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Abstract

Microarrays are commonly used in biology because of their ability to simultaneously measure thousands of genes under
different conditions. Due to their structure, typically containing a high amount of variables but far fewer samples, scalable
network analysis techniques are often employed. In particular, consensus approaches have been recently used that
combine multiple microarray studies in order to find networks that are more robust. The purpose of this paper, however, is
to combine multiple microarray studies to automatically identify subnetworks that are distinctive to specific experimental
conditions rather than common to them all. To better understand key regulatory mechanisms and how they change under
different conditions, we derive unique networks from multiple independent networks built using glasso which goes beyond
standard correlations. This involves calculating cluster prediction accuracies to detect the most predictive genes for a
specific set of conditions. We differentiate between accuracies calculated using cross-validation within a selected cluster of
studies (the intra prediction accuracy) and those calculated on a set of independent studies belonging to different study
clusters (inter prediction accuracy). Finally, we compare our method’s results to related state-of-the art techniques. We
explore how the proposed pipeline performs on both synthetic data and real data (wheat and Fusarium). Our results show
that subnetworks can be identified reliably that are specific to subsets of studies and that these networks reflect key
mechanisms that are fundamental to the experimental conditions in each of those subsets.
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Introduction

All organisms have many mechanisms, necessary for their

survival, that carry on mostly unchanged under all conditions that

the organism is subjected to (e.g. cell metabolism). Other

mechanisms, however, occur only when some event external or

internal to the organism (environmental changes, stress, cancer,

etc.) happens and triggers them. Some conditions might trigger

similar mechanisms (more or less based on how similar the

conditions are) that researchers identify using consensus networks

analysis that identifies links in common over a number of studies

[1]. Highlighting the similarities, though, can overshadow or even

hide what is unique and typical to one specific condition. Biologists

are clearly interested in what these similarities are but they are also

interested in identifying the condition-specific mechanisms/gene-

paths of which knowledge will help in their detailed understand-

ing. The novelty of our approach is the ability to semi-

automatically identify subnetworks that are unique to a number

of independent studies (unique networks). Identification of unique

networks could lead to a better understanding of those mecha-

nisms.

In this paper we extend the work presented in [2] by formally

deriving a unique network, exploring the results on different

simulated datasets to gain a better understanding of the

performances of our pipeline in worst/best case scenarios. We

also compare glasso with Weighted Gene Correlation Network

Analysis (WGCNA) for the identification of the unique networks.

The approach is also applied to another real microarray dataset

(Fusarium) and we further explore the biological validation of the

wheat results. We choose to focus on wheat because knowledge of

it is still very sparse and understanding its gene regulation is

challenging due to the size and complexity of its genome.

Microarray data measure the simultaneous expression of

thousands of genes allowing the modelling of the underlying

mechanisms of gene regulation through Gene Regulatory

Networks (GRNs). Because of the structure of microarrays

(thousands of genes vs tens of samples) the integration of these

data, collected from different studies, is an ongoing problem with

some reported successes [3]. In [4] the authors present a method

for the unsupervised integrative modelling of multiple datasets

which models each dataset using a multinomial Dirichlet

allocation mixture model and captures the underlying structural

similarities between them. In [5] more robust models are built

from multiple datasets by ordering them based on the level of noise

and informativeness and using different Bayesian classifiers to

select the informative genes. Steele et al. [6] combine various

microarray datasets using post-learning aggregation to build

robust regulatory networks. We adopt a similar approach in this

study, but rather than generating the consensus of all datasets we

identify mechanisms that are specific to a subset of studies. [1] also
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explore consensus approaches but use a clustering technique

coupled with a statistically based gene functional analysis for the

identification of novel genes. Often the sheer number of genes

makes the understanding of GRNs difficult and sometimes

modules are created by grouping genes that perform some similar

function [7]. Networks of these modules can then be discovered to

identify mechanisms at a more general level. Clustering helps to

preserve all information but might increase bias. In [8] two cancer

datasets are compared (case and control). For each dataset,

pairwise correlation of gene expression profile is computed and

then used to build a frequency table. The values in the table are

then used to build a weighted gene co-expression frequency

network. After this they identify sub-networks with similar

members and iteratively merge them together to generate the

final network for both cancer and healthy tissue. Alaakwaa et al.

[9] instead explore the biclustering technique [10] which aims to

cluster both genes and samples simultaneously. They apply six

different biclustering methods and use the resulting biclusters to

build Bayesian Networks for each and finally merge the results in

one single network which captures the overall mechanism.

In this paper, rather than focusing on consensus networks, we

develop a method to identify, given a set of different studies

(clusters of studies), the differences between each other and

particularly what makes each study unique compared with the

others in the input set. Therefore, we explore a method to ’home

in’ on the differences of GRNs generated from different studies by

using a combination of clustering, network discovery and graph

theory. We go beyond the simple pairwise correlations between

genes which is common in many studies e.g. [8] by building

independent networks for each study using glasso which identifies

the inverse covariance matrix using the lasso penalty to make it as

sparse as possible. Then, we cluster the studies with similar

regulatory behaviour (similar network structure) using an adapta-

tion of the sensitivity formula as a graph similarity measure. In

order to avoid any confusion from now on, we refer to each cluster

of studies as a ‘study-cluster’. At this point we detect the edges that

are unique/specific for each study cluster. Furthermore, we use

these results to build Bayesian Networks for each study-cluster to

identify the most predictive group of genes and further refine our

unique networks.

As a validation of our pipeline we compare the glasso technique

with Weighted Gene Correlation Network Analysis (WGCNA).

We also exploit, as a further comparison to our entire method, a

popular state-of-the-art technique known as Biclustering, which

aims to simultaneously cluster genes and samples, but not at the

network level.

To investigate different organisms and demonstrate the

generalization of the approach to different microarray data, we

explore the performances of the pipeline, first, using a simulated

dataset as input and then using wheat and Fusarium datasets.

Materials and Methods

The pipeline described here, which we call UNIP (Unique

Network Identification Pipeline) aims to discover what genes and

the relationships between them are specific to the study or group of

studies under consideration. To achieve this goal, we, first, identify

the variables/genes that uniquely appear in the GRN of one study

or one group of studies, and then derive study-specific gene

regulatory networks (unique networks). Unique networks can be

seen as the sub-GRNs specific to the group of studies. This helps

biologists to identify what are the typical mechanisms that

characterize one study rather than another.

