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The evolutionary success of grasses is due to characteristics of resilience and fast growth in open habitats that led to their
underpinning of agriculture and is attributable to many grassspecific traits. Genes responsible for these traits are likely specific
to grasses, highly conserved and present in all grasses (universal genes) as they perform essential functions for fitness. A
bioinformatics pipeline was developed to identify such genes using 16 grass full genomes in Ensembl Plants release 56. The first
steps used existing gene models to generate groups of grass orthologs to rice and maize genes present in most grass species and
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Abstract 10 

 11 

The evolutionary success of grasses is due to characteristics of resilience and fast growth in 12 

open habitats that led to their underpinning of agriculture and is attributable to many grass-13 

specific traits. Genes responsible for these traits are likely specific to grasses, highly 14 

conserved and present in all grasses (universal genes) as they perform essential functions 15 

for fitness. A bioinformatics pipeline was developed to identify such genes using 16 grass full 16 

genomes in Ensembl Plants release 56. The first steps used existing gene models to 17 

generate groups of grass orthologs to rice and maize genes present in most grass species 18 

and refined membership of these groups such as to optimise the Hidden Markov Model 19 

(HMM) profile score from the HMMER package. These were then supplemented using new 20 

gene models found in grass genomes with the genBlastG tool; this step increased the 21 

number of universal groups by >2-fold to give 12,855 highly conserved, universal groups. 22 

Specificity for these groups was assessed using closest matching gene models from non-23 

monocot species. Possible cut-off values were tested with sets of known genes expected to 24 

be either of common function for all plants, or of commelinid- / grass-specific function. A 25 

specificity metric based on HMM score from grass group profiles performed better than % 26 

identity as a means of discriminating between these common and specific function test sets. 27 

Using an appropriate cut-off for this metric, 5,701 of the groups were identified as monocot- / 28 

commelinid- / grass-specific of which 72% appeared to be grass specific. These results 29 

comprise the universal_grass_peps database available at DOI 30 

doi.org/10.23637/rothamsted.98ywz.  This database can be searched by researchers to 31 

determine whether their experimentally identified grass genes match universal groups and, 32 

for those that do, to obtain systematic estimates of monocot- / commelinid- / grass-33 

specificity. 34 

  35 
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Introduction 36 

 37 

Grasses (Poaceae) are of huge ecological importance, dominating open habitats in which 38 

they played a fundamental role in forming (Jacobs et al., 1999;Kellogg, 2001) such that this 39 

group of organisms now covers one third of global land area. Indeed it has been suggested 40 

that the rise of the grasses some 40 MYA was a key event in earth history, changing the 41 

water cycle, carbon cycle and climate permanently (Retallack, 2001). Their adaptation to 42 

open habitats has made them suited to adoption in agriculture and all the origins of human 43 

civilisation are associated with domestication of cereals and/or of grazing animals. Today, 44 

about 70% of the calorie intake for humans comes directly or indirectly from grasses 45 

(FAOSTAT, 2019).  46 

Grasses co-evolved with large grazing mammals which few other plants can withstand 47 

during early growth giving rise to the open grassland habitats (Stebbins, 1981). Key grass 48 

adaptations to this ecosystem include: morphology that allows meristems to avoid 49 

consumption and fire damage allowing regrowth; tissues rich in silica to resist herbivory and 50 

stress (Mitani-Ueno and Ma, 2021);  stomata that can respond faster than those of other 51 

plants to rapidly changing conditions of open habitats (Chen et al., 2017); cell walls 52 

containing ferulate implicated in lowering digestibility and stress resistance (Chandrakanth et 53 

al., 2023); unique inflorescence and seed characteristics for efficient reproduction (Kellogg, 54 

2001). These traits are the result of specific protein-coding genes, non-coding genes and 55 

regulatory genomic elements that arose in the evolution of grasses; here my aim was to 56 

develop a pipeline to identify the protein-coding genes (henceforth referred to as “genes” for 57 

brevity) involved in grass-specific traits.  58 

Relatively few genes involved in these traits have been demonstrated experimentally 59 

(examples listed in Table 1). Among the best characterised are Lsi1, Lsi2 and Lsi6 genes 60 

encoding silicic acid transporters that are required for Si accumulation and distribution. Both 61 

monocots and dicots have homologs of Lsi1 and Lsi2 that transport silicic acid, but Lsi1 62 
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differs in polarity and localisation in monocots; monocots additionally have Lsi6 transporters 63 

that direct Si transport within nodes (Ma and Yamaji, 2015;Mitani-Ueno and Ma, 2021). 64 

Grass cell walls differ from those in dicots in several respects and genes responsible for the 65 

grass-specific features are now known for: presence of (1,3;1,4)-beta-D-glucan (Burton et 66 

al., 2006), ferulate moieties on the polysaccharide arabinoxylan that can cross-link xylan 67 

chains or xylan to lignin (Feijao et al., 2022;Chandrakanth et al., 2023), lignin monomer tricin 68 

(Lam et al., 2015) and beta-expansins which specifically mediate expansion of the differently 69 

composed grass primary cell walls (Sampedro et al., 2015). Numerous monocot-specific 70 

regulatory genes implicated in determining the unique morphology of grass inflorescence 71 

have been identified; some of best characterised are the ramosa2 (Bortiri et al., 2006) and 72 

LOFSEP transcription factors (Kobayashi et al., 2012;Wu et al., 2018). Finally, some genes 73 

involved in the fast-responding grass stomata such as guard cell SLAC1 anion channel have 74 

been experimentally described (Schäfer et al., 2018).  75 

 76 

I postulated that these grass genes and others responsible for functions specific to monocots 77 

