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Automated extraction of
pod phenotype data from
micro-computed tomography
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Institute, London, United Kingdom, 2Department of Plant Sciences for the Bioeconomy, Rothamsted
Research, Harpenden, United Kingdom, 3Department of Chemical Engineering and Biotechnology,
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Introduction: Plant image datasets have the potential to greatly improve our

understanding of the phenotypic response of plants to environmental and

genetic factors. However, manual data extraction from such datasets are

known to be time-consuming and resource intensive. Therefore, the

development of efficient and reliable machine learning methods for extracting

phenotype data from plant imagery is crucial.

Methods: In this paper, a current gold standard computed vision method for

detecting and segmenting objects in three-dimensional imagery (StartDist-3D) is

applied to X-ray micro-computed tomography scans of oilseed rape (Brassica

napus) mature pods.

Results: With a relatively minimal training effort, this fine-tuned StarDist-3D

model accurately detected (Validation F1-score = 96.3%,Testing F1-score =

99.3%) and predicted the shape (mean matched score = 90%) of seeds.

Discussion: Thismethod then allowed rapid extraction of data on the number, size,

shape, seed spacing and seed location in specific valves that can be integrated into

models of plant development or crop yield. Additionally, the fine-tuned StarDist-3D

provides an efficient way to create a dataset of segmented images of individual

seeds that could be used to further explore the factors affecting seed development,

abortion and maturation synchrony within the pod. There is also potential for the

fine-tuned Stardist-3D method to be applied to imagery of seeds from other plant

species, as well as imagery of similarly shaped plant structures such as beans or

wheat grains, provided the structures targeted for detection and segmentation can

be described as star-convex polygons.
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1 Introduction

The study of plant traits, such as plant architecture, growth,

development, physiological or biochemical profiles is known as

plant phenotyping. Identifying connections between plant genotype

and phenotype is essential to advance our understanding of

underlying developmental mechanisms in plant biology. With the

recent rapid progression in functional genomics due to advances in

high throughput sequencing, quantitative analyses of plant traits are

of increasing relevance as it could allow for the links between

genotype and phenotype to be explored in greater depth. For

example, studies such as Genome-Wide Association Studies

(GWAS) involve testing genetic variants across genotypes of a

population to identify genotype-phenotype associations and

provide essential information for plant breeding (Brachi et al.,

2011; Alseekh et al., 2021). By obtaining insights on how genetics

and environmental pressures lead to different phenotypic response

in plants, more suitable and sustainable crops can be selected for

growth in specific environments, as by identifying the genetic basis

of phenotypic variation a better understanding of the factors driving

plant adaptation and stress tolerance could be achieved.

The need to better characterize plant developmental growth

stages and monitor traits that affect yield has led to an increased

demand for and collection of high-throughput, high resolution

plant image datasets (Costa et al., 2019). Analysis of such image

datasets could allow for a more detailed understanding of dynamic

developmental changes and for phenotypic traits to be measured in

a non-destructive manner in comparison to current commonly

used manual phenotyping methods. However, manual analysis of

these image datasets can also be time-consuming, inconsistent, and

requires expert observers. Therefore, developing reliable and

efficient methods for automated extraction of phenotype data

from plant images is crucial.

Image analysis pipelines for easy phenotyping have recently

become more widely available such as those for measuring leaf area,

leaf growth and root traits (Bours et al., 2012; Easlon & Bloom,

2014; Seethepalli et al., 2021). Although image acquisition is

relatively straightforward, image analysis is plagued by a number

of bottlenecks. In most cases, image thresholding and data

extraction is still laborious and requires manual input. There also

is a lack of consistency with regards to image acquisition between

different days or between laboratories, which hampers the reliable

extraction of phenotypic traits. Moreover, the automated images

acquired in the agricultural sciences are driven by specific biological

hypotheses, and the downstream pipelines typically are purpose-

built and not compatible to other research areas, and often not free

or easy to use.

In recent years, the study of plant organs and tissue

development has been focused on the use of confocal microscopy,

where 2D and 3D information is obtained by optical sectioning and

the use of fluorescent markers. However, this is limited by the

thickness of the sample being studied and the availability of suitable

markers. A very valuable non-invasive and cost-effective 3D

imaging technique for detecting and quantifying internal

structures in a non-destructive manner without the necessity of

using stains is X-ray micro-computed tomography (μCT), which is

based on differential X-ray attenuation by biological materials. μCT

scanners were developed mainly for medical purposes, and are not

widely used in plant sciences (Dhondt et al., 2010; Pajor et al., 2013;

