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Supplementary Material 

Section 1 

Reynolds number effects 

In this section I show that insect swarms are predicted to undergo a transition from a turbulent-

like to a laminar-like phase as the Reynolds number decreases. Reynolds number effects 5 

have not featured in the literature on collective motion despite the occasional congruence of 

collective animal and fluid motions [1] – as is strikingly the case for swarms of midges [2]. 

 

Okubo’s [3] one-dimensional model for the simulation of trajectories of swarming insects, and 

its extension to 3-dimensions [4], are in close agreement with numerous observations of 10 

swarming insects and have successfully predicted new properties of insect swarms [4-7]. In 

these models the positions and velocities of a swarming insect are modelled jointly as a 

Markovian process, i.e., as a first-order autoregressive process. Here attention is focused on 

a higher-order variant of these models in which the positions, velocities and accelerations of 

a swarming insect are collectively Markovian, i.e., are modelled as second-order 15 

autoregressive processes. Physically, such modelling corresponds to the inclusion of a time 

scale, T, representative of the largest scales of motion, at first order, and the addition of a time 

scale, 𝑡𝑠,  representative of the smallest scale of motion, at second order. An effective 

Reynolds number, defined by the ratio of these time scales, 𝑅 = (𝑇/𝑡𝑠)2 , therefore appears 

as a parameter at second order. In these models, fluctuations in the strength of the central 20 

attraction that binds individuals to the centre of the swarm increases as R increases since the 

acceleration and velocity variances are related by 𝜎𝐴
2 = 𝜎𝑢

2/(𝑇𝑡𝑠). Such fluctuations in 

acceleration arise partly because of the limited number of individuals in the grouping and partly 

because of the nonuniformity of their spatial distribution [3]. The low Reynolds number limit 

may therefore pertain to large swarms where such fluctuations are expected to be suppressed 25 

(because of self-averaging). The limit R=0, in which such fluctuations are suppressed entirely 

is, however, an idealization because swarming insects can and do expend their internal energy 

reserves to accelerate thereby providing a further contribution to the fluctuations that are not 

captured by the modelling.   

 30 

I now show that second-order models predict that swarms undergo a phase transition at low 

Reynolds number. In the extreme limit (R=0) and in contrast with the high Reynolds number 

limit [4-7]: trajectories are deterministic rather than stochastic; kinetic plus potential energies 

are conserved rather than fluctuating quantities; individuals preferentially reside in either the 
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interior or exterior of the swarm rather than tending to roam freely throughout the swarm, i.e., 35 

swarms possess nontrivial internal structure rather than being random configurations of 

individuals. Moreover, external perturbations are predicted to result in the synchronization of 

individual oscillations and consequently result in coherent motion and scale-free correlations.   

 

When R=0, a second-order model for the simulation of trajectories of insects in swarms where 40 

the positions and velocities are both Gaussian distributed (with means zero and variances 𝜎𝑟
2 

and 𝜎𝑢
2at the population level) is given by  

𝑑2𝑥𝑖

𝑑𝑡2
= 𝐴𝑖 

where the subscripts refer to Cartesian components,  

𝐴 = −3𝑟
𝜎𝑢

2

𝜎𝑟
2 [𝑠𝑖𝑛𝜙̂ 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠(𝜃 − 𝜃) + 𝑐𝑜𝑠𝜙̂ 𝑐𝑜𝑠 𝜙]             (S1) 45 

𝐴1 = 𝐴𝑠𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙̂ 

𝐴2 = 𝐴𝑠𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙̂ 

𝐴3 = 𝐴𝑠𝑐𝑜𝑠𝜙̂ 

and 

 sincos1 rx =
, 

 sinsin2 rx =
, 

cos3 rx =
,  ˆsinˆcos1 su = ,  ˆsinˆsin2 su = , 50 

̂cos3 su =
, r is the radial distance from the swarm centre and s is the insect flight speed 

[4,8]. The formulation 3-dimensional second-order models for small but none-zero Reynolds 

numbers (R>0) remains an outstanding problem [9]. 

