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Abstract.  How soil is managed, particularly for agriculture, exerts stresses upon soil 19 

microbiomes resulting in altered community structures and functional states.  20 

Understanding how soil microbiomes respond to combined stresses is important for 21 

predicting system performance under different land use scenarios, aids in identification of 22 

the most environmentally benign managements and provides insight into how system 23 

function can be recovered in degraded soils.  We use a long-established field experiment 24 

to study the effects of combined chronic disturbance of the magnitude of organic carbon 25 

inputs with acute effects of physical disturbance by tillage.  We show that because of the 26 

variety of ways it can be assessed, biodiversity – here based on microbial small subunit 27 

ribosomal RNA genes – does not provide a consistent view of community change.  In 28 

contrast, aggregated traits associated with soil microbiomes indicate general loss of 29 

function, measured as a reduction of average genome lengths, associated with chronic 30 

reduction of organic inputs in arable or bare fallow soils and altered growth strategies 31 

associated with ribosomal RNA operon copy number in prokaryotes, as well as a switch 32 

to pathogenicity in fungal communities.  In addition, pulse disturbance by soil tillage is 33 



associated with an increased influence of stochastic processes upon prokaryote community 34 

assembly, but fungicide used in arable soils results in niche assembly of fungal 35 

communities compared to untilled grassland.    Overall, bacteria, archaea and fungi do not 36 

share a common response to land management change and estimates of biodiversity do 37 

not capture important facets of community adaptation to stresses adequately.  38 

 39 

Importance.   Changes in soil microbiome diversity and function brought about by 40 

land management are predicted to influence a range of environmental services provided 41 

by soil, including provision of food and clean water.  However, opportunities to compare 42 

the long-term effects of combinations of stresses imposed by different management 43 

approaches are limited.  We exploit a globally unique fifty-year field experiment, 44 

demonstrating that soil management practises alter microbiome diversity, community 45 

traits and assembly.  Grassland soil microbiomes are dominated by fewer - but 46 

phylogenetically more diverse - prokaryote phylotypes which sustain larger genomes than 47 

microbiomes in arable or bare fallow soil maintained free of plants. Dominant fungi in 48 

grassland soils are less phylogenetically diverse than those in arable or fallow soils.  Soil 49 

tillage increases stochastic processes in microbiome assembly: this, combined with 50 

reduced plant biomass, presents opportunities for organisms with a capacity for 51 

pathogenesis to become established in stressed soils.        52 

       53 

Introduction.   54 

One consequence of the biodiversity of microorganisms in soils (1,2) is that historically, 55 

responses of below-ground communities to environmental or land use change were 56 

thought to be largely inconsequential to ecosystem processes (3).  This stemmed from an 57 

assumption that although functional diversity in soils can be high, it is typically exceeded 58 

by the number of extant soil microbial species. It is generally assumed from this richness 59 

of species that soil biological systems have high levels of functional redundancy.  However, 60 

soil microbial community composition and function have been shown to be sensitive to 61 

land use and climactic change including CO2 increases, inorganic fertilization, 62 

temperature changes and carbon amendments (4). Recovery of community function to 63 

pre-disturbance states is typically limited, particularly by long-term (chronic) disturbances 64 

(5).  Understanding the effects of land management upon soil microbial diversity is 65 

important because soil microbes are responsible for the provision of a significant number 66 



of environmental services (6,7). While the previous two decades have seen an increase in 67 

our understanding of the effects of individual physical or chemical disturbance upon 68 

microbial populations in soil, there is still limited information relating to the more realistic 69 

combined effects of physical and chemical or chronic and acute disturbances (5). 70 

Arguably, the greatest disturbances to soil and associated microbial communities result 71 

from agricultural practices.  Agricultural management is associated with losses of soil 72 

organic carbon (8); harvesting limits the input of plant material, typically to just roots and 73 

stubble in arable systems, and tillage accelerates microbial decomposition of soil organic 74 

matter. Associated mechanical activity also induces soil compaction.  Comparison of soils 75 

from permanently untilled grassland and arable field experiments (9) indicate that 76 

grassland soils show greater physical stability (to compression and wet/dry cycles) and 77 

biological functional stability (to temperature and metal toxicity).  The loss of stability in 78 

arable soils is largely related to management effects on soil organic carbon (9).   79 

 Identifying any effects of disturbance arising from agricultural practice upon the 80 

phylogenetic assemblage and diversity of soil microbial communities is not trivial.   81 

Carbon turnover in soil typically occurs over decennial temporal scales (10).  Studies of 82 

the effects of persistent soil management must account for such long temporal scales if 83 

they are to assess maximal changes in communities (5).  This limits the practicality of 84 

laboratory-based experiments, but controlled field manipulations lasting many decades 85 

provide opportunities to investigate community responses to the combination of 86 

disturbances brought about by altered land management (11).  One example of such field-87 

scale manipulation is the Rothamsted Highfield Ley-Arable experiment, set on soil that 88 

has been under permanent grass since at least 1838.  The experiment compares original 89 

grassland with continuous arable management (established in 1948) as well as bare 90 

fallowed soil, kept free of vegetation and other organic inputs (established in 1959) in the 91 

same soil and exposed to identical climatic conditions.  Over this period, bare fallowed 92 

soils have become depleted in labile organic carbon and enriched in persistent organic 93 

carbon (12), and total organic carbon has been reduced to a greater extent than in arable 94 

soil.  There has also been observable progressive shifts, from grassland to arable and bare 95 

fallow, in the distribution of organic carbon between different pools in the three soil 96 

managements, particularly a relative decline in discrete organic particles independent of 97 

stable soil aggregates, and a corresponding increase in the proportion of organic particles 98 



encapsulated in stable aggregates (13).  Confirmation of this apparent shift in soil structure 99 

has been provided by high-resolution X-ray computed tomography (14).     100 

 This long-established field experiment presents a unique opportunity to study the 101 

combined effects of press disturbance on the magnitude of organic carbon inputs 102 

(estimated at approximately 78 Mg ha-1 annum-1 from perennial grass and forbs to 103 

grassland soils, 46 Mg ha-1 annum-1 derived from annual wheat straw to arable soils, and 104 

none in bare fallow soils (10)) with pulse effects of physical disturbance by tillage (once a 105 

year in arable soils, three to four times a year in bare fallowed soils and never in grassland 106 

soils) upon microbial communities: contemporaneous grassland effectively represents the 107 

pre-disturbance state of arable and bare fallow soils, but also accounting for time as a 108 

covariate.    We generated shotgun metagenome datasets from DNA extracted directly 109 

from soils subject to the three land managements.  Metagenome reads with homology to 110 

prokaryotic or fungal SSU rRNA genes were not clustered but analysed individually using 111 

an evolutionary placement algorithm.  This approach not only increases the accuracy of 112 

taxonomic identification but also considers the complete range of biodiversity represented 113 

in sequenced organisms. We used DNA extracted from soils subject to the contrasting 114 

regimes to test three hypotheses relating to the structure and phylogenetic diversity of soil 115 

prokaryotic and fungal communities:  first, that reduced opportunity space (including 116 

reduced bioavailability of nutrients) resulting from arable and bare fallow managements 117 

will be reflected in reduced diversity of microbial communities compared to communities 118 

associated with grassland; secondly, the reduced opportunity space, particularly as is 119 

relates to the diversity of organic matter inputs, will also be reflected in reduced average 120 

genome lengths observed in prokaryotes associated with arable and bare fallow soils and 121 

environment-associated shifts in 16S rRNA gene copy number; and thirdly, that physical 122 

disturbance associated with arable and bare fallow managements will result in greater 123 

heterogeneity of community assemblages (i.e. β-diversity) between individual plots due to 124 

the influence of stochastic processes upon community assembly. 125 

 126 

Results 127 

Community-Aggregated traits – There was a significant difference in average genome lengths 128 

associated with metagenomes from each land management (ANOVA, F2,6 = 36.7, p = 129 

