 

 

t

 

. For
consistency with the data, we associate the value 

 

t 

 

= 1 with the first
year of sampling.

As a consequence of the neutrality assumption,

 

 N

 

i,t

 

 is entirely
determined by 

 

C

 

i,t

 

–1

 

 and 

 

P

 

i

 

 through the reproduction and immigration
processes, respectively, allowing for the drift in species abundances.
More specifically, we assume that the expected number of individuals
of species 

 

i

 

 in the community at time 

 

t 

 

is

eqn 3

This means, on average, a proportion 

 

m

 

t

 

 of recruits to the com-
munity at time

 

 t

 

 are immigrants, and a fraction 

 

P

 

i

 

 of these are species

 

i

 

. The expression for 

 

λ

 

i,t

 

 can alternatively be written as

 

eqn 4

 

where 

 

JP

 

i,t

 

 = 

 

J

 

t

 

–1

 

 

 

×

 

 

 

P

 

i

 

 is real and non-negative.

The neutrality assumption entails no selective difference between
species. So, the fraction (1 – 

 

m

 

t

 

) of individuals of species 

 

i

 

 derived
locally will have the same expected relative frequency as in the
previous generation (i.e. 

 

C

 

i,t

 

–1

 

). Eqn 3 is in essence identical to
Hubbell’s (UNTB) model for local community dynamics, except
that the zero-sum assumption is relaxed here. Random drift is
introduced into the model by thinking of 

 

λ

 

i,t

 

 as a birth rate, and then
the actual numbers will follow a Poisson distribution. That is

 

eqn 5

 

From the properties of the Poisson distribution, we know that

 

E

 

(

 

N

 

i,t

 

) = 

 

λ

 

i,t

 

 and Var(

 

N

 

i,t

 

) = 

 

λ

 

i,t

 

. Further, if we condition on the total
community size, 

 

J

 

t

 

, then the vector of species abundances, will
have a multinomial distribution with the expected proportion for
species 

 

i 

 

at time t being E(Ci,t) = λi,t × (Σjλj,t)
–1 (e.g. Agresti 1990,

p. 38; Gelman et al. 2003, p. 431). The variance of the proportion of
species i in the community is therefore (Ci,t × (1 − Ci,t))/Jt, so the
fluctuations in Ci,t decrease with increasing community size Jt. This
formalises the verbal argument given above.

The initial abundances of all species are also unobserved, and as
such, need to be estimated from the data (e.g. Buckland et al. 2004;
Clark & Bjørnstad 2004). In the Bayesian paradigm, this involves
specifying priors on them. We assume that

eqn 6

Immigration tends to stabilize communities around the metacom-
munity relative abundance. If we assume equilibrium, then we would
expect to have Ci,t = Pi. It follows from eqn 3 that the expected
abundance of species i in the community at equilibrium is Jt–1 × Pi as
suggested by Hubbell (2001, p. 90) where Jt = J, ∀t.

It should be stressed that we are concerned here exclusively with
the local community dynamics. We do not therefore make any
assumption about the form of the distribution of the metacommunity.
Instead, we allow the model to estimate the distribution. As with the
total community size, restricting the model is not necessary for
making our main point, so we choose to allow the model to be more
flexible. This also means that our main results will not be due to
these secondary assumptions.

The sampling model

The observed abundance of species i at time t (t ≥ 2), yi,t, (i.e. the
number of individuals of species i trapped at time t) can be modelled
assuming

eqn 7

where qt > 0 is a parameter, henceforth referred to as ‘sampling
rates’ at time t, and whose interpretation is as follows: at any
time, q estimates the ratio of the observed community size to the
(effective) size of a neutral community which corresponds to the
observed level of variation. In case a community is completely
observed, the expected sampling rate under neutrality is 1. If however
the dynamics are not neutral, the excess of variation over the neutral
expectations (i.e. a greater temporal fluctuation in numbers of each
species than predicted from multinomial sampling) will tend to
deflate the (effective) community size which would make the
sampling rates to exceed 1, in virtue of the eminent inverse relation-
ship between level of variation and effective population size. It is
then clear that under neutrality, the sampling rates correspond to