 

The model, Eqn. S1, predicts that insects oscillate, periodically, back-and-forth along a 55 

straight-line (Fig. S1a) quite unlike the freely roaming trajectories predicted for 𝑅 → ∞ by the 

model of Reynolds et al. [3] (FigS1b) but reminiscent of the vertical ‘pendular’ flights that can 

occur in swarms of mayflies [10] and reminiscent of mosquitoes (Aedes provocans) that fly 

continuously in alternating directions along the longitudinal axis of the swarm [11]. The result 

suggests that this Reynolds number effect may account, at least in part, for individual midges 60 

preferentially residing in either the interior or exterior of a swarm but nonetheless displaying 

similar flight behaviours [12]. That is, Reynolds number effects may enhance the preferential 

concentration effect above that predicted by first-order model for swarms at infinite Reynolds 
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number. All insects irrespective of their position and initial velocities are predicted to have the 

same frequency of oscillation. Consequently, insects will oscillate in phase, indefinitely, if the 65 

swarm is perturbed, by for example a gust of wind, so that all individuals acquire a common 

velocity. This will result in coherent motion and scale-free correlations. Moreover, along each 

trajectory, kinetic plus potential energy, 
1

2
𝒖. 𝒖 +

1

2
𝑘𝒙. 𝒙 (where k is the effective spring 

constant), is a conserved quantity contrary to the case when 𝑅 → ∞ [13,14]. Reynolds number 

effects may also account for the oscillatory velocity autocorrelation functions reported by Butail 70 

et al. [15] which run counter to the theoretical expectation that swarms are critically damped 

when 𝑅 → ∞ [3]. A precursor of this possibility can be found in Reynolds [2] who predicted that 

swarms could transition from being overdamped to being underdamped as the Reynolds 

number decreases.  

 75 

Note that other stochastic models [4] are compatible with Gaussian distributions of positions 

and velocities which in the limit R=0 predict that individuals orbit around the centre of the 

swarm whilst precessing. Along each such trajectory, kinetic energy is conserved. Horizontal 

looping flights have been observed and may allow males to systematically scan the swarm 

periphery for approaching females [10]. 80 

 

Extracting reliable estimates for Reynolds numbers for insect swarms from current 

observations [16] is problematic because estimates for ts are comparable with the data 

sampling time (100 Hz), i.e., the shortest scales of motion are not resolved in sufficient detail. 

Nonetheless, Reynolds number effects may account for the tendency for observable energy 85 

to be conserved (i.e., the tendency for minimal consumption of internal energy) and for the 

tendency of trajectories to become less convoluted as the population size of the swarm 

increases (Figs. S2-S3). These effects can cause loss of seemingly advantageous properties, 

such as critical damping [17] and stabilization against environmental perturbations [18], that 

arise accidentally as 𝑅𝑒 → ∞. This may provide a selection pressure for relatively small 90 

swarms (high Reynolds numbers) [a counter argument is presented in Section 3]. There could 

also be a trade-off between the advantageous properties which require consumption of 

internal energy in addition to that required for lift generation, and minimal consumption of 

internal energy reserves. Moreover, the tendency for trajectories to become less convoluted 

as the Reynolds number decreases (i.e., as the swarm increases) may make larger swarms 95 

accessible to larger, less agile individuals and conversely may make smaller swarms the 

preserve of smaller, agile individuals. Neems et al. [19] reported on such body-size 

segregation in swarms of male chironomid midges. Note also that when R=0 jerks are 
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predicted to be anti-aligned with velocities, i.e., jerks are predicted to be aligned with the long 

axis of an individual. The disruptive impact of jerks on flight control is thereby minimized when 100 

R=0. 

 

An open question for future research is the impact of the speed-dependency of the average 

restoring forces [4] on energy conservation; a factor that was set aside in the above analysis. 

This could be problematic because potential energies may not strictly exist for such forces. 105 

Nonetheless, the results of numerical simulations (not shown) using a 1-dimensional model 

reveal that when R=0 such forces generally give rise nearly elliptical trajectories in phase 

space, suggesting that some quantity, closely akin to conventional observable energy, is, to 

good approximation, conserved. Indeed, fluctuations in the conventional observable energies, 

𝜎𝐸

〈𝐸〉
~0.01 where 𝐸 =

1

2
𝑢. 𝑢 +

1

2
𝑘𝑥2 and where k are effective spring constants, determined by 110 

the best fit ellipses to the phase space trajectories (the exact form of the observable energy 

includes an additional contribution from a phase-space path-dependent term). Consequently, 

speed-dependent forces complicate rather than invalidate the above analysis. 