To achieve this we need to sequentially go through a list of

steps, each with a specific purpose. Figure 1 represents the

flowchart of the steps involved, each explained in the following

sections.

0.1 Selection of Informative Genes
A key characteristic of microarrays is the simultaneous

measurement of a large number of genes in the order of thousands

and a less numerous amount of samples (in the order of tens or

hundreds). This allows biologists and bioinformaticians to have a

general view of the behaviour of the organism. Although it is not

our focus, for computational and practical reasons we need, first,

to reduce the number of the variables involved. To prevent noise

and bias we choose to avoid clustering and simply discard all non-

informative genes. Firstly, we discard those genes that are

currently not in the Gene Ontology (GO) [11] database, meaning

we can focus on genes that we can validate biologically. We then

consider the expression profiles’ standard deviation of the genes

within the single studies and reject those with a standard deviation

lower than a threshold set to 2. At this point to further improve the

overall information quality, as we are integrating data across

studies, we select only those genes that survived in at least 25% of

the studies.

Figure 1. Flowchart of the steps for the pipeline. The figure
shows the main steps that constitute the pipeline. Each step is properly
described in this section.
doi:10.1371/journal.pone.0106524.g001
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0.2 Glasso
Each organism has underlying mechanisms which apply under

normal conditions. When the same organism is subjected to

different conditions (stress, environmental changes, etc.) then it will

need to respond to the change resulting in new paths of genes

being highlighted. This results in new underlying mechanisms

and/or changes in already active mechanisms. So, different

experimental conditions can show different Gene Regulatory

Networks (GRNs).

Once we have selected the most informative genes, we need to

build a (GRN) for each condition/study in the dataset.

GRNs have two main components: nodes which represent the

variables/genes and edges that encode the joint probability

distribution by representing conditional independences between

variables. As we want to identify networks that go beyond simple

pairwise relationships, our procedure uses glasso, an algorithm

that scales well for a large number of variables/genes.

The problem of identifying the structure of the network can be

solved by estimating the relationships between variables. In the

case of undirected graphs it is the same as learning the structure of

the conditional independence graph (CIG), which in the case of

Gaussian random variables, means to identify the zeros of the

inverse covariance matrix (also called a precision or concentration

matrix). Given a p-dimensional normally distributed random

variable X, assuming that the covariance matrix is non-singular,

the conditional independence structure of the distribution can be

represented by the graphical model G = (N, E) where N = (1,..,p) is

the set of nodes and E is the set of edges in N|N. If a pair of

variables is not in the set E it means that the two variables are

conditionally independent given the other variables. This corre-

sponds to a zero in the inverse covariance matrix. Therefore it

imposes an L1 penalty in the estimation of the inverse covariance

matrix in order to increase its sparsity [12,13].

The glasso package in R estimates a sparse inverse covariance

matrix using a lasso (L1) penalty. Suppose, we have N multivariate

normal observations of dimension p, with mean m and covariance

S. The problem is to maximize the penalized log likelihood

log detH{tr(SH){r Hk k1 where H~S{1, S is the empirical

covariance matrix and Hk k1is the L1 norm the sum of the

absolute values of the elements of S{1and r is the regularization

parameter. The parameter r can be a scalar (typical situation) or a

p|p matrix. If r~0 means no regularization [12]. In this paper

we apply the glasso package, with r~0:01, to build one network

for every study in the microarray dataset.

0.3 Graph Similarity
We integrate several microarray datasets in order to compare

different studies. Some studies will still have some network paths in

common (if the genes are regulating one another under those

conditions). For example, heat stress and drought stress will have

gene pathways in common with other stress-related studies. So, at

this point of our pipeline the objective is to automatically detect

mechanisms common to similar studies and cluster them using an

adaptation of the sensitivity metric to obtain a restricted number of

study-clusters. Given two networks, network 1 (N1) and network 2

(N2), the connections that two networks have in common are the

true positives, those that are in N1 but not in N2 are the false

positives and those not in N1 but in N2 are the false negatives.

Therefore, we analyse the connections in common between two

study-networks and build a contingency table. To verify the

reliability of the clusters we compare the results with the

description of the studies available when downloaded from public

databases such as ArrayExpress [14]. We explored a number of

clustering techniques but found that k-means (R function based on

[15]) generated the most convincing study-clusters. In the process

of identifying unique networks we first build the consensus network

(which identifies the network pathways that are common to a

certain groups of networks) [6] for each study-cluster as a

representative of the general mechanism for that group of studies.

We select only those edges that exist in the consensus-study

network in consideration, but not in the other consensus-studies

networks. The resulting list of nodes involved in the unique

connections are used to build the unique Bayesian networks as

explained in detail in the next section.

0.4 Unique Bayesian Networks and Prediction
In the step described above we cluster the studies to group them,

if possible, in k (k-means parameter which allows us to establish the

number of clusters needed) generic conditions. For each study-

cluster a consensus network is constructed, that represents the

underlying gene regulatory mechanism(s) in common for that

group of studies. This will allow us to build more robust GRNs for

each study-cluster. As explored in the Introduction, consensus

networks as consensus clustering is a popular approach but in [2]

we introduced and now we explore further what we call unique
networks.

Given a generic graph G~(V ,E). We have m fixed graphs Gi

such that Gi~(V ,Ei), where V~1,:::,n is the set of vertices(nodes)

of the graph and Ei~feig~f(ui1,vi1),:::,(uiki
,viki

)g, ki~D Ei D and

kiƒn(n{1)=2: We define the unique function as W : G.G,

where, given ÊEi~
Sm

j~1, j=i Ej

Definition 1: We define a function W(Gi) such that

W(Gi) : (V ,fei : ej [ Ei and ej [= ÊEig)
The unique function returns what we call a unique network. It

consists of the same set of edges in the consensus network in

consideration except those that also exist in the remaining

consensus networks.

We choose to validate the networks through prediction using

Bayesian Networks (BNs) which naturally perform this using

inference, given the graphical structure obtained using the gene in

the unique networks provided by glasso. BNs [16,17] are a class of

graphical models that represent the probabilistic dependencies

between a given set of random variables. A Bayesian network has a

set of variables called nodes and a set of directed edges between

variables called arcs. The nodes and arcs together form a directed
acyclic graph (DAG) G = (V,A). Each variable in the network has

attached a conditional probability table of itself given the parents.