0.0004, ω² = 0.888).  AGL was 596.3 kb and 1.204 Mb larger in grassland soil than arable 130 

or bare fallow soils, respectively (Fig. 1A).  Significant differences between land 131 



managements were also observed for 16S rRNA gene copy number (ANOVA, F2,6 = 10.9, 132 

p = 0.0100, ω² = 0.688).  ACN was significantly greater in bare fallow soil than either 133 

arable or grassland soils (Fig. 1B). 134 

SSU rRNA gene phylogenetic placement – Bacteria in soils associated with the three land 135 

managements were dominated by Acidobacteria including Luteitalea pratensis 136 

(Vicinamibacteraceae, Acidobacteria subdivision 6), Candidatus Solibacter usitatus 137 

(Solibacteraceae, Acidobacteria subdivision 3), Chloracidobacterium thermophilum 138 

(Chloracidobacterium, Acidobacteria subdivision 4), the Gemmatimonadete Gemmatirosa 139 

kalamazoonesis and the Verrucomicrobium Ca. Xiphinematobacter sp. (Supplementary Fig. 140 

1).  A second, less numerous cluster of phylogenetic placements was associated with 141 

organisms of the Terrabacteria group, including Fimbriimonas ginsengisoli 142 

(Armatimonadetes) and Thermobaculum terrenum (unclassified Terrabacteria group) among 143 

others.  The most abundant Proteobacteria were Rhodoplanes sp. Z2-YC6860 (Rhizobiales) 144 

and Sphingomonas ginsengisoli (Sphingomonadales), both α-Proteobacteria and the 145 

unclassified β-Proteobacterium GR16-43.  Archaea were dominated by Ca. Korarchaeum 146 

cryptofilum and the closely related Ca. Prometheoarchaeum syntrophicum which 147 

outnumbered other placements (Supplementary Fig. 2).  Other abundant organisms 148 

included Ca. Mancarchaeum acidiphilum, the Thermoprotei Crenarchaeotes Caldivirga 149 

maquilingensis, Pyrobaculum arsenaticum and Sulfolobus acidocaldarius and the 150 

Euryarchaeotes Methanobrevibacter ruminantium (Methanobacteriales), Methanopyrus 151 

kandleri (Methanopyrales) and Methanococcus vannielii (Methanococcales).  There were 152 

fewer dominant taxa for fungi than for bacteria or archaea (Supplementary Fig. 3).  The 153 

most abundant fungus in all soils was Conidiobolus obscurus, a member of the 154 

Zoopagomycota. Other abundant fungi included Brunneoclavispora bambusae 155 

(Dothideomycetes), Gongronella orasabula (Mucoromycetes), Cornuvesica acuminate 156 

(Sordariomycetes) and Yarrowia osloensis (Saccharomycetes). 157 

 158 

Abundance-sensitive measures of SSU rRNA sequence diversity – Estimates of sample coverage 159 

(C) for each gene were not significantly different across the land managements 160 

(Supplementary Fig. 4) indicating that direct sample comparison was reasonable.  The 161 

three marker genes present in the soils were not censused equally.  For the bacterial 16S 162 

rRNA gene, C ranged from 97.0 to 98.5%.  This was less than estimates for the archaeal 163 



16S rRNA gene (C = 99.8 – 99.9%), but greater than estimates for the fungal 18S rRNA 164 

gene (C = 94.4 – 97.1%).    165 

 To test the hypothesis that the reduced niche space of arable and bare fallow soils 166 

is reflected in reduced microbial diversity compared to grassland, we examined 167 

abundance-sensitive sequence diversity for each marker gene.  Individual- (Fig. 2) and 168 

sample coverage-based (Supplementary Fig. 5) estimates of sequence richness (0D) 169 

indicated considerable overlap in the estimate 95% confidence intervals and no consistent 170 

effect of treatment.  This was particularly evident for prokaryotic 16S rRNA genes.  There 171 

were no significant effects of land management upon 0D for any gene (largest ω² = 0.383, 172 

fungal 18S rRNA gene, ANOVA F2,6 = 3.8, p = 0.086).  Differences between land 173 

managements were more evident for 1D and 2D which were kingdom dependent.  There 174 

was a significant land management effect upon 1D associated with the bacterial 16S rRNA 175 

gene (ANOVA F2,6 = 9.1, p = 0.015, ω² = 0.642).  Grassland was associated with 176 

significantly lower 1D than soils from the other managements (smallest difference, 177 

grassland vs. arable Q = 5.1, p = 0.025).  There was a more pronounced management effect 178 

on 2D (ANOVA F2,6 = 48.1, p < 0.001, ω² = 0.913), grassland again being associated with 179 

significantly lower diversity than the other soils (smallest difference, grassland vs. arable Q 180 

= 10.7, p < 0.001)  which were equally diverse.  Diversity of the archaeal 16S rRNA gene 181 

was also influenced significantly by management (ANOVA 1D - F2,6 = 8.3, p = 0.019, ω² 182 

= 0.619; 2D - F2,6 = 8.2, p = 0.019, ω² = 0.615).  For both measures, arable soils were 183 

significantly more diverse than bare fallow soils (smallest difference 2D, Q = 5.7, p = 0.016) 184 

but there was no significant difference between grassland and arable soil diversities.  For 185 

the fungal 18S rRNA gene, a significant influence of land management was again apparent 186 

(ANOVA 1D - F2,6 = 7.0, p = 0.027, ω² = 0.573; 2D - F2,6 = 7.1, p = 0.026, ω² = 0.575).  For 187 

1D, grassland was significantly more diverse than either arable or bare fallow soils (smallest 188 

difference, grassland vs. bare fallow Q = 4.4, p = 0.049), however in the case of 2D, only 189 

the difference between grassland and arable soils was significant (Q = 5.0, p = 0.028).  The 190 

trends indicated that grassland soils were associated with significantly lower diversity of 191 

common (1D) and dominant (2D) bacterial sequences. This was reversed for fungi, where 192 

grassland was associated with the highest 1D and 2D sequence diversities. There was also 193 

considerable variation between grassland replicates.   For these genes, diversity in arable 194 

and bare fallow soils was similar.  Archaeal sequence abundance distributions were 195 

markedly different from those observed for bacteria and fungi in the sense that the greatest 196 



sequence diversities were observed in soils managed as arable.  Analysis of abundance-197 

sensitive sequence diversity provides insight into sequence abundance distributions 198 

associated with soils from the different treatments.  No phylogenetic information is 199 

considered, even though it is inherent in the sequences upon which the analysis is based.   200 