 

In the next section I show that Reynolds number effects play a pivotal role in determining a 115 

key macroscopic state variable analogous to temperature. 
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Figure S1 Examples of predicted trajectories for R=0 (a) and 𝑹 → ∞ (b). One hundred 

predictions for R=0 were obtained using Eqn. S1 with all parameters set to unity. A single 

prediction for 𝑅 → ∞ was obtained using the model of Reynolds et al. [2] with all parameters 

set to unity. 

  125 
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Figure S2 Fluctuations in the observable energy, E, tend to decrease as the number, n, 

of individuals in the swarm increase. Data are shown for 19 swarms reported on by 

Sinhuber et al.  [16] (•). Also shown to guide the eye is the best fit line obtained by linear 

regression (R2=0.32). The observable energy is the kinetic energy plus the potential energy,  135 

𝐸 =
1

2
𝒖. 𝒖 +

1

2
𝑘𝑥𝑥2 +

1

2
𝑘𝑦𝑦2 +

1

2
𝑘𝑧𝑧2 where the k’s are effective spring constants estimated 

from linear regression of each component of the mean acceleration onto the distance, x, y and 

z, from the centre of the swarm. The fluctuations, 
𝜎𝐸

〈𝐸〉
, were calculated for each trajectory and 

are then averaged over all recorded trajectories in the dataset for a given swarm. For these 

swarms, horizontal movements give estimates for the Re~O(100) whilst vertical movements 140 

give estimates for the Re~O(10).   
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Figure S3 Trajectories tend to become less convoluted as the number, n, of individuals 

in the swarm increases. Data are shown for 19 swarms reported on by Sinhuber et al.  [16] 

(•). Also shown to guide the eye is the best fit line obtained by linear regression (R2=0.39). 145 

The sinuousity index is the actual length of the trajectory in 10 s windows divided by the 

shortest possible length. The value of the index ranges between 1 (as the case of a straight 

line) and infinity (as in the case of a closed loop). Averaging is over all consecutive 10 s 

windows of all trajectories in the dataset for each swarm. Similar trends are found for 5 s 

windows.   150 
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Section 2  

Individual differences together with Reynolds number effects play a pivotal role in 190 

determining a key macroscopic state variable analogous to temperature 

 

In recent years it has become apparent that collective animal behaviour cannot be understood 

by passive observations alone [Ouellette 2019]. Instead, one must interact with the collective. 

One of the first such experiments was undertaken by Ni et al. [2015] who reported on the 195 

group-level response of mating swarms of the midge C. riparius to an external stimulus, 

namely the playing back of the recorded sound of flying midges. When exposed to the sound 

of a female midge, the swarm immediately dissolved as all the males flew towards the speaker 

and landed on it. When exposed to the sound of a male midge at constant intensity, no change 

in the swarm behaviour was observed after a brief, transient dilation at the start of the 200 

playback. But when the intensity of the male sound was modulated by multiplying it by a 

sinusoidally varying signal with frequency ω, a clear and repeatable response as observed. 

Although, the power spectra of individuals did not significantly change, a net response was 

manifest as a strong peak in the power spectrum of the swarm’s centre of mass at the 

modulation frequency of the external sound. In space, the centre of mass traced out elliptical, 205 

oscillatory trajectories. The perturbation, like other forms of perturbation [Sinhuber et al. 

2018,2021, Reynolds 2018, 2021, van der Vaart et al. 2019, 2020] has therefore driven the 

swarm into a new state with properties distinctly different from those of quiescent swarms.  

