Dear Author,

Here are the proofs of your article.

- You can submit your corrections **online**, via **e-mail** or by **fax**.
- For **online** submission please insert your corrections in the online correction form. Always indicate the line number to which the correction refers.
- You can also insert your corrections in the proof **PDF** and **email** the annotated PDF.
- For fax submission, please ensure that your corrections are clearly legible. Use a fine black pen and write the correction in the margin, not too close to the edge of the page.
- Remember to note the **journal title, article number**, and **your name** when sending your response via e-mail or fax.
- **Check** the metadata sheet to make sure that the header information, especially author names and the corresponding affiliations are correctly shown.
- **Check** the questions that may have arisen during copy editing and insert your answers/corrections.
- **Check** that the text is complete and that all figures, tables and their legends are included. Also check the accuracy of special characters, equations, and electronic supplementary material if applicable. If necessary refer to the *Edited manuscript*.
- The publication of inaccurate data such as dosages and units can have serious consequences. Please take particular care that all such details are correct.
- Please **do not** make changes that involve only matters of style. We have generally introduced forms that follow the journal’s style. Substantial changes in content, e.g., new results, corrected values, title and authorship are not allowed without the approval of the responsible editor. In such a case, please contact the Editorial Office and return his/her consent together with the proof.
- If we do not receive your corrections **within 48 hours**, we will send you a reminder.
- Your article will be published **Online First** approximately one week after receipt of your corrected proofs. This is the **official first publication** citable with the DOI. **Further changes are, therefore, not possible.**
- The **printed version** will follow in a forthcoming issue.

Please note

After online publication, subscribers (personal/institutional) to this journal will have access to the complete article via the DOI using the URL: http://dx.doi.org/[DOI].
If you would like to know when your article has been published online, take advantage of our free alert service. For registration and further information go to: http://www.link.springer.com.

Due to the electronic nature of the procedure, the manuscript and the original figures will only be returned to you on special request. When you return your corrections, please inform us if you would like to have these documents returned.
Ants indirectly reduce the reproductive performance of a leafless shrub by benefiting aphids through predator deterrence

Springer Nature B.V.
(This will be the copyright line in the final PDF)

Plant Ecology

Ortega-Ramos
Patricia A.
Departamento de Ecología
Universidad Autónoma de Madrid
C. Darwin 2, 28049, Madrid, Spain
Department of Biointeractions and Crops Protection
Rothamsted Research
Harpenden, Hertfordshire, AL5 2JQ, UK
patryortegaramos@gmail.com
http://orcid.org/0000-0003-3339-2410

Mezquida
Eduardo T.
Departamento de Ecología
Universidad Autónoma de Madrid
C. Darwin 2, 28049, Madrid, Spain
Centro de Investigación en Biodiversidad Y Cambio Global (CIBC-UAM)
Universidad Autónoma de Madrid
C. Darwin 2, 28049, Madrid, Spain

canzar@gmail.com
http://orcid.org/0000-0002-8654-2393

Acebes
Pablo
Departamento de Ecología
Abstract
Ant–aphid mutualisms can generate cascade effects on the host plants, but these impacts depend on the ecological context. We studied the consequences of ant–aphid interactions on the reproductive performance of a Mediterranean leafless shrub (*Retama sphaerocarpa*), through direct and indirect effects on the arthropod community. By manipulating the presence of ants and aphids in the field, we found that ants increased aphid abundance and their persistence on the plant and reduced aphid predators by nearly half. However, the presence of ants did not affect the abundance of other plant herbivores, which were relatively scarce in the studied plants. Aphids, and particularly those tended by ants, had a negative impact on the plant reproductive performance by significantly reducing the number of fruits produced. However, fruit and seed traits were not changed by the presence of aphids or those tended by ants. We show that ants favoured aphids by protecting them from their natural enemies but did not indirectly benefit plants through herbivory suppression, resulting in a net negative impact on the plant reproductive performance. Our study suggests that the benefits obtained by plants from hosting ant–aphid mutualisms are dependent on the arthropod community and plant traits.

Keywords (separated by '-')
Ant–aphid mutualism - Herbivory - Indirect interactions - *Retama sphaerocarpa* - Seed production - Top-down effects

Footnote Information
Communicated by Elizabeth Pringle.

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s11258-019-00995-0) contains supplementary material, which is available to authorized users.
Ants indirectly reduce the reproductive performance of a leafless shrub by benefiting aphids through predator deterrence

Patricia A. Ortega-Ramos · Eduardo T. Mezquida · Pablo Acebes

Received: 2 July 2019 / Accepted: 9 December 2019
© Springer Nature B.V. 2019

Abstract Ant–aphid mutualisms can generate cascade effects on the host plants, but these impacts depend on the ecological context. We studied the consequences of ant–aphid interactions on the reproductive performance of a Mediterranean leafless shrub (Retama sphaerocarpa), through direct and indirect effects on the arthropod community. By manipulating the presence of ants and aphids in the field, we found that ants increased aphid abundance and their persistence on the plant and reduced aphid predators by nearly half. However, the presence of ants did not affect the abundance of other plant herbivores, which were relatively scarce in the studied plants. Aphids, and particularly those tended by ants, had a negative impact on the plant reproductive performance by significantly reducing the number of fruits produced. However, fruit and seed traits were not changed by the presence of aphids or those tended by ants. We show that ants favoured aphids by protecting them from their natural enemies but did not indirectly benefit plants through herbivory suppression, resulting in a net negative impact on the plant reproductive performance. Our study suggests that the benefits obtained by plants from hosting ant–aphid mutualisms are dependent on the arthropod community and plant traits.

