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Abstract: Soil is a nexus of risks associated with meeting future food demands in the face 13 

of dwindling water resources, climate uncertainty and biodiversity collapse.  Thus, soil 14 

interventions have the potential to simultaneously mitigate (or exacerbate) them all. We 15 

integrate metagenomic, physical and mathematical analyses to show how the capacity of 16 

soil to support net primary productivity is linked to metabolic efficiency and resilience of 17 

these properties to perturbations in water and nutrient inputs. The proposed mechanisms 18 

and observed temporal behavior predict that synergistic risk mitigation is limited by 19 

cumulative rates of carbon metabolism, and that soil carbon sequestration is a consequence 20 

rather than a driver of change. The results highlight fundamental constraints and new 21 

opportunities to achieve food security and manage the land-climate interface.  22 
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Introduction 24 

The recent IPCC report on Land Use and Climate Change1 highlights the fundamental importance 25 

of ensuring future land-use strategies account for coupling between soil and climate. Although 26 

organic carbon (OC) is known to play a critical role, we do not understand the mechanisms 27 

adequately, limiting our ability to manage that coupling. In particular, we do not know why OC 28 

changes the dynamics of the soil system to affect the capacity of soil to support net primary 29 

productivity (NPP).  30 

The complex micro-structure of soil (i.e. structural features of the pore network smaller than 100 31 

µm) allows co-existence of air and water across a wide range of environmental conditions and 32 

determines the rate and nature of resident microbial processes2. The resultant fractal-like air: water 33 

interface maximises the area of the boundary between atmosphere and land and regulates some of 34 

the most critical terrestrial environmental services including biogeochemical cycles and delivery of 35 

nutrients to primary producers, degradation of pollutants, provision of clean water, regulation of 36 

atmospheric trace gases, and pest and pathogen control3, 4. Tisdall and Oades’ pioneering 37 

conceptual model5 linking microbial activity to soil structure was one of the first to show the 38 

importance of interactions between biotic and abiotic phases of soil in building this important 39 

structural complexity. Subsequent work has shown that the effect of microbial activity on soil 40 

structure is particularly strong at scales that regulate convective and diffusive flow rates, and the 41 

balance of air and water at any given matric potential6. Not only does microbial activity impact on 42 

soil structure, but it does so in a way that creates a feedback on the magnitude and nature of 43 

microbial activity.  44 

Such non-linear feedback systems are a necessary condition for the spontaneous emergence of 45 

organisation (self-organisation) that is observable at the whole-system level in many complex 46 

physical, chemical and biological systems6. There is evidence that the soil-microbe complex is self-47 

organising. Accordingly, micro-structural architecture and the resulting critical properties of soil 48 

emerge spontaneously from preferential reinforcement against stochastic disturbance of 49 

microenvironments that support higher levels of microbial activity (due e.g. to higher production 50 
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of extracellular polymers). Systems displaying such “organised complexity”7 are irreducible, 51 

presenting particular challenges to identifying causal mechanisms and designing interventions that 52 

direct the state of the system. This suggests that the multivariate nature of soil-microbe systems 53 

place severe combinatorial constraints on factorial experimental approaches that seek to link OC 54 

to soil properties. In such cases, a dynamical systems approach is necessary, where hypotheses are 55 

captured in mathematical models, and these hypotheses, and the model structure and parameters, 56 

are iterated with experimental data on system evolution. The hypotheses constrain the design of 57 

factorial experiments and are in turn constrained by the resulting data.  58 

In this paper, we integrate biological and physical data relating to dynamics of the soil system with 59 

mathematical modelling. This approach is used to interpret results from a unique long-term field-60 

experiment in terms of the mechanisms linking OC to emergence of critical soil properties that 61 

support NPP and that are implicated in land-climate feedbacks. The experiment is part of the 62 

Highfield Ley-Arable Experiment8 at Rothamsted Research, Harpenden, U.K. and the treatments 63 

we use for this study are grassland, arable, and bare fallow (soil kept free of plants and added 64 

nutrients since 1959, i.e. for 60 years). To study the dynamics of emergence, we also included 65 

reversion treatments, in which subplots of degraded bare fallow soil were converted to 66 

management under either grassland and arable production. We followed the change in the 67 

biophysical properties of the soil over a 10-year period, using the data to infer mechanisms 68 

underlying the re-emergence in degraded soil of critical functions. 69 

Results  70 

Soil management is associated with changes in fine-scale connected porosity 71 

- Highfield soils exhibit significantly different structure when considered at the µm-scale.  72 

Grassland and arable soils have significantly greater porosity, a wider range of pore sizes and 73 

greater pore connectivity compared to bare fallow soil9.   To assess the influence of soil 74 

management upon structure at scales relevant to microbes (100-102 µm), we generated X-ray 75 

Computed Tomography (CT) images at 1.5 µm resolution, requiring imaging of 0.7 – 2.0 mm 76 
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diameter soil aggregates.  We studied factors associated with connected porosity in detail, since it 77 

exerts a strong influence upon diffusive flow in porous materials11, influencing delivery of nutrients 78 

and O2 to microbial cells.  Connected pores within networks can assessed from binary images 79 

derived from X-ray CT using Minkowski functions12, basic geometric measures defined for binary 80 

structures.  One of these, the Euler number [χ(d), where d represents the pore diameter] is a well-81 

defined characteristic related to pore space topology and shown to be critical to hydraulic 82 

properties13. In three dimensions, χ(d) is defined as the number of isolated pores (of diameter, d) 83 

minus the number of redundant connections within the pore space, plus the number of enclosed 84 

pores14.  Using this approach, we estimated Euler number density [χ(d)/V, where V represents the 85 

image volume] of the pore network of aggregates from each Highfield soil.  The resulting Euler 86 

connectivity functions for each soil are shown in Fig. S2. For connected pores χ(d)/V < 0, the 87 

value is positive for unconnected pores.  χ(d)/V = 0 represents a critical threshold (dcrit) describing 88 

the maximum pore throat size of connected pores controlling hydraulic conductivity12. All 89 

structural parameters listed above were highly correlated.  We therefore chose porosity and dcrit as 90 

measures of pore topology since their implications are readily defined and they are expected to be 91 

of direct relevance to cells within the soil matrix as they are likely to control advective and 92 

diffusional processes within the soils.  Mean estimates (± standard error) of dcrit were 9.7 ± 0.37 93 

µm for grassland soils, 7.2 ± 0.26 µm for arable soils, and 3.1 ± 0.76 µm for bare fallowed soils.  94 

There was a significant effect of soil treatment upon dcrit (F2,6 = 42.3, p < 0.001) and all treatment 95 

means were significantly different from the others (smallest difference, grassland versus arable, Q = 96 

4.99, p = 0.029).    Porosity estimates from X-ray CT (Table 1) were used to derive diffusion 97 

coefficients for solutes within saturated soil aggregates, relative to unconstrained solute diffusion 98 

in water (D/D0).  For grassland soils, mean D/D0 was determined at 0.399 ± 0.014, 0.285 ± 0.009 99 

for arable and 0.161 ± 0.001 for bare fallow.  These estimates were significantly different (F2,70 = 100 

106.4, p < 0.001).  Normalised diffusion coefficients for each treatment were all significantly 101 

different from each other (p < 0.001 for all comparisons).  102 
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Soil is essentially a non-equilibrium metabolic system embedded within a dynamic physical 103 

matrix, and its dynamical state can be characterised by three properties: capacity (potential flux), 104 

metabolic efficiency, and resilience10. Therefore, we present the results of our physical analyses on 105 

a phase diagram representing capacity and resilience, using metagenomic data to assess metabolic 106 

efficiency. Capacity is quantified by simulating the hydraulic conductivity of each soil when the 107 

microscale structure is saturated with water. This measures the connectedness of pore space and 108 

the maximum potential flow rate at which resources can move through pore networks. Resilience 109 

is measured as the total microscale connected porosity - a measure of the storage capacity of both 110 

water and soluble nutrients associated with each soil system. This store can be drawn on when 111 

input rates are limiting.  Fig. 1 shows the location of the experimental soils on the phase diagram. 112 