λi t t t i t t iJ m C m P, ,  [(   )      ].= − × + ×− −1 11

λi t t i t t i tm N m JP, , ,  [(   )      ]= − × + ×−1 1

Ni i t, , ~ ( ).1 Poisson λ

Ni i i, , , ~ ( ) (   ).1 1 1 0Poisson λ λ >

y N qi t i t t, , ~ (   )Poisson ×
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the observation probabilities (probability of capture in this case).
We note that the sampling rates at time points t > 1 are intrinsically
identifiable (e.g. Haslett et al. 2006), owing to the additional infor-
mation coming from the previous state conveyed by the underlying
Markov structure.

As can be seen from the model specification, Ni,t and qt are parameters,
and mt and JPi,t are hyper-parameters, mt and JPi,t being at a higher
level in the hierarchy than Ni,t and qt. A full Bayesian specification
of the model requires priors to be explicitly specified on all
independent parameters.

Prior elicitation

The model was fitted with relatively vague and independent priors
on the fitted parameters (mt, qt, λi,1, JPi,t). We used Uni(0, 0·5) on mt

which allows the abundance of immigrants up to half of the entire
community size, and Exp(0·01)on λi,1 which is positive and typically
‘flat’ far from zero, to allow for large initial values. A non-informative
approach to expressing ignorance about the relative species abun-
dances of the regional species pool is to consider that all species are
equally abundant in there. Under the equilibrium perspective, this
would suggest setting all JPi,t at the average species abundance in the
(local) community. We placed the non-informative Uni(5, 1000) on
all JPi,t and assigned Gam(3, 6) to qt. Indeed the expected value
and the variance of Gam(3, 6) match those of Uni(0, 1) whose
support corresponds to the expected range of this parameter under
neutrality.

MODEL F ITT ING

The required posteriors were simulated numerically by MCMC
through OpenBUGS (Thomas et al. 2006), an interactive windows
version of the BUGS software (Spiegelhalter et al. 2003) which is
available at <http://mathstat.helsinki.fi/openbugs/> and a copy of the
BUGS code is available from the authors. The quantities of interest
were the actual species abundances, Ni,t, the sampling rates, q, and
the immigration rate m. The community sizes at different time
points were obtained by summing the abundances of all species in
the community.

We ran 300 000 iterations of three chains, discarding the first
100 000 as burn-in and thinning the remainder to one in every tenth
observation. We carried out an extensive sensitivity analysis of the
results to the prior inputs by substantially varying the range of the
prior inputs, but the results remained broadly robust to these
changes.

Results

The results for the full macro-moth data sets and for the
geometrids alone are shown in Figs 2 and 3, respectively. As
might be expected, the two Geescroft data sets show a similar
pattern, with a downwards temporal trend in abundance. In
contrast, there does not appear to be any trend at Tregaron
(see solid lines in Fig. 2a–c).

In all three data sets, the community sizes undergo sub-
stantial fluctuations (Fig. 2a–c), suggesting that community
size is not constant.

The model-predicted community sizes are far too low to be
realistic (Fig. 2a–c) as they are much lower than the actual
sample sizes (i.e. the number of individuals caught). Indeed,

the estimated sampling rates (Fig. 2d–f) suggest that, if  the
neutral model is true, the communities should contain much
fewer individuals than were actually caught. The dashed
horizontal lines in panels d–f of Figs 2 and 3 are drawn at
height 1, which corresponds to the expected sampling rate
for a completely observed community under neutrality as
discussed above.

The immigration rates were estimated to be very low
(Fig. 2g–i). In the light of the results above, this is not surprising,
as a high immigration rate would tend to stabilise the dynamics,
as expected relative frequencies of immigrants are constant
over time.

The results are similar for the analysis using only the
geometrid species: a similar level of  excessive temporal
variation was observed in all three populations (Fig. 3).