Piovesan et al., 2021). To date, there has been limited application of

this method to visualize above-ground plant structures because of

the low attenuation density that these tissues present, resulting in

images with low contrast (Pajor et al., 2013). However, recent

improvements in scan resolution, quality and scan speed of

current state-of-the-art μCT scanners present an opportunity to

analyse these above-ground plant structures without the necessity of

fixing or staining them. The μCT scanner has recently been used for

the analysis of different plant tissues and organs, such as seeds,

fruits, rice and wheat spikes flowers and leaves traits (Rousseau

et al., 2015; Hughes et al., 2017; Tracy et al., 2017; Mathers et al.,

2018; Schneider et al., 2018; Xiong et al., 2019; Gargiulo et al., 2020;

Hu et al., 2020; Kunishima et al., 2020; Liu et al., 2020; Narisetti

et al., 2020). These advances make this a promising technique to

study complex plant traits, such as the internal structure of opaque

mature pods without requiring destructive dissection methods. The

resulting images have a higher resolution than those generated

using other techniques such as light boxes or a light sheet confocal.

Although μCT scanning is a valuable tool for obtaining high-

resolution images, advanced computational skills are required to

develop automated data extraction pipelines from these images.

This study aims to improve our understanding of seed biology and

its related traits in the Brassica napus crop. For this purpose, images

of mature seed pods were acquired, and data relating to the seed

number per pod (SNPP) and seed area, as well as pod length were

semi-automatically extracted. Although counting SNPP manually is

quite easy, it is time consuming, and further data must be manually

processed. When obtaining these data for GWAS studies with 100

individuals in a population, several hundreds of images need to be

processed, resulting in an arduous and non-straightforward task.

Moreover, more specific and biologically important information

such as the position of the seeds in different pod valves and their

relative spacing, is difficult to obtain. Therefore, we are interested in

applying machine learning methods to assess whether this would

allow us to generate a straightforward automated pipeline with

minimal pre-processing for data extraction of phenotypic

measurements from 3D μCT pod image data, including the

number, size and shape of seeds, as well as their spatial

arrangement relative to each other and to other pod structures.

In order to automatically extract valuable phenotypic

measurements from 3D μCT pod image data, the first step

required is to locate all individual seeds within a 3D volume. In

machine learning, this is referred to as an object detection task,

and can typically be achieved using models trained to recognize

the target object (in this case B. napus seeds) and output the

centre-point and/or a bounding box for each detection (Weigert

et al., 2020). To extract data on seed size and shape, each pixel in

the 3D volume needs to be labelled as either seed or background.

Machine learning models designed to perform semantic

segmentation have been shown to be able to achieve this for 3D

volume data with high accuracy, but do not discern between

individual objects meaning they cannot provide information on

seed number and location (Alalwan et al., 2021; Kar et al., 2021;
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Sodjinou et al., 2022). Therefore, an instance segmentation

method that allows for both detection of multiple distinct

objects, and that outputs both the number and location of seeds

as well as a separate labelled mask capturing the shape and size of

each seed is needed to achieve the goal of automatically extracting

phenotype data from 3D μCT pod images (Lin et al., 2021; Wang

et al., 2022).

Many automated instance segmentation methods have been

proposed to process the increasingly large 3D volume datasets

modern imaging instruments such as μCT scanners and

microscopes are capable of producing (Meijering, 2012). These

include non-machine learning approaches such as methods

watershed transform-based morphological methods (Beucher &

Meyer, 1993; Lotufo et al., 2002; Cheng & Rajapakse, 2009),

graph-cut based optimization (Boykov & Funka-Lea, 2006), and

thresholding or pixel-grouping using connected component

analysis (Majanga & Viriri, 2021), as well as recent methods

based on deep learning have been demonstrated to significantly

improve the accuracy of instance segmentation predictions for

images of biological specimens (Van Valen et al., 2016; He et al.,

2017; Xie et al., 2018). These methods can be broadly sorted into

two categories; methods in which semantic segmentation is

performed first and pixels are then grouped into distinct objects

(Çicek et al., 2016; Caicedo et al., 2019), and methods in which

bounding boxes for individual objects are first predicted and then

semantic segmentation is performed for each detected object (He

et al., 2017; Xu et al., 2018; Zhao et al., 2018). However, despite the

increased performance demonstrated by these deep learning

methods in comparison to thresholding, watershed, and graph-

cut optimization methods, they often still produce inaccurate results

when used to predict the location and segment the individual shape

of densely-packed objects, similar to the close positioning of seeds

within the B. napus pod μCT image dataset (Schmidt et al., 2018).