Our observations associate permanent grassland, established in 1838, with both a high capacity 113 

and high resilience.  In turn, soil from which all inputs (bare fallowed soil) have been excluded 114 

since 1959 has a severely limited capacity to transport nutrients and reduced resilience.  Soil 115 

managed since 1948 under continuous wheat is located approximately mid-way between the two. 116 

The fraction of anoxic volume in the soil from each treatment was estimated using a multi-phase 117 

lattice-Boltzmann approach15, 16 with gaseous oxygen (O2) dissolving at water-air interfaces prior 118 

to diffusing in liquid water. The same potential respiration rate is assumed for all points on the 119 

pore surfaces in CT images, and dependence of respiration on OC and O2 is used to simulate the 120 

anoxic fraction of all reactive sites under different soil moisture. The results (Fig. 2) indicate that 121 

the predicted anoxic fraction is significantly lower in grassland soil, compared with arable and bare 122 

fallowed soils – the latter is predicted to have the highest fraction of anoxic volume at all moisture 123 

contents. Microorganisms in the different soils are therefore likely to experience markedly different 124 

hydraulic environments particularly in degraded bare fallow soils where reduced delivery of 125 

soluble nutrients and dissolved O2 is predicted compared to grassland soils, resulting from 126 

constraints placed upon diffusive flow by the reduced connected porosity and dcrit. 127 

These structural analyses were extended to degraded soil converted in 2007 after 48 years of bare 128 

fallow management to grassland and arable, to explore the potential to induce recovery of 129 
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biophysical functioning in degraded soil. Testing treatment effects upon connected porosity 130 

between 2012 – 2018 inclusive (square-root transformed to stabilize variances) by analysis of 131 

covariance, employing time as a covariate, indicated no significant heterogeneity of slopes (F2,75= 132 

0.537, p = 0.587).  An equal slopes model indicated a significant effect of land management upon 133 

connected porosity (ANCOVA, F2,72= 26.2, p < 0.001).  Holm-Šidák multiple pair-wise 134 

comparisons indicated that connected porosity generated in grassland soils (meanadjusted, 0.079) was 135 

significantly greater than in either unconverted bare fallow (meanadjusted, 0.010) or converted arable 136 

(meanadjusted, 0.025) soils (smallest difference, t = 4.79, p< 0.001).  A significant difference between 137 

connected porosity generated in arable and bare fallow soils was also apparent (t = 2.30, p = 0.024).  138 

No significant differences were detected when the complete 2008 - 2018 data were included, 139 

suggesting that significant differences only become apparent after a period of at least five years post 140 

conversion.  Soil converted to grassland responded faster than soil converted to arable, with 33% 141 

of the porosity recovered ten years after conversion in the former compared with only 13% in the 142 

latter (Fig. 3).  The potential role of OC in the observed behaviour was explored by comparing the 143 

values of porosity with soil OC content. There was a clear non-linear relationship between OC 144 

inputs to soil and connected porosity, with all soils described in this study following the same trend 145 

(Fig. 4).  146 

 147 

Soil management is associated with shifts in microbiome community 148 

structure -  Chao-1 Prokaryote OTU richness estimates (SChao1) for each treatment ranged from 149 

562 – 578 (mean, 570) for grassland, 530 - 547 (mean, 540) for arable, and 482 - 542 (mean, 513) 150 

for bare fallow soils.  There was a significant effect of soil treatment upon SChao1 (ANOVA, F2,6 = 151 

7.6, p = 0.023), the difference between grassland and bare fallow mean richness was significant (Q 152 

= 5.49, p = 0.019) but there was no significant difference between arable and grassland or arable 153 

and bare fallowed soils.     Grassland soils also exhibited the largest Fungal OTU richness, range 154 

35 – 44 (mean, 39) compared to either arable (range, 19 – 27, mean 24) or bare fallowed (range 17 155 
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– 27, mean 23) soils.  There was again a significant treatment effect upon SChao1 (F2,6 = 11.8, p = 156 

0.008) and pair-wise comparison of treatments indicated grassland was significantly more rich in 157 

fungal OTUs than either arable or bare fallowed soils (smallest difference, Q = 5.68, p = 0.017), 158 

but there was no difference between arable and bare fallowed soils.  Weighted UniFrac distance-159 

based comparison of β-diversity (Figure 5) indicated significant effects of soil management upon 160 

both prokaryotic (PERMANOVA, pseudo-F2,6 = 15.5, pperm <0.0001) and fungal (pseudo-F2,6 = 19.0, 161 

pperm = 0.0032) community structures.  Prokaryote communities were significantly different 162 

between all three treatments (smallest difference, pseudo-t = 2.9, pMC < 0.0001) but fungal 163 

communities in arable and bare fallowed soils did not differ (pseudo-t = 1.7, pMC = 0.111), but both 164 

were significantly different from the grassland community (smallest difference, pseudo-t = 5.0, pMC 165 

= 0.0015).  Inspection of individual fungal OTU abundance indicated that this was due to several 166 

OTUs, including Rhizophagus irregularis and other Glomeromycetes, Agaricomycetidae, 167 

Onygenales, Eurotiomycetidae, Aspergillaceae and Atheliaceae, were all abundant in grassland 168 

soils but not detected in either arable or bare fallowed soil: arbuscular mycorrhizal R. irregularis, 169 

for example, had a mean abundance in grassland soils of 3.5 x 105, but was not detected in the 170 

other soils.  This large, qualitative, difference between the soils is consistent with the effect of soil 171 

tillage17, 18 upon fungal communities.  Since prokaryotes appeared to be less sensitive to the effects 172 

of tillage than fungi, the effects of soil management upon prokaryotic communities were studies in 173 

detail. 174 

Prokaryotic Community - Biomarker analysis, using a Random Forest machine learning 175 

classification of OTUs identified by taxonomic binning of reads across the three treatments (Fig. 176 

6A), indicated that communities in grassland soils were characterized by Rhizobiaceae including 177 

Bradyrhizobium spp. and Rhizobium leguminosarum as well as the planctomycete Blastopirellula.  At 178 

the other extreme, taxa characteristic of degraded, low input bare fallow soils were Gemmatimonas, 179 

an organism related to the aromatic compound degrader Methylibium and the actinomycete 180 

Sporichthya.  The influence of nitrogenous fertilization was evident from the organisms identified 181 
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as characteristic of arable soils: nitrite-oxidizing Nitrospira spp. were particularly characteristic of 182 

these soils together with the denitrifying Rhodanobacter.   183 

16S rRNA-contingent phylogenetic diversity based upon phylogenetic placement of exact 184 

sequence variants for each treatment was compared using Kantorovich-Rubinstein (KR) distance 185 

metrics. PERMANOVA identified a significant effect of treatment (pseudo-F2,6 = 17.9, 186 

pperm<0.0001) and all post hoc comparisons were significantly different (smallest difference: bare 187 

fallow vs. arable, pseudo-t = 3.2, pMC = 0.0018) consistent with the weighted UniFrac approach 188 

described above. Principal coordinates analysis (PCoA) was used to present an unconstrained view 189 

of differences in 16S rRNA-based microbiome assemblages (Fig. S4) using KR distance.   The first 190 

two principal coordinates clearly separated treatments and the ordination accounted for 89% of 191 

total variation across the first two axes.   Distance-based linear modelling (distLM) was used to 192 

model the relationship between the 16S rRNA-contingent community structure (using KR 193 

distance) and the measured edaphic variables shown in Table 2.  All combinations of variables 194 

were considered: the most parsimonious model, identified using Bayesian information criterion 195 

