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Abstract: Race-specific resistance genes protect the global wheat crop from stem rust disease 
caused by Puccinia graminis f. sp. tritici (Pgt), but often break down due to evolution of new 
virulent pathogen races. To understand virulence evolution in Pgt we identified the protein 
ligand (AvrSr50) recognized by the Sr50 resistance protein. A spontaneous mutant of Pgt 
virulent to Sr50 contained a 2.5Mbp loss-of-heterozygosity event. A haustorial secreted protein 
from this region triggers Sr50-dependent defense responses in planta and interacts with the Sr50 
protein. Virulence alleles of AvrSr50 have arisen by DNA insertion and sequence divergence and 
our data provide molecular evidence that, in addition to sexual recombination, somatic exchange 
can play a role in the emergence of new virulence traits in Pgt.    

 
One Sentence Summary:  

An avirulence factor identified in the stem rust fungus is recognized by a wheat immune receptor 
to trigger resistance to disease.  

 
Main Text:  



 

 

Wheat is a staple crop that contributes 20% of human calorific intake, but its production 
is impacted by pathogens, including the fungus Puccinia graminis f. sp. tritici (Pgt) which 
causes stem rust disease (1, 2). Deployment of disease resistance genes by breeding provides 
cost-effective control of wheat rust diseases (3). Race-specific resistance is generally conferred 
by immune receptors of the nucleotide-binding leucine-rich repeat (NLR) class, which recognize 
pathogen effector proteins delivered into the host cell during infection, often known as 
avirulence (Avr) proteins (4). However, pathogen evolution to overcome resistance is a common 
occurrence and necessitates continued efforts to identify new resistance gene sources. The 
emergence of virulent races of Pgt in East Africa, particularly the Ug99 race group, has posed a 
threat to global wheat production (2, 5). A number of NLR-encoding rust resistance genes have 
been isolated from wheat (6).  Here we identify one of the Avr proteins recognized by these 
receptors.   

The Sr50 resistance gene encodes an NLR protein and provides resistance against all race 
groups of Pgt worldwide, including Ug99 (7). We generated next generation sequence (NGS) 
data from Pgt isolate Pgt632, a spontaneous mutant with virulence to Sr50 (7) (figure S1) and 
from its avirulent parental isolate Pgt279. Because the wheat-infecting uredinial stage of Pgt has 
a dikaryotic (n+n) genome with two haploid nuclei (8), Pgt279 is likely heterozygous for 
AvrSr50 with the virulent derivative Pgt632 resulting from mutation of the dominant avirulence 
allele. We identified about 1.1 million heterozygous variants (single/multiple nucleotide variants 
[SNVs/MNVs] and small insertions and deletions; ~1% of sites) in each isolate compared to the 
reference genome PGTAus-pan (9, 10). Known Avr genes from the model flax rust fungus 
Melampsora lini encode secreted proteins expressed in haustoria, specialized structures that 
penetrate the host cell (11, 12). Although we did not identify any new non-synonymous variants 
in the 592 haustorial secreted protein (HSP) genes annotated in Pgt (9), 18 HSP genes showed 
loss-of-heterozygosity in Pgt632 (table S1, S2, figure S2). Mapping heterozygosity rates in 
Pgt632 and Pgt279 for each contig in the genome assembly revealed loss-of-heterozygosity in a 
region of at least 2.5Mbp spanning four full scaffolds and part of a fifth (figure 1A, S3 and table 
S3).  

Loss-of-heterozygosity in Pgt632 could result from a deletion, which would halve the 
DNA copy number per dikaryotic genome of the affected region, or by somatic exchange 
between the two haplotypes, which would retain the DNA copy number. The normalized depth 
of sequencing read coverage for contigs in the loss-of-heterozygosity region was similar to the 
remainder of the genome in both Pgt632 and Pgt279 (table S4), suggesting no loss of DNA copy 
number. Likewise, there were no significant differences in coverage depth for individual gene 
loci between the isolates or genome regions (figure S4A-C), with a uniform read depth ratio 
between Pgt279 and Pgt632 close to one (figure 1B). Thus, we conclude that the loss of one 
haplotype in this region of the Pgt632 genome has been accompanied by duplication of the other 
haplotype. This was supported by quantitative PCR determination of relative copy number for 
shared and haplotype-specific sequences (figure S4D,E). Although it is not clear how genetic 
exchange occurs between the two separate haploid nuclei, which are thought to replicate 
independently (13), genetic evidence suggests that nuclear exchange and recombination between 
co-inoculated rust isolates can result in novel virulence combinations (14, 15). There is also 
evidence for nuclear fusion in Pgt (16) and somatic hybridization has been postulated as a 
mechanism underlying the emergence of new lineages in asexual rust populations (17-19).  