/ grasses that are key to grass fitness will be (1) present in all grasses i.e. universal, (2) 78 

highly conserved (3) have no close homologs in species outside monocots. The concept of 79 

universality of genes – matching genes being present in all organisms within a taxonomic 80 

unit - is a useful guide to their importance for fitness and implicitly groups genes by function 81 

(Kriventseva et al., 2018). On point (3), it is convenient to consider monocot- and grass-82 

specificity together because the large number of non-monocot plant genomes and wealth of 83 

gene knowledge (particularly for Arabidopsis) make for a better reference set than the few, 84 

less studied non-grass monocot genomes. Also many key gene functions may have evolved 85 

first in monocots and then been expanded by gene duplication in grasses. Thus the aim is to 86 

capture those genes with key functional innovations that arose in monocots or grasses and 87 

have not diverged further within the grasses; from typical estimates of timescales for origin of 88 
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monocots and divergence of grasses (Bouchenak-Khelladi, 2007), these function 89 

innovations would have occurred in the period between 150 and 50 MYA.  90 

 91 

The likelihood that two genes from different species share the same function increases with 92 

the similarity of the encoded peptide sequences. For a given level of sequence similarity, it is 93 

thought that they are more likely to share function if they are orthologs, i.e. descended from 94 

the same gene in the common ancestor (Gabaldón and Koonin, 2013). Here I also assumed 95 

that universality of genes, i.e. if similar genes are found in every species of a taxonomic unit, 96 

can also be taken as supporting common function as it may imply a role in a trait essential 97 

for fitness. Furthermore, using this set of genes of putative common function allows the use 98 

of profiles that emphasise the conserved sequence elements that are key to that function 99 

rather than weighting the whole sequence equally.  100 

 101 

I used these principles to design the novel bioinformatics pipeline described here which aims 102 

to: (a) identify a maximal set of groups of highly similar genes found in all grasses with each 103 

group having putative common function (b) assign estimates of how specific these functions 104 

are to monocots / commelinid- / grass species based on closest hits from species outside 105 

these taxa. Using the set of the genes described above to define a cut-off for specificity, 106 

groups were classified as having monocot- / commelinid- / grass-specific or non-specific 107 

functions. I report some of the characteristics of these specific gene sets. Finally I discuss 108 

uses and limitations of these predictions. 109 

 110 

  111 
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Methods 112 

 113 

Predefined gene sets 114 

To help test the pipeline output and to select cut-off values two sets of genes were pre-115 

defined. The small number of monocot- /commelinid- / grass specific protein-coding genes of 116 

known function (Table 1) were used as a specific test set. A list of proteins of known function 117 

expected to be common across all plants was also compiled to act as the non-specific test 118 

set. This non-specific set was derived from ribosomal subunit proteins using RPG database 119 

(Nakao et al., 2004)  (http://ribosome.med.miyazaki-u.ac.jp) and enzymes or enzyme 120 

subunits in amino acid synthesis, glycolysis, photosynthetic electron transport, CBH cycle 121 

and nucleotide synthesis from OryzaCyc database which had identical steps in AraCyc 122 

database within Plant Metabolic Network (Hawkins et al., 2021) giving a total of 240 rice 123 

peptides (Table S1). 124 

Pipeline overview 125 

Figure 1 shows a scheme of the pipeline which takes input data downloaded from Ensembl 126 

Plants, processes these using custom software and public packages and generates datasets 127 

that populate a novel database called universal_grass_peps.  128 

The following input data were manually downloaded from the Ensembl Plants database 129 

(Bolser et al., 2016) release 56 (https://feb2023-plants.ensembl.org/): peptide sequences 130 

(peps) from gene models for 16 grass species and 58 non-grass species (Table S2), the full 131 

genome sequences of the grasses with their gene annotations, and the ortholog tables of 132 

rice and maize gene models to all other grasses (downloaded using the Biomart tool).  Rice 133 

and maize were chosen as the reference species because they are intensively studied crops 134 

with well annotated genomes representing respectively the BEP and PACMAD clades that 135 

together include all grasses.  136 
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All operations on these input data were carried out on the Rothamsted Linux High 137 

Performance Cluster using custom Perl (with Bioperl routines; Stajich et al., 2002) and bash 138 

scripts to run bioinformatics tools and process data. These scripts are available at 139 

https://github.com/Rowan-ACM/universal_grass_peps. The complete pipeline took 11 days 140 

of run time on the cluster to complete.  141 

The methods used in the different components of the pipeline shown in Fig. 1 are described 142 

below. 143 

Identification of highly conserved peptides present in all grasses (Find Universal Groups 144 

block in Fig. 1)  145 

Using peps from gene models of the 16 grass species, any identical ones were removed but 146 

all non-identical peps from splice variants were retained (for convenience, “gene” is used 147 

here to mean a unit encoding a unique peptide). For the rice and maize reference species, 148 

using BLAST+ package (Camacho et al., 2009) a blastp search (parameters: -evalue 1.e-5 -149 

max_target_seqs 50 -seg no -max_hsps 1) of peps was conducted against all others within 150 

same species and defined clusters where peps are >90% identical in both directions of a 151 

pairwise comparison for all comparisons within a cluster. Out of 40,196 rice peptides, 6% 152 

were in clusters with >1 member, mostly highly similar splice variants. In maize 37% out of  153 