(BIC), was a combination of the chemical factors pH, %C, %N and extractable P. Distance-based 196 

redundancy analysis (dbRDA) indicated that the model accounted for 84% of total variation on 197 

the first two axes (Figure 6B).  Separation of treatments on the first dbRDA axis (accounting for 198 

84% of fitted and 75% of total variation) was associated most highly with extractable P (r = -0.81; 199 

marginal test, pseudo-F = 7.4, pperm = 0.013) and %C (r = -0.53; marginal test, pseudo-F = 12.2, pperm 200 

= 0.0035), both greatest in grassland soils and least in bare fallowed soils.  The second axis, 201 

accounting for far less variation (10% of fitted and 9% of total) was most highly associated with 202 

%C (r = -0.88) and %N (r = 0.41; marginal test, pseudo-F = 11.3, pperm = 0.004).  Using the four 203 

chemical edaphic parameters to model the distribution of treatments, the addition of neither 204 

porosity (sequential test, pseudo-F = 0.7, pperm = 0.565) nor dcrit (sequential test, pseudo-F = 0.5, pperm 205 

= 0.691) accounted for a significant amount of additional variation. 206 
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Soil management is associated with shifts in microbiome functional 207 

potential -  A total of 1,197 KEGG orthologs were identified as having significantly different 208 

abundance between the soils (described in detail in Figs. S6 – S11).  We adopted a similar approach 209 

to analysing the effects of soil management upon microbiome function, determined by binning 210 

reads to KEGG orthologs, as for the effect upon community structure. Multivariate ortholog 211 

analysis was based upon Hellinger distance, calculated from square root-transformed ortholog 212 

abundance.  PERMANOVA identified a significant effect of treatment upon ortholog assemblage 213 

(pseudo-F2,6 = 26.8, pperm<0.0001) and all post hoc comparisons were significant (smallest difference: 214 

arable – bare fallow, pseudo-t = 3.6, pMC = 0.0006).  PCoA again clearly separated the treatments, 215 

the first two axes accounting for 91% of total variation (Fig. S5). The most parsimonious model 216 

identified by distLM included a combination of both chemical and physical edaphic variables; 217 

namely pH, %N, porosity and dcrit.  Using these variables, dbRDA (Figure 7) showed clear 218 

separation between the treatments on the primary axis (accounting for 95% of fitted and 83% of 219 

total variation).  Both edaphic variables most highly associated with this axis were physical 220 

parameters, porosity (r = -0.89; marginal test, pseudo-F = 24.7, pperm = 0.0009) and dcrit (r = -0.38; 221 

marginal test, pseudo-F = 15.2, pperm = 0.0021).  Both variables were greatest in grassland soil and 222 

least in bare fallowed soil.  The treatments showed little separation on the second axis, which 223 

accounted for only 2.8% of fitted and 2.4% of total variation).  Both edaphic variables associated 224 

most highly with this second axis were chemical, %N (r = -0.86; marginal test, pseudo-F = 0.4, pperm 225 

= 0.632) and pH (r = 0.41; marginal test, pseudo-F = 13.9, pperm = 0.0036). Using these four edaphic 226 

parameters to model the distribution of treatments, neither the addition of %C (sequential test, 227 

pseudo-F = 1.9, pperm = 0.179) nor extractable P (sequential test, pseudo-F = 2.2, pperm = 0.121) 228 

accounted for a significant amount of additional variation. 229 

Consideration of changes in individual gene abundance across the three treatments indicated clear 230 

shifts in both cellular behaviour and metabolic potential, dependent upon treatment (Figure 8).  231 

For cell behaviour, genes coding for chemotaxis and twitching motility were more abundant in 232 
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arable, and particularly bare fallowed soil compared to grassland soil, as were genes associated 233 

with the type II protein secretion system (T2SS), suggesting a greater reliance upon exoenzymes 234 

in these soils.  Consistent with this latter observation, several genes coding for exoenzymes were 235 

more abundant in these soils, including abnA (glucosyl hydrolase [GH] family 43 endo-236 

arabinanase), chiE (GH family 18 chitinase) and chiF and chiG (both GH family 19 chitinases) 237 

associated with carbohydrate metabolism, and dmsA and dmsB (dimethyl sulfoxide reductase) 238 

associated with sulfur metabolism. 239 

The increase in abundance of dmsAB was also part of a general trend of an increase in genes 240 

associated with dissimilatory anaerobic metabolism of N and S in arable and bare fallowed soil 241 

combined with reductions in genes associated with assimilatory pathways. Nitrification-associated 242 

genes were most abundant in arable soils, and genes associated with dissimilatory reduction of 243 

nitrate and sulfate most abundant in bare fallowed soils.  There was also an increase in genes 244 

associated with anaerobic degradation of aromatic compounds in arable and bare fallowed soil.  245 

Transport pathways also differed between treatments with genes associated with ATP-binding 246 

cassette (ABC) transporter pathways of glycerol and urea being most abundant in grassland soil 247 

and least abundant in bare fallowed soil while genes associated with the ABC transport pathway 248 

for glutathione and the N-acetylglucosamine phosphotransferase pathway exhibited the opposite 249 

trend. 250 

 251 

Discussion 252 

We have presented new results on the influence of different management practises on soil OC and 253 

shown how this affects the capacity, efficiency and resilience of soil systems. These properties 254 

relate to the capacity of soil to support NPP, the potential for GHG production and the ability to 255 

resist perturbations in water and nutrient inputs. Using a unique and long-term soil restoration 256 

experiment, we also present the different extents to which these same management practises can 257 

recover critical functions over time in degraded soil. The results can be interpreted in terms of an 258 
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existing theory for self-organisation6 that predicts biophysical functioning emerges from interaction 259 

between biological and physical processes by preferential stabilisation of metabolically-favourable 260 

microsites in soil. This interpretation predicts that soils which are more metabolically active will 261 

generate higher and more connected microscale porosity; confirmed by our analyses. 262 

Systematic changes were observed in community taxonomy and function in response to land 263 

management.  Taxonomic shifts were consistent with observed Phylum- and Class-level traits in 264 

Prokaryotes associated with soil nutrient status (OC, total N etc.); functional shifts were also related 265 

to nutrient status and, saliently, changes in soil physical structure (pore topology) controlling 266 

gaseous and nutrient diffusion.  The increase in genes associated with less efficient anaerobic 267 

processes in arable and bare fallowed soil can be considered a response to reduced diffusion of O2 268 

in these progressively more poorly connected pore networks.  Other responses, such as the increase 269 

in gene abundance for chemotaxis and protein secretion, may also be responses to reduced 270 

diffusion of soluble nutrients – and hence a requirement to search out nutrients – or avoidance of 271 

anaerobic niches within the soil.  Microbial community structure is often considered as a balance 272 

of cooperative behaviours between individuals, mediated by “public goods” or soluble nutrients 273 

arising from leaky processes (nutrients which are lost through the outer membrane or released by 274 

cell lysis) or the activity of exoenzymes19, 20.  Producers of public goods support populations of 275 

“cheaters” which exploit goods without contributing to them.  In well-mixed systems, cheaters 276 

maintain a competitive advantage over producers, but this advantage is lost in structured 277 

environments where diffusive constraints are manifest21.  In this context, the increase of T2SS and 278 

arabinanase and chitinase exoenzyme genes in arable and bare fallowed soils may be a response 279 

to reduced delivery of soluble nutrients by advective flow and diffusion to cheaters, and thus an 280 

increase in abundance of producer organisms.  Additionally, the reduced diffusive processes 281 

predicted for arable and particularly bare fallowed soil may result in an increased efficiency of 282 

exoenzymes since reduced diffusion allows for a greater accumulation of product near producer 283 

organisms22.  Thus, production of exoenzymes, and cell motility as a searching or avoidance 284 
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behaviour provide adaptations in response to spatially constrained circumstances arising from 285 

reduced pore connectivity as a result of carbon loss in the arable and bare fallowed soils. 286 