StarDist-3D is an automated object detection and segmentation

approach that was recently used to identify and examine the size,

shape and spatial arrangement of individual cell nuclei in

volumetric (3D) fluorescence microscopy images. It exhibits a

high degree of accuracy in terms of both the predicted counts and

shape of cell nuclei compared to other contemporary approaches

such as U-Net and IFT-Watershed (Lotufo et al., 2002; Çicek et al.,

2016; Schmidt et al., 2018; Weigert et al., 2020). The method uses a

neural network to predict whether each pixel in a 3D volume is part

of an individual target object, and to predict the distance to the

object boundary using along several radial directions, defined based

on spherical Fibonnaci lattice (Weigert et al., 2020). Thus, the shape

of detected objects is predicted as a star-convex polygon, with

increasing detail in the fluctuations along the surface of the object

rendered when a higher number of Fibonnaci rays is used, allowing

the anisotropy, or variation in shape of the target objects along

different axial direction, of predicted objects to be more accurately

reconstructed (Weigert et al., 2020).

It was determined that it would be potentially advantageous to

apply the StarDist-3D approach to 3D μCT images of B. napus pods

as the method was demonstrated to yield high accuracy in terms of

both detection and segmentation for objects in close proximity to

each other, as B. napus seeds are often observed to be tightly packed

within pods (Weigert et al., 2020). Another potential advantage of

the method was that it incorporates a computationally efficient

non-maximum suppression (nms) process that reduces the

likelihood of detecting the same object multiple times by

suppressing detections with low confidence where the boundaries

of detections with high confidence overlap (Schmidt et al., 2018;

Weigert et al., 2020). Additionally, the StarDist-3D approach

requires a relatively small amount of training data as it has been

pre-trained to detect and segment a generalized variety of star-

convex polygonal shapes. It is capable of quickly processing

typically large 3D images, and the model outputs can easily be

passed to state-of-the-art open-source toolkits for image analysis to

extract specific data on the location, spatial arrangement, and 3D

shape of predicted seeds (van der Walt et al., 2014; Gostick et al.,

2019). Although the StarDist-3D has previously only been applied

to cell microscopy images, it was posited that the method could be

applied to any 3D volumetric image dataset regardless of sensor

type or scale provided the target objects could be described as star-

convex polyhedral. As B. napus seeds tend to be rounded or oval in

shape, with slight variations or asymmetry along different axial

directions, it was likely that the seeds could be appropriately

described as star-convex polyhedra. Therefore, in this manuscript

we explore the accuracy of detection and segmentation of a

StarDist-3D model fine-tuned on 3D μCT images of B. napus

pods, along with investigation of extraction of data on seed size,

shape and spatial arrangement from the model outputs which could

provide important biological information to improve models

pertaining to plant development and crop yield.

2 Materials and methods

2.1 Plant growth conditions and
data collection

A B. napus diversity set population with ninety-six genotypes

was grown as in Siles et al. (2021). The seeds were germinated in

P24 trays with John Innes Cereal Mix and once they presented

four true leaves, they were transferred to a vernalization room

with an 8 h photoperiod at 4°C day/night for 8 weeks. Each plant

was re-potted in a 2 L pot in John Innes Cereal Mix. Each genotype

had five biological replicates and once out of vernalization, all

plants were grown in two glasshouse compartments in long-day

conditions (16 h photoperiod) at 18°C day/15° night (600w SON-

T, high pressure sodium lighting) at a density of 12 pots per m2.

Once the plants were fully dry and mature, the first five dry pods

on the main inflorescence were ignored, and the next three

developed pods were collected for scanning. To avoid pod

shattering the pods were sprayed with Prism Clear Glaze

(Loxley Arts, Sheffield, UK).

For each genotype, three fully dried pods were placed in plastic

holders (34mm x 110mm) and packing peanuts were used to keep

the samples in place while scanning. The pedicel was cut with a

scalpel before placing the pods into the plastic holders. If the pods

were too tall to fit in the holders, they were cut into two pieces and

were separately scanned. Twelve holders were loaded into the

Corcoran et al. 10.3389/fpls.2023.1120182

Frontiers in Plant Science frontiersin.org03

https://doi.org/10.3389/fpls.2023.1120182
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


sample changing carousel of a mCT100 scanner (Scanco Medical,

Switzerland). This scanner has a cone beam X-ray source with

power ranging from 20 to 100 kVp (pre-set and calibrated for 45,

55, 70, 90 kVp) and a detector consisting of 3072 × 400 elements (48

μm pitch) and a maximum resolution of 1.25 μm. Pods were

scanned with the X-ray power set at 45 kVp, 200 μA, 9W, with

an integration time of 200 ms.

2.2 Image dataset description

Images were retrieved from the proprietary Scanco microCT file

type format (.ISQ), which contained single-pixel width two-

dimensional (2D) trans-axial projections, or ‘slices’, that together

formed stacks depicting an entire pod as three-dimensional (3D)

volumes. Thirty-two distinct 3D volumes were included in the

experiment dataset, each containing a single entire B. napus pod.

All 2D trans-axial (XY) slices were 512 × 512 pixels, therefore the

height and width of all 3D volumes was also 512 pixels. Individual

3D volumes varied in length from 505 to 1397 slices, with a total of

29,871 slices in the experimental dataset. The total dataset

contained 471 seeds.