62,559 peps were in such clusters; this higher percentage is expected in maize due to the 154 

recent whole genome duplication (Swigonova et al., 2004) and greater propensity for tandem 155 

duplications (Guo et al., 2019). An ortholog table from the Ensembl multiple tables was 156 

defined where each entry was defined by a primary key (group ID) of the rice peptide or 157 

peps cluster ID. Where there was no maize ortholog, the most similar maize pep was found 158 

with blastp and if this was not orthologous to another rice gene, added all the other grass 159 

genes orthologs of the maize gene to the group and group ID was set to composite of rice 160 

and maize seed cluster IDs. Groups from maize were also allowed where there was no rice 161 

ortholog or similar pep sequence (as this could be added by the later genBlastG step). Other 162 
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grass species orthologs to rice and/or maize were assigned exclusively to a single group 163 

based on highest ranking by Ensembl ortholog confidence flag (0 or 1; defined from tree-164 

compliance and, in a small number of cases, whole-genome alignment and gene order 165 

conservation; https://plants.ensembl.org/info/genome/compara/peptide_compara.html) then 166 

sequence similarity.  Groups which had entries for fewer than 12 of the 16 grasses were 167 

deleted and genes orthologous to remaining groups were reassigned according to this 168 

ranking. At this stage (Box 1 Fig. 1) there were groups of multiple genes per grass all of 169 

which were classed orthologous to rice and/or maize. Using two reference species in this 170 

way allows for similar non-orthologous genes of potentially common function to be grouped 171 

together due to descending from two paralogs. But by using the ortholog information 172 

orthologous peps were more likely to be assigned to same group than non-orthologs with 173 

same level of similarity. This is designed to help to group by function in accordance with the 174 

principle that orthologs are more likely to share function at a given level of sequence 175 

similarity (Gabaldón and Koonin, 2013). 176 

The next step (box 2 Fig. 1) was to optimise membership of groups keeping only one peptide 177 

sequence per species. This approach makes the profile scores comparable across all 178 

groups and avoids biasing profile to species with many members in a group. HMM profiles of 179 

each group were initially generated using the top ranked pep sequence for each species. To 180 

make HMM profiles, all the group member peps were aligned using MUSCLE v3.8.1551 with 181 

default parameters (Edgar, 2004) then the HMM profile was generated from this multiple 182 

alignment with hmmbuild (parameters --amino --fragthresh 0) and hmmpress commands 183 

from HMMER package version 3.3.2, Nov 2020 (Eddy, 2022). Similarity scores of the 184 

member sequences against their own profile were obtained using hmmscan (all hmmscan 185 

steps in pipeline used parameter E 1.e-7, other parameters default). To compare across 186 

groups, this score was normalised to a maximum possible score obtained with the 187 

consensus sequence of the profile (generated by hmmemit command) as the query to derive 188 

a HMM relative score (R). Then group members were each substituted with all the 189 
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alternative peptide sequences for this group and species; if R was improved by > 0.01 the 190 

substitution was kept as the group member; this requirement means that peptide sequences 191 

ranked as best orthologs in previous step tended to be kept as group members. It was found 192 

that groups could be further improved by using grass Ensembl gene models hits to the HMM 193 

profile found with hmmscan that were not members of other groups; these are peps not 194 

found by previous steps probably because they were not in ortholog tables. Again, these 195 

peps were assigned as group members if they improved R by >0.01 (box 3 Fig. 1). 196 

In the next step (box 4 in Fig. 1) the genBlastG tool was used (She et al., 2011) which 197 

searches for gene models with canonical splice junctions in genomic sequence using a 198 

query peptide sequence; here the consensus from HMM profile for the group was used as 199 

the query. For each group, and for each grass where the current member was missing or low 200 

scoring, the relevant grass genome was searched with genBlastG (v138, parameters -p 201 

genblastg -v 2 -h 0 -j 3 -r 1  -norepair). Any hits discovered by genBlastG were checked that 202 

they were novel by comparing exon coordinates with those of all Ensembl gene models 203 

using gff files. Using criteria as above, if a novel gene model from genBlastG improved the 204 

profile, it was adopted as the group member for that species and the HMM profile was 205 

rebuilt. A maximum of 4 genBlastG gene models were adopted so every profile has at least 206 

12 Ensembl gene models. At the completion of this process, the R value was recalculated 207 

for each member and groups where the lowest scoring member had R < 0.65 or had missing 208 

members were discarded; the cut-off of 0.65 is a criterion for high conservation and the 209 

value was selected as that for which 90% of the pre-defined expected universal non-specific 210 

genes (Table S1) groups passed. HMM profiles from the complete set of groups that pass 211 

these were compiled into a single HMMER database, the universal_grass_peps HMM 212 

database.  213 

Matches of grass genes to universal groups (box 5 in Fig. 1) 214 
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All scores for Ensembl grass peps against the universal_grass_peps HMM database for all 215 

groups were obtained. All non-members that had scores of R > 0.65 to any group were 216 

allocated as associate peptides allowing many-to-many relationships (this allows a lookup 217 

search with any peptide ID as query to find all groups to which a peptide is similar). To check 218 

whether some universal_grass_peps groups can be regarded as likely same function, the R 219 

of grass group members against other group HMMs were obtained. Where all members of a 220 

group scored > 0.65 for another group and vice versa these groups were allocated to a 221 

supergroup of potential same function.  222 

Monocot- / Commelinid- / Grass- Specificity (Estimate Specificity block in Fig. 1) 223 

Scores were obtained for the best-matching non grass peptide sequence from all the 58 non 224 

grass species against universal_grass_peps HMM database for all groups. A metric of 225 

specificity S for each group was evaluated, defined as R of the lowest scoring grass member 226 

of this group minus R of highest scoring non-monocot peptide. By definition a value of S <= 227 

0 means the non-monocot peptide scores highly enough to be included so the group is 228 

completely non-specific.  229 

Different cut-off values for this threshold were investigated using the groups containing the 230 

genes from the pre-defined specific or non-specific test sets. For comparison of the S metric 231 

with simple pairwise percentage identity, this was calculated from global alignment by 232 

MUSCLE of the rice member of the group to its closest non-monocot hit identified by blastp.   233 