We have highlighted capacity, efficiency and resilience of the soil-microbe system as key properties 287 

to focus on because they map directly on to NPP and agricultural yields, GHG emissions, water 288 

and OC storage. These critical properties link land-use and climate. The capacity of soil measures 289 

how quickly water and nutrients are transported to plant roots and energy to microbes. Efficiency 290 

relates to the availability and transformation of such nutrients, and to the production of important 291 

greenhouse gases including N2O and CH4, which are principally products of anaerobic 292 

metabolism. Higher efficiency equates to more nutrients being stored and assimilated (as 293 

productivity), and less being lost as GHG. Resilience is related to how much water and soluble 294 

nutrients are stored in soil and available for use by the system when input rates become limiting. 295 

The finding that soil under grassland management has significantly higher capacity, efficiency and 296 

resilience compared with arable or bare fallowed treatments is correlated with greater OC storage. 297 

Furthermore, the rate of recovery of degraded soil is also linked to this OC storage. Our 298 

experiments cannot distinguish between OC flux or storage as the dominant mechanism 299 

supporting improved soil functioning. However, interpreting results in terms of soil remodelling 300 

through self-organizing processes, we predict that the biophysical state of soil and rate of change 301 

of that state will both be related to cumulative metabolic activity.  302 

Our data are consistent with recovery rate being limited by cumulative soil metabolism: soil OC 303 

content acts as a diagnostic for this. This raises the important question of what limits soil 304 

metabolism, and how it can be manipulated in a given context to maximise the rate of soil 305 

recovery. We know both anaerobic niches and physical dislocation of microbes from resources 306 

result from low pore connectivity, and both significantly limit soil metabolism. We also know soil 307 

recovery is linked to a more voluminous and better-connected pore space and significantly lower 308 

levels of anaerobic respiration. We speculate that the rate-limiting factor in recovery of degraded 309 

soil is the process of microbially-mediated micro-structure remodelling. We hypothesise this would 310 

be soil texture-dependent. Sandy-textured soil would be less able to recover compared to soils with 311 
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higher fractions of silt and clay, where remodelling fine-scale structure is inherently more feasible 312 

due to a greater proportion of “raw materials” to enable such fine-scale architecture to be manifest. 313 

It is also likely to be dependent on the quality and quantity of organic amendments to soil, 314 

especially in relation to the latent energy contained in them. This is apparent in our data, though 315 

we are not able to distinguish between the relative importance of each. 316 

Tillage is known to contribute to decreases in soil OC, and the most effective recovery rate and 317 

highest metabolizing end-state in our data was achieved with management under grassland 318 

without tillage. Tillage has the effect of significantly changing the distribution of 319 

microenvironments in soil through increased aeration. This results in the immediate release of 320 

physical and chemical constraints on C metabolism and therefore to loss of soil OC. More 321 

importantly, rearrangement of microenvironments i.e. within and between soil macro- and micro-322 

aggregates will have the effect of “re-setting” the microbial remodelling of the soil 323 

microarchitecture, slowing down the recovery of connected pore space and longer-term cumulative 324 

metabolism.  325 

This new interpretation of the role of nutritional and physical management of soil is a step towards 326 

a more general theory of soil. Such a theory is needed to help synthesize data and knowledge on 327 

the physical, chemical and biological properties of soil that have historically been studied in 328 

isolation. Theory leading to quantitative prediction is also essential in seeking synergistic 329 

interventions that recognise the interplay between capacity, efficiency and resilience of soil, and to 330 

avoid the unintended consequences of land management that are directing us towards systemic 331 

collapse of productive land and an amenable climate. 332 

Methods 333 

 334 

Soils – Identifying the effects of losses of soil organic carbon arising from agricultural practice 335 

upon the taxonomic composition and function of soil microbial communities is not trivial since 336 

carbon turnover in soil typically occurs over decennial temporal scales: for example, estimated 337 
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half-lives of carbon in sandy loam and silty clay loam soils in the United Kingdom are 12 and 20 338 

years respectively23.  Studies of the effects of persistent soil management must account for such 339 

long residence times if they are to assess the maximal change in the community24.  Clearly, this 340 

limits the practicality of laboratory-based experiments in determining the effects of land 341 

management upon soil communities but long-term, controlled field manipulations lasting several 342 

decades provide opportunities to investigate community responses to changes in soil organic 343 

carbon25.  One such example is the Rothamsted Highfield Ley-Arable experiment (00:21:48 °W, 344 

51:48:18 °N) set on soil that has been under permanent grass since at least 1838.  The soil is a silty 345 

clay loam (25% clay: 62% silt: 13% sand) (Chromic Luvisol according to FAO criteria).  At the 346 

time of sampling, arable plots had been under continuous wheat rotation (winter wheat, Triticum 347 

aestivum L., most recently Hereward seed coated with Redigo® Deter® combination 348 

insecticide/fungicide treatment, Bayer CropScience) and receiving ammonium nitrate fertilization 349 

to provide approximately 220 kg-N ha-1 annum-1, and additional 250 kg-K ha-1 and 65 kg-P ha-1 350 

every three years for 62 years, bare fallow plots had been maintained crop- and weed-free by regular 351 

tilling for 52 years, and grassland plots had been maintained as a managed sward of mixed grasses 352 

and forbs for over 200 years: all plots are considered now to be in quasi-equilibrium26. Physical 353 

and biological data has already been reported for these soils (Table I). The experiment compares 354 

the original grassland with arable management (established in 1948) as well as bare fallowed soil 355 

kept free of vegetation and other organic inputs (established in 1959).   Over this period, the bare 356 

fallowed soils have become depleted in more labile organic carbon and enriched in persistent 357 

organic carbon27 and soil organic carbon has been reduced to a greater extent than in arable soil.  358 

There has also been an observable progressive shift, from grassland to arable and bare fallowed 359 

soil, in the distribution of organic carbon between different pools in the three soil managements, 360 

particularly a relative decline in discrete organic particles independent of stable soil aggregates, 361 

and a corresponding increase in the proportion of organic particles encapsulated in stable 362 

aggregates28.  Confirmation of this apparent shift in soil structure has been provided by high-363 

resolution X-ray Computed Tomography9.     364 
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X-ray Computed Tomography and Image Analysis – Aggregates (0.7 – 2.0 mm) 365 

were selected at random from soil collected from each plot of the Highfield experiment.  The 366 

aggregates were scanned using a Phoenix Nanotom® system (GE Measurement and Control 367 

solution, Wunstorf, Germany) operated at 90 kV, a current of 65 µA and at a voxel resolution of 368 

1.51 µm. Initial image analysis was performed using Image-J.  Images were threshold-adjusted 369 

using the bin bi-level threshold approach of Vogel et al.12 via the open source software QuantIm 370 

(http://www.quantim.ufz.de/).  Porosity and mean pore neck size were estimated directly from 371 

the threshold-adjusted binary images and Minkowski functions including Euler number (χ(d), 372 

where d is the pore diameter), pore size distribution, pore connectivity and surface area density 373 

were determined according to Vogel et al.12. 374 

Calculation of Diffusion in Soil Pore Networks -  The hierarchical soil structures 375 

revealed in X-ray CT images indicate that gaseous O2 in the atmosphere moves into soil primarily 376 

through its inter-aggregate pores and is then dissolved in water prior to moving into the aggregates 377 

largely by molecular diffusion. Since gaseous O2 diffuses up to 1000-fold more quickly than O2 378 

dissolved in water, microbial community activity is thus constrained mainly by O2 diffusion within 379 

aggregates. The ability of aggregates to conduct dissolved O2 and other soluble substrates depends 380 

on the intra-aggregate pore geometry, and we quantified it with effective diffusion coefficients 381 

calculated directly by mimicking solute movement through the pore geometry using numerical 382 

simulations. The movement of solutes, including O2 and substrates, within the pore geometry is 383 

assumed to be diffusion-dominant. For the images illustrated in Fig. S1, the temporal change in 384 

solute concentration inside any pore voxel can be calculated using the finite volume approach, as 385 

follows:  386 
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(1) 387 

where c is concentration, q is diffusive flux, D is molecular diffusion of the solute in liquid water, 388 

superscripts t and t+δt represent time, δt is a time increment, subscript o represents the pore voxel 389 

being calculated, and subscripts w, e, s, n, u and d represents the face-to-face neighbours of voxel o 390 

on the west, east, south, north, top and bottom sides respectively.  Applying Eq. (1) to all pore 391 

voxels leads to linear systems which was solved by the bi-conjugate gradient stabilized method29.  392 