Having reduced the number of variables and samples by

identifying the unique networks, we build one BN for each of

the study-clusters previously identified based on the genes with

unique edges in the glasso-derived networks. To do this we used

the R package bnlearn [18,19]. After this we are interested in

finding the most predictive (how well it predicts other expression

level values) and predictable (how well its expression level values

are predicted) genes within (intra) and outside (inter) the study-

clusters using the leave one out cross validation technique. The

idea is that genes that are predictive or predicted better within the

selected study-cluster than on other studies are more likely to be

relevant to the unique network. Given the m studies and n genes

within each studies-cluster we use m-1 studies as a training set and

the remaining one as test set. Then we employ the R package

gRain [20] which, given the n-1 genes, predicts the expression

value of the one left out. We compare the predicted value of the

left out gene with its real value, return 1 if they correspond and

zero otherwise. We do this within all the study-clusters and for all

possible combinations of training and test sets of studies and genes.

Discovering Study-Specific Gene Regulatory Networks
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Finally, we average the amount of correctly-predicted values

among the total predictions to obtain the correct-prediction for

each gene.

0.5 Biological Support
Having identified the study-clusters and, in turn, the study-

specific mechanisms within the unique-networks, we explore the

biological meaning behind them. To do this, we exploit two pieces

of software:

1. Mapman [21] which explores gene-by-gene the functions

related to it and returns a list of functions and a graph of

connections

2. The AIC-MICA method [22]. The method identifies

functions in the biological process aspects of the Gene Ontology

that best characterise particular groups of genes. It uses both the

structure of the ontology and a term specificity measure

(information content, IC) to find terms that are both biologically

specific (e.g. not too high-level) and applicable to the largest

possible subset of each group. Therefore, unlike the over-

representation measures, it gives a general idea about the role of

the cluster as a whole and a level of ontology at which such

commonality could be found (e.g. average IC of the found terms).

The combination of these tools allows us to identify gene

functions that are characteristic of the study-cluster in consider-

ation, adding credence to our findings.

Finally, in the case of the wheat dataset, to prove that the results

are robust and consistent, we conduct a search in the literature for

every gene involved in the unique-networks and its connections.

The results of this research are explained in the Discussion session.

An overview of the pipeline is shown in Figure 2.

0.6 WGCNA
One of the main goals of this paper is to explore techniques that

go beyond simple pairwise correlations. Thus, we first explored the

glasso algorithm described above and then we compare the results

using a co-expression network analysis technique known as

Weighted Gene Correlation Network Analysis WGCNA [23–25].

WGCNA uses a thresholding procedure raising the co-expression

similarity to a power:aij~s
b
ij , with b§1 to transform the co-

expression similarity matrix into the adjacency matrix. To pick the

right value of beta WGCNA uses a biologically motivated criterion

referred to as the scale-free topology criterion [26,27], as opposed

to the random graph model [28].

0.7 Biclustering
One of our pipeline’s purposes is to identify groups of genes that

are important for a specific set of conditions. Therefore, we

compare our results (the discovered clusters and their associated

networks) with Biclustering techniques which aim to cluster

samples and genes simultaneously [10]. It is important to highlight

that biclustering works on each sample and not on the studies.

There are various implementation variants in the literature for

biclustering [29] but for this work we specifically chose a method

called Questmotif which is based on the framework described in

[30], for the simulated (categorical) datasets and the BCS method

for the real datasets of wheat and Fusarium. BCS is a state-of-the-

art method that normalizes the data matrix and looks for

checkerboard structures using the well-known technique of

singular value decomposition in eigenvectors applied to both rows

and columns [31]. Both BCS and Questmotif are implemented in

the R package biclust [32].

Results

We first apply our pipeline to a well-known and easily

modifiable dataset in order to measure and test the performance

of our method. Once we verified its applicability we explore wheat

and Fusarium microarray dataset. A schematic flowchart of the

steps applied to all three datasets is shown in Figure 1. This

involves firstly selecting the variables by applying a standard

deviation threshold, followed by the generation of single study

networks using glasso and clustering of the studies using a graph

similarity analysis that returns the unique networks. Finally a

further filtering of the genes based on their prediction value and

the validation of the results with biological feedback.

Results on simulated data
First of all we evaluate our pipeline’s performance using

simulated data whose characteristics are well defined. [33] is a

synthetic Bayesian networks repository database from which we

select three networks. We select the networks: Alarm [34],

Insurance [35] and Child [36] with 37, 27 and 20 nodes

respectively. For each network we download the structure and

the associated dataset and take 200 samples. At this point we have

three datasets of sizes: 37|200,27|200 and 20|200. Each

dataset is representative of a different underlying structure (much

like a gene network under different experimental conditions).

In this dataset we assume that the 84 total variables are already

the results of the variable selection described in Section 0.1 since

this is not the main focus of our work.

Figure 2. Pipeline overview. A schematic overview of the sequence
of steps forming the pipeline.
doi:10.1371/journal.pone.0106524.g002
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To test our pipeline, we mix the datasets adding noise and

create what we will call from now on big matrix. Big matrix is

composed of 9 smaller matrices. Three matrices are the datasets

sampled from the networks while the remaining six are randomly

created based on the values of the original variables/nodes. If we

consider the big matrix as a 363 block matrix composed of nine

blocks, each row of the big matrix has one sampled dataset and two

random ones. Figure 3 shows a representation of the big matrix
where the capital letters A, I, and C indicate the datasets of Alarm,

Insurance and Child respectively while R represents random

values (noise).

We gather the 600 samples in 15 studies of 40 samples each so

that each column-block of big matrix contains exactly 5 studies of

40 samples each and 84 variables/nodes (37+27+20). In Table 1

we show the correspondence of studies and original networks.

In order to test the robustness of our pipeline we gradually

introduce noise by swapping actual samples with random values.

We first analyse the big matrix with no noise (0%). Then, we

gradually introduce an increasing percentage of random samples

of the total (noise) and decide to focus on what we find to be the

most revealing noise-levels: 10%, 50% and 90%.

