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Abstract. Midge swarms are a canonical example of collective animal behaviour where local interactions
do not clearly play a major role and yet the animals display group-level cohesion. The midges appear
somewhat paradoxically to be tightly bound to the swarm whilst at the same time weakly coupled inside
it. The microscopic origins of this behaviour have remained elusive. Models based on Newtonian gravity do,
however, agree well with experimental observations of laboratory swarms. They are biologically plausible
since gravitational interactions have similitude with long-range acoustic and visual interactions, and they
correctly predict that individual attraction to the swarm centre increases linearly with distance from the
swarm centre. Here we show that the observed kinematics implies that this attraction also increases with
an individual’s flight speed. We find clear evidence for such an attractive force in experimental data.

Collective behaviour of groups of social animals is
ubiquitous and occurs across taxa, and because of this has
a long modelling history [1]. These models strive to tease
out the general dynamics that underlie the emergence of
collective movements. Mating swarms of flying insects are
particularly challenging in this regard because in contrast
with fish schools and bird flocks, local interactions ap-
pear not to play a key role and yet the animals display
group-level cohesion [2–4]. Here we construct dynamical
models that are consistent with density profiles and ve-
locity statistics measured from high-resolution, high-speed
video recordings of swarms of the non-biting midge Chi-
ronomus riparius [5]. We show that these models predict
the occurrence of velocity-dependent restoring forces and
we uncover evidence for such interactions in existing ex-
perimental data.

Antecedents of our claims can be found in the ground-
breaking studies of Okubo [6] and in the recent work
of Gorbonos et al. [7]. Okubo [6] speculated that midge
swarms are analogous to self-gravitating systems and, as a
result, individuals are attracted to the centre of the swarm
by an effective (fictitious) net force that increases linearly
with distance from the swarm centre, as would be the
case if the gravity were Newtonian and if the midges were
uniformly distributed in space [8]. There is strong exper-
imental support for such a net linear restoring force [5].
Okubo [6] did, however, recognise that midge density pro-
files are nearly Gaussian rather than uniform and this re-
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quires that gravity be “adaptive” rather than purely New-
tonian, as first noted by Gorbonos et al. [7]. Gorbonos et
al. [7] suggested that midges interact primarily via long-
range acoustic sensing. They subsequently exploited the
similarity in form between the decay of acoustic and grav-
itational sources to build a model of swarm behaviour.
Acoustic perception typically adapts to the overall sound
level. This adaptive response renormalizes the effective
forces according to the local noise amplitude. This is a
common feature of biological sensory organs, preventing
damage and their saturation. The model of Gorbonos et
al. [7] is motivated by the fact that midges are expected to
be very sensitive to acoustic signals. The modelled kine-
matics (swarm density profiles, velocity and acceleration
statistics) were broadly consistent with observed density
profiles and with observed distributions of velocity and
acceleration.

In contrast to the approach taken by Gorbonos et
al. [7] we do not posit a microscopic model and then
test for compliance with observations but instead devise a
model that by construction is necessarily consistent with
the observed kinematics. We assume that the positions, x,
and velocities, u, of individual midges can be described by
the stochastic differential equations

dui = ai(u, x, t)dt + b(u, x, t)dWi(t),
dxi = uidt, (1)

where the subscripts denote Cartesian components and
where dW (t) is an incremental Wiener process with corre-
lation property dWi(t)dWj(t + τ) = δ(τ)δijdt. The noise
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Fig. 1. Simulation data (o) for swarm density profiles and swarm velocities showing consistency prescribed statistics (solid lines)
used as model inputs. Data are shown for the Gaussian velocity model (eq. (7)) (upper panels) and the exponential velocity
model (eq. (8)) (lower panels).

term, bdWi, models a stochastic component of the resul-
tant internal forces that arise because of the limited num-
ber of individuals within the swarm, the non-uniformity
of their spatial distribution, chance encounters with other
individuals, and perhaps because of the inherent uncer-
tainties in the detection of conspecifics. Stochasticity is a
crucial aspect of midge dynamics but is not significant in
most celestial systems [9], “collisional systems” being an
exception. We further assume that the magnitude of the
driving noise, b(u, x, t), is a constant. Equation (1) is ef-
fectively a first-order autoregressive stochastic process in
which position and velocity are modelled as a joint Marko-
vian process. At second order, position, velocity and ac-
celeration would be modelled collectively as a Markovian
process. Physically, this hierarchy of models corresponds
to the inclusion of a velocity autocorrelation timescale at
first order, the addition of an acceleration autocorrelation
timescale at second order, and so on [10]. We do not ac-
count explicitly for interactions between individuals. This

is reasonable because measurements of the mean free path
of the insects suggest that individuals are on average very
weakly coupled, and yet tightly bound to the swarm it-
self [2,11]. Moreover, model predictions for average net
forces do not change when the order of the modelling is
increased [12].