The total dataset was split into a model training and validation

dataset comprised of 13 3D volumes, 12,475 2D slices and 262 seeds

and a model testing dataset containing comprised of 19 3D

volumes, 17,396 2D slices and 209 seeds. This split was decided

upon due to the uneven number of seeds in each seed pod, with the

training and validation dataset containing 262(56%) of seeds and

the testing dataset containing 209(44%) of seed. Another factor

impacting the split of data was that intact 3D volumes of entire

seedpods needed to be used for testing, to demonstrate that reliable

seed detection and segmentation could be achieved on the original

imagery without any pre-processing. Conversely, Weigert et al.

(2020) demonstrated that more accurate results could be obtained

in a computationally efficient manner by training a StarDist-3D on

smaller sub-volumes of the original 3D volume data containing

objects of interest, in this case sub-volumes containing at least one

entire seed. The 3D volumes in the model training and validation

dataset were therefore comprised of 138 small sub-volumes of

stacked 2D slices containing a single seed, or multiple seeds in

instances where seeds occupied some of the same 2D slices. These

sub-volumes ranged in size between 24 to 84 2D slices depending on

the size of the single seed or multiple overlapping seeds contained

within. This sub-division was carried out in order to ensure a

mixture of seeds from different seed pods could be used for model

training and validation. 117 sub-volumes containing 220 seeds were

randomly sorted into the final ‘training’ dataset, and 21 volumes

containing 42 seeds were sorted into the final ‘validation’ dataset.

2.3 Image pre-processing and annotation

All 3D volumes contained in the experimental dataset were batch

converted from their original.ISQ format into.TIF stacks using BoneJ

plugin (Domander et al., 2021) for Fiji ImageJ software version 2.9.0

(Schindelin et al., 2012). All 262 seeds contained within the 138 3D

sub-volumes comprising the ‘training’ and ‘validation’ datasets were

then manually annotated using Fiji and the Labkit plugin (Schindelin

et al., 2012; Arzt et al., 2022). Sub-volumes were converted from XYZ

format to XYT timeseries using the ‘re-order hyperstack’ function

provided by Fiji. Labelled masks the entire area covered by the seed in

each 2D slice were then created using Labkit, with the same label

applied to all pixels contained within a single seed as it appeared across

multiple slices. 3D masks of the entire shape (interior and exterior) of

each seed were then created by stacking the slices with 2D label masks.

During this annotation process the true number of seeds within each

seed pod was recorded by manually counting the seeds within each

3D volume.

2.4 Seeds as star-convex polygons

To determine whether the shape of B. napus seeds could be

appropriately described by star-convex polygons, the accuracy of

reconstruction of ground truth labels for a small subset of 10 3D

sub-volumes from the ‘training’ dataset was explored. Accuracy of

reconstructed seeds was assessed based on the mean intersection-

over-union (IoU) of ground-truth seed labels compared to 3D star-

convex polyhedra shape representations of the seed, predicted using

the method described by Weigert et al. (2020) in which for each

pixel inside a seed the distance to the object boundary is calculated

along a fixed set of rays that are approximately evenly distributed on

an ellipsoid representative of the seeds within the dataset (see

Weigert et al., 2020 eq. 1). The sets of rays used in seed

reconstruction were calculated as Fibonacci rays, defined using

the method described by Weigert et al. (2020), which were shown

to be more accurate for reconstruction of 3D star-convex polyhedra

than equidistant distributed rays and allowed for the potential

anisotropy of seed to be taken into account. Reconstruction

accuracy was investigated using a varying number of Fibonacci

rays (8, 16, 32, 64, 96, and 128), as although Weigert et al. (2020)

found a set of at least 64 rays was necessary to achieve accurate

reconstruction of shape for cell nuclei, they suggested accurate

reconstruction of less anisotropic or densely-packed objects may be

possible with a smaller set of rays which would allow for less

computational resources to be used in shape prediction.

2.5 Model training and validation

A StarDist-3D model with a U-Net backbone (Çicek et al., 2016)

was trained to detect and segment individual B. napus seeds in 3D μCT

sub-volumes from the labelled ‘training’ dataset using the pipeline

described byWeigert et al. (2020). Model training was performed using

a Google Colab runtime with 25.46 GB and a single GPU (Bisong,

2019). The StarDist-3D model was configured to use 96 Fibonacci rays

in shape reconstruction, and to take into account the mean empirical

anisotropy, of all labelled seeds in the dataset along each axis as

calculated using the method described by Weigert et al., 2020 (X-axis

= 1.103448275862069, Y-axis anisotropy = 1.032258064516129, Z-axis

anisotropy = 1.0). The training patch size, referring to the size of the

tiled portion of the 3D sub-volumes in the ‘training’ within view of the
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neural network at any one time, was set to Z = 24, X= 96, and Y = 96

and training batch size set to 2. Training ran for 400 epochs with 100

steps per epoch and took 1.36 hours to complete (123ms/step).