Once we have selected the relevant variables (see Methods and

Materials) we create one network for each of the 15 studies. Due to

the categorical nature of the data, we decided to use bayesian

networks rather than glasso with a simple hill climbing approach

[37]. Ideally, we want the pipeline to cluster the studies as they

belong to the original networks and to detect for each study-cluster

the variables that are truly involved. We use a simple k-means [15]

approach to cluster the networks based upon a graph similarity

metric (see Materials and Methods section). Figure 4 shows the

clusters’ arrangement for the original data and for the data with an

increasing amount of noise (from 10% till 90%). While at 10% of

the noise the study-groups detected by our pipeline reflect the real

studies arrangement, an increase to 50% disrupts the process and

shuffles the studies. As expected, the noisier the input is, the more

mixed the study-groups are. We want to see how robust our

unique network pipeline is to this level of noise.

The next step in the pipeline is to compare each original

network with the others based upon their cluster assignment. For

each cluster of networks we build both consensus (where links in

the network must exist in all networks for that cluster) and unique

networks (where links must only occur in that cluster): steps 1 to 4

of our pipeline (see Figure 1). Big matrix contains all 84 variables

from all the three networks, which leads to the fact that all the

unique study-cluster networks will most probably include variables

and connections that do not belong to the original structure.

Figure 5 shows these first intermediate results for detecting the

true positive (TP) nodes and connections between nodes as noise

increases. TPs are the number of connections/nodes in the

simulated network that are also in the original network. This

corresponds to the step 0.4 Unique study-networks in the pipeline

flowchart, before non-predictive variables are filtered out. The

number of both TPs and FPs nodes for all the clusters only slightly

increase along with noise. This is due to the fact that at zero noise

the pipeline manages to already select the majority of the correct

nodes.

The connections, on the other hand, behave differently. For

lower percentages of noise in (Alarm and Insurance) FPs tend to

increase very slightly. When the data becomes almost completely

random, the algorithm recognizes the faulty information and

massively decreases the number of connections detected to zero.

One way to decrease the number of FPs, especially for the nodes,

would be to increase the number of samples per study in the input

dataset. Some tests proved that samples need to be more than 200

which is not possible for microarray datasets.

To summarize, at this stage of the pipeline we discovered that

for low levels of noise our pipeline can robustly identify unique

networks and it is also resilient to moderate noise. High levels of

noise, however, appear to affect the TPs and FPs of the connection

identification more than the node identification.

Finally, we calculate the inter and intra clusters prediction to

validate the predictive power of the subnetworks for datasets that

are clustered together and to filter out any nodes that do not

appear to be uniquely predictive to their study-group.

The possible states of the variables vary from 2 to 6. As a result,

the chance to correctly predict them varies from 0.5 to 0.2. The

variables in the alarm networks are categorical with a maximum of

4 possible states. Out of 37 variables, 13 have only two possible

states, 17 have 3 possible states and only 7 have 4 possible states.

So, to be able to say that one variable is predicting better than

chance, its average correct-prediction across training and test sets

has to be higher than its accuracy by chance. The graphs in

Figure 6 represent (in the case of 0% noise) the boxplot of the

average correct-prediction across training and test within each of

the three study-groups, including all the variables involved in the

unique network for that group. The study-clusters are listed in the

titles and we can refer to table 1 to identify the networks they

belong to. The variables involved in the unique networks for each

Figure 3. Big matrix constructed from the datasets generated from the three networks and six randomly generated datasets which
represent the noise. The shaded regions indicate the non-noisy datasets generated from Alarm, Insurance and Child networks (respectively A, I and
C in the figure).
doi:10.1371/journal.pone.0106524.g003
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group of studies are listed in the x axis. We clearly see groups of

variables that stand out. The variables that truly belong to the

corresponding real networks result in having an average accuracy

above 0.6 which is significantly higher than their accuracy by
chance. The circled variables are the ones with the highest correct-

prediction and are likely to be the ones that are involved in the

original networks.

Similarly, Figure 7 shows the distribution of the node’s intra

cluster correct-prediction when the noise is increased to 10, 50 and

90%. As we increase the noise, a number of things come to our

attention. For lower percentages of noise, the variables’ accuracy

histogram shows one major peak at high correct-prediction values

and, in the first and third graph of Figure 7, another smaller peak

at low correct-prediction values creating bimodal distribution.

While the higher peak indicates the TPs, the lower one identifies

the amount of FPs. An increase of noise, however, gives a more

uniform distribution. Even for the highest level of noise there are

still a good number of nodes with relatively high intra cluster

(within the same study-cluster) correct-prediction levels. This gives

us confidence that even for the noisiest datasets, the pipeline is still

capable of identifying key variables. Following the flowchart, we

now select the variables that truly are involved in the network

mechanism setting a threshold for the accuracy (0.4 Predictive
genes). Different thresholds return a different number of TPs and

FPs. Results show that for a threshold accuracy of 0.6 we obtain

the best combination of TPs act while the number of TPs is very

high, the number of FPs is reduced to zero. Which means that

calculating the intra cluster correct-prediction allows to discard all

the variables that are not involved in the original network.

Figure 8 shows the behaviour of FPs and TPs as the noise

increases.

As expected, when we increase the noise TPs’ trend decreases

while FPs slightly increases. The noisier the data are, the more

difficult it is to set a threshold for the variables. The reasons for this

are twofold: because the trend of FPs is higher and because both

trends reach zero very quickly. Even if the number of TPs detected

by the pipeline decreases when the noise level exceed 0.5, the

number of FPs remains close to zero for all level of noise. This

shows that even for extremely noisy and biased input data, the

pipeline is still able to detect variables that are highly important.

Biclustering
We now compare our pipeline with a biclustering method called

Questmotif which is based on the framework described in [30].

Biclustering identifies both genes and samples simultaneously so

whilst subnetworks are not discovered (which our approach

focusses on), it should at least identify variables that are clustered

for specific studies. We apply biclustering to the same big matrix
dataset of 600 samples and 84 variables, and exploit the results.

Questmotif detects 9 biclusters. Cluster 1 groups 124 samples out

of which 122 belongs to network alarm, and 8 variables all

involved in the alarm mechanism. Cluster two groups 261 samples

of which 190 belongs to network insurance and only two genes

both belonging to the insurance network. Cluster 3 groups 93

samples, 88 of which belong to the child network along with 4

variables from the child network. Bicluster 4 groups 20 samples

and 10 variables from the alarm network. Bicluster 5 still groups a

majority of samples belonging to alarm. The remaining clusters

groups have mixed samples and mixed variables in a very low

number. Overall, bicluster does not perform as well as our

pipeline. It manages to identify a respectable number of correct

samples, but fails at detecting as many corresponding true

variables as our pipeline (and no connections are discovered as it

is not a network-based approach).