Keywords Ant–aphid mutualism · Herbivory · Indirect interactions · Retama sphaerocarpa · Seed production · Top-down effects

Introduction

Trophic interactions are key determinants of ecosystem functioning, population dynamics and community structure (Ings et al. 2009). Many outcomes of these interactions are difficult to anticipate as they include mutualistic and antagonistic species interactions that cannot be studied by pairwise interactions alone (Reiss A01 2014).
et al. 2009). More complex approaches are needed to integrate positive and negative links as well as direct and indirect effects among several trophic levels (Clark et al. 2016; Seibold et al. 2018). Individual plants can host a wide range of arthropods that are engaged in multiple interaction types, and each interaction may have different impacts on host plant performance (Ando et al. 2017). A keystone interaction affecting several ecological processes in plants is the mutualism between ants and aphids (Zhang et al. 2012). In this interaction, aphids feed on phloem sap from their host plant excreting honeydew as waste product, a sugary-rich substance source of nutrients for the maintenance and development of ants’ colonies (Stadler and Dixon 2005; Styrsky and Eubanks 2007). In return, ants protect aphids from their natural enemies and reduce disease incidence by removing waste product. Consequently ant attendance can increase aphid’s colony survival, individual growth rates (Zhou et al. 2015) and individual fitness (Flatt and Weisser 2000), while ants have a permanent and easily accessible source of nutrients (Buckley 1987; Styrsky and Eubanks 2007).

Ants engaged in mutualistic interactions with aphids become more aggressive towards any competing arthropod, deterring aphids’ natural enemies such as coccinellids, syrphids, neuropteran larvae and aphidid wasps, (Breton and Addicott 1992; Kaneko 2003; Renault et al. 2005; Mooney et al. 2016). As a consequence, ant attendance can enhance aphid outbreaks (LeVan and Holway 2015) and increase sap phloem extraction, leading to negative indirect effects on fruit and seed production (Canedo-Júnior et al. 2017) and seed viability (Renault et al. 2005). However, ants can also have a positive effect on the host plant by reducing the abundance of other plant herbivores and so decreasing herbivore damage (Roussmek et al. 2009; Styrsky and Eubanks 2010; Trager et al. 2010; Zhang et al. 2012). Therefore, the net effects of ant–aphid interactions on the host plant represent a trade-off between the direct costs of sap-feeding by aphids and the indirect benefit of ant protection against leaf-chewing herbivores (Messina 1981; Styrsky and Eubanks 2007).

The effect of ant–aphid mutualisms on host plants is also mediated by other factors such as the aphids and ants species (Clark and Singer 2018), or traits of the host plant (Heil and McKey 2003). For example, plant species with small or ephemeral leaves and hard tissues are expected to bear a lower abundance and diversity of insect herbivores and consequently the potential benefits of ant protection may not compensate for (or even exacerbate) the direct damage by sap-feeding aphids (Vilela and Del-Claro 2018). Therefore, the net outcome may have a negative impact on plant growth (foliage or growing stems) or reproductive performance (fruit and seed production) (Zvereva et al. 2010).

In this study, we investigated whether the interaction between ants and aphids affects host plant reproduction through direct and indirect effects on Retama sphaerocarpa (L.) Boiss in a Mediterranean grassland in the Iberian Peninsula. Retama sphaerocarpa is a leguminous shrub relatively common in degraded and abandoned semi-arid Mediterranean lands. This shrub can potentially host four aphid species, which are also found in other Fabaceae species (Holman 2009), that can engage in mutualistic interactions with several ant species (Nieto et al. 2002). The cost of these ant–aphid interactions for the host plant will depend on the net benefit of patrolling ants on herbivory reduction. The assemblage of insect herbivores in these shrubs tends to show low diversity and be dominated by specialist insects (Megías et al. 2011). This may be partly due to traits characteristic of this plant species, such as the production of ephemeral leaves that last few days and the hard, photosynthetic stems that contain chemical compounds (López et al. 2001). To test whether the interaction between ants and aphids indirectly benefit R. sphaerocarpa by reducing herbivores, we experimentally manipulated the presence of ants and aphids on individual plants during the fruiting period. We specifically address whether the presence or absence of ant–aphid interactions affects (1) aphid abundance, (2) the abundance of aphid predators and plant herbivores, (3) damage by arthropods to mature fruits, and (4) fruit and seed production.