Model validation was then performed by using the fine-tuned

StarDist-3D algorithm to predict seed labels for all 3D μCT sub-

volumes from the ‘validation’ dataset, which were then compared to

the number and shape of seeds manually counted and labelled

during annotation. Accuracy of seed detection and segmentation

was then quantified for various levels of threshold t, defined as the

IoU between the predicted label and ground-truth label for each

seed. The value of t ranged between 0, where even a very slight

overlap between predicted seeds and actual seeds counted as

correctly predicted, and 1, where only predicted seed labels with

pixel-perfect overlap with ground-truth labels counted as correctly

predicted (Weigert et al., 2020).

Object detection accuracy was measured using the number of

true positive results (TP), or number manually counted and labelled

seeds that were correctly detected seeds, the number of false

negative results (FN), or the number of manually counted and

labelled seeds that were missed, the number of false positive results

(FP), or number of objects other than seeds than were detected,

recall, precision and F1-score. Recall related to the fraction of

relevant objects that were successfully detected and was defined as:

Recall =
TP

TP + FN

Precision related to the fraction of all detected objects that were

relevant and was defined as:

Precision =
TP

TP + FP

F1-score related to the harmonic mean of precision and recall,

with the impact of precision and recall being given equal weight. F1-

score was defined as:

F = 2� Precision  �Recall
Precision + Recall

The accuracy of seed segmentation, or the accuracy of seed size

and shape prediction, for the validation dataset was determined

based on the mean matched score, defined as the mean IoU between

the predicted and actual shape of true positive results, the mean true

score, defined as the mean IoU between the predicted and actual

shape of true positive results normalised by the total number of

ground-truth labelled seeds, and panoptic quality, as defined in Eq.1

of Kirillov et al., 2019.

StarDist-3D models allow for specification of two values, the

t-threshold and the nms-threshold to optimize model output

(Schmidt et al., 2018; Weigert et al., 2020). The t-threshold refers

to the minimum intersection-over-union between pairs of predicted

and ground-truthed seeds required for detections to be classified as

true positives, and can be set at 0.1 interval levels between 0.1 and 1

with 0.1 indicating a 10% overlap in the pixels within the predicted

shape of a seed and the ground-truthed label and 1 respreseting a

100% overlap (Schmidt et al., 2018; Weigert et al., 2020). The nms-

threshold, refers to the level of non-maximum suppression applied to

the results of object detection and instance segmentation to prune the

number of predicted star-convex polyhedra in ideally retain a single

predicted shape for each true object, in this case each seed, within an

image. The nms-threshold can be set at 0.1 interval levels between 0

and 1 with higher levels indicating more aggressive pruning of

predicted shapes which therefore leads to fewer detections in the

final model output. Therefore a higher nms-threshold is valuable in

cases where the number of false positives expected in unfiltered model

predictions is high. Both the t-threshold and the nms-threshold for

the fine-tuned StarDist-3D algorithm were set to optimal values

based on the ‘validation’ dataset using the ‘optimize_thresholds’

function of StarDist (Schmidt et al., 2018).

2.6 Model testing and outputs

Testing of the fine-tuned StarDist-3D algorithm was carried out

using the ‘test’ dataset, which was kept separate frommodel training

and validation. Model testing was also carried out using the same

Google Colab instance as model training and validation. Prediction,

including both detection and segmentation of seeds took on average

1 minute 24 seconds to complete for a single complete 3D μCT

volume containing a whole B. napus pod. Accuracy of seed

detection was quantified using the same metrics as model

validation, with the predicted number and location of seeds

compared to the true number of locations of seeds in each image.

The output of prediction for the fine-tuned StarDist-3D algorithm

were 3D numpy array volume containing labels depicting the predicted

shape of seeds for each 3D μCT volume of a whole B. napus pod. The

number and location of seeds including both bounding box and

centroid coordinates on the Z, Y and X axis of the 3D volume could

TABLE 1 Example of data extracted on Brassica napus seed number per pod and seed location derived from fine-tuned StarDist-3D algorithm predictions.