The deterministic term, a(u, x, t), is here determined
by the requirement that the distributions of modelled posi-
tions and velocities be consistent with the observed forms
of the midge density profile and velocity distributions.
Mathematically, these consistency conditions require that
ai(u, x, t) be a solution of the Fokker-Planck equation

∂P

∂t
+ ui

∂P

∂xi
= − ∂

∂ui
(aiP ) +

b2

2
∂2P

∂u2
i

, (2)

where P (u, x, t) is the joint distribution of velocity and
position [13]. For statistically stationary swarms (with
∂P/∂t = 0), the solution to eq. (2) for ai(u, x) can be
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written as

ai =
b2

2
∂ lnP
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+

φi

P
, (3)

where the function φi is determined by

∂φi

∂ui
= −ui

∂P

∂xi
. (4)

The first term on the right-hand side of eq. (3) is a mem-
ory or relaxation term that drives velocities back towards
their equilibrium values. The second term is effectively the
conditional mean acceleration, 〈A|u, x〉.

In contrast with bird flocks, laboratory insect swarms
are fairly similar in all three dimensions and are only
weakly axisymmetric [5]. We therefore assume here that
the swarms are spherically symmetric. In this case eq. (4)
is most naturally expressed in spherical coordinates as

1
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(s2φs) +

1
s sin ϕ̂

∂

∂ϕ̂
(φϕ̂ sin ϕ̂) +

1
s sin ϕ̂

∂φθ̂

∂θ̂
=

−s
[
sin ϕ̂ sin ϕ cos

(
θ̂ − θ

)
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] ∂P
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, (5)

where x1 = r cos θ sin ϕ, x2 = r sin θ sin ϕ, x3 = r cos ϕ,
u1 = s cos θ̂ sin ϕ̂, u2 = s sin θ̂ sin ϕ̂, u3 = s cos ϕ̂, r is the
radial distance from the swarm centre and s is the midges’
flight speed. For swarms with Gaussian density profiles,
∂P
∂r = − r

σ2
r
P , where σr is the root-mean-square size of the

swarm. A simple solution to eq. (5) for the conditional
mean accelerations is

φs =− r

σ2
r

[
sin ϕ̂ sin ϕcos

(
θ̂−θ

)
+cos ϕ̂ cos ϕ

] 1
s2

∫ ∞

s

s3Pds,

φθ̂ =0,

φϕ̂ =0. (6)

In these models conditional mean accelerations (i.e., the
effective net restoring forces) increase linearly with dis-
tance from the swarm centroid, in agreement with ob-
servations, and mirroring the models of Okubo [6] and
Gorbonos et al. [7]. Moreover, simulated midges tend to
travel back and forth through the swarm centroid, in ac-
cordance with observations [3]. By way of contrast, mod-
els with φθ̂ �= 0 are not self-consistent because simulated
swarms cannot be constrained in the z-direction and mod-
els with φϕ̂ �= 0 predict that midges have a tendency to
orbit around the swarm centroid. Non-Gaussian density
profiles are associated with modelled conditional mean ac-
celerations that vary non-linearly with distance from the
swarm centroid, i.e., with non-Newtonian gravitational-
like forces.

For Gaussian velocities, the mean accelerations
(restoring forces)

φs

P
= −3r

σ2
u

σ2
r

[
sin ϕ̂ sin ϕ cos

(
θ̂ − θ

)
+ cos ϕ̂ cos ϕ

]
(7)

do not depend on velocity and so mirror the modelling of
Okubo [6]. However, any departure from Gaussian veloc-
ity statistics leads to velocity-dependent restoring forces.

Fig. 2. Empirical data for the mean value of a single compo-
nent (in the radial plane) of the acceleration Ax conditioned on
midge speed s, computed from the data set described in [14].
Data are shown for groups of similarly sized swarms (6 to 15 in-
sects (◦); 16 to 25 (�); 26 to 35 (♦); 36 to 45 (�)) and averaged
over the central region of each swarm (out to 1/2 of the swarm
radius). Blue symbols show data only for the left hemisphere,
and red symbols only for the right hemisphere; the dashed
lines show data for both hemispheres, which (as required by
symmetry) is close to zero. For the single-hemisphere data,
the conditional acceleration increases as the speed increases,
in agreement with eq. (8).