Materials and methods

Study area

Fieldwork was conducted during July and August 2016 in Valdeloshielos (40° 35’ N, 3° 44’ W) near Tres Cantos, central Spain, at 700–750 m a.s.l. The continental Mediterranean climate has an average...
139 annual precipitation between 400 and 600 mm with a
140 mean annual temperature of 15–17 °C (Ninyerola
141 et al. 2005). The area is characterised by acidic soils
142 and gentle slopes dominated by grasslands, sparse
143 shrubs, mainly *R. sphaerocarpa* and *Juniperus com-
144 munis*, and scattered *Quercus rotundifolia* trees.

145 Study organisms

146 *Retama sphaerocarpa* is a xerophytic, leguminous
147 shrub widely distributed throughout the Iberian Penin-
148 sula and North Africa. It is a pioneer species and a
149 major structural component of the native plant com-
150 munities in many abandoned fields. This almost
151 leafless shrub has multiple photosynthetic branches
152 (Pugnaire et al. 1996) and can grow up to 3 m high
153 (Fig. 1a, c). Flowering and fruiting take place from
154 April to July, producing indehiscent pods containing
155 1–3 seeds per fruit (Peñas 2009). *Retama sphaerocar-
156 pa* is a host for four aphid species: *Acyrthosiphon
157 pismum* Harris, *Aphis fabae* Scopoli, *Aphis craccivora
158 Koch* and *Aphis cytisorum* Hartig (Holman
159 2009). However, only *A. craccivora* or/and *A. cy-
160 tisorum* (Fig. 1b, c) were found in the study area. Both species
161 are worldwide distributed being more common in
162 temperate, tropical and Mediterranean regions in
163 association with species in Fabaceae family (Szentesi
164 and Wink 1991). Both *A. craccivora* and *A. cy-
165 tisorum* are members of a closely related complex of grey–
166 black aphids that are indistinguishable in the field (N.
167 Pérez, pers. com.). Both species lay their eggs at the
168 base of plants from where females will emerge and
169 start their life cycle. Young colonies are found on the
170 growing parts of the plant (Szentesi and Wink 1991).

171 Both species are facultative trophobionts associated
172 with different ant species from the subfamilies
173 Formicinae, Myrmicinae and Dolichoderinae (Nieto
174 et al. 2002). In the studied plants, three ant species
175 were found tending aphids (Fig. 1b, c): *Crematogaster
176 auberti* Emery (Myrmicinae), *Camponotus foreli
177 Emery* and *Camponotus aethiops* Latreille (Formici-
178 nae). Common potential predators of these aphid
179 species are coccinellids (Coleoptera), syrphids and
180 cecydromids (Diptera), spiders (Araneae) and earwigs
181 (Dermaptera) (Pinol et al. 2009).

![Fig. 1](image)

Fig. 1 a Individual of *Retama sphaerocarpa* in the study area. b Aphids tended by an ant on a twig of *R. sphaerocarpa*. c Aphids on branches and fruits of *R. sphaerocarpa* being tended by ants. d Ladybird depredating on aphids. e Caterpillars on *R. sphaerocarpa* branches. f Treehopper and a developing fruit of *R. sphaerocarpa*.
Field experiments

In an area of over 10 ha, we chose 20 plants of equivalent size, no signs of damage or brown parts in their branches and with similar level of aphid infection, as estimated visually. In each plant, we selected three branches between 40 and 60 cm long and randomly assigned one of three different treatments: (a) total exclusion: aphids and ants were manually removed from branches; (b) ant exclusion: ants were manually removed and aphids remained on branches; and (c) control: aphid colonies were tended by ants. We used sticky bands, with flanges on both ends, as barriers for ant exclusion. Potential plant bridges to branches were trimmed to prevent ant access. In addition, we used similar bands tied with flanges, but without sticky resin, on control branches to simulate manipulation. Branches were checked two or three times per week to ensure the effectiveness of ant-exclusion treatments and any aphid colonising total exclusions was removed. We note that the use of branches as experimental treatments may overestimate to some extent the short-term effect of ant–aphid interactions on branches compared to similar treatments covering the whole plant, because woody plants are able to partially compensate herbivore damage in the next growing seasons (Obeso 1993; but see Zhang et al. 2015, for consistent effects between the branch and plant scales).

Effect of ant tending on aphid abundance

To evaluate the effect of ant tending on aphid abundance, we monitored ants and aphids on ant-excluded and control branches twice a week, between 8:00 a.m. and 12:00 p.m., for five consecutive weeks until no aphids were found on branches (a total of 10 recording dates). On each date, we counted the number of ants on control branches and took digital photographs of ant-excluded and control branches to later estimate the number of aphids (Supplementary Figure). Aphids were counted by marking them individually in the digital photographs using the multi-point tool in the ImageJ software (Abràmoff et al. 2004), thus avoiding double counting.

Effect of ant tending on the arthropod community

To test the effect of ant–aphid interaction on the host plant’s arthropod community, we recorded the arthropods presence on experimental branches on each sampling date. Arthropods were visually identified up to order or family level or collected from other branches and preserved in ethanol (70%) for later identification. The recorded arthropods were classified into three broad functional groups: (1) aphid predators: Coccinellidae (Coleoptera; pupae, larvae and adults) (Fig. 1d) and Araneae; (2) plant herbivores: Lepidoptera (larvae) (Fig. 1e), Caelifera (Orthoptera), Membracidae (Homoptera) (Fig. 1f); and (3) others: Derestidae and Erotylidae (Coleoptera), mainly fungus feeders, saprophagous and scavengers (Robertson et al. 2004).