 

These observations are predicted by the (infinite Reynolds number) model of Reynolds et al. 210 

[2017] (a first order autoregressive process in which the position and velocity of an individual 

evolve jointly as a Markovian process) under the assumption that: the external sound pulls the 

swarm off the ‘swarm maker’, a visually prominent feature over which the unperturbed swarm 

is centred, so that the centre of attraction (centre of the confining harmonic potential [Obuko 

1986, Kelley et al. 2013]) is taken to oscillate sinusoidally at the modulation frequency of the 215 

external sound (Fig. S1). This is biologically plausible because the sinusoidal modulation of 

the sound could simulate the distance to nearby swarming males, with an attraction when the 

distance to the nearby males is increasing and a repulsion when they get too close to each 

other. Simulated individuals will respond to this form of perturbation in the same way, and 

consequently a new coherence in the phases is induced by the driving signal, mirroring the 220 

mechanism that may give rise to the coherent motion of flocking birds [Reynolds 2023]. As 

observed the centre of mass velocity varies is predicted to oscillate at the driving frequency 

(Fig. S2a) even though, as observed [Ni et al. 2015], the perturbation does not affect the flight 
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behaviours of the simulated individuals. And as observed, the peak magnitude of the phase-

averaged centre-of-mass velocity varies linearly with the magnitude of driving force, when this 225 

force is small.  Such a response is typical of passive material in an external field. Nonetheless, 

in contrast with passive material near thermodynamic equilibrium, Ni et al. [2015] observed 

that the fluctuation-dissipation theorem is violated. This is expected because active processes 

associated with individual behaviour leads to fluctuations that are larger what they be for a 

purely thermal system. The fluctuation dissipation theorem dictates that 𝜔𝐶(𝜔) ∝ χ′′(𝜔) where 230 

𝐶(𝜔) is the Fourier transform of the velocity autocorrelation function in the absence of the 

driving and χ′′(𝜔) is the imaginary part of the susceptibility. Classically, the constant of 

proportionality between  𝜔𝐶(𝜔) and χ′′(𝜔)is related to the temperature. For active systems 

the ratio of these quantities can be used to define a state variable, like an effective temperature 

[Martin et al. 2001]. Ni et al. [2015] reported that 𝜔𝐶(𝜔)/χ′′(𝜔) falls off with frequency roughly 235 

as 𝜔−3/2.   

 

The model of Reynolds et al. [2017] suggest that such a violation of the fluctuation dissipation 

theorem can be attributed to individuals responding differently to the external perturbation 

because without such individual differences the model satisfies the fluctuation dissipation 240 

theorem. It is also necessary to account for Reynolds number effects. This is because the 

observed form of 𝜔𝐶(𝜔) which falls off with frequency roughly as 𝜔−2 is incompatible with the 

infinite Reynolds number models which predict that the falling off with frequency cannot be 

faster than as 𝜔−1 [Sawford 1991]. Finite Reynolds number models, on the other hand, predict 

that the falling with frequency cannot be faster than as 𝜔−3 [Sawford 1991]. These models, 245 

like their infinite number Reynolds counterparts, satisfy the fluctuation dissipation theorem. 

Nonetheless, preliminary simulations with the 1-dimensional finite Reynolds number model 

proposed by Reynolds and Ouellette [2016] (a second order autoregressive process in which 

the position, velocity and acceleration evolve jointly as a Markovian process) predicts that 

𝜔𝐶(𝜔)/χ′′(𝜔) decreases with frequency roughly as 𝜔−3/2 when, consistent with the observed 250 

unresponsiveness when 𝜔 = 0 [Ni et al. 2015], an individual’s propensity to respond to the 

acoustic perturbation increases linearly with increasing frequency, ω (Fig. S3). Individual 

differences along with Reynolds number effects may therefore play a pivotal role in the 

macroscopic state variable. 

 255 

The above putative behavioural response maybe biologically plausible because in mosquito 

swarms, frequency modulations (known as RFM ‘rapid frequency modulations’) occur just 

before mating in males and females, i.e., just after a male seizes a female during the final 
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stages of copulation when pairs make connection. The role of RFM is unclear [Feugère et al. 

2022].  Feugère [Private Communication] speculated that these RFM’s may be used by nearby 260 

males to detect mating pairs and assess their chance with the female. If so, then Feugère 

[Private Communication] reasoned that as the modulation frequency of the external 

perturbation gets close to the RFM more males may be attracted or repulsed by the external 

perturbation. In this way the ‘late’ male can stay close enough to a chasing pair to grab the 

female is she rejects the chasing male. 265 

 

A more complete analysis requires the formulation of 3-dimensional finite Reynolds number 

models. The formation of 3-dimensional finite Reynolds number models does, however, 

remain a formidable challenge [Reynolds 2020].  