 234 

Functional annotation of monocot- / commelinid- / grass-specific groups 235 

To characterise the functions of the set of groups classified by the pipeline as monocot- / 236 

commelinid- / grass-specific groups, functional annotations were obtained. 237 

General gene descriptors and Gene Ontology terms from Ensembl Plants were assigned to 238 

groups from their member rice and maize peps. Where present, linked publications, gene 239 
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descriptors and symbols and trait ontology were assigned to groups from database entries 240 

for their member peps taken from RAP-DB (Sakai et al., 2013) and KnetMiner-rice for rice 241 

and MaizeMine (Shamimuzzaman et al., 2020) for maize and KnetMiner -wheat for wheat. 242 

Entries were retrieved from web interfaces except for KnetMiner where cereals knowledge 243 

graph (Hassani-Pak et al., 2021) with programmatic access was used to retrieve gene-TO 244 

and gene-GO relations for wheat and rice genes along with supporting publications. 245 

    246 
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Results 247 

 248 

Identification of highly conserved peptides present in all grasses (Find Universal Groups 249 

block in Fig. 1). 250 

Initial steps (boxes 1-3 in Fig. 1) identified 17,816 groups of similar peps that were present in 251 

at least 12 of the 16 grass species from their original gene models present in Ensembl 252 

Plants release 56. Of these, 6,354 groups passed criteria for universality and high 253 

conservation (i.e. had members for all 16 species and minimum R > 0.65). However, correct 254 

gene models are frequently missing from annotated genomes particularly where there is no 255 

transcript information to support these as is often the case for lower expressed genes in less 256 

well studied species. Therefore the genomic sequences were searched for gene models for 257 

each group and for each gene model that was missing or low scoring using the genBlastG 258 

tool with consensus peptide sequence of the group HMM profile as query (box 4 in Fig. 1). 259 

By incorporating the new gene models identified into groups the number of highly-conserved 260 

universal groups was more than doubled from 6,354 to 12,855 showing the importance of 261 

the genBlastG step. The species break-down of the new gene models obtained by 262 

genBlastG (Table 2) within these groups shows the newer genomes from Saccharum 263 

spontaneum and Lolium perenne have the most whereas the intensively studied wheat with 264 

extensive transcript resources has the fewest.  265 

The results for universal groups can be compared with those from the OrthoDB database 266 

which allows users to select for ortholog groups that are present in a minimum number of 267 

species (Kriventseva et al., 2018). At the Poales level in OrthoDB release 10 there are 2,581 268 

ortholog groups that are present in all 11 grass species and there is substantial overlap with 269 

the groups here with 85% of rice RABP IDs are present in universal groups before the filter 270 

for high conservation. At this stage far more universal groups were recovered than from 271 

OrthoDB and this seems to be mostly due to the genBlastG step rather than relying on 272 

existing gene models. 273 
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The set of 12,855 highly conserved, universal groups obtained from the above steps are 274 

here termed the universal_grass_peps database. These groups contain sequences that all 275 

match the profile well but also contain different degrees of divergence. Two example multiple 276 

alignments used to generate the HMMs for two groups are shown in Figure 2. These show 277 

high conservation including for the novel genBlastG gene models but also reveal some of 278 

the inherent complexities found in most profiles; group Os03t0786600-01 has 279 

overwhelmingly similar sequences but also has some signs of divergence at the C-terminal 280 

between BEP (species 1-8) and PACMAD clade grasses (species 9-16), and group 281 

Os02t0763000-01 has a section found only in one species. Nevertheless these alignments 282 

do support the hypothesis of highly similar function common to all grasses for these groups.  283 

 284 

Matches of grass genes to universal groups (box 5 in Fig. 1) 285 

All grass gene model peps were searched against the HMM profiles of 286 

universal_grass_peps for hits with R above the cut-off of 0.65; if these are not the member of 287 

any group they are classified as associated to the group. The total number of associated 288 

peps for each species is shown in Table 2 and generally reflects the degree of gene 289 

duplication. The grass pep hits are also used to define supergroups; if all members of one 290 

group are hits above cut-off to another group, the two groups are assigned to super-groups 291 

of closely related function. A total of 799 supergroups were identified (Table S3). 292 

Supergroups can contain groups with same molecular function but differing regulation due to 293 

sub-functionalisation. 294 

 295 

Monocot- / Commelinid- / Grass- Specificity (Estimate Specificity block in Fig. 1) 296 

All peps from the 58 non-grass species in Ensembl Plants were scored against the HMM 297 

profiles of universal_grass_peps. The results were used to derive the specificity metric S for 298 
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each group, where S is minimum R value from group members minus maximum R value for 299 

any peptide from non-grass to give monocot-/ commelinid-/ grass-specificity. Distinguishing 300 

between monocot-specificity, commelinid-specificity and grass-specificity is dependent on 301 

maximum R values from only 3 species (two non-grass commelinids and one non-302 

commelinid monocot) so these sub-classifications are less secure, and the overall monocot-/ 303 

commelinid-/ grass-specificity is emphasised here.  304 

The S metric is a measure of sequence divergence from the grass profile that can be used 305 

as a basis for an initial hypothesis of function divergence in the same way that other 306 

sequence-based measures are used. The pre-defined test sets were used to gauge the 307 

performance of S as a means of determining specificity, i.e. the non-specific test set of 215 308 

peps expected to have common function in all plants because the fundamental processes 309 

they are responsible for are not thought to have diverged (Table S1) and the specific test set 310 

of 16 peps with monocot- / commelinid-/ grass-specific functions (Table 1). The S metric was 311 

compared with simple pairwise % identity with the best non-monocot hit for these sets 312 

(Figure 3); S performs better than % identity at discriminating between the two sets as 313 

choosing highest cut-off with no false negatives gives 11.6% false positives using S and 314 