Effect of ant–aphid interactions on host plant reproduction

To evaluate the effect of ant–aphid interactions on the reproductive output of R. sphaerocarpa, we collected and counted the total number of fruits from experimental branches following aphid death and once fruits were fully ripened. We examined all fruits under a dissecting microscope to detect signs of arthropod attack (holes, gnawed areas) to calculate the proportion of damaged fruits for each branch. We found an unidentified moth (Lepidoptera) in our fruit samples that likely attacked fruits and damaged seeds. We randomly selected 10 undamaged fruits (when available) from each experimental branch and measured fruit and seed mass to the nearest 0.01 mg with a digital scale after fruits had been oven-dried for 24 h at 60 ºC. Pericarp mass was calculated by subtracting total seed mass from fruit mass for each measured fruit. We also counted the number of seeds per fruit and calculated seed output as the total number of seeds produced in undamaged fruits for each experimental branch.

Statistical analyses

All analyses were performed in R version 3.3.2 (R Core Development Team). To test whether temporal variations in aphid abundance differed when aphids are tended or unattended by ants, we fitted a generalised additive mixed model (GAMM) with plants as
the random variable, due to the non-linear temporal variation in aphid abundance, using the gamm4 package (Wood and Scheipl 2017). Data on aphid abundances were overdispersed and non-normally distributed, so we used a negative binomial error distribution (Bolker et al. 2009). We included treatment (ants present or excluded), time in days and the interaction between treatment and time as fixed factors, and the initial number of aphids (standardised to zero mean and unit variance) as a covariate. For branches with ants tending aphids, we also assessed temporal variations in ant abundance in relation to aphid abundance, fitting a GAMM with a negative binomial error distribution. The number of ants counted per branch on each date was included together with time in days as fixed factors in the model, number of aphids as response variable and plant as random factor.

To assess whether the presence of ants affected the abundance of aphid predators (Coccinellidae) and plant herbivores we used generalised linear models (GLMM) using the lme4 package (Bates et al. 2015). Models were fitted to the negative binomial distribution due to a high proportion of zeroes (Bolker et al.), and the interaction between treatment and time as fixed factors (Pinol et al. 2009). Plant herbivores were tested separately for Lepidoptera (caterpillars; leaf-chewing herbivores) and Membracidae (treehoppers; sap-feeders that also produce honeydew and could potentially interact as trophobionts with ants). We also tested both groups together with Caelifera grasshoppers as plant herbivores. As the number of predators and herbivores recorded on each date were relatively low, we used the cumulative number of predators or herbivores counted during all recording dates as the response variables. Experimental treatment (ants present or excluded) was included as a fixed factor and plant as a random factor. We also included the maximum number of aphids (standardised to zero mean and unit variance) registered on the branch as a covariate in the model for aphid predators to account for the potential correlation between aphid and predator abundance (Pinol et al. 2009), and the interaction between treatment and aphid abundance.

We used linear and generalised mixed models to test for the effect of the presence of aphids and tending ants, the exclusion of ants, or the exclusion of both aphids and ants (experimental treatments) on plant reproduction. GLMMs were used to test for differences in the number of fruits produced per branch (Poisson error), the proportion of damaged fruits (binomial error), and seed output (Poisson error; after rounding values to the nearest integer). Pericarp mass, total seed mass and number of seeds per fruit were normally distributed, so we used linear mixed models. All mixed models included plant as a random factor and were fitted using the glmer and lmer functions in the lme4 (Bates et al. 2015) and the lmerTest packages (Kuznetsova et al. 2017). All models were simplified by sequentially removing non-significant terms and selected according to the Akaike information criterion (Crawley 2007).

Some branches produced few fruits, so we just included branches that produced more than three fruits on the analyses of fruit and seed traits, and the proportion of damaged fruits (n = 11, 17 and 20 branches for the control, ant-exclusion and ant plus aphid exclusion treatments; respectively). We measured the length and two perpendicular diameters of the experimental branches and did not find differences in branch length, area or volume among the three treatments (ANOVA, length: F_{2,57} = 0.22, P = 0.801; area: F_{2,57} = 0.32, P = 0.727; volume: F_{2,57} = 0.37, P = 0.693), so we did not correct for sampling effort.

Results

Effect of ant tending on aphid abundance

The abundance of aphids on branches was significantly higher in the presence of ants (GAMM, Z = −13.55; P < 0.001). Aphid abundance was 3.4 times greater on control branches (mean ± SE: 790.5 ± 76.1 aphids, n = 20 plants) than the abundance in ant-excluded branches (229.2 ± 37.0 aphids, n = 20 plants; Fig. 2). There was a marked increase in the number of aphids during the first ten days when tended by ants, reaching the highest average abundance after 14 days (1285 ± 321 aphids per branch; Fig. 2). Aphid numbers remained stable for over four more days and dropped significantly during the following 15 days (Fig. 2). Aphids on branches where ants were excluded increased moderately until reaching a maximum after 11 days (average abundance: 464 ± 210 aphids per branch; Fig. 2), after which aphids began to decline steadily for 10 days until individuals dispersed or died out (Fig. 2). Overall, ant-tended aphids survived 12 more days than those on
362 ant-excluded branches before populations crashed (Fig. 2). For control branches, with ants tending aphids, the number of ants was positively correlated with the abundance of aphids (GAMM, \(Z = 2.44, P < 0.015 \)), although the number of ants on branches decreased over time (Fig. 3).