Calculation of Diffusion Coefficients –  To calculate the effective diffusion coefficient 393 

of each aggregate, we applied a constant concentration C1 on the top and a constant concentration 394 

Co on the bottom of the image, and then simulated solute diffusion to steady state. The diffusive 395 

flux in the three directions in each pore voxel was calculated by Eq. 1.  Taking the vertical direction 396 

as the z direction for the image, the effective diffusion coefficient of the image was calculated as 397 

follows:  398 

                                                                                                                    (2) 399 

where Deff is the effective diffusion coefficient, N is the total number of pore voxels in the simulated 400 

images, is the vertical diffusive flux in pore voxel centred at location xi, Lz is the height of 401 

the image as shown in Fig. S1. To address the impact of change in pore geometry due to 402 

management on the ability of the aggregate to diffuse solute, in result analysis we normalized the 403 

effective diffusion coefficient Deff of all solutes by their associated molecular diffusion coefficient in 404 

non-constrained water, D.    405 
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Modelling of Oxygen Diffusion and Anoxia - The impact of soil structure on O2 406 

diffusion and its subsequent consumption by microbes under various saturations was studied using 407 

pore-scale simulations. We first calculated the spatial distribution and connectedness of different 408 

pores and then determined water distributions in pores under different matric potentials (ψm). We 409 

assumed the soil was initially saturated and then applied a negative pressure p at the bottom to 410 

drain water. We assumed the soil was essentially hydrophilic in that only pores whose associated 411 

capillary pressure pc, calculated by 
/cp r 

 with σ being water-air surface tension, is less than p 412 

and that they form clusters which stretch from the top to the bottom of the structure can be drained. 413 

Fig. 3A shows an example illustrating water distribution in the structure calculated using the 414 

method described above when the saturation is 55%.  415 

Once the water distribution was determined for a given ψm, we treated the water-air interfaces 416 

inside the structure as a boundary at which gaseous O2 dissolves and then moves toward the solid-417 

water interface to be reduced by microbial reactions. The partial pressure of gaseous O2 in the 418 

simulated structure was assumed to be constant. Movement of dissolved O2 in the liquid water was 419 

simulated using the following diffusion-reaction equation:  420 

,

aw
s

c
D c s

t

c c



   




 (1) 421 

where c is concentration of the dissolved O2, D is molecular diffusion coefficient of O2 in water, 422 

Γaw is the air-water interface, s is microbial consumption, cs is the saturated dissolved O2 423 

concentration at the water-air interface calculated from Henry’s law,
/s oc p H

 in which H is the 424 

Henry constant and po is the partial pressure of the gaseous O2 inside the structure. Microbial 425 

consumption was assumed to occur in water-filled voxels adjacent to the water-solid wall and 426 

described by the following Monod kinetic equation:   427 
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where mc is microbial biomass, k0 is kinetic parameter, [C] is the concentration of dissolved carbon.  429 

Since we are interested in impact of soil structure on development of anaerobic sites, we simulated 430 

O2 diffusion and reduction to steady state. In all simulations, we normalized Eqs. (1) and (2) as 431 

follows 432 
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 in which L is the side 434 

length of the voxels and T0 is a characteristic chosen to make ' 1D   in our simulations.   435 

The above equation was solved by a finite volume method with each water-filled voxel being the 436 

element used to calculate the mass balance. In all simulations, water was assumed be initially free 437 

of O2 and we simulated the system to steady state. As the development of anaerobic areas was a 438 

balance between the ability of soil to diffuse dissolved O2 and the microbial consumption rate, to 439 

elucidate that the relative anaerobicity of soils under the same ψm is the consequence of their 440 

structures and does not change with microbial reactive rate, we simulated two scenarios: a fast 441 

microbial decomposition (kʹ= 1x10-2) and a slow microbial decomposition (kʹ= 1x10-4). For each 442 

scenario, once the system was deemed to have reached a steady state, we sampled sites where 443 

concentration of dimension-less dissolved O2 was less than 20% assuming them be at anaerobic 444 

condition30
.   Fig. 3B shows an illustrative example of the location of anaerobic areas simulated by 445 

the above method in which soil particles were made transparent.  We repeated the procedure to 446 

achieve different water distributions calculated by varying ψm and then calculated the proportional 447 

change in the volumetric anaerobic sites with the ψm for both the fast and slow microbial reactions. 448 

The results are shown in Figure 2 for soil samples taken from all treatments.           449 
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Modelling of organic carbon dynamics in soil - We used RothC-26.331 to model the 450 

turnover of soil organic carbon in the experimental soils, accounting for the effects of soil type, 451 

plant cover and historical temperature and moisture content on organic carbon turnover processes. 452 

We used the same inputs of organic carbon to the soil that were used in Johnston et al.23.  To obtain 453 

the starting soil carbon of 63.6 Mg-C ha-1, a carbon input to the soil from plant debris, roots, and 454 

root exudates was 2.7 Mg-C ha-1, with the inert organic matter being 3.0 Mg-C ha-1. The incoming 455 

carbon from plant residues were assumed to have decomposable plant material and resistant plant 456 

material in the proportion 0.59 and 0.41, respectively, these are the default proportions for arable 457 

cropping and managed grassland.  For the first 12 years after the experiment started, the grass was 458 

grazed by sheep before the treatment changed to a grass/clover sward harvested three or four times 459 

per year for conservation. For this reason, the grass treatments received carbon inputs of 5 Mg-C 460 

ha-1 annum-1 between 1949 and 1960, or 4 Mg-C ha-1 annum-1 between 1961 and 2016.  The arable 461 

treatments received a carbon input of 1.4 Mg-C ha-1 annum-1 and the bare fallow treatments 462 

received no inputs of carbon to the soil. 463 

DNA Extraction and Metagenome Sequencing - Soil was collected from triplicate 464 

plots for each treatment to a depth of 10 cm using a 3-cm diameter corer. The top 2 cm of soil 465 

containing root mats and other plant detritus was discarded.  Ten cores per plot were pooled and 466 

thoroughly mixed whilst sieving through a 2-mm mesh; samples were then frozen at -80 °C.  All 467 

implements were cleaned with 70% ethanol between sampling/sieving soil from each plot.  Soil 468 

community DNA was extracted from a minimum of 2 g soil using the MoBio PowerSoil® DNA 469 

isolation kit (Mo Bio Laboratories, Inc. Carlsbad, CA) with three replicates for each soil treatment.  470 

When necessary, extracts from individual replicates were pooled to provide sufficient material for 471 

sequencing. 10 µg of high-quality DNA was provided for sequencing for each of the nine plots.  472 

Shotgun metagenomic sequencing of DNA was provided by Illumina® (Cambridge, UK) using a 473 

HiSeq™ 2000 sequencing platform, generating 150-base, paired-end reads.  The generated 474 

sequences were limited to a minimum quality score of 25 and a minimum read length of 70-bases 475 
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using Trimmomatic32.  After filtering to remove substandard sequences, the average metagenome 476 

size for each soil was 4.96x108 reads for grassland, 2.86x108 for arable and 2.88x108 for bare fallow 477 

soils.  Since differences in library sizes were less than 10-fold, we did not employ rarefaction before 478 

comparing the datasets33.  Details of dataset comparison and bioinformatical analysis are presented 479 

in Figs. S6 - S11. 480 

Bioinformatical Analysis of Metagenome Sequences - To assess general abundance 481 

of taxa and genes in metagenomes, we mapped individual metagenomic sequences to the RefSeq 482 

non-redundant (NR) protein database held at NCBI (downloaded August 22nd, 2018) using 483 