 

 

The loss-of-heterozygosity region in Pgt632 contains 24 genes annotated as HSPs in the 
reference genome assembly, and the allelic variants of these genes missing from Pgt632 but 
present in Pgt279 are candidates to encode AvrSr50. Twenty-one of these genes showed two 
allelic types in Pgt279 with SNV frequencies close to 0.5 (figure S5), and only a single sequence 
variant in Pgt632. The two allele sequences of these genes were extracted from the NGS data 
(table S5) and the Pgt279-specific allele was used to generate in planta expression constructs. 
Another three HSP genes are part of multigene families and sequences representing these genes 
were obtained by DNA amplification, with all 20 variants retained for functional screening as it 
was not possible to assign them to haplotypes. In total, 41 unique HSP proteins (table S6) were 
expressed in Nicotiana benthamiana as cytosolic proteins lacking their signal peptides along 
with the Sr50 resistance protein. A single AvrSr50 candidate, HSP#8 
(HSGS210|asmbl_13131|m.9539), triggered a cell death response when co-expressed with Sr50 
(figure 2A, S6). Co-expression with the related Sr33 resistance protein produced no response 
(figure 2A, S7A), confirming the specificity of this recognition event, which was also observed 
in N. tabacum (figure 2B). A recombinant Barley stripe mosaic virus (20) expressing the 
AvrSr50 candidate was unable to infect wheat plants containing Sr50 (figure 2C), but retained 
virulence on susceptible wheat, confirming AvrSr50 recognition by Sr50 in wheat and showing 
that the Sr50 resistance response is effective against virus infection. The AvrSr50 protein 
interacted with the Sr50 protein, but not with Sr33, in a yeast-two-hybrid assay (figure 2D, S7B). 
The 133 amino acid AvrSr50 protein has no homology to known proteins detected by either 
sequence or structure modelling searches, including in related Puccinia species.  

A discontinuity in mapping of Pgt632 NGS reads to the Pgt genome sequence suggested 
that the alternative (virulence) allele of AvrSr50 is disrupted by a DNA insertion. De novo 
assembly of Pgt632 sequencing reads resulted in two separate contigs containing the 5’ and 3’ 
regions of AvrSr50, each fused to an unrelated sequence, and the presence of this insertion was 
confirmed by DNA amplification (figure S8, S9, supp file 1). Examination of NGS data for 
genomes of other Australian Pgt isolates avirulent on Sr50 (9) showed that 21-0, 326-1,2,3,5,6 
and 194-1,2,3,5,6 were each heterozygous for the same two allelic variants of AvrSr50 as in 
Pgt279, while rust strain 126-5,6,7,11 contained two alleles with identical coding sequence to the 
avirulence allele of AvrSr50 but distinguished by SNVs in the 5’ and 3’ regions (figure S10). 
Sequencing of RNA from wheat infected with these isolates identified transcript sequences only 
for the avirulence alleles (figure S10), indicating that the virulence allele carrying the insertion 
sequence is not expressed.     

We also examined AvrSr50 diversity by amplification and sequencing from additional 
global Pgt races avirulent on Sr50 (figure 2E, S9). Two North American isolates (pathotypes 
MCCFC, DFBJ) were homozygous for the avirulence allele, while another (SCCL) was 
heterozygous, containing this allele and another, which encoded a protein differing from 
AvrSr50 only by a single amino acid in the signal peptide region, with no effect on the predicted 
secretion. Thus this latter is also likely to be an avirulence allele. This allele is also identical in 
sequence to the virulence allele in Pgt632, but without the insertion sequence, suggesting it was 
the progenitor of this allele. An African isolate of the Ug99 group (TTKSK) contained a similar 
allele with one further conservative amino acid difference in the mature peptide, along with one 
copy of the insertion-disrupted virulence allele and is thus heterozygous for AvrSr50 avirulence. 
One isolate (race QCMJC) collected from the alternate sexual host barberry and virulent on Sr50 
(7) contained one copy of the insertion-disrupted virulence allele along with another allele 
encoding a divergent protein with 12 amino acid differences from AvrSr50. We also extracted 



 

 

another allelic variant from published NGS data for North American isolate RKQQC (21), which 
encoded a protein with 9 amino acid differences from AvrSr50. The RKQQC variant was 
recognised by Sr50 in N. benthamiana and in yeast, while the QCMJC variant was not (figure 
2F,G and S11), consistent with the virulent phenotype of this isolate. The correlation between 
yeast protein interaction and induction of cell death in planta suggests that recognition 
specificity is mediated by direct interaction.   