368 Effect of ant tending on the arthropod community

During the experiment, we recorded 629 arthropods from eight different taxa: 72.3% (\(n = 455 \)) corresponded to Coccinellidae at different developmental stages (i.e., pupa, larva and adult); 24.8% (\(n = 156 \)) were plant herbivores, with lepidopteran larvae (\(n = 104 \)) and adult membracids (\(n = 46 \)) being the most abundant, while Caelifera (grasshoppers) were rare (\(n = 6 \)); and the remaining 2.9% were Coleoptera (\(n = 17 \)) and Araneae (\(n = 1 \)) (Table 1).

Coccinellidae abundance was lower in the presence of ants compared to that in ant-excluded branches (Table 1; GLMM, \(Z = 2.62, P = 0.002 \)). We found higher coccinellid abundance in branches with more aphids (GLMM, \(Z = 2.41; P = 0.016 \)), however, no significant interaction between treatment and aphid abundance was found (GLMM, \(Z = 1.12, P = 0.263 \)).

The number of lepidopteran larvae and membracids recorded were relatively low and did not differ significantly between treatments (Table 1, GLMM, \(Z < 1.47, P > 0.141 \); for both groups). Results were similar when grouping lepidopteran larvae, membracids and Caelifera grasshoppers as plant herbivores (GLMM, \(Z = 0.78, P = 0.431 \)).

Effect of ant–aphid interaction on host plant reproduction

The number of fruits produced was highest for total exclusion branches, followed by ant-excluded branches and control branches (Table 2, Fig. 4a). There was a greater proportion of damaged fruits in
control branches (35.2 ± 8.9%, n = 11) than in ant-
exclusion branches (22.9 ± 7.0%, n = 17) and total
exclusion branches (13.7 ± 2.4%, n = 20; Table 2,
Fig. 4b). Fruits produced on each experimental treat-
ment did not differ in pericarp mass (control: 37.4 ±
3.7 mg, n = 11; ant exclusion: 50.2 ± 8.1 mg,
 n = 17; total exclusion: 34.8 ± 2.6 mg, n = 20;
Table 2) or total seed mass (60.1 ± 7.2 mg, n = 11;
68.2 ± 3.9 mg, n = 17; 70.6 ± 3.4 mg, n = 20;
respectively; Table 2), although fruits in ant-excluded
branches had fewer seeds than those in control and
total exclusion branches (Table 2, Fig. 4c). Overall,
the estimated seed output for all branches was lowest
in control branches (37.3 ± 19.9, n = 20), increasing
in ant-excluded branches (55.2 ± 12.5, n = 20) and
total exclusion branches (195.1 ± 32.3, n = 20)
(Table 2; Fig. 4d).

Discussion

Our results indicate that the presence of ants enhanced
aphid abundance and reduced the incidence of aphid
predators, but had no influence on other plant herbi-
vores, resulting in a net negative effect for the host
plant in terms of its reproductive output. Nevertheless,
aphids in the absence of ants also decrease fruit and
seed production in R. sphaerocarpa. Furthermore,
arthropods attacking fruits during the predispersal
phase increased the impact on R. sphaerocarpa
reproduction with a greater proportion of damaged
fruits on the already smaller crop sizes in treatments
with aphids. Our results highlight the relevance of
conducting multi-trophic approaches to elucidate ant–

Table 1 Number of arthropods (± 1 SE) assigned to three
broad functional groups recorded on branches of Retama
sphaerocarpa with aphids and tending ants (control) or bran-
ches where ants were experimentally excluded (ant exclusion)
(n = 20 branches for each treatment)

<table>
<thead>
<tr>
<th>Experimental treatment</th>
<th>Control</th>
<th>Ant exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aphid predators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coccinellidae</td>
<td>7.95 ± 0.58</td>
<td>14.80 ± 0.97</td>
</tr>
<tr>
<td>Araneae</td>
<td>0.00 ± 0.00</td>
<td>0.05 ± 0.01</td>
</tr>
<tr>
<td>Plant herbivores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepidoptera</td>
<td>2.35 ± 0.28</td>
<td>2.85 ± 0.35</td>
</tr>
<tr>
<td>Membracidae</td>
<td>0.85 ± 0.10</td>
<td>1.45 ± 0.11</td>
</tr>
<tr>
<td>Caelifera</td>
<td>0.15 ± 0.02</td>
<td>0.15 ± 0.03</td>
</tr>
<tr>
<td>Others</td>
<td>0.30 ± 0.05</td>
<td>0.55 ± 0.05</td>
</tr>
</tbody>
</table>