 201 

Phylogeny-sensitive measures of SSU rRNA sequence diversity – As an additional test, we 202 

calculated sequence phylogenetic diversity using a one-parameter family of α-diversity 203 

measures - BWPDθ - based upon phylogenetic placement of metagenome reads on each 204 

reference marker gene phylogram. Profiles show the phylogenetic diversity of increasingly 205 

more abundant organisms, akin to qD described above: BWPD0 takes no account of 206 

sequence abundance, while BWPD1 considers the most abundant sequences.  Resulting 207 

profiles are shown in Supplementary Fig. 6.  They demonstrate a common, highly uneven 208 

phylogenetic diversity–abundance distribution but with observable differences between 209 

land uses.  210 

 These differences are illustrated best by considering the extremes of PD profiles:  211 

BWPD0 (Faith’s phylogenetic diversity, representing the sum of lengths of phylogram 212 

branches spanning all community members), and its abundance-weighted extension 213 

(BWPD1) shown in Fig. 3.   As with the response of 0D above, there was no significant 214 

effect of land management upon BWPD0 associated with any biomarker gene, although a 215 

clear consistent trend of arable soils being associated with the lowest PD was evident.  This 216 

observed lack of a treatment effect upon BWPD0 may reflect a remarkable resistance of soil 217 

microbiome PD to environmental change.  However, alternatively it may reflect a relative 218 

lack of statistical power of comparing three replicates per land management.  Irrespective 219 

of this, ω2 estimates suggested that archaeal BWPD1 was the least sensitive to the different 220 

treatments, consistent with observations derived from qD measures of sequence diversity.  221 

There was a significant effect of management upon archaeal 16S rRNA gene BWPD1, and 222 

ω2 estimates suggested that archaea were in this case the most sensitive to the imposed 223 

managements when both phylogeny and abundance were considered.  BWPD1 was 224 

significantly lower in arable soil (6.05 ± 6.47x10-3, mean ± standard error) than in 225 

grassland (6.16 ± 3.98x10-3, Q = 9.5, p = 0.0013) or bare fallow (6.15 ± 15.2x10-3, Q = 9.0, 226 

p = 0.0018) soils. There was no significant difference between grassland or bare fallow soil 227 

archaeal BWPD1. There was also a significant effect of treatment upon BWPD1 associated 228 

with the fungal 18S rRNA gene. In this case, grassland soil was associated with lower 229 



BWPD1 (3.61 ± 0.213) than either arable (4.54 ± 0.197) or bare fallow (4.68 ± 0.324) soils.  230 

There was, however, no statistically significant difference between bare fallow and 231 

grassland soils (Q = 4.2, p = 0.055), showing the extremes of fungal BWPD1.  232 

 233 

Comparison of SSU rRNA gene sequence assemblages – Our third hypothesis related to 234 

processes controlling community assembly in disturbed soils, predicting that physical 235 

disturbance (tillage) associated with arable and bare fallow management would result in 236 

greater assemblage heterogeneity than is observed for undisturbed grassland soils.  To test 237 

this, we generated Kantorovich-Rubinstein (KR) distance metrics, based upon the 238 

distribution of homologous reads associated with each land management on reference 239 

phylograms.  We calculated the multivariate KR deviation of each replicate community 240 

from each land management centroid in Euclidean space (phylogenetic dispersion).  The 241 

rationale was that where a combination of disturbances resulted in strong environmental 242 

filtering, phylogenetic dispersion would be lower than that for grassland soil.  Where 243 

community assembly in disturbed soil was subject to a strong influence of stochastic 244 

processes, phylogenetic dispersion would be greater than in grassland soil.  The observed 245 

relationships between the communities in each soil are shown in Fig. 4. In bare fallow 246 

soils there is greater phylogenetic dispersion than is observed in grassland soils, although 247 

there is overlap of 95% confidence intervals around the means.  This provides evidence of 248 

an increased influence of stochastic processes in bacterial community assembly in bare 249 

fallow soils than grassland soils.  Bacterial community phylogenetic dispersion in arable 250 

soils is indistinguishable from grassland soil communities.  The trend of increased 251 

community phylogenetic dispersion in disturbed soils is more evident for archaea, where 252 

phylogenetic dispersion is greater within arable and bare fallow soil communities.  In this 253 

instance, the 95% confidence intervals suggest significantly greater dispersion between 254 

communities in bare fallow than grassland soils. The response of fungal soil communities 255 

to disturbance is not consistent with an increased influence of stochasticity observed for 256 

prokaryotes.  There was significantly less phylogenetic dispersion between fungal 257 

communities in arable compared to communities in grassland soils.  This suggests 258 

increased environmental filtering during community assembly.  Environmental filtering 259 

was not observed for fungal communities in bare fallow soils which were associated with 260 

similar phylogenetic dispersion as grassland soil communities. 261 



 A significant effect of land management upon sequence assemblages of bacterial 262 

16S rRNA (PERMANOVA, pseudo-F2,6 = 16.3, pperm = 0.0034), archaeal 16S rRNA 263 

(PERMANOVA, pseudo-F2,6 = 8.0, pperm = 0.0036) and fungal 18S rRNA (PERMANOVA, 264 

pseudo-F2,6 = 3.0, pperm = 0.0105) genes was detected.  Post hoc pair-wise comparisons 265 

indicated that prokaryote assemblages were significantly different between all land 266 

managements; in both cases the  smallest pseudo-t was associated with the arable vs. bare 267 

fallow comparison (bacteria, pseudo-t = 3.0, pMC = 0.0084; archaea pseudo-t = 0.1, pMC = 268 

0.0301).  Land management differences were more limited for the fungal 18S rRNA gene.  269 

In this case, only the comparison of assemblages in arable and grassland soils indicated a 270 

significant difference (pseudo-t = 2.2, pMC = 0.0291). Associated CAP analyses are shown 271 

in Supplementary Fig. 7. 272 

 To identify taxa responsible for the observed distinctiveness between land 273 

managements, we used edge-PCA to identify phylogram branches across which there was 274 

a high level of between-sample heterogeneity.  Ordination of bacterial and archaeal 16S 275 

rRNA gene assemblages separated the land managements clearly in two dimensions (Fig. 276 

5 and 6).  On edge-PCA axis 1, bacteria such as Ca. Xiphinematobacter, Rhodoplanes sp. 277 

and the δ-Proteobacterium Sorangium cellulosum and the Crenarchaeotes Sulfolobus sp. and 278 

Metallosphaera sp. were more associated with grassland soils.  The Actinobacteria 279 

Mycolicibacterium sp. and bacterium IMCC26256, the Chloroflexia Roseiflexus sp., the α-280 

Proteobacteria Azospirillum sp. and Sphingomonas sp., the β-Proteobacteria Massilia sp. and 281 