DIAMOND ver. 0.8.2734 in BLASTX mode using a bitscore cut-off of 55. For each sequence, only 484 

the match with the highest bitscore was considered. Sequences not matching the NR database were 485 

considered currently unclassified.   MEGAN Ultimate ver. 6.10.235 was used to associate 486 

metagenome sequences with both taxa and Kyoto Encyclopaedia of Genes and Genomes36 487 

(KEGG) functional orthologs and modules.  For taxa, MEGAN was used to establish Prokaryotic 488 

and Fungal community assemblages and calculate weighted UniFrac distances37 between the 489 

assemblages associated with each soil treatment.  In addition, bacterial communities were also 490 

compared based upon the abundance and phylogenetic relatedness of metagenome reads 491 

homologous to the 16S rRNA gene.  A 16S rRNA profile hidden Markov model (pHMM) was 492 

generated based upon an alignment of the set of 4,528 reference sequences associated with 493 

paprica28, built December 2017.  Metagenome reads with homology to the 16S rRNA pHMM were 494 

identified using hmmsearch39 with a 1x10-5 Expect-value (E) cut-off and assigned to branches of 495 

fixed maximum likelihood 16S rRNA phylogenetic tree using a phylogenetic placement algorithm, 496 

pplacer ver. 1.1alpha1040
. To assess 16S rRNA gene-based β-diversity in the different soils, 497 

Kantorovich-Rubinstein41 (KR) phylogenetic distance metrics were calculated from phylogenetic 498 

placements of metagenome reads using the guppy kr binary (part of the pplacer suite), treating 499 

each query as a point mass concentrated on the highest-weight placement.   The advantage of the 500 

KR distance metric is that it compares gene assemblage distributions on a phylogenetic tree (of 501 
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16S rRNA or other genes), in units of nucleotide substitutions per site, and is therefore a 502 

biologically meaningful approach to comparing communities.     503 

From all of the reads binned to a KEGG orthologous group, we selected those associated with 504 

carbohydrate metabolism (ko09101) (including glycolysis/gluconeogenesis (ko00010), citrate 505 

cycle (ko00020), pentose phosphate pathway (ko00030), pentose and glucuronate interconversions 506 

(ko00040), fructose and mannose metabolism (ko00051), galactose metabolism (ko00052), 507 

ascorbate and aldarate metabolism (ko00053), starch and sucrose metabolism (ko00500), amino 508 

sugar and nucleotide sugar metabolism (ko00520), pyruvate metabolism (ko00620), glyoxylate and 509 

dicarboxylate metabolism (ko00630), propanoate metabolism (ko00640), butanoate metabolism 510 

(ko00650), C5-branched dibasic acid metabolism (ko00660), inositol phosphate metabolism 511 

(ko00562)), methane metabolism (ko00680), carbon fixation pathways in prokaryotes (ko00720), 512 

nitrogen metabolism (ko00910), sulfur metabolism (ko00920), xenobiotics biodegradation and 513 

metabolism (ko09111) (including benzoate degradation (ko00362), aminobenzoate degradation 514 

(ko00627), fluorobenzoate degradation (ko00364), chloroalkane and chloroalkene degradation 515 

(ko00625), chlorocyclohexane and chlorobenzene degradation (ko00361), toluene degradation 516 

(ko00623), xylene degradation (ko00622), nitrotoluene degradation (ko00633), ethylbenzene 517 

degradation (ko00642), styrene degradation (ko00643), atrazine degradation (ko00791), 518 

caprolactam degradation (ko00930), dioxin degradation (ko00621), naphthalene degradation 519 

(ko00626), polycyclic aromatic hydrocarbon degradation (ko00624), furfural degradation 520 

(ko00365), steroid degradation (ko00984), metabolism of xenobiotics by cytochrome P450 521 

(ko00980) and drug metabolism – other enzymes (ko00983)), enzyme families (ko09112), 522 

membrane transport (ko09131) (including transporters (ko02000), ABC transporters (ko02010), 523 

phosphotransferase systems (ko02060), bacterial secretion systems (ko03070) and secretion 524 

systems (ko02044)), two-component systems (ko02020 and 02022), biofilm formation – Vibrio 525 

cholerae (ko05111), - Pseudomonas aeruginosa (ko02025), - Escherichia coli (ko02026), bacterial 526 

chemotaxis (ko02030), bacterial motility proteins (ko02035), and flagellar assembly (ko02040) for 527 

detailed study of abundance differences between the soils.  Where necessary, KEGG orthologs 528 
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were associated with higher-order functions by mapping to the KEGG BRITE functional hierarchy 529 

classification.   In total, 8,857 KEGG functional orthologs were identified.   To identify genes for 530 

which a significant difference in abundance between the treatments was observed we used 531 

DESeq242 which employs a negative binomial generalized linear model to generate maximum-532 

likelihood estimates for each gene’s log2-fold change between conditions.  Bayesian shrinkage, 533 

based upon a zero-centred normal distribution as a prior, shrinks the log2-fold change towards zero 534 

for genes with low mean counts or a high dispersion in their count distribution.  The resulting 535 

shrunken fold-changes are used in tests of significance using Wald’s method.  DESeq2 has been 536 

shown to be particularly sensitive to differences in gene abundance on small datasets33
 such as 537 

those in this study.  Before analysis, 3,930 low abundance features were removed (minimum mean 538 

count of 20) as well as 986 features with a low coefficient of variation.  Differential abundance of 539 

the remaining 3,940 genes was tested for significance employing α=0.05 and a Benjamini-540 

Hochberg false discovery rate (q) of 0.1 to control type I error rate in the face of multiple 541 

comparisons. To identify the most diagnostic microorganisms characterising communities of 542 

each soil, we used supervised Random Forests43 (RF), a classification algorithm approach 543 

based upon a collection of unpruned decision trees, each built using a bootstrap sample of 544 

training data using a randomly selected subset of OTUs.  The RF classifier was built by growing 545 

5,000 trees.  The prediction performance and confusion matrices were determined using out-546 

of-bag cross-validation (OOBCV). The percent mean decrease in accuracy of the importance 547 

matrix was used to select taxa that were most predictive of each microbiome assemblage.  548 

DESeq2 and RF were employed as implemented in MicrobiomeAnalyst44. 549 

Statistical Analysis -  One-factor analysis of variance (ANOVA) was employed to test the 550 

effect of soil treatment upon dcrit and modelled diffusion coefficients arising from X-ray CT, and 551 

phylogenetic diversity estimates of α-diversity arising from metagenomic analysis.  Where a 552 

significant treatment effect was observed, post hoc pairwise comparisons were performed using 553 

either Tukey’s HSD test (Q) employing the Copenhaver & Holland multiple comparisons 554 
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procedure.   These tests were performed in PAST ver. 3.2545.  One-factor analysis of covariance 555 

(ANCOVA) was used to test for treatment effects upon the formation of connected porosity in 556 

degraded soil following conversion to either arable or grassland, using time post conversion as the 557 

covariate.  The assumption of homogeneity of slopes was first tested before ANCOVA was used 558 

to test for treatment effects using an equal slopes model. Post hoc Holm-Šidák multiple pair-wise 559 

comparisons were used to establish whether differences in adjusted mean connected porosity 560 

between treatments were significant.  ANCOVA was performed in SigmaPlot for Windows ver. 561 