Table 2 Estimates from mixed models testing the
effect of the presence of aphids and tending ants
(control), the exclusion of ants, and the exclusion of
both aphids and ants (total exclusion) on fruit
production, fruit and seed characteristics, fruit damage
and seed output in branches of 20 Retama sphaerocarpa
shrubs (sample size varies depending on the response
variable)

<table>
<thead>
<tr>
<th>Response variable</th>
<th>Treatment</th>
<th>Estimate</th>
<th>Z or t</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruit production</td>
<td>Control (intercept)</td>
<td>3.300</td>
<td>24.550</td>
<td>< 0.001</td>
</tr>
<tr>
<td></td>
<td>Ant exclusion</td>
<td>0.670</td>
<td>13.660</td>
<td>< 0.001</td>
</tr>
<tr>
<td></td>
<td>Total exclusion</td>
<td>1.833</td>
<td>42.680</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Fruit damage</td>
<td>Control (intercept)</td>
<td>-1.180</td>
<td>-5.614</td>
<td>< 0.001</td>
</tr>
<tr>
<td></td>
<td>Ant exclusion</td>
<td>-0.848</td>
<td>-5.349</td>
<td>< 0.001</td>
</tr>
<tr>
<td></td>
<td>Total exclusion</td>
<td>-0.904</td>
<td>-6.294</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Pericarp mass</td>
<td>Control (intercept)</td>
<td>0.037</td>
<td>5.692</td>
<td>< 0.001</td>
</tr>
<tr>
<td></td>
<td>Ant exclusion</td>
<td>0.013</td>
<td>1.501</td>
<td>0.140</td>
</tr>
<tr>
<td></td>
<td>Total exclusion</td>
<td>-0.003</td>
<td>-0.313</td>
<td>0.756</td>
</tr>
<tr>
<td>Total seed mass</td>
<td>Control (intercept)</td>
<td>0.061</td>
<td>42.545</td>
<td>< 0.001</td>
</tr>
<tr>
<td></td>
<td>Ant exclusion</td>
<td>0.006</td>
<td>1.089</td>
<td>0.286</td>
</tr>
<tr>
<td></td>
<td>Total exclusion</td>
<td>0.009</td>
<td>1.747</td>
<td>0.092</td>
</tr>
<tr>
<td>Seed number</td>
<td>Control (intercept)</td>
<td>1.183</td>
<td>27.120</td>
<td>< 0.001</td>
</tr>
<tr>
<td></td>
<td>Ant exclusion</td>
<td>-0.128</td>
<td>-2.453</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>Total exclusion</td>
<td>-0.063</td>
<td>-1.266</td>
<td>0.215</td>
</tr>
<tr>
<td>Seed output</td>
<td>Control (intercept)</td>
<td>3.425</td>
<td>23.192</td>
<td>< 0.001</td>
</tr>
<tr>
<td></td>
<td>Ant exclusion</td>
<td>0.392</td>
<td>8.272</td>
<td>< 0.001</td>
</tr>
<tr>
<td></td>
<td>Total exclusion</td>
<td>1.653</td>
<td>41.422</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>
aphid mutualism outcomes within a community context.

Effects of ants on aphid population

Aphids were 3.4 times more abundant in the presence of ants and persisted longer, agreeing with previous studies that showed how ants can enhance aphid reproductive rate, survival and longevity (Flatt and Weisser 2000; Hosseini et al. 2017; Canedo-Júnior et al. 2018). Unattended aphid populations collapsed within the first 20 days, whilst most of ant-attended aphids survived until the end of the experiment (i.e. 34 days). This finding supports the idea that ant attendance enhances the persistence of aphid colonies probably due to the increased defence against predators and perhaps parasitoids (Stadler and Dixon 1999). Ant attendance decreased over time, presumably due to changes in feeding preferences by ants (Offenberg 2001), variation in the attractiveness of honeydew relative to sugar composition (Yao 2014) or changes in the nutritional requirements of ants (Ivens 2015).

Effects of ant–aphid mutualism on aphid predators and plant herbivores

Our results showed that the presence of ants significantly decreased the number of ladybirds, the main aphid predator detected in our study system, by deterring or preying on them. As a result, aphids were much more abundant and persisted longer in control than in ant-excluded treatments. Ladybirds are important predators of aphids, coccids, aleyrodids and psyllids (Sternorrhyncha suborder), and meta-analyses have shown the strong effects of ants on the abundance of aphid predators (Rosumek et al. 2009; Trager et al. 2010; Zhang et al. 2012).

We found relatively low and similar number of non-aphid herbivores between treatments, so the presence of ants did not affect the abundance of plant herbivores. Retama sphaerocarpa produces small and ephemeral leaves (Pugnaire et al. 1996), so it is leafless most of the time, and the photosynthetic branches contain defensive chemical compounds (Martín-Cordero et al. 1997), that act as a defence
against generalist herbivores (Megías et al. 2011). The only plant parts attractive to plant herbivores appeared to be buds, developing fruits and terminal branches, where aphids were densely clumped. Because the presence of ants favoured aphids but did not reduce the abundance of other plant herbivores, the cost of sapfeeding by aphids was not presumably compensated by a reduction in herbivory and thus the net outcome was negative for the host plant.