In conclusion, the simulated data study indicates that our

pipeline works extremely well for clean data and is reasonably

resilient to noise until 50% of the data is affected. Both the

network clustering process and the detection of variables that truly

belong to the original networks seem robust and only fail at higher

level of noise. In the following section we will use our method with

two sets of real microarray data studies: Wheat and Fusarium.

Based on the results, wheat datasets behave similarly to the case of

zero or very low noise, while Fusarium appears to be associated

with noisier data as a result of more clearly defined conditions for

wheat.

Wheat microarray data
We now focus on the analysis of various wheat transcriptome

datasets derived from multiple experiments of plants subjected to a

range of treatments: stress, development, etc. Unprocessed wheat

microarray expression data for this work was downloaded from

Table 1. Simulation studies generated independently from the three networks in consideration.

Simulation Studies

Studies Network

1,2,3,4,5 Alarm

6,7,8,9,10 Insurance

11,12,13,14,15 Child

doi:10.1371/journal.pone.0106524.t001

Figure 4. Study-clusters for the original data (0% of noise), 10%, 50% and 90% of noise. The studies’ number highlighted with the same
colour belong to the same cluster.
doi:10.1371/journal.pone.0106524.g004
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ArrayExpress database [14]. Only studies using GeneChip

Affymetrix Wheat Genome Array technology that profiled wheat

species were included. The combined dataset was pre-processed

using Robust Multichip Average method [38] and redundancy-

adjusted Pearson correlation coefficient was calculated according

to the method described in [39]. We analyse a microarray dataset

of 61290 genes common to 523 samples, grouped in 16 studies.

Each study represents a different treatment the plant has been

subjected to, as shown in Table 2. Each study contains samples

derived both from treated and non-treated samples. Studies 1–6,

12, and 13 are considered stress-enriched, and the remaining as

non-stressed treatments. Labels are taken from [40].

Once the relevant genes are selected, following the original step

of our pipeline, we apply glasso to build a network for each study.

We then calculate the sensitivity measure in order to cluster the

studies based on graphical similarities. As for the simulated data,

we explored k-means which generated the most convincing study-

clusters. We explored different values of k but found that 3 clusters

were the most revealing. Table 2 demonstrates that the studies can

be grouped in two: stress-enriched and non-stress conditions. The

resulting clusters are: 2,5,6,10,12f g, 1,3,4,9,11,13f g and

7,8,14,15,16f g based upon the studies numbering from Table 2.

While the third cluster clearly groups together all the non-stress

studies, the other two reflect studies that are stress enriched. In the

figures below we show the unique-networks, learnt with bnlearn,

for wheat in the two study-clusters of stress-enriched conditions

(Figures 9 and 10) and the unique network for the non-stress

conditions cluster (Figure 11). The numbers identify the genes and

the black circles represent in both the highly predictive genes that

are involved in biotic (caused by living organisms) and abiotic

(caused by non-alive factors) stress response. In both networks we

clearly see specific paths and groups of genes that are highly

connected. Using Mapman [21] we were able to associate a

function to each gene.

Figure 5. TPs and FPs vs noise before calculating the correct-prediction. The figures show the evolution of TPs and FPs vs noise in terms of
nodes (variables involved in the discovered subnetworks) and connections between nodes. These are the partial results, prior to the filtering of the
informative nodes based on the intra cluster correct-prediction accuracy (which are shown in Figure 6).
doi:10.1371/journal.pone.0106524.g005
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Figure 6. Intra cluster correct-prediction for simulated data. The figure shows the boxplots of the intra cluster correct-prediction (calculated
within the same cluster using cross-validation) for the simulated dataset in the case of 0% of noise.
doi:10.1371/journal.pone.0106524.g006

Figure 7. Intra cluster correct-prediction distribution for 10, 50 and 90% perturbation. The figures show the histograms of the intra
cluster correct-prediction (calculated within the same cluster using cross-validation) for the simulated dataset for different levels of noise.
doi:10.1371/journal.pone.0106524.g007

Discovering Study-Specific Gene Regulatory Networks

PLOS ONE | www.plosone.org 8 September 2014 | Volume 9 | Issue 9 | e106524



Focusing on the stress-enriched conditions network, the

procedure has managed to identify a relatively small number

(58) of well-connected nodes which form a distinctive path. We see

that genes involved in both kinds of stress response (biotic and

abiotic stress) are involved in the network. Specifically the first four

genes that start the network pathway in Figure 9 (29 – 47 – 17 –

30) are all involved in biotic stress. The remaining highlighted

genes instead are mostly involved in heat stress. A good number of

photosynthesis related genes are also involved, in particular

(18 – 27 – 21 – 28 – 6 – 22 ). On the non-stress related network

in Figure 11, we have again identified a reasonable number of

genes though these are less connected. However, one very well

defined pathway exists that consists mainly of photosynthesis-

related genes (not highlighted).

In the same network in Figure 11, less genes are found that are

related to stress response and those that do appear are much less

connected, except for the path formed by (46–57–26–50) nodes.

The software described in [22] returns the following (see Table 3)

highlighted biological functions which go to reinforce the results

from Mapman. Higher values of Information Content (IC) are

associated with more informative terms. Values greater than 3 are

generally considered to be biologically informative. In the

Figure 12 we show the predictive accuracy for each gene. What

we expect is a better correct-prediction within the study-clusters

and a weaker one outside the clusters. Each boxplot represents the

percentage of how many times the gene has been predicted

correctly among all the different given samples.

The chance of correctly predicting the genes randomly is one in

three (there are three possible states for each gene: under-
regulated, normal, over-regulated). Values above this can be

considered better than random. In the figures we clearly see that

the intra cluster correct-predictions (correct predictions made by

cross validating within a study-cluster) are quite high for most of

the genes with little variations. For the inter clusters correct-

Figure 8. TPs and FPs vs noise after calculating correct-prediction. The graphs show the number of TPs and FPs nodes and connections
detected at different levels of noise. Threshold set to 0.6. The dotted lines at the top of the graphs indicates the number of nodes in the relative
original network.
doi:10.1371/journal.pone.0106524.g008
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predictions (correct predictions on data outside of the study-

cluster), however, the mean correct-prediction values are mostly

not better than chance as one would expect, and the standard

deviations are very high making them not reliable. In the majority

of the cases, in fact, when a gene has an extremely high intra

cluster correct-prediction it also shows a very low or a wide

standard deviation in the inter clusters correct-prediction graph.