14.0 (Systat Software Inc., San Jose, CA). 562 

For metagenome-associated multivariate data, we initially compared prokaryotic and fungal 563 

communities by calculating unrooted phylogenetic Neighbour-nets46 using weighted UniFrac 564 

distances and compared the 16S rRNA-contingent bacterial assemblages using KR distances.  KR 565 

distance-based analyses were performed after testing for heteroscedasticity using PERMDISP47.  566 

Hypothesis testing was based upon permutational multivariate analysis of variance48 567 

(PERMANOVA) and post hoc pair-wise tests.  Differences between treatment were visualized using 568 

Principal Coordinates Analysis (PCoA) using the chosen distance measure. To identify 569 

associations between chemical and physical edaphic factors and any treatment effects, distance-570 

based linear modelling49 was used to identify the best combination of edaphic factors to model the 571 

multivariate data and the resulting model was visualized using distance-based redundancy 572 

analysis. All multivariate tests were performed in PRIMER PERMANOVA+ ver 7.0.13 and 573 

probabilities were based upon 99,999 permutations (denoted pperm). For PERMANOVA post hoc 574 

pair-wise comparisons, since the number of observations was insufficient to allow a reasonable 575 

number of permutations, Monte Carlo probabilities (denoted pMC) were calculated based upon an 576 

asymptotic permutation distribution50. 577 
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 711 

Figure 1. Phase diagram representation of soil resilience and capacity.  Soils are described by a 712 

combination of the connectivity of pore space, established from X-ray CT (connected porosity) – 713 

a measure of system resilience relating to storage of water and nutrients, and modelled hydraulic 714 

conductivity -  a measure of capacity, representing the maximum potential movement of resources 715 

through pore networks to organisms.  Grassland soils (green data points) are characterized as 716 
having high pore connectivity and hydraulic conductivity and are associated with the greatest 717 

stocks of organic carbon.  In contrast, degraded soils (brown data points) are associated with 718 
extremely limited connected porosity and hydraulic conductivity and the lowest stocks of organic 719 
carbon.  Arable soil (dark yellow) is intermediate between these two extremes. 720 
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 722 

Figure 2. Low-carbon, low-connected porosity soil contains much larger volumes of anoxic 723 

microsites than high-carbon, high-connected porosity soil.  Across a range of matric potential 724 

(ψm), the predicted volume of anoxic sites is consistently larger in degraded bare fallowed soil 725 

(brown data points and shaded region) than arable or grassland (dark yellow and green data points 726 

and shaded regions respectively).  At field capacity (θfc), approximately 30% of degraded soil is 727 

anoxic, falling to 5% in grassland soil.  At 21 kPa degraded soil is completely anoxic while the 728 
volume remains between 4-5% in grassland soil.  In arable soil 10% of the soil volume is predicted 729 

to be anoxic at θfc – double that in grassland. 730 
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 732 

Figure 3. Strong association between organic carbon inputs to soil and connected porosity. The 733 
connected pore space in degraded soils converted after 48 years of bare fallow management to 734 
either arable or grassland increases in association with the cumulative input of organic carbon 735 
(OC) over a decade.  Soils managed continuously as either arable (67 years) or grassland (>170 736 
years) which have each accumulated over 100 Mg ha-1 of organic carbon over their history follow 737 
this trend. R2 = 0.85. 738 
  739 
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 740 

Figure 4. Grassland soil generates connected pore space more rapidly than arable soil.  741 
Degraded soil (managed as bare fallow since 1959) developed greater connected micro-porosity 742 

following conversion in 2007 to grassland than bare fallow soil converted to arable.  The mean and 743 
standard error of the mean of connected porosity measured in soil aggregates collected from soil 744 

managed continuously as bare fallow (brown), soil converted to arable management (dark yellow) 745 
and soil converted to grassland (green) over the ten years following conversion are shown.  The 746 
dotted line marks the mean connected porosity of continuously managed bare fallow soil over the 747 

entire ten-year period. 748 
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 750 

Figure 5. Comparison of grassland, arable and bare fallowed soil microbial community β-751 
diversity. Neighbour-Net networks of prokaryotic and fungal community profiles from the three 752 
soil management types based on weighted UniFrac distance. 753 
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 755 

Figure 6. Taxonomy-based community responses to land management. A – Predictive modelling 756 

using a supervised Random Forest algorithm identified 15 OTUs that were most discriminatory 757 
between the different soils, based upon the mean decrease in model accuracy of a leave-one-out 758 

cross-validation procedure. B – Management-conditional dbRDA of chemical and physical 759 

edaphic factors and 16S rRNA-based phylogenetic assessment of microbiomes associated with the 760 
Highfield Ley-Arable experiment based upon Kantorovich-Rubinstein distances calculated from 761 

placement of homologous metagenome reads on the 16S rRNA reference phylogenetic tree.  Data 762 
points represent individual replicate plots of Grassland (green), Arable (yellow) and Bare Fallow 763 
(brown) soils.  Environmental factors (pH, extractable P, % organic C and % organic N) were 764 

selected by distLM as the most parsimonious combination of variables to model the multivariate 765 
data and are represented as vectors, increasing in the direction of the vector: vector length indicates 766 
the degree of partial correlation of each environmental variable with the dbRDA axes. The circle 767 

has an arbitrary origin and radius of r = 1.  The corresponding unconstrained PCoA ordination is 768 

shown in Fig. S4. See text for a detailed description of the analysis. 769 

  770 



33 
 

 771 

 772 

 773 

Figure 7. Function-based community responses to land management. Management-conditional 774 

dbRDA of chemical and physical edaphic factors and function-based assessment of genes 775 
associated with the Highfield Ley-Arable experiment. Square-root transformed KEGG ortholog 776 
abundances were used to calculate Hellinger distances between the nine samples.   Data points 777 

represent individual replicate plots of Grassland (green), Arable (yellow) and Bare Fallow (brown) 778 
soils.  Environmental factors (pH, % organic N, porosity and dcrit) were selected by distLM as the 779 

most parsimonious combination of variables to model the multivariate data and are represented as 780 

vectors, increasing in the direction of the vector: vector length indicates the degree of partial 781 
correlation of each environmental variable with the dbRDA axes. The circle has an arbitrary origin 782 
and radius of r = 1.  The corresponding unconstrained PCoA ordination is shown in Fig. S5. See 783 

text for a detailed description of the analysis. 784 
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 786 

Figure 8. Schematic representation of the relative abundance of genes for which significant 787 

differences between the soil treatments was determined.  The central column indicates the 788 

general trend in relative abundance for genes grouped according to specific functions, Grassland 789 
gene abundance is represented as green points, Arable gene abundance as yellow points and Bare 790 

Fallow gene abundance as brown points: each specific function is described in the left-hand 791 
column; specific functions are organized into higher-level KEGG ontologies, shown in the right-792 
hand column.  Absolute abundances for each gene and associated p- and q-values are shown in 793 

Figs. S6 – S11. 794 
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 796 

 797 

 Porosity / 

% 

Permeability 

/ mm2 

Connectivity 

/ µm-3 

Surface 

Density / 

µm2 µm-3 

dcrit / µm Pore Neck 

Size / µm 

Grassland (n 

= 14) 

31.1 ± 1.18 1.13 ± 0.310 -0.206 ± 0.025 0.088 ± 0.003 9.74 ± 0.37 11.19 ± 0.34 

Arable (n = 

14) 

23.4 ± 1.22 0.62 ± 0.154 -0.236 ± 0.033 0.092 ± 0.004 7.17 ± 0.26 8.79 ± 0.48 

Bare Fallow 
(n = 9) 

15.0 ± 2.21 0.55 ± 0.339 -0.018 ± 0.080 0.059 ± 0.010 3.10 ± 0.76 4.72 ± 0.95 

Table 1. Topology-related parameters derived from binary images generated from X-ray 798 
Computed Tomography of aggregates from Highfield soils.  The mean and standard error of 799 
each parameter is shown. 800 

 801 

 802 

 pH (H2O) / 

-log(g[H+]L-1) 