 270 
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 275 

 

Figure S1 a) Predicted power spectra of one component of the velocity for a single midge in 

a swarm (dashed lines) and the centre of mass of the swarm (solid line). Data are shown for 

an undriven swarm (black lines) and for a swarm whose centre of attraction is sinusoidally 

modulated at frequency of ω=1 with amplitude h0=1 a.u. b) Predicted phase-averaged 280 
velocities and trajectories for the centre of mass of the driven swarm. Predictions are shown 

for a swarm containing 100 individuals and were obtained using the model of Reynolds et al. 

[2017] with all parameters set to unity.  
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Figure S2 a) One component of the predicted centre of mass velocity (red line), Ucm, together 285 
with the position of centre of attraction (black line) that is sinusoidally modulated at frequency 

of ω=1 with amplitude 1 a.u (rescaled to each of comparison). b) The amplitude, U, of the 

predicted centre of mass velocity as a function of the amplitude, h0, of the sinusoidally 

modulation of the centre of attraction. Predictions are shown for a swarm containing 100 

individuals and were obtained using the model of Reynolds et al. [2017] with all parameters 290 
set to unity. 
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 295 

Figure S3 The power spectral density 𝜔𝐶(𝜔) of the predicted velocity fluctuations for an 

undriven swarm (blue line) and  χ′′(𝜔), the imaginary part of the susceptibility (red line).  

Approximate power-law scaling of 𝜔𝐶(𝜔) and χ′′(𝜔), roughly indicative of 𝜔𝐶(𝜔)/χ′′(𝜔) ∝

𝜔−3/2 is shown (black lines) Predictions were obtained using the model of Reynolds and 

Ouellette [2016] with all parameters, apart from the acceleration timescale, set to unity. The 300 
acceleration timescale was set to 0.1 a.u., corresponding to an effective Reynolds number of 

100. The proportion of responsive individuals is ω/80.   
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Section 3 340 

Selection pressures 

In this section I argue that advantageous properties of swarming need not be the result of 

selection pressures. 

 

Midge swarms have properties, like robustness to environmental perturbations, critical 345 

damping, stabilizing inward effective pressures) which might be the result of selection 

pressures for advantageous behaviours, or they could be accidental, in which case there could 

be selection pressures against losing such properties [1-5]. A recent study of bee 'clouds' 

might help to be resolve this issue [6]. This is because some of these advantageous properties 

of midge swarms (near critical damping, negative surface confining pressures) (Figs. S1 and 350 

S2) together with the act of swarming itself are also evident in bees (that like midges form a 

swarm confined by a potential well, Fig. S2) but in the bees these properties cannot be result 

of selection pressures for advantageous behaviours because the experimental scenario is 

without a natural analogue. In the bee study, the hive was artificially and temporally blocked 

resulting in a dense cloud of bees loitering outside of the hive; a behaviour quite unlike other 355 

forms of aerial aggregations associated with cooling off, the following of scouts to establish a 

new hive, following overcrowding of the established hive.  

 

Midge swarms have other seemingly advantageous properties, emergent mechanical-like 

properties, including tensile strength and viscoelastic behaviours, that only become evident 360 

when swarms are perturbed [3,4]. These properties are predicted by minimal (maximum 

entropy) dynamical models that, by construction, are consistent with observed distributions of 

individual positions and velocities of swarming midges [7]. Such distributions also characterize 

the bee clouds (Fig S2). This suggests the bee clouds will have emergent mechanical-like 

properties in common with the midge swarms. But as with critical damping and confining 365 

surface pressures, these putative properties of bee clouds cannot be the result of selection 

pressures for advantageous behaviours. 
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This may also be true of individual flight behaviours that underpin the stability of the cloud. 