Table 2. Study numbers, labels, number of samples and descriptions of the wheat microarray dataset.

Wheat Studies

Study Label Number samples Description

1 E-MEXP-971 60 Salt stress

2 E-MEXP-1415 36 S and N deficient conditions

3 E-MEXP-1193 32 Heat and Drought Stress

4 E-MEXP-1694 6 Re-supply of sulfate

5 E-MEXP-1523 30 Heat stress

6 E-MEXP-1669 72 Different nitrogen fertiliser levels

7 E-GEOD-4929 4 Study parental genotypes 2

8 E-GEOD-4935 78 Study 39 genotypes 2

9 E-GEOD-6027 21 Meiosis and microsporogenesis in hexaploid bread wheat

10 E-GEOD-9767 16 Genotypic differences in water soluble carbohydrate metabolism

11 E-GEOD-12508 39 Wheat development

12 E-GEOD-12936 12 Effect of silicon

13 E-GEOD-11774 42 Cold treatment

14 E-GEOD-5937 4 Parental genotypes 2 biological replicates from SB location

15 E-GEOD-5939 72 36 genotypes 2 biological replicates from SB location

16 E-GEOD-5942 76 Parental and progenies from SB location

doi:10.1371/journal.pone.0106524.t002

Figure 9. Network 1. Unique-Network for wheat under stress-
enriched conditions in cluster 1. Grey nodes indicate highly predictive
(average correct-prediction level higher or equal to 0.6) genes. Black
nodes highlight highly predictive and stress related genes.
doi:10.1371/journal.pone.0106524.g009

Figure 10. Network 2. Unique-Network for wheat under stress-
enriched conditions in cluster 2. Grey nodes indicate highly predictive
(average correct-prediction level higher or equal to 0.6) genes. Black
nodes highlight highly predictive and stress related genes.
doi:10.1371/journal.pone.0106524.g010
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This implies that the identified subnetworks are indeed specific to

their study cluster, making them easier to characterise.

Comparison with Bicluster. Finally, we compare the results

obtained with our algorithm in wheat with the one obtained using

the Spectral Bicluster algorithm [31] in the R package biclust [32].

The method, after appropriately tuning the parameters, identifies

17 biclusters. On the wheat data each resulting bicluster highlights

a different set of samples but the same set of six genes, 5 of which

are related to abiotic heat stress. The genes highlighted by

biclustering are also in the list of genes detected by the algorithm

described in this paper, specifically we can see five of these genes

also highlighted in Figure 9 (23 – 25 – 41 – 46 – 53). This

discovery points out the importance of these 5 stress-related and 1

protein-degradation-related genes but unfortunately biclustering

fails at identifying other equally important stress-related genes

identified by our algorithm. In addition the six genes that are

identified do not seem to be associated with a specific subset of

samples. Rather each of them have been detected in all of the

biclusters. Regarding the samples, about half of the biclusters

manage to group together samples of stress-enriched studies but

split samples from the same study. Unfortunately, none of the

biclusters group the non-stress studies accurately enough to

identify specific non-stress clusters. Furthermore, considering that

each study consists of both actual treatment samples and a small

number of controls it might be that biclustering merges together

the control samples of the stress-conditions with non-stress samples

but this union occurs too often and with too many samples for this

to be considered the case. In conclusion, we have found that the

resulting biclusters do not properly cluster the samples together,

even ones belonging to the same study. Every bicluster highlights

the same group of genes preventing any discovery of differences

between treatments. It still discovers some important genes but

much less than the ones we are able to find with the method

proposed in this paper.

Comparison with WGCNA. As previously pointed out the

glasso technique goes beyond simple pairwise relationships

estimating a sparse inverse covariance matrix using the lasso (L1)

penalty. We compare it with the WGCNA (Weighted Gene Co-

expression Network Analysis) technique as explained in section 0.6

of Materials and Methods. We applied both the scale free criterion

for each study obtaining an array of different values of beta and

then with only one value of beta set to 6 which is suggested to be

the most appropriate value [41]. In both cases the results are

extremely similar. Of the three clusters obtained with k-means

only one of the stress clusters is quite reliable while the other two

are quite mixed or meaningless (only two elements). Furthermore

the unique networks reveals very small size graphs with much less

nodes (less than 10) involved and very few connections. The small

number of nodes detected in WGCNA have also been previously

detected in glasso. As expected, the intra cluster correct-prediction

Figure 11. Network 3. Unique-Network for wheat under non-stress
conditions in cluster 3.Grey nodes indicate highly predictive (average
correct-prediction level higher or equal to 0.6) genes. Black nodes
highlight highly predictive and stress related genes.
doi:10.1371/journal.pone.0106524.g011

Figure 12. Boxplot intra vs inter clusters correct-prediction.
doi:10.1371/journal.pone.0106524.g012
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is extremely good for the genes involved in each study-cluster, but,

in this case, the number is so little that these results leave some

strong doubts on the WGCNA algorithm usability on this dataset.

Next, we show another case of real data analysis with Fusarium

microarray data.

Fusarium microarray Data
Together with wheat, we also analyse a Fusarium graminearum

dataset. The microarrays related to this organism (downloaded

from [42]) include 18069 genes and 158 samples gathered in 13

treatments as shown in Table 4. We apply the variable selection,

as described in Section 0.1 of Materials and Methods/pipeline,

and we reduce the number of variables from 18069 to 98. Unlike

in the wheat dataset, Fusarium studies are not easy to group at a

first sight. What we decided to do then is to apply the glasso
algorithm and calculate the sensitivity measure as it has been done

before and then we apply k-means with different values of k and

verify if there is any constant pattern. We repeatedly change the

value of k in a range from 2 to 10 and we find that two groups of

studies (of 5 and 2 studies respectively) always group together. This

allows us to identify two study groups: cluster 1: 8,11 and cluster 2:

2,5,6,7,13. These studies do not belong to any stress condition, but

they are recognized to have a similar underlying mechanism

through the sensitivity measure. After the cluster detection we

build the bayesian unique networks for these two groups. Because

of their similarity here we show only the unique network for the

second group in Figure 13. All 98 variables selected looks to be

involved in both study-groups unique networks (except number 45

in the unique for cluster 1). This is because there are no major

theoretical differences between the two study-group which means

that the underlying mechanism might have only slight differences.