14.4% false positives using pairwise percentage identity. Using sequence similarity (e.g. 315 

from BLOSUM62) rather than identity did not improve performance of pairwise alignment as 316 

a measure (data not shown). 317 

Applying the cut-off S of >0.25 which gave 11.6% false positive and no false negatives with 318 

the test sets (Figure 3) to the complete set of 12,855 groups gave 5,701 defined as 319 

monocot- / commelinid- / grass-specific. This set was divided into subsets classified as 320 

probably monocot-specific (355 profiles), commelinid-specific (1,260 profiles) and grass-321 

specific (4,086 profiles) based on values of S calculated from best hits for each taxonomic 322 

level and is listed in Table S4. 323 

 324 

In review



Functional annotation of monocot- / commelinid- / grass-specific groups 325 

Functional annotations for these 5,701 specific groups were derived from public annotations 326 

of their rice, wheat, and maize members. Most (~90%) have no linked publications and only 327 

general descriptors and high-level GO terms based on domains. When the set is ranked by 328 

S metric, the groups with least similarity to any non-grass pep often have nothing known but 329 

a prominent domain is “Cyclin-like F-box domain” which occurs in 4 of the 20 most grass-330 

specific profiles (Table S4). Proteins containing this domain were also highlighted in an early 331 

study attempting to identify grass-specific proteins (Campbell et al., 2007). F-box domains 332 

are associated with protein-protein interaction e.g.  for the regulation of other proteins by 333 

ubiquitination. 334 

A wider view of the processes in which the monocot- / commelinid- / grass-specific genes 335 

take part can be gained from analysis of GO terms assigned in RAP-DB and MaizeMine, 336 

based mostly on recognition of domains and functions of homologs. Of all the biological 337 

process GO annotations, most are assigned to at least one group suggesting there are some 338 

monocot- / commelinid- / grass-specific aspects of most processes in grasses.  The 339 

processes that are dominated by these specific genes are shown by the terms which are 340 

enriched; there is clear enrichment of groups of regulatory proteins, especially those 341 

involved in control of transcription and of protein activity (Table 3). Some specific enriched 342 

terms include ones that might be expected such as xylan biosynthesis and leaf development 343 

but also include fundamental processes such as cell cycle. Enriched molecular function GO 344 

terms are mostly DNA-binding  and enzyme activities; the most enriched enzyme category is 345 

hydroxycinnamoyl transferase activity (Table 3) which may reflect the importance of these 346 

moities on lignin and xylan polymers in grass cell walls (Chandrakanth et al., 2023). 347 

For the minority of groups with associated publications, the publications, gene descriptors 348 

and trait ontology (TO) terms from the RAP-DB, MaizeMine and KnetMiner databases were 349 

assigned. The traits defined by TO terms are associated with variants of the member rice, 350 
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maize and/or wheat genes from evidence in the publications. For the monocot- / commelinid- 351 

/ grass-specific groups (Table S4), particularly common traits affected are grain size (90 352 

groups), flowering time (62 groups), with numerous morphology traits as might be expected. 353 

However also common are traits for insect / pathogen defence and abiotic stress resistance.  354 

The complete set of 5,701 groups defined as monocot- / commelinid- / grass-specific 355 

together with specificity estimates and all functional annotation are in Table S4.  356 

  357 
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Discussion 358 

 359 

Genes of common function that occur in all species within a taxonomic unit (universality) 360 

indicate that the function is likely key to fitness. Although sequence similarity is a measure of 361 

likelihood of shared function, using existing bioinformatic resources it is not straightforward 362 

to compare genes in a systematic way, nor to check for criterion of universality given 363 

variation in completeness of genome annotation. The new approach described here provides 364 

predictions of all universal grass genes with putative common function and estimates of their 365 

specificity to monocots / commelinids / grasses.  It should be noted that since the pipeline 366 

generates groups with putative common function that can contain any similar gene, not just 367 

true orthologs, it is not directly comparable to software like OrthoFinder that identify 368 

orthologous groups (Emms and Kelly, 2019).  Rather, ortholog tables are an input to the 369 

pipeline as a starting point for seeding groups (box 1 in Fig. 1) but these predicted orthologs 370 

can be replaced in a later step by alternative peps from the same species if they match the 371 

profile better (box 3 in Fig. 1). A novel aspect of the pipeline is the emphasis on universality 372 

which led to the incorporation of the genBlastG step to find missing genes (box 4 in Fig. 1); 373 

this step generated 14,038 new gene models. The fact that grass species like wheat that 374 

have more RNAseq data require fewer of these gene models (Table 2) suggests that future 375 

grass RNAseq studies will validate many of them. The use of a metric based on HMM profile 376 

score to estimate how specific the function of a universal group is to monocot / commelinid / 377 

grass species is another novel aspect of the pipeline; it provides a systematic basis for an 378 

assertion of such specificity for genes of unknown function.  379 

 380 

Importance of monocot- / commelinid- / grass-specific genes 381 

Grasses typically have a haploid set of about 40,000 protein-coding genes. The analysis 382 

here indicates that about 12,000 of these are universal in grasses and that about half of 383 

universal genes are monocot- / commelinid- / grass-specific. These genes are enriched for 384 
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regulatory functions (Table 3) as might be expected given the radically different organisation 385 

and morphology of grasses. The great majority of genes in the specific sets are of unknown 386 

function which reflects our lack of understanding of molecular mechanisms underlying grass-387 

specific characteristics. However, the GO term annotation indicates that these genes are 388 

likely involved in virtually every process in grasses and are particularly dominant in the 389 

enriched ones shown in Table 3 which include cell wall processes and stomatal regulation as 390 

might be predicted but also some less expected such as control of epigenetic marks and 391 

chloroplast movement. 392 

The importance of variants of the monocot- / commelinid- / grass-specific genes for crop 393 

traits is seen from publications associated to the identified sets (Table S4) including 394 

numerous variants associated with grain yield, abiotic stress and defence. Where a trait is 395 

known to be commelinid- or grass-specific, the classifications generated here can help to 396 

identify candidate genes involved in the trait. In our own work on dietary fibre QTLs in wheat 397 

grain, candidate genes identified as likely commelinid- / grass-specific were prioritised as 398 

dietary fibre is mostly feruloylated arabinoxylan (AX) that only occurs in commelinid species. 399 