Seed ID
Number

Z-axis
minimum

Y-axis
minimum

X-axis
minimum

Z-axis
maximum

Y-axis
maximum

X-axis
maximum

Z-axis
centroid

Y-axis
centroid

X-axis
centroid

1 354 258 221 387 293 257 370.3969 274.8411 238.3993

2 248 282 213 281 318 248 264.5435 299.7615 229.9509

3 504 264 214 538 299 250 520.8316 280.5683 231.2285

4 293 258 219 326 293 255 308.6688 274.7142 236.1587

5 185 271 206 215 304 239 199.2717 286.0577 221.4716

Corcoran et al. 10.3389/fpls.2023.1120182

Frontiers in Plant Science frontiersin.org05

https://doi.org/10.3389/fpls.2023.1120182
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


then be retrieved using the ‘regionprops’ and ‘regionprops_table’

functions of ‘scikit-image’ (van der Walt et al., 2014), an open-source

python image analysis package (Table 1). Measurements of the 3D

shape of seeds could also be extracted from the fine-tuned StarDist-3D

mode l pred ic t ions us ing the ‘ reg ionprops_3D ’ and

‘props_to_Dataframe’ functions of ‘porespy’ (Gostick et al., 2019), an

open-source python toolset for extracting data from 3D images of

porous materials (Table 2). Seed size and shape metrics extracted using

porespy functions included:

• Volume – the predicted volume of a detected seed in

number of voxels

• Bounding box volume – the volume of the rectangular 3D

bounding box containing a detected seed in number of

voxels

• Sphericity – the ratio of the area of a sphere with the same

volume as a detected seed to the predicted surface area of

the same detected seed

• Surface area – the predicted surface area of a detected seed

calculated using a reconstructed mesh of the surface

contour of the seed

• Convex volume – number of pixels in the predicted convex

hull image of a detected seed

• Equivalent diameter – the diameter of a circle with the same

area as a detected seed

• Extent – ratio of pixels within the predicted shape of a

detected seed to the total pixels within the 3D rectangular

bounding box containing the seed

• Major axis length - the width of the thickest part of the seed,

measured as a straight line through an ellipse that has the

same normalized second central moments as the detected

seed

• Minor axis length - the width of the thinnest part of the

seed, measured as a straight line through an ellipse that has

the same normalized second central moments as the

detected seed

• Solidity – ratio of number of pixels within the predicted

shape of a detected seed to number of pixels within the

convex hull images of the same detected seed

Segmented images of individual detected seeds can also be exported.

3D volume images of individual seeds can be converted into numpy

arrays and saved for further investigation using the open-source

‘numpy’ python package (Harris et al., 2020). As shown in Figure 1,

individual 2D trans-axial slices showing a cross-section of detected seeds

on both the XY and XZ axis can also be viewed and exported using the

‘intensity_image’ function of scikit-image (van der Walt et al., 2014).

2.7 Automated seed sorting by pod valve

In order to predict the valve in which the detected seeds were

situated within the pod, coordinates of seeds detected with the fine-

tuned StarDist-3D algorithm were converted to.csv format using

the ‘pandas’ python package (McKinney, 2010) in order to allow

loading into RStudio (RStudio Team, 2020). A locally weighted

scatterplot smoothing (lowess) regression line was then fit to the XZ

axis centroids of detected seeds using the ‘lowess’ function of the

‘gplots’ package in R (Cleveland 1979; Cleveland 1981; Warnes

et al., 2005; R Core Team, 2018). The lowess regression line was

then used to predict the division between the two valves of the seed

pod, serving as a simplified reconstruction of the pod

pseudoseptum, which is the membrane that separates both valves

(Figure 2). The XZ centroid was used as all pods were arranged the

same way during image collection so that the XZ plane displayed a

cross-section of the pod with seeds sitting in one of two valves

separated by the pod pseudoseptum, with the pod beak on the left

and the pod pedicel on the right (Figure 3). In cases where pods

contained less than or equal to 5 seeds, the smoother span (f), or

proportion of points influencing the smooth at each value for the

lowess regression line was set to f = 1. For seed pods containing

greater than 5 seeds the default value of f provide by the ‘lowess’

function was used. The vertical distance between the XZ centroid of

detected seeds and lowess regression line was then calculated and

seeds found to be above the lowess regression line were determined

to belong to ‘valve 1’ while seeds below the line were determined to

belong to ‘valve 2’. The sequence number for detected seeds in each

valve from pod beak to pedicel, and the distance between sequential

seeds in each valve could then be calculated and added to the.csv

data of seed coordinates for each seed pod. The base R function ‘for’

was used to create a looping script to automate the prediction of

valve and calculation of valve related metrics for all seeds in all

seedpods and on average it took 70 milliseconds to complete valve

TABLE 2 Example of data extracted on Brassica napus seed size and shape derived from fine-tuned StarDist-3D algorithm predictions.