The intra cluster correct-prediction shows for both clusters a very

good correct-prediction accuracy. For the first cluster, because of

its size (only 2 studies) we need to consider only genes with a very

high accuracy average and a limited standard deviation range.

Only few genes respect these criteria in both clusters. But a very

limited number of genes results being very predictive in cluster one

and not in cluster two and viceversa. The intra cluster correct-

prediction for both groups is shown in Figure 14.

We now apply the algorithm in [22]. Since both networks

involve the same genes they both have the same main functions. In

Table 5 we show the main functions. Mapman was not applicable

because it does not contain Fusarium data.

These results show us that even if the clusters have a similar

underlying mechanism we still can identify few genes that are

highly predictive and therefore characteristic of the clusters. These

results can be compared to the one found for the simulated data

with a higher level of noise.

Comparison with WGCNA. At this point we explore the

WGCNA technique and compare it with glasso. As explained in

Materials and Methods we first calculate the co-expression

similarity matrix and convert it into the adjacency matrix using

the scale-free topology criterion. Here again the clusters are

organized differently and are not as significant as the ones

obtained with glasso. The unique networks include far fewer genes

and the internal correct-prediction also shows less highly

predictive genes compared to the ones we found using glasso.

Based on the poor results previously obtained from applying

biclustering, we decide not to apply this technique on this dataset.

Discussion

A key focus of this paper is the exploration of wheat of which

there is still much uncertainty. We now explore in some detail the

biological feedback based on the discovered unique networks. The

three networks in Figures 8–10 are indicative for different sample

sets e.g different stress conditions. They represent increase in the

gene transcription for certain genes and the links between them.

Eighty percent of Networks 1, 2 and 3 are consistent with the

literature. The remaining twenty percent did not present direct

correlation though there is evidence for some correlation in

database sources such as [43–45]. First, the main genes correlated

to biotic stress were basic chitinase. Basic chitinases are

antimicrobial proteins that are capable of degrading fungal cell

wall chitin. They are two classes either basic or acidic isoelectric

points [46]. Gene 19 (PR3 (Basic chitinase)) in network 2 (NW2) in

Figure 10 (30 in NW1, Figure 9; 15 in NW3, Figure 11) is

correlated to gene 30 (allergen V5/Tpx-1-related family protein)

in NW2, followed by 35 (BMY1, (BETA-AMYLASE)) in NW2

Table 3. Wheat Unique-Networks(U-N) biological process functions from Gene Ontology as described in [22].

U-N GO Id GO Name IC

1 GO:0019538 protein metabolic process 3.19

1 GO:0006950 response to stress 3.96

1 GO:0071840 cellular component organization or biogenesis 3.98

2 GO:0006950 response to stress 3.96

2 GO:0071840 cellular component organization or biogenesis 3.98

2 GO:0019684 photosynthesis, light reaction 8.32

2 GO:0044267 cellular protein metabolic process 3.45

3 GO:0006950 response to stress 3.96

3 GO:0015979 photosynthesis 7.13

3 GO:0071840 cellular component organization or biogenesis 3.98

3 GO:0009628 response to abiotic stimulus 4.97

3 GO:0042221 response to chemical stimulus 4.12

3 GO:0006091 generation of precursor metabolites and energy 5.14

3 GO:0044267 cellular protein metabolic process 3.45

doi:10.1371/journal.pone.0106524.t003

Discovering Study-Specific Gene Regulatory Networks

PLOS ONE | www.plosone.org 12 September 2014 | Volume 9 | Issue 9 | e106524



and 31 (PR3, (Basic chitinase)) in NW2. Basic chitinase (19 in

NW2) also affects 49 (CK215257 Dirigent-like superfamily) via

gene 4 (cysteine proteinase, putative). Allergen V5, pathogenesis

related 4 and basic chitinase (29, 47, 17 in NW1; 30, 19 and 50 in

NW2, respectively) are represented in both networks with different

links between the gene expressions. Differently in network three

(NW3) begins with gene 20 (PR3, (Basic chitinase)) followed by 51

(HEL, PR-4, (Pathogenesis-related 4)) and 36 (BMY1, (Beta-

amylase)), where allergen V5 is completely missing. Therefore we

conclude that gene expression of allergen V5 may be only visible

under certain stress conditions.

Glycine decarboxylase complex H (gene 39, NW1) was

correlated to transcription of Rubisco gene (56, NW1) that

regulated genome uncouples 5 (GUN5). GUN5 is a plastid derived

signal that plays an important role in the coordinated expression of

both nuclear and chloroplast localised genes that encode

photosynthetic-related proteins [47]. It regulated genes 21

(LHCA1), 28 (PSAK (Photosystem subunit K)), 6 (LHCB5 (Light

harvesting complex of photosystem II 5), 22 (PSAD-1 (photosys-

tem I subunit D-1)) and 4 (cysteine proteinase, putative) and gene

18 (LHCB1.5, Photosystem II light harvesting complex gene 1.5).

Followed by gene 27 (LHCB3*1, Light-harvesting chlorophyll

binding protein 3) and 5 (RNS1 (Ribonuclease 1); endoribonu-

clease) confirming its functional properties. In NW2 the relation-

ship between Rubisco (gene 58, NW2) and glycine decarboxylase

complex H (44, NW2) seems to be in the opposite direction. The

previously published data suggest that the expression of both genes

is light dependent and tissue specific, which is due to 259-bp

upstream region of the promoter region [48]. In both NWs

ferredoxin gene (59, NW2) and (57, NW1)) was linked to Rubisco

and glycine decarboxilase complex. Due to physiological impor-

tance of these genes in both networks the two relationships could

Figure 13. Unique-Network for Fusarium cluster 2,5,6,7,13. In this figure grey background indicates highly predictive genes (average correct-
prediction equal or higher than 0.6). Despite the lack of different conditions in the dataset, as explained in the text, still about a 1/3 of the genes
selected are highly predictive.
doi:10.1371/journal.pone.0106524.g013
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be correct. In NW3 the photosynthetic reaction is regulated by

MYB like transcription factor (19, NW3) and glycine decarbox-

ylase complex (44, NW3) while the transcription of Rubisco gene is

below the level of significance [49].