Mahadeeswara and Srinivasan [9] reported that the flight speed of a loitering bee is matched 370 

to the curvature, moment to moment, in such a way as to maintain the centripetal force at an 

approximately constant, irrespective of the instantaneous speed or curvature of the turn. This 

ensures that turns are well coordinated, with few or no sideslips, i.e., it ensures that the bees 

are not overcome by centrifugal forces during the turn, and always maintain the intended 

trajectory. Nonetheless, this advantageous flight characteristic might not represent an evolved 375 

trait as it also arises freely (accidentally) in minimally structured (maximum entropy) stochastic 

models for the trajectories of swarming insects (Fig. S3). Associated observed flight 

characteristics such as the flight speed tending to decrease whilst entering a turn and increase 

whilst exiting it [9] are also predicted by the model (results not shown). 

Finally, swarms of mosquitoes display occasional changes of level which may serve to test 380 

the rate of female arrival at various heights [11]. This apparent coordinated behaviour appears 

to be distinct from swarming (maintenance of cohesion). It is tempting to attribute its 

occurrence to selection pressures for advantageous behaviours. The results of numerical 

simulations do however suggest like other advantageous properties [1-5] that it is an 

accidental by-product of swarming behaviour and arises because the height of the centre of 385 

the swarm (i.e., the centre of attraction) is a dynamical quantity determined by the 

instantaneous locations of the individuals in the swarm (Fig. S4). Fluctuations in the horizontal 

positions of the swarms are expected to be less apparent because swarms tend to be centred 

over prominent ground-based features (known as swarm markers).  

 390 
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Figure S1 Bee clouds appear to be critically damped, poised between being over- and 

underdamped. An overdamped cloud is characterized by velocity autocorrelation functions 

each with a single negative lobe. An underdamped cloud is characterized by oscillatory 

velocity autocorrelations.  Single negative lobes and oscillatory behaviour are barely evident 425 

here. Data are taken from Mahadeeswara & Srinvasan Event 1. Bees 5 to 92. 
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Figure S2 The emergent properties of bee clouds closely resemble the emergent 

properties of laboratory swarms of midges. Distributions of position, velocity, and 430 

acceleration (•) together with Gaussian distributions with mean zero and unit variance (line 

soilds). Speed distributions (not shown) have Maxwellian cores and long exponential tails. In 

common with laboratory swarms of midges [7], positions and velocities are nearly Gaussian 

whilst distributions of accelerations have nearly exponential tails. Conditional mean 

accelerations (•) increase nearly linearly as a distance from the cloud centre increases. 435 

Individual bees in the cloud, like individual midges in laboratory swarms [7], therefore behave 

on the average as if they are trapped in an elastic potential well (since the effective force is 

linear in position).  The difference between the average kinetic energy and average potential 

energy,  
1

2
〈𝑢𝟐〉 −

1

2
𝑘〈(𝑥 − 〈𝑥〉)2〉, is positive, where k is an effective spring constant obtained 

by linear regression of the conditional mean accelerations on position (solid line).  This 440 

indicates that the cloud is experiencing a stabilizing inwards effective pressure on its surface 

[2]. Data are taken from Mahadeeswara & Srinvasan, Event 1. Bees 5 to 92. 
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Figure S3 Predicted variation of speed squared with the radius of curvature. The 445 

instantaneous curvature of a trajectory 𝜅 = |𝒓̇ ∧ 𝒓̈|/|𝒓̇𝟑|  where r(t) is the position of the 

individual at time t. The radius of curvature 𝜌 =
1

𝜅
. The centripetal acceleration 𝑎 =

𝒓̇.𝒓̇

𝜌
. When 

centripetal acceleration is constant 𝒓̇. 𝒓̇ ∝ 𝜌. Simulated individuals fly with near constant 

centripetal accelerations (solid circles) when the required speeds are accessible (less than 

about 3 times the variance). Note, however, that the tightest turns, which are potentially the 450 

most destabilizing, are always executed with near constant centripetal acceleration.  The solid 

lines are least square regressions (𝑅2 ≈ 0.98). Predictions were obtained using the stochastic 

model of Reynolds et al. [7] for the root-mean-square velocities indicated and with all other 

model parameters set to unity (a.u.). 
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 455 

Figure S4. Shifts in the height of the swarm centroid that may be biological significant 

are predicted to arise spontaneously when the centre of attraction is not fixed but is 

instead taken to the instantaneous centre of the swarm. Predictions are shown for a 

swarm containing 50 individuals and were obtained using the stochastic model of Reynolds et 

al. [7] with all parameters set to unity. 460 