Seed ID
Number

Volume Bounding
box volume

Sphericity Surface
area

Convex
volume

Equivalent
diameter

Extent Major
axis

length

Minor
axis

length

Solidity

1 23237 41580 0.886865 4440.313 24538 35.40466 0.55885 45.38723 44.23421 0.94698

2 23379 41580 0.89321 4426.713 24627 35.47664 0.562266 45.43497 44.46307 0.949324

3 23344 42840 0.870115 4539.668 24680 35.45892 0.544911 45.77541 44.01394 0.945867

4 21921 41580 0.82114 4612.895 23238 34.72327 0.527201 44.78899 43.01572 0.943326

5 19451 32670 0.95953 3645.191 20476 33.36679 0.595378 43.07271 41.68581 0.949941
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prediction and valve-related metric extraction for an entire pod

using a single CPU.

3 Results

3.1 Accuracy of reconstruction of seed
labels as star-convex polygons

As shown in Figure 5, sufficiently accurate reconstruction

(greater than 0.8 mean IoU) of labelled seeds was achieved with as

few as 32 rays with or without taking anisotropy into account,

and the highest reconstruction accuracy (greater than 0.9 mean

IoU) was achieved when 64 rays or more were used. It was

therefore determined that it was appropriate to describe the shape

of seeds as star-convex polyhedral and to proceed with training a

StarDist-3D for detection and segmentation of seeds. It was also

decided that reconstruction with anisotropy should be used that

would more easily allow application of the workflow described in

this paper to images of seeds or other star convex plant structures

that may be more irregular in shape. Example reconstruction of

seed shape with anisotropy taken into account is demonstrated in

Figure 6. See Supplementary Figure 1 for seed reconstruction

without anisotropy.

FIGURE 2

Predicted position of automatically detected Brassica napus seeds in pod valves using automated lowess regression. Points on the graph indicate the
XZ centroid of detected seeds with a unique seed identification number and are coloured based on whether they were predicted to be positioned in
valve 1 (blue) or valve 2 (red).

FIGURE 1

Example of a 2D slice images extracted for individual Brassica napus seeds detected and segmented with a fine-tuned StarDist-3D algorithm from
3D micro-computed tomography.
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FIGURE 3

Original XZ slice image of a Brassica napus pod (same pod for which valve predicted was performed as shown in Figure 4). Seeds are marked with a
unique identification number matching Figure 4 and are coloured by whether they were confirmed to be positioned in valve 1 (blue) or valve 2 (red)
through manual analysis.

FIGURE 4

Example of segmentation results for individual Brassica napus seeds detected in 3D micro-computed tomography scans of seed pods from the ‘test’ dataset.
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3.2 Seed detection and segmentation
model validation

The trained StarDist-3D model was tested with different certainty

thresholds (t) to predict the number and shape of seeds within a pod.

For t = 0.1 to 0.8, 39 of the 42 seeds contained within the validation

data were detected using the fine-tuned StarDist-3D algorithm and

there were no false positive results (Table 3). Therefore, the recall rate

(the actual number of seeds in the image that were successfully

detected) was 92.9%, the precision rate (the number of detected

objects in the image that were seeds) was 100%, and F1-score was

96.3% for the validation dataset across this range of t (Table 3).
The mean matched score when t = 0.1 to 0.8 was 0.900, indicating

a 90.0% overlap in pixels predicted to be a part of detected seeds with

pixels known to be a part of ground-truth labelled seeds (Table 3). The

mean true score (0.836) and panoptic quality (0.867) for this range of t
also suggested a high degree of overlap between the predicted and

actual shape of detected seeds (Table 3). Figure 7 displays example

segmentation results for individual seeds detected with the fine-tuned

StarDist-3D algorithm.

When t was increased from 0.8 to 0.9 a slight increase in mean

matched score from 0.900 to 0.912 occurred, but a large decrease in

accuracy of both detection and segmentation as indicated by all

other metrics was observed (Table 3). Setting thresholds of t = 0.7

and nms = 0.4 resulted in the highest precision, recall and F1-score

accuracy for seed detection and were therefore identified as optimal

and incorporated into the fine-tuned StarDist-3D model used to

perform prediction on novel pod data.

3.3 Seed detection and segmentation
model testing

The true number of seeds contained within ‘test’ dataset was

209, while the total number of seeds predicted to be present within

the ‘test’ images using the fine-tuned StarDist-3D algorithm was

208 (Table 4). One predicted seed was determined to be a pod

pedicel incorrectly labelled as a seed and was recorded as a false

positive result, while two seeds observed in the ‘test’ dataset were

missed and recorded as false negative results. Therefore, the overall

precision rate of the fine-tuned StarDist-3D algorithm when applied

to the ‘test’ dataset was 99.52%, the overall recall rate was 99.04%,

and the overall F-score was 99.28% (Table 4). Within individual

pods the precision rate ranged from 95-100%, the recall rate ranged

from 90.48-100%, and the F-score ranged from 95-100% (Table 4).