The causal allele was eventually shown to be a variant of one such gene – a commelind-400 

specific peroxidase involved in cross-linking AX (Mitchell et al., 2023). There must be many 401 

more valuable natural and induced variants of these genes yet to be discovered and the 402 

classifications generated here could help in candidate identification.  403 

 404 

Limitations of approach 405 

All high-throughput predictions of shared function based almost entirely on peptide sequence 406 

need to be used with caution and cannot substitute for detailed knowledge of the particular 407 

protein. The approach here should be treated as a first best guess of shared function similar 408 

to comparing percentage identity (as biologists often do as a first step) but more likely to be 409 

accurate (Fig. 3) as the HMM approach weights the conserved parts of sequence important 410 

for function, exploiting the fact that the identified genes are highly conserved and present in 411 
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all grasses. The gene groups would be expected to include nearly all cases of genes which 412 

have identical function in all grasses, but they can also include cases where there are highly 413 

similar functions with divergent aspects. This is because non-conserved regions do not 414 

affect the profile score much so if there is a conserved core and divergent, species-specific 415 

functional aspects of the sequence they can still pass the highly conserved filter. Therefore 416 

the next step after identifying a group of interest based on its S score should be to inspect 417 

the multiple alignment (as in Fig. 2) to judge the extent of divergence in different grasses; all 418 

12,855 multiple sequence alignment files are available in the universal_grass_peps 419 

database.  420 

Too much divergence from the group profile will lead to the group being excluded. These 421 

cases will likely include genes that were important in evolutionary history of grasses but have 422 

subsequently diverged in adaptation to the many different ecosystems that grasses occupy 423 

since their divergence some 55 MYA (Bouchenak-Khelladi, 2007) including the major 424 

bifurcation into the BEP and PACMAD clades with respectively C3 and C4 photosynthesis. 425 

 426 

Uses of universal_grass_peps database 427 

Where experiments reveal large sets of grass genes or peps such as transcriptomics, 428 

proteomics or genes underlying QTLs, they are inevitably dominated by genes with little or 429 

no information on function. Even for rice, probably the most studied grass, only 13% of 430 

genes in RAP-DB database (Sakai et al., 2013) have associated publications and only a 431 

minority of these publications specify function. For such unknown genes it is useful to have a 432 

systematic approach to identifying those that are of grass- / commelinid- / monocot- specific 433 

function as this information can point to the nature of the process they are likely involved in. 434 

For example a network of co-regulated genes identified from transcriptomics enriched for 435 

grass-specific functions indicates involvement of the network in a grass-specific trait such as 436 

inflorescence development, Si deposition etc. Using the look-up tables generated, any set of 437 
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grass genes from the grass genomes used here can be used to find all those in, or 438 

associated to, the universal groups and their categorisations as likely monocot-, commelinid- 439 

or grass- specific. For other grass genes, the HMMs database for the universal groups can 440 

be searched using the HMMER package. For genes with matches in the universal groups, 441 

the value of the S metric is a measure of how different the group is from any non-grass pep 442 

and the supplied multiple alignments can be used to judge divergence from the profile.  443 

The universal_grass_peps database is available at 444 

https://doi.org/10.23637/rothamsted.98ywz. On the top directory there is a user guide and 445 

summary spreadsheet of all 12,855 groups; the HMM database, multiple sequence 446 

alignments, genBlastG gene models and lookup tables for grass genes are in subdirectories.  447 

 448 

Future developments  449 

The pipeline reported here is a first attempt to implement the concept of using universal 450 

genes to identify groups of putative common function but could be improved upon with 451 

different software in future. Improvements might be made by using recently released 452 

alternative packages for finding orthologs (Emms and Kelly, 2019) as the first step (box 1 in 453 

Fig. 1) and gene models in genomes (Li, 2023) (to replace genBlastG for box 4 in Fig. 1) 454 

with reportedly better performance. Further in the future, two more major changes would be 455 

to use structural prediction and incorporate expression patterns. The use of HMMs is a 456 

convenient and fast way of obtaining profiles for groups against which other sequences can 457 

be scored for matches but here it is actually a proxy for comparison of structures. A direct 458 

comparison of predicted structures such as that generated by AlphaFold might be a better 459 

approach. Also similar expression patterns of peptides from different species are a strong 460 

indicator of shared function and would help resolve cases of sub-functionalisation (Das et al., 461 

2016). However, I am not aware of any software packages capable of conveniently and 462 
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quantitatively comparing predicted structures or expression patterns that could be used to 463 

achieve these improvements in the pipeline at present.  464 

 465 

Conclusion 466 

A novel bioinformatics approach was used to try to identify all universal grass genes coding 467 

proteins responsible for monocot- / commelinid- / grass-specific traits, making the first 468 

estimates of the size of these sets. As part of this, 14,038 new gene models were generated 469 

for 16 grass genomes. The resulting classifications of grass genes can help interpretation of 470 

experimentally identified sets of grass genes and represent numerous gene research targets 471 

to improve our understanding of grass-specific mechanisms.  472 

 473 

 474 

In review



Tables 
Table 1 Known monocot- /commelinid-/ grass-specific genes. 