Photosystem I was represented by genes 22 and 28 in NW1; 24,

29 and 22 in NW2; and 24, 31 34 in NW3. The photosystem I

composed of four complex (Lhc (light harvest complex) proteins

and a1-Lhca4 belonging to the light harvesting protein family

[50]. Also the light harvesting complex II (LHCII) is implicated by

the regulation of excitation energy distribution between Photosys-

tem I (PSI) (21, NW 1) and Photosystem II (PSII) (6, NW 1) during

the state transition and also light-harvesting complex II binds to

several small subunits of photosystem I [51]. PSI-K subunit of

photosystem I (28, NW1; 29, NW2 and 31, NW3), is involved in

the interaction between light harvesting complex I and the

photosystem reaction centre core [52,53].

The main trimeric light-harvesting complex of higher plants

(LHCII) consists of three different Lhcb proteins (Lhcb 1-3) in

Arabidopsis thaliana. In NW1 these genes are 27 (LHCB3*1,

(Light-harvesting chlorophyll binding protein 3) and gene 18

(LHCB1.5, (Photosystem II light harvesting complex gene 1.5))

[54]. Gene 6 or LHCB5, (Light harvesting complex of photosys-

tem II 5), this gene is significant because is affected by different

light regimes in rye plants. It may be also indicative for wheat

function due to the high similarity in the gene sequences between

wheat and rye. In NW2, the genes 7, 8 were the same as in the

NW1. Also gene 33 (PSAN (photosystem I reaction centre subunit

PSI-N); calmodulin binding), 42 (APX4 (Ascorbate peroxidase 4);

peroxidase) are related due to their function in photosynthesis

[55].

Other fundametal parts of the network are the group of heat

shock proteins. The major groups are HSP100, HSP90, HSP70

and they are also confirmed in wheat [56]. The novel finding in

NW1 is that the genes indicated by 41 (HSP70), 23 (HSP101 (Heat

Shock Protein 101)), 53 (HSP70), 25 (HSP21) and 46 (ATHP22.0)

are related to a protein degradation gene 54 (CLPP_wheat.gb/

CA607537) which is 98% similar to AB042240 Triticum aestivum

chloroplast (http://www.ncbi.nlm.nih.gov/nucleotide/13928184).

This finding provides new insights into relationships between heat

shock proteins and this particular chloroplast gene that seems to

have a regulatory function over the sequence in Figure 9. In NW2

transcripts for heat shock proteins were not present.

In NW2 the main effects were indicated with the gens MLP-like

protein (39, NW2 and 35, NW1), beta amylase (35 in NW2 and 33

in NW1) and rare-cold inducible (RCI) 54, NW2 and 51, NW1).

Figure 14. Intra vs inter clusters prediction for Fusarium.
doi:10.1371/journal.pone.0106524.g014

Table 4. Study numbers, labels, number of samples and descriptions of the Fusarium microarray dataset.

Fusarium Studies

Study Label Number samples Description

1 FG11-CEL 9 Gene Regulation by Fusarium TFs Tri6 and Tri10

2 FG13-CEL 18 The TF FgStuAp influences spore development,

pathogenicity and secondary metabolism in Fusarium graminearum

3 FG14-CEL 8 DON induction media

4 FG2-CEL 9 Expression Profiles in Carbon and Nitrogen Starvation Conditions

5 FG3-CEL 14 Cross-species hybridization

6 FG1-CEL 18 Fusarium transcript detection on Morex barley spikes

7 FG12-CEL 15 Fusarium graminearum gene expression during crown rot of wheat

8 FG6-CEL 9 Transcript detection during in vitro sexual development of Fusarium

Cch1 calcium channel deletion mutant

9 FG10-CEL 6 Response to trichodiene treatment in Fusarium graminearum

10 FG7-CEL 12 Fusarium gene expression profiles during conidia germination stages

11 FG16-CEL 12 Fusarium graminearum gene expression in wheat stems during infection

12 FG4-CEL 5 Fusarium/Barley RNA dilution

13 FG5-CEL 23 Fusarium transcript detection during in vitro sexual development

doi:10.1371/journal.pone.0106524.t004
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The MLP-like protein is related to beta amylase but there was no

explanation exactly how [57]. The link with rare-cold inducible

protein and one helix protein seems impossible because rare cold

inducible protein is expressed in the roots and is mainly restricted

to endodermis [58], one helix protein belong to one of the light-

harvesting chlorophyll a/b-binding (Lhc) proteins [59]. More

research would be required to prove or disprove the relationship

between them. Transcript for MLP-like protein in NW3 was not

detected to be involved in the network (Figure 11; NW3).

ATPRX Q; antioxidant gene (42, NW1 and 46, NW2 and 47,

NW3) is central for NW1 and NW2 but peripheral for NW3. It is

highly expressed in leaves and low expressed in the stem. Its

expression patterns indicated that is induced by ultraviolet

irradiation, low temperature and salt stress. The induction of

Prx in response to abiotic stimuli may suggest that Prx may protect

the host against environmental stresses [60]. It looks like gene 42

affects gene 41 (HSP70T-2; ATP binding) and gene 7 (PSBS,

(Nonphotochemical quenching), 16 (lipase, putative) and 38

(APX4 (Ascorbate peroxidase 4); peroxidase) and it is itself

affected by 39 (GDCH (Glycine decarboxylase complex H)).

The transcript of the chloroplast glyceraldehyde-3-phopshate

dehydrogenase (phosphorylating, E.C 1.2.1.14) (GADPH) (38

(GAPA-2–GAPA-2) was only found in NW2. In higher plants

exists as heterotetrameter that catalyses the reductive step of the

Calvin cycle [61]. GAPA-A subunit was also identified chloroplast

localized proteins [62]. GAPDH is a classical glycolytic enzyme

that is involved in cellular energy production and has suppressed

heat shock-induced peroxide production and cell death [63]. It is

also involved in spontaneous assembly of photosynthetic supra-

molecular complex with CP12 protein that contributes to Calvin

cycle regulation and phosphoribulokinase (PRK) in photosynthetic

organisms [64]. It is surprising that the tree proteins GAPDH,

CP12 and PRK are not expressed together [65]. The importance

of this gene is its involvement in photosynthesis and Calvin cycle

regulation at the same time. Its strategic place in our NW2 points

that this gene could be a potential target for further investigation

to establish the relationships and regulatory function in both

processes.

Based on these biological findings we can conclude that our

pipeline is a robust and reliable method to analyse large sets of

transcriptomic data. It easily detects the main complex relation-

ships between transcriptional expression of genes specific for

different conditions and also highlights structures and nodes that

could be potential targets for further research.
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