Consequences of ant–aphid mutualism on the host plant reproductive output

Fruit production was severely reduced in control branches, with 49% and 84% less seeds than in ant-exclusion and total exclusion branches, respectively (Fig. 4). Even so, the impact of non-attended aphids on plant reproduction was significant (Snow and Stanton 1988). Fruit abortion during development seemed the main cause of fruit loss due to aphids feeding directly on growing fruits (Fig. 4c) or indirectly when feeding on terminal branches. For example, fruit set, estimated from initial growing to ripening, was 2.2-fold higher for branches with aphids present and ants excluded compared to branches with ants attending aphids.

The consequences of ant–aphid mutualism on the abundance of leaf-chewing herbivores have been more commonly addressed than those on plant reproductive performance, especially in temperate regions (Trager et al. 2010; Zhang et al. 2012). Our results are in line with studies showing that ant–aphid mutualism negatively affects plant reproductive performance in a community context, by decreasing the number of fruits, seeds, seed mass or seed viability (Renault et al. 2005; LeVan and Holway 2015; Canedo-Júnior et al. 2017; Ibarra-Isassi and Oliveira 2018). For example, Canedo-Júnior et al. (2017) found higher density and longevity of aphids in the presence of ants, increasing plant damage by aphids that, together with damages by other herbivores, reduced the amount of energy invested by the host plant on reproduction. Other studies reported that negative effects on seed production resulted from indirect interactions during previous stages of reproduction, as the presence of ants tending honeydew-producing hemipterans disrupted insect pollination (Levan and Holway 2015; Ibarra-Isassi and Oliveira 2018). However, the effects of ants on the plant performance (growth, reproduction) may not always be negative, but also neutral or positive.

Some studies found that ant–aphid interactions have positive effects on the host plant by reducing herbivory on the leaves and flowers (Del-Claro et al. 2006; Rosumek et al. 2009; Pringle et al. 2017) and improving the production of above-ground biomass (Hosseini et al. 2017). Indeed, the outcome of this interaction for the plant may depend on local biotic and abiotic conditions. For example, Styrsky and Eubanks (2010) found that the indirect benefit of hosting ant–aphid interaction varied with the density of (non-aphid) herbivores. In addition, several reviews have synthesised the progress in understanding the effects of ant–aphid interactions emphasizing its context dependence (Heil and McKey 2003; Rico-Gray and Oliveira 2007; Styrsky and Eubanks 2007; Chamberlain et al. 2014). Given that studies have shown that the effect of ants on the host plant can be positive or negative depending on the context, the abundance and kind of herbivores and predators could be a key factor altering the outcome of the interaction.

Seed output was severely affected by ant–aphid mutualism, but also by aphids alone compared to the exclusion of aphids and ants. Thus, the number of fruits produced on the experimental branches was the main difference in reproductive performance among treatments. We did not find differences in pericarp and total seed mass for the fruits produced in each treatment. We found that total exclusion branches produced fruits with less seeds. However, most fruits produced by R. sphaerocarpa have one seed and sample size differs among treatments due to lower crops when aphids are present, so whether these variations in seed number are biologically meaningful remains unclear.

We found that the proportion of damaged fruits to the total number of fruits produced was lower in total exclusions, followed by ant-exclusions and control branches. These variations in fruit damage between branches likely resulted from differences in fruit availability within the same plant, branches with less fruits were proportionally more damaged than branches with more fruits. Consequently, the presence of ants tending aphids resulted in an average of 88% reduction in fruit production between total exclusion and control branches. As noted earlier, even though the detrimental effect of aphids on R. sphaerocarpa may be somewhat overestimated in the long-term,
short-term figures are reasonable given the rarity of compensatory responses of plants to sap-feeders (Zvereva et al. 2010).

To conclude, this study supports that investigating ant–aphid mutualisms within a community context is important if we are to understand the factors mediating the effects of these interactions on plant fitness; e.g., host plant characteristics can be determinant for the final outcome of the mutualistic interactions. Furthermore, given that ant–aphid mutualisms are widespread in nature, future research should pay more attention to these multi-trophic interactions, as global change can jeopardize ecosystem services provided by these communities, something that could be crucial for nitrogen-fixing pioneer species in degraded semi-ard Mediterranean areas such as R. sphaerocarpa.

Acknowledgements We would like to thank J. Seoane and F.M. Azcárate for their comments and suggestions, N. Pérez and F.M. Azcárate for identifying aphids and ants, respectively. J. Herranz for helping in the identification of other arthropods and M. Silvestre for her contribution in the fieldwork. We appreciate the comments and suggestions made by two anonymous reviewers. PO was granted with an aid for postgraduate students of the Universidad Autónoma de Madrid. This paper is a contribution to the Project CGL2014-53789-R funded by the Spanish MICINN and the REMEDINAL 3 network (S2013/mae-2719) of the Comunidad de Madrid-European Social Fund.