trait gene family gene name(s) 
reference species 
gene ID(s) description  reference 

secondary 
metabolite, cell wall cytochrome P450 

CYP93G1; 
CYP75B4 

Os04g0101400; 
Os10g0317900 

production of tricin a secondary metabolite and lignin 
monomer specific to grasses / monocots Lam et al., 2015 

cell wall cellulose synthase-like F OsCslF2 Os07g0552800 
makes (1,3;1,4)-beta-glucan, a component of grass cell 
walls absent in dicots Burton et al., 2006 

cell wall 
BAHD acyl-CoA 
transferases 

BAHD01 / AT9; 
BAHD05 / AT1 

Os01g0185300; 
Os01g0615300 

implicated in formation of feruloyl-arabinfuranosyl 
precursor prior to additon to xylan, a key feature of 
commelinid cell walls 

Chandrakanth et 
al., 2023 

cell wall 
BAHD acyl-CoA 
transferases 

PMT1;  FMT / 
AT5 

Os05g0136900; 
Os05g0278500 

mediates addition of hydroxycinnamates to 
monolignols leading to commelinid-specific features 
on lignin 

Chandrakanth et 
al., 2023 

cell wall 
glycosyl transferase 
family 61 XAX1 Os02g0329800 

implicated in addition of feruloyl-arabinofuranose to 
xylan, a key feature of grass cell walls Feijao et al., 2022 

cell wall expansins EXPB9  Os10g0548600 
grass-specific beta-expansins evolved to mediate 
expansion in grass primary cell walls 

Sampedro et al., 
2015 

inflorescence 
morphology 

MADS transcription 
factor 

OsMADS1; 
OsMADS5 

Os03g0215400; 
Os06g0162800 specifies spikelet identity in rice inflorescence Wu et al., 2018 

inflorescence 
morphology 

MADS transcription 
factor MADS34/PAP2 Os03g0753100 

PAP2 / OsMADS34  regulator of spikelet identity. 
Controls developmental processes unique to grasses 

Kobayashi et al., 
2012 

inflorescence 
morphology 

LOB domain 
transcription factor ramosa2 Zm00001eb123060 

ramosa2 responsible for genetic control of grass-
specific inflorescence Bortiri et al., 2006 

Si transport 
MIP/aquaporin 
membrane proteins LSi1 Os02g0745100 transporter required for active uptake of Si in grasses 

Ma and Yamaji, 
2015 

Si transport 
MIP/aquaporin 
membrane proteins LSi6 Os06g0228200 

transporter required to control distribution of Si to 
leaves and panicle in rice 

Mitani-Ueno and 
Ma, 2022 

stomata 
S-type anion channel 
family SLAC1 Os04g0574700 

contains a monocot-specific motif that confers nitrate-
sensitivity to guard cell anion channel Schäfer et al., 2018 
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Table 2 Counts of peps or groups for each grass species in universal_grass_peps database 

grass species 
Group 
members* 

Members that are 
genBlastG gene 
models 

Groups with associate 
peps 

Max associate peps 
in one group 

Total associate 
peps 

Brachypodium_distachyon 12,855           312           4,776               25           9,926  

Hordeum_vulgare 12,855           899           2,934               33           6,185  

Leersia_perrieri 12,855        1,317           4,375               15           8,128  

Lolium_perenne 12,855        2,142           3,084               28           6,059  

Oryza_rufipogon 12,855           921           4,278               16           8,151  

Oryza_sativa 12,855        1,819           3,060               16           4,912  

Secale_cereale 12,855           491           2,810               39           7,977  

Triticum_aestivum 12,855           178         10,965               91         68,522  

Echinochloa_crus-galli 12,855           287         10,752               48         39,486  

Eragrostis_curvula 12,855        1,329           5,026               27           9,830  

Panicum_hallii_HAL2 12,855           212           4,166               17           7,957  

Saccharum_spontaneum 12,855        2,305           7,419               36         16,944  

Setaria_italica 12,855           796           4,199               23           8,085  

Setaria_viridis 12,855           131           4,886               22         10,183  

Sorghum_bicolor 12,855           276           4,485               36           9,167  

Zea_mays 12,855           623           7,854               23         22,744  

 

*by definition, all grass species have same number of group members 
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Table 3 GO terms that are enriched in Ensembl annotation for rice and maize members of 
the monocot-/ commelinid-/ grass-specific universal groups. All GO term names that occur in 
at least 5 groups and are enriched relative to rice, maize peps and to universal peps >2-fold 
are shown. 

 

number of 
monocot-
/commelinid-
/grass-specific 
groups 

enrichment 
relative to 
Os, Zm peps 

enrichment 
relative to all 
grass_universal 
peps 

GO Domain: biological_process    

positive regulation of DNA-templated transcription 62 2.5 2.3 

cell differentiation 48 2.9 2.1 

negative regulation of catalytic activity 27 2.8 2.2 
regulation of cyclin-dependent protein serine/threonine kinase 
activity 18 2.5 2.0 

response to endoplasmic reticulum stress 13 2.7 2.3 

regulation of jasmonic acid mediated signaling pathway 12 2.6 2.7 

interstrand cross-link repair 12 3.5 2.4 

cellular response to nitrate 12 5.9 2.5 

mitotic cell cycle phase transition 12 2.4 2.4 
nuclear-transcribed mRNA catabolic process, nonsense-mediated 
decay 12 2.1 2.1 
positive regulation of transcription from RNA polymerase II 
promoter in response to heat stress 12 8.1 2.7 