Methyloversatilis sp., the δ-Proteobacterium Polyangium brachysporum and the 282 

Gemmatimonadetes Gemmatirosa kalamazoonensis the Crenarchaeote Sulfurisphaera 283 

tokodaii, the Euryarchaeotes Pyrococcus sp., Methanothrix soehngenii and Methanocaldococcus 284 

sp. and the Thaumarchaeote Ca. Nitrosotenuis were all associated more with bare fallow 285 

soil.  On the second axis, Roseiflexus sp., Rhodoplanes sp., Sphingomonas sp., the 286 

Planctomycete Gemmata obscuriglobus and the Actinobacterium Streptomyces sp., 287 

Methanocaldococcus sp. and other Methanomada group Euryarchaeotes including 288 

Methanococcus paludis, Methanobrevibacter spp. and Methanobacterium sp., the Halobacteria 289 

Euryarchaeaotes Natronococcus occultus and Natronomonas sp., and the Nitrososphaerales 290 

Thaumarchaeotes Ca. Nitrosocosmicus and Nitrososphaera viennensis were all more 291 

associated with arable soil. 292 

 Edge-PCA ordination of fungal 18S rRNA gene assemblages revealed a distinctly 293 

different treatment distribution than observed for 16S rRNA genes (Fig. 7).  Treatment 294 



differences were distributed only across the first axis, separating grassland assemblages 295 

from arable and bare fallow assemblages.  Taxa most associated with grassland were the 296 

Agaricomycetes (Basidiomycota) Amanita pruitii and Clitopilus brunnescens and the 297 

Eurotiomycetes (Ascomycota) Aspergillus cremeus, Cladophialophora sp. and Auxarthron sp. 298 

Arable and bare fallow soils were most associated with the Saccharomycete (Ascomycota) 299 

Yarrowia lipolytica, the Agaricomycete Cantharellus cascadensis, the Kickxellomycete 300 

(Zoopagomycota) Coemansia biformis, the Sordariomycetes (Ascomycota) Ophiocordyceps 301 

tiputini, Cornuvesica crypta, Sporidesmium olivaceoconidium, Peroneutypa  mackenziei and 302 

Irenopsis crotonicola, and the Dothideomycete (Ascomycota) Acidomyces acidophilum.  303 

Ecological guilds associated with these taxa (Table I) suggest grassland soil was associated 304 

more with ectomycorrhizal and saprotrophic fungi, whereas taxa more associated with 305 

arable and bare fallow soils were microfungal in growth habit, and had the capacity to 306 

pathotrophy, associating with animals, plants and lichens. 307 

Discussion 308 

 309 

The Highfield Ley-Arable experiment soils studied here have experienced consistent 310 

management for sufficiently long periods of time for the complete extent of microbial 311 

community response to become apparent.  While grassland soils effectively represent the 312 

original soil community traits, structures and phylogeny, soils managed as arable or bare 313 

fallow continue to experience combinations of press (different levels of plant inputs) and 314 

pulse (different levels of tillage, addition of wheat seed-associated fungicide-insecticide) 315 

disturbance.  Despite these long-term combinations of disturbance, the prokaryotic and 316 

fungal communities in all soils are dominated by a limited number of abundant organisms, 317 

several of which share partner-dependent lifestyles.  For example, Ca. Xiphinematobacter 318 

sp., one of the more abundant bacteria in all metagenomes (Supplementary Fig. 1, 319 

consistently one of the twenty most abundant bacterial species), is an obligate mutualist 320 

endosymbiont of a group of migratory plant root-ectoparasitic nematodes, Xiphinema 321 

americanum sensu lato (16).   It has been identified in forty-nine of the sixty-one nominal 322 

species comprising the X. americanum s. l. complex (17).  The organism was more abundant 323 

in grassland and arable than bare fallow soils (Fig. 5) and this is consistent with 16S rRNA 324 

amplicon sequencing of these microbiomes which identified a Verrucomicrobium as being 325 

associated with significantly different abundance between the three soils (18).  Of the 326 

dominant archaeal species, two are dependent upon associations with other organisms.  327 



Ca. Prometheoarchaeum syntrophicum MK-D1 is a slow growing organism that degrades 328 

amino acids syntrophically with other archaea - Halodesulfovibrio and Methanogenium in the 329 

original co-cultures (19).  A second organism, Ca. Mancarchaeum acidiphilum MIA14, 330 

lacks any genes of the central carbohydrate metabolic pathways, but degrades proteins and 331 

amino acids as part of obligate mutualistic partnerships with Thermoplasmatales archaea 332 

(20).  The most abundant fungus in all soils was the entomopathogen Conidiobolus obscurus, 333 

which produce conidia that infect aphids (21,22).  Another abundant microfungus, 334 

Cornuvesica acuminata, requires metabolites (possibly siderophores) from other fungi for 335 

growth (23).   336 

 Compared to grasslands composed of mixed forb and grass plant species, arable 337 

and bare fallow soils provide severely limited breadths of niche space for microbes: limited 338 

diversity of plant species and reduced ranges of organic inputs.  Our first hypothesis 339 

predicted that reduced opportunity space in arable and bare fallow soils would be 340 

associated with changes to prokaryotic community-aggregated traits: average genome 341 

length and 16S rRNA gene copy number.  The effect of land management upon these 342 

CATs was marked.  Prokaryotic microbiomes of arable and bare fallow soils were 343 

associated with significantly shorter AGL than grassland microbiomes (Fig. 1).  Assuming 344 

an average prokaryote gene length of 0.924 kb (24), the 596.3 kb and 1.204 Mb reductions 345 

of arable and bare fallow AGL represent losses of approximately 645 and 1,300 genes per 346 

genome compared to prokaryotes in grassland soil.  This suggests strong genome 347 

streamlining (25) driven by a pervasive bias towards greater numbers of nucleotide 348 

deletions than insertions in the absence of strong selective pressures to maintain genes (26).  349 

In the absence of the wide variety of organic inputs in grassland soils, a great number of 350 

genes are lost and the less diverse the inputs the greater number of lost genes.  However, 351 

the 16S rRNA gene copy number suggests that microbiome responses to inputs is altered 352 

between soils.  Gene copy number was significantly greater in bare fallow soil than either 353 

arable or grassland soils suggesting a shift in ecological strategy. Bacteria with greater 354 

numbers of rRNA operons show more rapid responses to substrate inputs (27).  Together, 355 

these CATs suggest that microbiomes in arable and bare fallow soils have lost a significant 356 

number of genes (and associated functions) but maintain a greater number of rRNA 357 

operons enabling a more rapid response to organic inputs when they occur. Comparing 358 

ω² between CATs indicates that AGL is more sensitive to stressors than 16S rRNA gene 359 

copy number. 360 



 Our second hypothesis predicted that reduced niche space would be reflected in 361 

lower diversity of prokaryotic and fungal communities typifying each disturbed soil.  We 362 

generated abundance- and phylogeny-sensitive diversity measures that suggest a nuanced 363 

response of biodiversity to land management.  Abundance-insensitive measures (0D and 364 

BWPD0) indicated limited differences in phylotype richness (Fig. 2) or phylogenetic 365 

diversity (Fig. 3).  There was a consistent effect of land management upon BWPD0 – 366 