Organic 

Carbon / 

mg g-1 soil 

Total 

Nitrogen / 

µg g-1 soil 

NaOH-EDTA 

extractable 

Phosphorus / 

µg g-1 soil 

Grassland 6.2 ± 0.13 3.72 ± 0.44 340 ± 39.0 661.7 ± 31.3 

Arable 5.8 ± 0.11 1.85 ± 0.06 190 ± 5.08 517.0 ± 12.6 

Bare Fallow 5.3 ± 0.19 1.07 ± 0.10 110 ± 6.71 235.0 ± 3.8 

 803 

Table 2. Summary of physical and chemical data of Highfield Ley-Arable experiment soils. 804 
The mean and standard error of the mean are shown (n = 3). 805 
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Supplementary Figures 807 

 808 

 809 

Figure S1. Three-dimensional representation of soil porosity in Highfield soils. Soil structures 810 

were determined from high-resolution (1.5 µm) X-ray Computed Tomography of aggregates (<2 811 
mm) collected from long-term grassland, arable and bare fallowed soils.  The images are pseudo-812 

coloured to reflect the ranges of pore throat diameters present in each soil (scale shown below 813 
images) and are shown at increasingly larger pore throat diameter cut-offs for ease of 814 
discrimination.  Each representation is of a typical aggregate structure collected from each soil. 815 

816 
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 817 

Figure S2. Euler connectivity function curves for Highfield soils generated from high-818 

resolution (1.5 µm) X-ray Computed Tomography.  Each curve presents the connectivity within 819 

and between different pore size classes.  For connected pores, χ(d) takes negative values and 820 

unconnected pores positive values. The pore diameter where χ(d) = 0 was estimated by fitting a 821 

polynomial to the combined data from three representative aggregates for each soil.  This value, 822 
designated dcrit, was used as a descriptor of pore connectivity to establish the relationship between 823 

soil physical structure and differences in taxonomy and function established from metagenomics. 824 
For each soil, the solid line represents the polynomial fit to the combined data, the dashed curves 825 
represent the upper and lower 95% confidence intervals of the fit. 826 
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 828 

 829 

Figure S3. Water distribution and anoxic pore space within soils. A - An illustrative example 830 
showing the distribution of water (blue), air (yellow) and soil particles (brown) at saturation of 55% 831 
calculated using the proposed method. B - Location of anoxic (green) and aerobic (red) areas 832 
calculated from the pore-scale simulation after the system reaches steady state for k’ = 0.005    833 

 834 
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 836 

Figure S4. Taxonomy-based comparison of community structure in Highfield soils. Principal 837 

coordinates analysis (PCoA) using weighted UniFrac distance metrics indicates clear separation 838 
between the community structures in Grassland (green), Arable (yellow) and Bare fallow (brown) 839 
soils.  PCoA axis 1 accounted for 79.0% of total variability (eigenvalue = 0.312) and PCoA axis 2 840 

for 10.1% of total variability (eigenvalue = 0.040).  841 
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 843 

Figure S5. Function-based comparison of communities in Highfield soils. Principal coordinates 844 

analysis (PCoA) of KEGG ortholog abundance using Hellinger distance metrics indicates clear 845 

separation between microbiome function in Grassland (green), Arable (yellow) and Bare fallow 846 
(brown) soils.  PCoA axis 1 accounted for 84.5% of total variability (eigenvalue 0.032) and PCoA 847 
axis 2 for 6.9% of total variability (eigenvalue 0.003). 848 
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 850 

Figure S6. Genes associated with protein secretion in bacteria are more abundant in Bare 851 

fallow soil. Box plot of abundance for genes associated with the Type II Secretion System (gspB – 852 

N), the Type VI Secretion System (impDEB and vgrG), the Type I Secretion System (hlyD, hlyB) 853 

and the Type V Secretion System (misL) under different land managements. Box plot shows the 854 

mean (bold line) and median (light line) abundance together with the 5th and 95th percentiles.  855 
The significance (p) and positive false discovery rate (q) of the difference in abundance between 856 

the three treatments are shown. 857 
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 859 

Fig. S7. Genes associated with chemotaxis and motility in bacteria are more abundant in Bare 860 

fallow soil. Box plot of abundance for genes associated with chemotaxis (cheA – Z), type IV pili 861 

synthesis (pilG – J) under different land managements. Box plot shows the mean (bold line) and 862 

median (light line) abundance together with the 5th and 95th percentiles.  The significance (p) and 863 

positive false discovery rate (q) of the difference in abundance between the three treatments are 864 

shown. 865 
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 867 

Fig. S8. Genes associated with nitrogen metabolism show land-use specific responses. Box plot 868 
of abundance for genes associated with cyanate lyase (cynS), glutamate dehydrogenase (gdhA), the 869 
oligopeptide ABC transporter, ATP-binding protein (amiF), hydroxylamine dehydrogenase (hao), 870 
hydroxylamine reductase (hcp), the methane/ammonia monooxygenase subunits B and C (amoB, 871 
amoC), nitrate reductase/nitrite oxidoreductase alpha- beta- and gamma-subunits (narGHI), and 872 
nitrite reductase (nirK and nirS). Box plot shows the mean (bold line) and median (light line) 873 
abundance together with the 5th and 95th percentiles.  The significance (p) and positive false 874 
discovery rate (q) of the difference in abundance between the three treatments are shown. 875 

 876 
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 878 

Figure S9. Genes associated with sulfur metabolism show land-use specific responses. Box plot 879 
of abundance for genes associated with an α-ketoglutarate-dependent dioxygenase which degrades 880 
2-aminoethansulfonic acid (tauD), adenylylsulfate kinase (cysC), sulfite reductase flavoprotein 881 
alpha-component (cysJ), sulfonate transport system (ssuABC), tetrathionate reductase (ttrB), 882 
dimethyl sulfoxide reductase (dmsAB), and dissimilatory sulfite reductase alpha- and beta-subunits 883 
(dsrAB). Box plot shows the mean (bold line) and median (light line) abundance together with the 884 
5th and 95th percentiles.  The significance (p) and positive false discovery rate (q) of the difference 885 
in abundance between the three treatments are shown. 886 
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 888 

Figure S10. Genes associated with carbohydrate metabolism show land-use specific responses. 889 
Box plot of abundance for genes associated with cellulose 1,4-β-cellobiosidase (cbhA), catechol 1,2-890 
dioxygenase (catA), muconate cycloisomerase (catB), 2,3-dihydroxy-p-cumate/2,3-891 
dihydroxybenzoate-3,4-dioxygenase (cmtC), 4-hydroxy-2-oxovalerate aldolase (mhpE), 892 
protocatechuate 4,5-dioxygenase (ligB), 5,5'-dehydrodivanillate O-demethylase (ligX), arabinan 893 
endo-1,5-alpha-L-arabinosidase (abnA), terephthalate 1,2-dioxygenase reductase (tphA1), 1,2-894 
dihydroxy-3,5-cyclohexadiene-1,4-dicarboxylate dehydrogenase (tphB), benzoyl-CoA reductase 895 
subunits A, B, C and D (badFEDG)  and benzoyl-CoA reductase subunit (bamB).   Box plot shows 896 
the mean (bold line) and median (light line) abundance together with the 5th and 95th percentiles.  897 
The significance (p) and positive false discovery rate (q) of the difference in abundance between 898 
the three treatments are shown. 899 
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 901 

Fig. S11. Genes associated with solute transport show land-use specific responses. Box plot of 902 
abundance for genes associated with transport of glycerol (glpVPQST), urea (urtACDE), glutathione 903 
(gsiABCD) and glucose, mannose, glucosamine and N-acetylglucosamine transport (manXYZ).  904 
Box plot shows the mean (bold line) and median (light line) abundance together with the 5th and 905 
95th percentiles.  The significance (p) and positive false discovery rate (q) of the difference in 906 
abundance between the three treatments are shown. 907 

 908 