Analysis of the expression profiles of Pgt secreted protein genes in different infection 
stages detected 8 distinct clusters (figure 3A, S12, S13, table S7). AvrSr50 is present in Cluster 
number 8, which contains genes showing high relative expression in haustoria versus germinated 
spores, and expression throughout infection. Cluster 4 shows a similar profile, but with smaller 
relative expression changes. Both clusters are over-represented for genes encoding predicted 
nuclear localized effectors and genes unique to Pgt or Puccinia species (table S8). Thus, the 
genes in these expression clusters are likely to be enriched for effectors involved in host 
manipulation during infection. Many plant pathogenic fungi and oomycetes display a two-speed 
genome with rapidly evolving genes, such as those encoding effectors, located in repeat-rich 
regions (22). However, clusters 4 and 8 were not significantly enriched for genes located close to 
repeat elements in the genome, consistent with the distribution of effector gene candidates in the 
P. coronata and P. striiformis genomes (23,24). The AvrSr50 protein shows nucleo-cytosolic 
distribution when expressed in N. benthamiana (figure S14) and co-expression with the auto-
active coiled-coil domains of Sr33 and Sr50 resulted in suppression of their cell-death signaling 
activity in tobacco (figure 3B). This suppression was also observed with 11 other HSP genes 
including HSP#18 (figure 3B), and may reflect a function of these effectors in suppressing 
defense responses during infection of wheat.  

The identification of AvrSr50 here and AvrSr35 by Salcedo et al (25), will support 
resistance gene deployment strategies as the Avr gene sequences can be used as molecular 
markers to survey the spatio-temporal distribution of these genes in Pgt populations and anticipate 
the evolution of virulence. For instance, heterozygosity for AvrSr50 may predispose certain Pgt 
lineages to more rapid evolution of virulence towards Sr50. This information can help prioritise 
resistance genes for deployment in different geographic locations. 
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Fig. 1. Loss-of-heterozygosity associated with virulence of Pgt632 on Sr50. (A) Heterozygosity 
rates of genomic contigs 323-402 in scaffold 4 of the PGTAus-pan assembly in Pgt279 (orange) 
and Pgt632 (blue). (B) Ratio of coverage depth of reads from Pgt632 relative to Pgt279 for 1000 
genes from scaffold 1 (green) and genes from scaffold 4 either outside (278 genes, blue) or 
within (724 genes, red) the loss-of-heterozygosity region. 

Fig. 2. The AvrSr50 effector is recognized by Sr50. (A) Transient expression in N. benthamiana 
of Sr50:HA or Sr33:HA with YFP:AvrSr50 or YFP alone. Images taken 4 days post-infiltration 
(dpi). (B) Transient co-expression in N. tabacum of Sr50:HA with AvrSr50, YFP:AvrSr50, 
HSP#18 or YFP alone. Images taken 2 dpi. (C) Infection of wheat lines Gabo, Gabo-1DL.1RS 
(contains Sr50), Fielder and transgenic Fielder expressing Sr50 with the Barley stripe mosaic 
virus expression vector containing either AvrSr50 or a non-coding multiple cloning site (MCS). 
(D) Growth of yeast strains co-expressing Sr50 or Sr33 fused to the GAL4 DNA binding domain 
(BD) with AvrSr50 or HSP #5 fused to the GAL4 activation domain (AD) on control media 
lacking leucine and tryptophan (-LW) or selective media additionally lacking histidine (-LWH). 
Self-interaction of the flax L6 protein TIR domain is a positive control (26). A 10-fold dilution 
series is shown. (E) Amino acid sequence of AvrSr50 and variants found in Pgt isolates of races 
SCCL, TTKSK, RKQQC and QCMJC. (F) Transient expression in N. benthamiana of Sr50:HA 
with YFP tagged AvrSr50 wildtype (WT) and variant alleles from races RKQQC and QCMJC. 
Image taken 4 dpi. (G) Growth of yeast strains co-expressing BD:Sr50 with AvrSr50 wildtype , 
RKKQC and QCMJC variants on selective media. 

Fig. 3.  AvrSr50 is expressed early in infection and can suppress cell death responses. (A)  
Clustering analysis of Pgt secretome expression profiles. Blue color intensity indicates relative 
expression levels (relative rlog transformed counts) in haustoria (H), germinated spores (Sp) and 
infected leaves at 2, 3, 4, 5, 6 and 7 days post-infection. (B) Transient expression of the Sr33 and 
Sr50 coiled-coil (CC) domains with either YFP, AvrSr50 or HSP#18 in N. tabacum leaves. 
Image taken 4 dpi.  
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