“feature diversity” (28) – where arable soil was associated with the lowest, and grassland 367 

with the highest BWPD0 for each SSU rRNA gene.  It is remarkable that BWPD0 associated 368 

with arable soil was consistently lower than even that associated with bare fallow soil.  369 

This lack of any statistically significant effect of land management upon phylotype richness 370 

or BWPD0 could be a result of the low statistical power of the experiment however, 371 

richness and PD cannot be estimated in a robust fashion (29) and our results may reflect 372 

this.  1D, 2D and BWPD1 are all estimated with greater certainty and these parameters 373 

indicate significant land management effects upon diversity.  Grassland soils are 374 

associated with significantly lower numbers of common and dominant sequence 375 

phylotypes suggesting a more uneven community profile.  However, BWPD1 (Fig. 3) 376 

suggests that this reduced number of dominant phylotypes were associated with greater 377 

PD than the dominant phylotypes in arable or bare fallow soils.   For the fungal 18S rRNA 378 

gene this distribution was reversed: grassland soils were associated with a greater number 379 

of common and dominant phylotypes (Fig. 2), but dominant phylotypes were significantly 380 

less phylogenetically diverse than dominant phylotypes in disturbed soils (Fig. 3).  The 381 

greatest number of archaeal 16S rRNA gene phylotypes were observed in arable soils (Fig. 382 

2). These were associated with significantly lower BWPD1 than either grassland or bare 383 

fallow soils (Fig. 3).  Prokaryotic communities appeared to have a common phylogeny-384 

sensitive response to land management.   This assessment provides several salient 385 

observations: disturbance in soil systems does not result in consistently reduced measures 386 

of diversity; abundance- and phylogeny-sensitive measures of diversity are necessary to 387 

generate a complete view of soil microbiome responses to disturbance; and, community 388 

responses are kingdom specific. 389 

 In addition to these observations regarding diversity, comparison of soils subject to 390 

different management suggests that shifts in community structure typically do not involve 391 

dominant phylotypes.  Few phylotypes associated with large edge-PCA eigenvalues in 392 

Figs. 5 – 7 were dominant as indicated in Supplementary Fig. 1.  Exceptions to this 393 



observation were the nematode endosymbiont Ca. Xiphinematobacter sp. which was more 394 

numerous in grassland than bare fallow soils, and Gemmatirosa kalamazoonesis, a 395 

representative of a group of extremely abundant soil bacteria (Gemmatimonadetes) well-396 

adapted to arid conditions (30) which was more numerous in bare fallow soil than 397 

grassland, consistent with previous 16S rRNA amplicon sequencing of these soils (18).  A 398 

second organism most numerous in bare fallow soils was Methyoloversatilis sp. which grows 399 

on single-carbon compounds (31) suggesting that organisms adapted to arid conditions or 400 

capable of utilizing simple carbon substrates were typical of bacteria in bare fallowed soils.  401 

Arable soils were associated with significantly higher 1D and 2D, associated with greater 402 

numbers of Methanomada and Halobacteria Euryarchaeotes as well as of ammonia 403 

oxidising Nitrososphaera viennensis and Ca. Nitrosocosmicus sp.  These latter organisms 404 

suggest that the response of archaea to arable management may reflect regular nitrogen 405 

fertilization of these soils.  The response of fungi to land management was distinct from 406 

that of prokaryotes since the difference in communities were expressed on only one edge-407 

PCA dimension separating grassland from the disturbed soils (Fig. 7).  Ectomycorrhizal 408 

Amanita pruitii and saprotrophic Clitopilus brunnescens were less numerous in disturbed soils 409 

than grassland.  Most fungal species identified as more numerous in arable and bare fallow 410 

soils had microfungal or yeast-like growth forms (Table I), possibly because of the effect 411 

of physical disturbance arising from tillage upon ectomycorrhizal fungi (32,33).   Fungal 412 

species which became more numerous in disturbed soils were predominantly pathotrophs 413 

of insects (Ophiocordyceps tiputini), plants (Acidomyces acidophilum, Cornuvesica crypta, 414 

Irenopsis crotonicola and Peroneutypa mackenziei) and lichens (Sporidesmium olivaceoconidium).  415 

The differences in phylotype assemblages observed between the land managements reflect 416 

the predicted selection pressures within the soils and organismal traits. 417 

 Of equal interest to the effects of land management upon microbial diversity is the 418 

issue of how disturbance influences microbiome assembly, testing our third hypothesis.  419 

Our data support the proposition that physical pulse disturbance by tillage in arable and 420 

bare fallow soils results in increased prokaryotic phylogenetic dispersion than in non-tilled 421 

grassland soils (Fig. 4).  This is indicative of an increased role for species neutral assembly 422 

where community structures result from stochastic colonization and extinction processes 423 

and are influenced less by species traits (34,35).   This stochasticity is likely to arise as 424 

tillage disrupts community assembly once per year in arable soils but three or four times in 425 

bare fallow soils.  Phylogenetic dispersion increases with the frequency of tillage (Fig. 4).  426 



Assembly is re-established following tillage, but colonization is influenced by localized 427 

abundance of potential colonizers and the assemblage of organisms remaining which can 428 

exert an influence upon potential immigrating species – termed priority effects (36).   429 

Despite this increased stochasticity, prokaryote phylotype assemblages in arable and bare 430 

fallow soils are distinct, from grassland and each other (Figs. 5 and 6, Supplementary Fig. 431 

6), suggesting several possible phylotype assemblages, dependent upon priority effects and 432 

the degree of disturbance, even under the same environmental conditions and species pool.  433 

However, given the consistent disturbance it is unlikely that the phylotype assemblages 434 

represent stable endpoints, but more likely reflect alternative transient states (37).  435 

Phylotype assemblages are dependent upon disturbance periodicity.  Although we have 436 

not tested it, observation of a greater role for stochasticity in phylotype assembly in 437 

disturbed soils suggests that they may be more susceptible to immigration of pathogens, a 438 

potential problem in arable soils.  Soil structure and phylotype assemblages may contribute 439 

to the significantly reduced yields observed when wheat is grown in the bare fallow soil 440 

studied here (18).  For fungal assemblages there was no evidence of increased dispersion 441 

in response to tillage.  Instead, phylogenetic dispersion was reduced significantly in arable 442 

soil compared to grassland (Fig. 4).  This suggests strong environmental filtering of 443 

phylotypes (niche assembly).  This filtering of fungal phylotypes cannot be due to tillage, 444 

since phylogenetic dispersion of fungal assemblages in bare fallow soils was equivalent to 445 

grassland.  Instead, the fungicide prothioconazole (2-[2-(1-chlorocyclopropyl)-3-(2-446 

chlorophenyl)-2-hydroxypropyl]-1H-1,2,4-triazole-3-thione) added as a wheat seed coat is 447 

likely to exert a significant selection pressure on fungi in arable soils resulting in the 448 

observed increase in fungal niche assembly. 449 

 In summary, after a minimum of fifty-two years of continuous management, soils 450 

experiencing combinations of chemical and physical press and pulse disturbances 451 

harboured distinctly different microbial communities than undisturbed grassland soil.  The 452 

effects of each imposed management upon SSU rRNA gene phylotype diversity were 453 