DNA-templated transcription termination 12 2.2 2.4 

regulation of primary metabolic process 11 2.2 2.5 

negative regulation of endopeptidase activity 11 2.2 2.7 

xylan biosynthetic process 11 2.9 2.0 

regulation of nitrogen compound metabolic process 11 5.8 2.5 

gene silencing by RNA-directed DNA methylation 10 2.8 2.9 

regulation of leaf development 10 6.0 2.1 

plastid transcription 7 3.3 2.3 

mRNA destabilization 7 3.3 2.9 

purine nucleoside transmembrane transport 6 2.8 2.2 

nuclear-transcribed mRNA catabolic process, exonucleolytic, 3'-5' 6 3.1 2.2 

rRNA methylation 6 2.5 2.2 

positive regulation of helicase activity 6 5.1 2.2 

mitotic spindle assembly 5 3.2 2.1 

male meiosis II 5 4.7 2.9 

negative regulation of organ growth 5 3.1 2.9 

positive regulation of defense response to bacterium 5 7.7 2.1 

mitochondrial mRNA modification 5 2.2 2.1 

piecemeal microautophagy of the nucleus 5 3.2 2.9 
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positive regulation of mitochondrial translation 5 5.6 2.5 

asymmetric cell division 5 3.0 2.9 

chloroplast avoidance movement 5 2.2 2.9 

malate transport 5 2.9 2.1 

chloroplast accumulation movement 5 2.1 2.5 

post-transcriptional regulation of gene expression 5 2.0 2.1 

protein localization 5 2.3 2.1 

regulation of mitotic cell cycle 5 2.6 2.1 

response to red or far red light 5 2.7 2.9 

    
GO Domain:  cellular_component    
chromosome, telomeric region 8 2.4 2.1 

RNA polymerase II transcription regulator complex 8 4.1 2.9 

nuclear microtubule 6 2.2 2.9 

cell periphery 6 3.1 2.2 

plastid-encoded plastid RNA polymerase complex 5 3.5 2.9 

DNA polymerase III complex 5 3.0 2.9 

histone acetyltransferase complex 5 2.4 2.5 

    
GO Domain:  molecular_function    
sequence-specific DNA binding 197 2.4 2.3 
DNA-binding transcription factor activity, RNA polymerase II-
specific 79 2.2 2.2 
RNA polymerase II cis-regulatory region sequence-specific DNA 
binding 73 2.5 2.2 

hydroxycinnamoyltransferase activity 30 4.5 2.2 
DNA-binding transcription activator activity, RNA polymerase II-
specific 30 3.3 2.5 

enzyme inhibitor activity 22 2.4 2.5 

quercetin 7-O-glucosyltransferase activity 21 2.6 2.1 

quercetin 3-O-glucosyltransferase activity 21 2.6 2.1 

pentosyltransferase activity 14 2.4 2.1 

ubiquitin conjugating enzyme binding 12 3.1 2.1 

pectinesterase inhibitor activity 11 3.0 2.4 
DNA-binding transcription repressor activity, RNA polymerase II-
specific 11 10.6 2.4 

histone acetyltransferase activity 10 3.0 2.2 

glutathione binding 9 3.4 2.3 

histone methyltransferase activity 8 4.5 2.1 

ribonuclease activity 8 2.2 2.3 

5'-3' exodeoxyribonuclease activity 7 5.2 2.0 

myosin XI tail binding 7 2.8 2.9 
galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase 
activity 7 2.2 2.9 

endo-1,4-beta-xylanase activity 7 3.7 2.0 

double-stranded RNA binding 7 2.5 2.5 

purine nucleoside transmembrane transporter activity 6 2.9 2.1 

xylosyltransferase activity 6 3.4 2.5 

In review



27 
 

 

  

electron transporter, transferring electrons within the cyclic 
electron transport pathway of photosynthesis activity 5 2.1 2.9 

strictosidine synthase activity 5 2.2 2.0 

sucrose transmembrane transporter activity 5 6.4 2.0 

myosin binding 5 2.8 2.9 

ionotropic glutamate receptor activity 5 3.9 2.0 

RNA-DNA hybrid ribonuclease activity 5 3.2 2.4 

NAD+ ADP-ribosyltransferase activity 5 2.1 2.0 

histone H3-methyl-lysine-9 demethylase activity 5 2.6 2.9 

translation activator activity 5 6.4 2.4 

telomeric DNA binding 5 3.2 2.4 
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Figure Legends 
 

Figure 1 Pipeline that generates the database of highly conserved universal grass protein-

coding genes and estimates of their monocot- / commelinid- / grass-specificity 

(universal_grass_peps). All the input data is taken from Ensembl Plants release 56 and the 

processing steps are carried out by custom scripts, using the external tools shown in blue 

text, to generate universal_grass_peps database.  

 

 

Figure 2 Two example group multiple alignments from the universal_grass_peps set of 

groups. Sequences are from grass spp 1. Brachypodium distachyon 2. Hordeum vulgare 3. 

Leersia perrieri 4. Lolium perenne 5. Oryza rufipogon 6. Oryza sativa 7. Secale cereale 8. 

Triticum aestivum 9. Echinochloa crus-galli 10. Eragrostis curvula 11. Panicum hallii HAL2 

12. Saccharum spontaneum 13. Setaria italica 14. Setaria viridis 15. Sorghum bicolor 16. 

Zea mays. Sequences predicted by genBlastG have names starting “genblast” others are 

Ensembl gene models. Max score is the score of the consensus against the HMM profile 

generated from the alignment. 

 

 

Figure 3 Proportion of groups of pre-defined genes expected to be of non-specific function 

(blue line) or specific function for commelinid / grass species (red line) that pass varying cut-

off thresholds for two metrics of specificity. Upper panel: percentage identity of closest non-

monocot hit to rice member of group. Lower panel: S metric defined as lowest HMM relative 

score of group member minus the top relative score for a non-monocot hit. In both panels 

the limit which gives no false negatives and minimum false positives is shown. 
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Supplementary Data 
 

Table S1. Pre-defined set of grass genes expected to be universal and of non-specific 

function. 

Table S2. All plant genomes used from Ensembl Plants release 56.  

Table S3. Supergroups: contains groups which are so similar that all members would pass 

cut-off to be in another group within supergroup.  

Table S4. Set of 5,701 groups classified as monocot- / commelinid- / grass-specific with 

details of specificity estimates, group properties, members, and functional annotation. 
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