Funding This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

574 Megías AG, Sánchez-Piñero F, Hódar JA (2011) Trophic
575 interactions in an arid ecosystem: from decomposers to
577 Messina FJ (1981) Plant Protection as a Consequence of an ant-
578 membracid mutualism: interactions on goldenrod (Solidago
579 sp.). Ecology 62:1433–1440
580 Mooney EH, Phillips JS, Tillberg CV, Sandrow C, Nelson AS,
581 Mooney KA (2016) Abiotic mediation of a mutualism
doi.org/10.1111/ele.12540
582 Nieto JM, Mier Durante MP, Binazzi A, Pérez-Hidalgo N
584 Fauna Ibérica 19. Museo Nacional de Ciencias Naturales
585 CSIC, Madrid, p 355
586 Ninyerola, M., Pons, X., & Roure, J.M. (2005) Altas climático-
587 digital de la Península Ibérica. In: Metodología y aplica-
588 ciones en bioclimatología y geobotánica. Universidad
589 Autónoma de Barcelona, Bellaterra
590 Obeso JR (1993) Does defoliation affect reproduction in
591 herbaceous perennials and woody plants in different ways?
592 Funct Ecol 7:150–155
593 Offenberg J (2001) Balancing between mutualism and explo-
594 itation: the symbiotic interaction between Lasius ants
596 Peñas J (2009) Retama sphaerocarpa. Flora Vascular de Anda-
597 lucia Oriental. Consejería de Medio Ambiente, Junta de
598 Andalucía, Sevilla, pp 298–301
600 concurrent exclusion of ants and earwigs on aphid abun-
602 https://doi.org/10.1016/j.biocontrol.2009.08.008
604 Orthogonal fitness benefits of nitrogen and ants for nitro-
605 gen-limited plants in the presence of herbivores. Ecology
606 98(12):3003–3010
607 Pugnaire FI, Haase P, Puigdefàbregas J, Cuéllar M, Clark SC,
608 Incoll LD (1996) Facilitation and succession under the
609 canopy of a leguminous shrub, Retama sphaerocarpa, in a
610 semi-arid environment in south-east Spain. Oikos
611 76:455–464
613 ant–plant interactions, 1st edn. University of Chicago
614 Press, Chicago
616 horizons in biodiversity and ecosystem functioning
617 research. Trends Ecol Evol 24(9):505–514
619 interaction: effects on different trophic levels. Ecol Res
620 20:71–74
622 phylogenetic analysis of the pleasing fungus beetles
623 (Coleoptera: Erotylidae); evolution of colour patterns,
625 Rosumek FB, Silveira FA, Neves FDS, Barbosa NPDU, Diniz L,
626 Oki Y et al (2009) Ants on plants: a meta-analysis of the
627 role of ants as plant biotic defences. Oecologia
628 160:537–549
630 The necessity of multivariate approaches in community
632 Snow AA, Stanton ML (1988) Aphids limit fecundity of a
633 weedy annual (Raphanus sativus). Am J Bot
634 75(4):589–593
636 different degrees of myrmecophily? Ecol Entomol
637 24:363–369
640 Stadler JD, Eubanks MD (2007) Ecological consequences of
641 interactions between ants and honeydew-producing
643 Stadler JD, Eubanks MD (2010) A facultative mutualism
644 between aphids and an invasive ant increases plant repro-
645 duction. Ecol Entomol 35:190–199
646 Szentesi A, Wink M (1991) Fate of quinolizidine alkaloids
647 through three trophic levels: Laburnum anguliflorus
648 (Leguminosae) and associated organisms. J Chem Ecol
649 17:1557–1573
650 Trager MD, Bhotika S, Hostetler JA, Andrade GV, Rodriguez-
651 Cabal MA, McKeon CS et al (2010) Benefits for plants in
653 ONE 5:e14308
655 on the attendance of neighbouring hemipteran colonies and
657 https://doi.org/10.1080/00222933.2018.1432774
658 Wood S, Scheipl F (2017) Generalized additive mixed models
660 r-project.org/web/packages/gamm4/gamm4.pdf
662 Res 29:383–391
663 Zhang S, Zhang Y, Ma K (2012) The ecological effects of the
664 ant–hemipteran mutualism: a meta-analysis. Basic Appl
667 benefits in ant-hemipteran mutualism? The case of the ghost ant Tapinoma melanocephalum (Hymenoptera:
668 Formicidae) and the invasive mealybug Phenacoccus solenopsis (Hemiptera: Pseudococcidae). PLoS ONE
669 10:e0123853
671 insect herbivores on growth and reproduction of woody
672 plants: a meta-analysis of experimental studies. Oecologia
673 163(4):949–960

674 Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Dear Author

During the process of typesetting your article, the following queries have arisen. Please check your typeset proof carefully against the queries listed below and mark the necessary changes either directly on the proof/online grid or in the ‘Author’s response’ area provided below.

<table>
<thead>
<tr>
<th>Query</th>
<th>Details Required</th>
<th>Author’s Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQ1</td>
<td>Please check and confirm the section headings are correctly identified.</td>
<td></td>
</tr>
<tr>
<td>AQ2</td>
<td>Reference Zhang et al. (2015) was mentioned in the manuscript; however, this was not included in the reference list. As a rule, all mentioned references should be present in the reference list. Please provide the reference details to be inserted in the reference list.</td>
<td></td>
</tr>
</tbody>
</table>