kingdom dependent.  The observations were also dependent upon whether diversity 454 

metrics considered SSU rRNA gene phylogenies.  As an example, grassland bacterial 455 

phylotype distribution was highly uneven and the soils were associated with the fewest 456 

number of dominant phylotypes which were however more phylogenetically diverse than 457 

the greater number of dominant phylotypes in disturbed arable and bare fallow soils.  At 458 

the other extreme, grassland had the greatest number of dominant fungal phylotypes, but 459 



these were associated with reduced phylogenetic diversity compared to arable and bare 460 

fallowed soils.  We also observed a distinct influence of different disturbance types upon 461 

the assembly of communities in disturbed soils.  Physical disturbance by tillage increased 462 

the influence of stochastic process upon assembly leading to apparently stable transient 463 

states of the prokaryotic communities.  Fungal community assembly was not influenced 464 

by physical disturbance but showed a strong influence of niche assembly probably sue to 465 

fungicide incorporation in arable soils. 466 

Material and Methods 467 

Soils – We analysed soil from plots of the Rothamsted Highfield Ley-Arable field 468 

experiment (00:21:48 °W, 51:48:18 °N). The soil is a silty clay loam (25% clay: 62% silt: 469 

13% sand) (Chromic Luvisol according to FAO criteria).  We sampled plots which had 470 

been managed consistently as bare fallow for fifty-two years, arable for sixty-two years 471 

(continuous winter wheat, Triticum aestivum L., at the time of sampling cv. “Hereward” 472 

seed treated with Redigo Deter, a combination fungicide-insecticide, Bayer Crop Science) 473 

or mixed grass swards since at least 1838. Grassland and arable plots were established as 474 

300 m² plots, randomly distributed between four in-field blocks. Bare fallow plots were 475 

added later in 1959.   476 

DNA Extraction and Metagenome Sequencing - Soil was collected from triplicate plots for each 477 

treatment to a depth of 10-cm. using a 3-cm. diameter corer. The top 2-cm. of soil 478 

containing root mats and other plant detritus was discarded.  Ten cores per plot were 479 

pooled and thoroughly mixed whilst sieving through a 2-mm. mesh; samples were then 480 

frozen at -80 °C.  All implements were cleaned with 70% ethanol (vol./vol.) between 481 

sampling/sieving soil from each plot.  Soil community DNA was extracted from a 482 

minimum of 2 g soil using the MoBio PowerSoil® DNA isolation kit (Mo Bio 483 

Laboratories, Inc. Carlsbad, CA) with three replicates for each soil treatment.  When 484 

necessary, extracts from individual replicates were pooled to provide sufficient material 485 

for sequencing. 10 µg of high-quality DNA was provided for sequencing for each of the 486 

nine plots.  Shotgun metagenomic sequencing of DNA was provided by Illumina® (Great 487 

Abington, UK) using a HiSeq™ 2000 sequencing platform, generating 150-base, paired-488 

end reads.  The generated sequences were limited to a minimum quality score of 25 and a 489 

minimum read length of 70-bases using Trimmomatic (38).  After filtering to remove 490 

substandard sequences, the average metagenome size for each soil was 4.96x108 reads for 491 

grassland, 2.86x108 for arable and 2.88x108 for bare fallow soils.   492 



Estimation of community-aggregated traits - We selected two community-aggregated traits 493 

(CAT) to test our hypothesis regarding the opportunity space provided by the treatments 494 

studied.  Firstly, we generated information regarding the average genome length (AGL) 495 

of prokaryotes in each soil metagenome using the ags.sh binary (39).  The process proceeds 496 

in several steps. First, the abundance of a set of thirty-five single-copy genes are 497 

enumerated and coverage estimated as the total number of annotated bases divided by 498 

each gene length. These largely translation-associated marker genes occur only very 499 

occasionally as duplicates within genomes, are considered both essential for cellular life 500 

and very ancient, evolve at a slow rate and code for basal cellular processes, exhibiting 501 

little variation across phyla (40).  The number of genomes present in each metagenome is 502 

then calculated as the average coverage of the thirty-five single copy genes.  AGL is derived 503 

from the ratio of the number of bases to the number of genomes.  Secondly, we calculated 504 

the average copy number of the 16S rRNA gene using the acn.sh binary (39) which 505 

estimates the 16S rRNA gene coverage as the ratio of bases annotated as belonging to the 506 

16S rRNA gene using SortMeRNA version 2.0 (41) and the 16S rRNA gene length (1,542 507 

bases from Escherichia coli) and this value is then divided by the number of genomes in the 508 

metagenome described above to estimate the average copy number. 509 

SSU rRNA gene phylogenetic placement - Each of the metagenomes generated in this study 510 

were analysed to assess the phylogenetic diversity of bacterial, archaeal and fungal SSU 511 

rRNA genes.  Nucleotide-based profile hidden Markov models (pHMM) were generated 512 

from multi-sequence alignments (MSAs) of reference sequences of each gene using 513 

HMMBUILD, part of the HMMER suite version 3.1 (42).  All MSAs were generated 514 

using the 1PAM/κ = 2 scoring matrix and the E-INS-i iterative refinement algorithm in 515 

MAFFT version 7.3 (43).  For 16S rRNA genes, pHMMs were generated from alignment 516 

of a set of 7,245 bacterial and 266 archaeal curated reference sequences associated with 517 

PAPRICA version 0.5.2 (44), built November 2019.  For the fungal 18S rRNA gene, a 518 

pHMM was generated from 2,447 reference sequences downloaded from the National 519 

Center for Biotechnology Information’s curated Fungal 18S Ribosomal RNA RefSeq 520 

Targeted Loci Project, built February 2020.    Metagenome reads with homology to each 521 

pHMM were identified using HMMSEARCH and a 1x10-5 Expect-value (E) cut-off.  Each 522 

homologous read was assigned to branches of maximum likelihood (ML) phylograms 523 

generated from the respective reference gene sets using RAxML version 8.2.4 (45). 524 

Phylogenetic placement of exact sequence variants was implemented using EPA-NG 525 



version 0.3.6 (46) and visualized using iTOL version 5.5 (47).  Gene sequence placements 526 

can be translated into robust relative abundance and phylogenetic relatedness estimates of 527 

organisms using the taxonomic labelling of phylogram branches.   528 

Statistical Analyses – To test our hypotheses, we generated several gene assemblage-related 529 

metrics, including gene sequence richness and phylogenetic diversity, abundance-sensitive 530 

measures of sequence and phylogenetic diversity using a one-parameter family of diversity 531 

measures, balance-weighted phylogenetic diversity (BWPDθ, (48)) and phylogeny-based 532 

distance metrics for assemblage comparison between treatments.    Sample size- and 533 

coverage-based interpolation and extrapolation of qD of each SSU rRNA gene was 534 

performed using iNEXT version 2.0.20 (49) in R version 3.6.1, treating each read as a 535 

point mass concentrated on the highest-weight placement.  Extrapolation of qD was 536 

extended to the greater of the maximum number of sequences across all samples or twice 537 

the number of sequences in the smallest sample; 77,805 bacterial 16S rRNA sequences, 538 