To verify that the biologically unintuitive results are not
due to any feature of our model, we fitted the model to 1000
time series simulated using the neutral model with and
without immigration. In all cases, the estimated sampling
rates were found to be sensible (always below 1 and close to
the true values). Figure 4 displays the sampling rates obtained
by fitting the model to a data set simulating a 10-species
neutral community dynamics over 30 renewal periods with
the parameters qt and mt set to 0·5 and 0·2, respectively. The
model was fitted using Gam(3, 6) priors on qt. We ran 200 000
iterations of three chains, discarding the first 50 000 iterations
as burn-in and thinning the remainder to each tenth observa-
tion. As can be seen from Fig. 4, the posterior means of qt are
broadly contained within the range 0·4 to 0·6 with an overall
mean at 0·5 which corresponds to the true value.

Discussion

Our results suggest much more variation in the moth time
series than the assumed neutral model can explain. Indeed as
discussed above, if  the community dynamics were conform to
the neutral theory/model, the sampling rates qt would lie
between zero and one, and should correspond to the prob-
abilities of capture. Keeping in mind the inverse relationship
between community size and magnitude of  variation in
relative species abundances emphasized in the Materials and
methods section, it is clear that an excess of variation over the
neutral expectations will slim down the (idealised) com-
munity size which may even drop below the observed values,
resulting in estimated sampling rates which are higher than 1,
as found here.

As already mentioned, the sampling rates correspond to
probabilities of capture provided the actual community
dynamics are neutral. In case a neutral community is completely
observed, we expect the sampling rates to be 1. Given that we
are dealing herein with data on only partially observed species,
neutral dynamics would necessarily yield sampling rates
between 0 and 1. Because the model-predicted sampling
rates are far beyond 1, we can logically conclude that the
assumed neutral model and/or demographic stochasticity
alone cannot explain the large fluctuations in the three moth
communities.

http://mathstat.helsinki.fi/openbugs/
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What causes this excess of  temporal variation over the
neutral expectations? An obvious explanation is the effect of
fluctuations in the environment. Indeed, the importance of
this environmental stochasticity, which is known to affect the
dynamics of  populations regardless of  their sizes has been
recognized by population ecologists (e.g. Lande, Engen &
Saether 2003; Chase 2005), so it is not surprising that we find
it in community dynamics as well. The poor fit of the model
may also be due to other model assumptions. For example,
the assumption that the birth-death-immigration processes
are linear and do not involve any kind of density-dependence,
although density-dependence has been shown to occur in a
larger set of  similar RIS moth data (Woiwod & Hanski
1992).

Whilst the UNTB has provoked an upsurge of interest in
community dynamics, its failure to include some major
sources of fluctuation in population size limits its predictive
ability. Nonetheless, it may continue to serve as a null model

in some contexts, in particular when functional hypotheses
are being tested (Bell 2000; Etienne & Alonso 2005; Nee 2005;
Alonso et al. 2006; McGill et al. 2006), and its value might be
as a springboard for merging community and population
biology.

The neutral model, as presented here, can be extended
to include, for example, environmental stochasticity (e.g.
Alonso, Etienne & McKane 2007; Benedetti-Cecchi 2007),
density-dependent effects, or changes in population size that
are correlated between different species. In practice, these
models can be developed and fitted through the hierarchical
modelling framework that is becoming popular amongst
Bayesian statisticians.

In conclusion, although our analyses have shown that the
neutral theory/model does not fit the Rothamsted moth data
well, we feel that Hubbell’s model is wrong in informative ways
that will continue to stimulate the development of community
ecology theory.

Fig. 2. Posterior medians and 95% credibility sets for the estimated community sizes and the corresponding observed values (solid lines) (a–c);
posterior medians and 95% credibility sets for the estimated sampling rates (d–f) and for 10× immigration rates (g–i) for the full macro-moth data
sets. Note that the dashed horizontal lines in panels d–f are drawn at height 1.
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