This arises, for instance, when the Gaussian velocity dis-
tribution is truncated to account for the fact that midges
have a maximum flight speed. It also arises when, in ac-
cordance with observations [5], velocities are taken to be
non-Gaussian. If, for example, speeds are exponentially
distributed with mean s, then

φs

P
= −2r

s

σ2
r

[sin ϕ̂ sin ϕ cos(θ̂ − θ) + cos ϕ̂ cos ϕ][s + s],

(8)
whose validity was confirmed by numerical integration
(fig. 1). In this regard velocity-dependent restoring forces
are the norm rather than the exception. In the former case
of truncated Gaussian velocity distributions, the restoring
forces weaken with increasing flight speed whilst in the
case of exponential velocity distributions their strength
increases with flight speed in accordance with our obser-
vations (fig. 2). Reynolds and Ouellette [12] recently re-
ported on analogous results for a 1-dimensional model, but
such models cannot be directly construed as gravity mod-
els because the effective forces depend on the distance to
a principal axis rather than on the distance to the swarm
centre.

It is readily shown that modelled conditional accel-
eration cannot increase linearly with distance from the
swarm centroid if the velocity distribution is position de-
pendent and when, as observed, density profiles are Gaus-
sian or are close to Gaussian. Therefore, we did not con-
sider such models but note that such distributions can re-
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Fig. 3. Empirical data for the speed (in the radial plane) con-
ditioned on position normalized by the swarm size 〈rs〉, com-
puted from the data set described in [14]. The blue line shows
data only for the left hemisphere, and the red line only for
the right hemisphere; the black line shows data for both hemi-
spheres.

sult in correlations between net forces and velocities and
could thereby give the impression of velocity-dependent
restoring forces. There is however scant empirical evidence
for velocity statistics depending on position (fig. 3). Veloc-
ities might conceivably have decreased with distance from
the swarm centroid but in this case, net forces would then
appear to decrease with speed rather than increase with
speed, counter to our observations (fig. 2).

In this letter we have built upon the pioneering work of
Okubo [6] and on the recent advances made by Gorbonos
et al. [7], who suggested that midge swarms are analogous
to self-gravitating systems. These models predict correctly
that midges are effectively bound to the swarm centre
by a restoring force that increases linearly with distance
from the swarm centre. Here we showed both theoretically
and empirically that this restoring force also depends on
speed. This insight may lead to a more detailed under-
standing of the origins of interactions between midges.
It is possible that velocity-dependent restoring forces of
the particular kind observed in experiments can be re-
covered from adaptive Newtonian gravity models. If not,
then interactions between midges may be speed depen-
dent. This is not implausible from a biological perspec-
tive. As asserted above, the gravity-like interactions that
bind midge swarms together probably arise from acoustic
sensing. Midges detect sound by transducing the mechan-
ical signal from the bending of hairs on their antennae.
Thus, they are sensitive to the actual air flow induced by
acoustic waves [15]. And behaviourally, midges tend to fly
fastest and to execute their most intense flight manoeu-
vres when either chasing other midges or being chased
themselves; thus, these behavioural mechanisms could also
be responsible for our observations. Another possibility is
that the long-range midge interactions may also be par-
tially visually cued, as they are in bird flocks [16]. Solid
angles decrease as inverse-square power laws and it is well
known that animals are often easiest to detect when in

motion [17]. Although the detailed biophysical explana-
tion for the swarm dynamics we observe warrants further
examination, our analysis does self-consistently show that
the net effect of the underlying mechanisms produces a
speed-dependent force that effectively binds midges to the
centre of a swarm.

If interactions between midges were found to depend
on speed, then midge swarms would be bound together
by an effective velocity-dependent gravity. This brings
to mind Gerber’s [18,19] long-forgotten theory of speed-
dependent gravity. The theory was quickly rejected by
the astronomical community after being met with fierce
criticism because the theoretical derivation is incoherent
and because its predictions conflict with astronomical ob-
servations. Our analysis suggests that Gerber’s idea of
a velocity-dependent gravity (though not his derivation
and reasoning) might be resurrected in this different con-
text, as midge swarms could effectively behave as self-
gravitating systems bound together by speed-dependent
forces.
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