62,304 archaeal 16S rRNA sequences and 15,153 fungal 18S rRNA sequences. Estimates 539 

of associated 95% confidence intervals were based on 399 bootstrap samples (50). 540 

Estimates of gene sequence similarity-sensitive phylogenetic diversity (PD) based 541 

upon placement of homologous metagenomic reads were assessed by computing a 542 

measure incorporating abundance, using the FPD binary in GUPPY version 1.1 (part of 543 

the PPLACER code (51), accounting for reference ML tree pendant branch length.  The 544 

effects of different land managements upon BWPD0 and BWPD1 were analysed using one-545 

factor analysis of variance (ANOVA) after testing for homogeneity of variances using 546 

Levene’s test and normality using the Shapiro-Wilk test.  We calculated omega squared 547 

(ω2) as an estimate of the extent to which variance in the response variable was accounted 548 

for by the treatment (effect size). The experimental design was limited by having only three 549 

replicate plots per land management and as a result low statistical power (increasing the 550 

likelihood of Type II error).  Where significant treatment effects were identified, post-hoc 551 

pair-wise comparisons were performed using the Tukey-Kramer Studentized Q statistic, 552 

following the Copenhaver-Holland procedure of sequentially rejective multiple 553 

comparisons (52) to control family-wise Type I error.  All parametric tests were performed 554 

using PAST version 4.02 (53). An α of 0.05 was considered significant.   555 

 To assess prokaryotic 16S rRNA and fungal 18S rRNA gene-based β-diversity 556 

between land managements, Kantorovich-Rubinstein (KR) metrics of phylogenetic 557 

distance were calculated from phylogenetic placements of metagenome reads using the 558 



KRD binary associated with GAPPA version 0.4.0 (54), treating each query as a point 559 

mass concentrated on the highest-weight placement.   The KR distance metric, which is 560 

allied to the weighted-UniFrac measure (55), compares gene assemblage distributions on 561 

a phylogram in units of nucleotide substitutions per site, a biologically meaningful 562 

approach to comparing communities. Comparison of β-diversity dispersion of KR 563 

phylogenetic distance metrics within and between land management was performed using 564 

a multivariate analogue of Levene’s test for homogeneity of multivariate variances, the 565 

PERMDISP test (56).    Differences in gene assemblages based upon KR distance metrics 566 

were tested using permutational multivariate analysis of variance (PERMANOVA, (57)).  567 

In addition, the distinctiveness of bacterial, archaeal and fungal phylogenetic assemblages 568 

associated with each land management was tested in multivariate space using canonical 569 

analysis of principle coordinates (CAP, (58)), maximising the success of a leave-one-out 570 

allocation to land management to determine the appropriate number of axes to include in 571 

the test.  CAP-based hypothesis testing was based upon the sum of canonical eigenvalues.  572 

For all multivariate tests, probability estimation was based upon 99,999 permutations 573 

(denoted as pperm). Where PERMANOVA indicated a significant treatment effect, pair-574 

wise comparisons were performed. However, since the number of observations was 575 

insufficient to allow a reasonable number of permutations, Monte Carlo probabilities 576 

(denoted pMC) were calculated based upon an asymptotic permutation distribution.  577 

Multivariate tests were performed using PRIMER PERMANOVA+ version 7.0.13 578 

(PRIMER-e, Auckland, New Zealand).   579 

Unconstrained ordination based upon principal component analysis of the difference in 580 

placement masses across reference phylograms - termed edge-PCA (59) - was used for 581 

graphical representation of phylogeny-based differences between treatments in a two-582 

dimensional plane using the EDGEPCA binary in GAPPA, treating each query as a point 583 

mass concentrated on the highest-weight placement.  An advantage of edge-PCA is that 584 

branches associated with placements contributing to eigenvalues on each axis, and thus 585 

organisms contributing to the observed differences, can be identified.  For fungal taxa 586 

identified by edge-PCA to be characteristic of the difference land managements, we used 587 

the FUNGuild version 1.1 annotation tool (60) to associate taxa with ecological guilds. 588 
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 778 

Figure 1. Aggregated Traits of microbiomes associated with soil of the Highfield Ley-779 

Arable field experiment.  The average genome length (A) and 16S rRNA gene copy 780 

number (B) determined from shotgun metagenomes generated from grassland (green), 781 

arable (yellow) and bare fallow (brown) soils.  In each case the mean value and standard 782 

error of the mean is shown.  Comparisons associated with significant trait differences are 783 

indicated by dashed lines and the associated Tukey-Kramer Studentized Q and probability 784 

(p) are given. 785 

Figure 2.  Sample size-based interpolation (solid line) and extrapolation (dashed line) of 786 

SSU rRNA gene phylotype diversity of order q, qD:  q = 0 (species richness, left panel), q = 787 

1 (Shannon diversity, middle panel) and q = 2 (Simpson diversity, right panel).  Data 788 

points represent the observed qD and number of phylotypes for each data set.  Shaded areas 789 

represent the 95% confidence intervals of the diversity estimates. Diversity is presented as 790 

the effective number of species.  Data for bacterial and archaeal 16S rRNA gene and the 791 

fungal 18S rRNA gene are shown for grassland (green) arable (yellow) and bare fallow 792 

(brown) soils of the Highfield Ley-Arable field experiment.  The observed range in sample 793 

coverage (C) for each gene is given.  Individual sample coverages are shown in 794 

Supplementary Figure 1.  795 

Figure 3.  Comparison of phylogenetic diversity of SSU rRNA gene phylotype 796 

assemblages associated with grassland (green), arable (yellow) and bare fallow (brown) 797 

soils of the Highfield Ley-Arable field experiment based upon a one-parameter family of 798 

diversity measures, BWPDθ, that interpolates between classical phylogenetic diversity 799 

(PD, θ = 0, left panel) and an abundance-weighted extension of PD (θ = 1, right panel).  800 

The mean and standard error of the mean BWPDθ are shown together with results of a 801 

one-factor analysis of variance and observed effect size (ω²) are shown for each gene.  802 

BWPDθ profiles are shown in Supplementary Fig. 6. 803 

Figure 4.  Phylogenetic dispersion associated with SSU rRNA phylotype assemblages in 804 

grassland (green), arable (yellow) and bare fallow (brown) soils of the Highfield Ley-805 

Arable field experiment.  Phylogenetic dispersion was estimated based upon the 806 

multivariate deviation of each replicate community from the centroid of each land 807 

management group in Euclidean space, based upon Kantorovich-Rubinstein phylogenetic 808 

distances between each phylotype assemblage.  The mean ± 95% confidence intervals are 809 

shown for each soil. 810 



Figure 5.  Ordination of bacterial 16S rRNA gene phylotype assemblages shown in Fig. 811 

1a, exploiting the underlying phylogenetic nucleotide sequence structure (edge-PCA).    812 

Phylotype assemblages associated with grassland (green), arable (yellow) and bare fallow 813 

(brown) soils of the Highfield Ley-Arable field experiment are separated across both edge-814 

PCA axes.   Edges associated with large eigenvectors are shown in each axis-associated 815 

colour-coded phylogram and corresponding to the axis colour scales.  Phylotypes 816 

associating more with grassland, arable or bare fallow soils are identified. 817 

Figure 6.  Ordination of archaeal 16S rRNA gene phylotype assemblages shown in Fig. 818 

1b, exploiting the underlying phylogenetic nucleotide sequence structure (edge-PCA).    819 

Phylotype assemblages associated with grassland (green), arable (yellow) and bare fallow 820 

(brown) soils of the Highfield Ley-Arable field experiment are separated across both edge-821 

PCA axes.   Edges associated with large eigenvectors are shown in each axis-associated 822 

colour-coded phylogram and corresponding to the axis colour scales.  Phylotypes 823 

associating more with grassland, arable or bare fallow soils are identified. 824 

Figure 7.  Ordination of fungal 18S rRNA gene phylotype assemblages shown in Fig. 1c, 825 

exploiting the underlying phylogenetic nucleotide sequence structure (edge-PCA).    826 

Phylotype assemblages associated with grassland (green), arable (yellow) and bare fallow 827 

(brown) soils of the Highfield Ley-Arable field experiment are separated across both edge-828 

PCA axes.   Edges associated with large eigenvectors are shown in each axis-associated 829 

colour-coded phylogram and corresponding to the axis colour scales.  Phylotypes 830 

associating more with grassland, arable or bare fallow soils are identified. 831 

Table I.  Predictions of trophic mode, growth form and ecological guild for the fungal 832 

species identified with shifts in community assemblages between grassland, arable and 833 

bare fallow soils shown in Fig. 8.  Predictions are taken from FUNGuild version 1.0.  834 

Supplementary Figure 1. Phylogenetic comparison of bacterial 16S rRNA phylotype 835 

assemblages in grassland (green), arable (yellow) and bare fallow (brown) soils of the 836 

Highfield Ley-Arable field experiment.   The most abundant organisms are identified on 837 

branch tips of each maximum likelihood SSU rRNA gene phylogram. Placement symbol 838 

size is scaled to reflect relative abundance across the nine samples.  Replicates for each 839 

land management are represented by different placement shapes – circle, square or 840 

triangle. 841 

Supplementary Figure 2. Phylogenetic comparison of archaeal 16S rRNA phylotype 842 

assemblages in grassland (green), arable (yellow) and bare fallow (brown) soils of the 843 

Highfield Ley-Arable field experiment.   The most abundant organisms are identified on 844 

branch tips of each maximum likelihood SSU rRNA gene phylogram. Placement symbol 845 

size is scaled to reflect relative abundance across the nine samples.  Replicates for each 846 

land management are represented by different placement shapes – circle, square or 847 

triangle. 848 

Supplementary Figure 3. Phylogenetic comparison of fungal 18S rRNA phylotype 849 

assemblages in grassland (green), arable (yellow) and bare fallow (brown) soils of the 850 

Highfield Ley-Arable field experiment.   The most abundant organisms are identified on 851 



branch tips of each maximum likelihood SSU rRNA gene phylogram. Placement symbol 852 

size is scaled to reflect relative abundance across the nine samples.  Replicates for each 853 

land management are represented by different placement shapes – circle, square or triangle 854 

Supplementary Figure 4.  Sample size-based interpolation (solid line) and extrapolation 855 

(dashed line) of SSU rRNA gene phylotype coverage.  Data points represent the observed 856 

coverage and number of phylotypes for each data set.  Shaded areas represent the 95% 857 

confidence intervals of the coverage estimates.  Data for bacterial and archaeal 16S rRNA 858 

genes and the fungal 18S rRNA gene are shown for grassland (green) arable (yellow) and 859 

bare fallow (brown) soils of the Highfield Ley-Arable field experiment. 860 

Supplementary Figure 5.  Sample coverage-based interpolation (solid line) and 861 

extrapolation (dashed line) of SSU rRNA gene phylotype diversity of order q, qD:  q = 0 862 

(species richness, left panel), q = 1 (Shannon diversity, middle panel) and q = 2 (Simpson 863 

diversity, right panel).  Data points represent the observed qD and coverage for each data 864 

set.  Shaded areas represent the 95% confidence intervals of the diversity estimates. 865 

Diversity is presented as the effective number of species.  Data for bacterial and archaeal 866 

16S rRNA genes and the fungal 18S rRNA gene are shown for grassland (green) arable 867 

(yellow) and bare fallow (brown) soils of the Highfield Ley-Arable field experiment. 868 

Supplementary Figure 6.  Comparison of phylogenetic diversity profiles of SSU rRNA 869 

gene phylotype assemblages associated with grassland (green), arable (yellow) and bare 870 

fallow (brown) soils of the Highfield Ley-Arable field experiment based upon a one-871 

parameter family of diversity measures, BWPDθ, that interpolates between classical 872 

phylogenetic diversity (PD, θ = 0) and an abundance-weighted extension of PD (θ = 1).   873 

 Supplementary Figure 7.  Discriminant analysis employing canonical analysis of 874 

principal coordinates (CAP) of SSU rRNA phylotype assemblages based upon 875 

Kantorovich-Rubinstein phylogenetic distance metrics.  Phylotype assemblages associated 876 

with grassland (green) arable (yellow) and bare fallow (brown) soils of the Highfield Ley-877 

Arable field experiment are shown.  For each ordination, two CAP axes were defined, 878 

based upon maximising a leave-one-out allocation success to a priori land management 879 

groups.  The results of permutation tests of the significance of the canonical relationships 880 

using the trace statistic (sum of canonical eigenvalues) are shown. 881 
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TABLE I 890 

Genus Association Trophic 

Mode 

Growth 

Form 

Guild 

Acidomyces arable/fallow Pathotroph; 

Saprotroph; 

Symbiotroph 

Microfungus Endophyte; Plant Pathogen; 

Unknown Saprotroph; Wood 

Saprotroph 

Amanita grassland Symbiotroph Agaricoid Ectomycorrhizal 

Aspergillus grassland Pathotroph; 

Saprotroph; 

Symbiotroph 

Microfungus Animal Pathogen; Endophyte; Plant 

Saprotroph; Soil Saprotroph; 

Undefined Saprotroph; Wood 

Saprotroph 

Auxarthron grassland Saprotroph not known Undefined Saprotroph 

Cantharellus arable/fallow Symbiotroph Cantherelloid Ectomycorrhizal 

Cladophialophora grassland Saprotroph Facultative 

Yeast 

Undefined Saprotroph 

Clitopilus grassland Saprotroph Agaricoid Undefined Saprotroph 

Coemansia arable/fallow Saprotroph not known Undefined Saprotroph 

Cornuvesica arable/fallow Pathotroph; 

Saptroroph 

Microfungus Plant Pathogen; Wood Saprotroph 

Irenopsis arable/fallow Pathotroph not known Plant Pathogen 

Ophiocordyceps arable/fallow Pathotroph; 

Symbiotroph 

Microfungus Animal Pathogen; Endophyte 

Peroneutypa arable/fallow Pathotroph not known Plant Pathogen 

Sporidesmium arable/fallow Pathotroph Microfungus Lichen Parasite 

Yarrowia arable/fallow Saprotroph Yeast Undefined Saprotroph 
