Example segmentation results for individual seeds detected in

pod images from the ‘test’ dataset are displayed in Figure 4. A large

degree of variance in the appearance of the interior of detected and

segmented seeds, in particular the amount of empty space within

TABLE 3 Accuracy metrics for automated detection and segmentation of Brassica napus seeds in 3D micro-computed tomography scans from the
‘validation’ dataset across several intersection-over-union thresholds t.

Threshold t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Detection Metrics

True Number of Seeds 42 42 42 42 42 42 42 42 42

Number of True Positives 39 39 39 39 39 39 39 39 25

Number of False Negatives 3 3 3 3 3 3 3 3 17

Number of False Positives 0 0 0 0 0 0 0 0 14

Precision 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.641

Recall 0.929 0.929 0.929 0.929 0.929 0.929 0.929 0.929 0.595

F1-score 0.963 0.963 0.963 0.963 0.963 0.963 0.963 0.963 0.617

Segmentation Metrics

Mean true score 0.836 0.836 0.836 0.836 0.836 0.836 0.836 0.836 0.543

Mean matched score 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.912

Panoptic quality 0.867 0.867 0.867 0.867 0.867 0.867 0.867 0.867 0.563

FIGURE 5

Reconstruction accuracy (mean IoU) of ground-truth labelled
Brassica napus seeds when using different unit Fibonacci rays.
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the seed (depicted by pixels closer to black in colour) was observed,

even within the same pod (Figure 8).

3.4 Automated seed sorting by valve

198 out of the 209 seeds contained in the ‘test’ dataset were

sorted into the correct valve using the automated seed sorting

method, resulting in an overall accuracy of 94.74% (Table 5). The

percentage of correctly sorted seeds within a single pod ranged from

50-100%, with seed sorting accuracy below 85.71 only occurring for

pods that contained 6 or fewer total seeds (Table 5).

4 Discussion

The overall accuracy of the StarDist-3D model fine-tuned on 3D

μCT images of B. napus pods was higher than reported for the

developmental use case of detection and segmentation of individual

cell nuclei (Weigert et al., 2020). This may be due to the very high

resolution of 3D μCT images, and smaller number of target objects

within them, which meant that individual seeds, as opposed to cell

nuclei, were less likely to be obscured, and there were few cases of

closely clustered target objects. The high precision of the fine-tuned

StarDist-3D model may also be due to the fact that no other pod

structures within the images closely resemble seeds in shape. This

demonstrates the suitability of the 3D μCT B. napus pod image dataset

to automated data extraction. A small number of false negative errors

occurred when seeds were much smaller and unevenly shaped

compared to the majority of seeds, possibly due to post-fertilization

seed abortion. Dissection of the pods to determine the cause of this

size and shape disparity in these missed seeds, and further fine-tuning

of the pre-trained StarDist-3D model based on a curated dataset of

seeds of more diverse size and shape is likely to improve the recall rate.

However, the low error rate already achieved with a relatively small

amount of annotated training data suggests the high resolution of the

3D μCT B. napus pod images make them a valuable resource highly

compatible with state-of-art computer vision approaches.

The fine-tuned StarDist-3D approach utilized in this paper

allowed for accurate data on the number, spatial arrangement, size

and shape of seeds to be extracted from a 3D μCT image of a whole B.

napus pod in under 1 minute 30 seconds, as opposed to manual

image analysis methods which took approximately 14 minutes to

obtain only a small subset of the measurements. Manual methods are

more labour intensive as pods have to be collected and placed flat

with a contrasting background to obtain high-quality images for

semi-automatically measuring valve and beak length by using

SmartRoot tool in Fiji (Schindelin et al., 2012). Then, the pods

have to be manually opened to obtain SNPP data. The manual

FIGURE 6

Reconstructed shape of Brassica napus seeds using different numbers of Fibonacci rays with anisotropy of seeds taken into account.
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process scan can result in loss of seeds and inaccurate counting.

Opening the pod invariably leads to movement of the seed within the

pod, therefore information on the valve and spacing is lost. Hence,

the automated pipeline that we describe here is more efficient and less

time consuming than currently used methods. In addition, the

automatic seed sorting by valve step also allowed for data to be

collected on the spatial arrangement of seeds in relation to both each

other and pod valves that cannot be examined through conventional

dissection methods of examining pods. For pods with a very low

number of seeds (six or less) valve misclassification errors were more

common, demonstrating that it was difficult to reliably predict the

position and shape of pseudoseptum from a small number of data

points on seed location. Future development of an additional edge

detection algorithm to directly detect the pseudoseptum, rather than

relying solely on seed position, could improve the accuracy of valve

sorting for pods with very few seeds. However, this study

demonstrates the significantly less computationally intensive

graphical method of predicting pseudoseptum shape and seed valve

position using lowess regression is suitable for analysis of images of

pods with 7 seeds or more.

The reduction in the bottleneck for analysing the 3D μCT image

dataset provided by the StarDist-3D approach could enable detailed

data on the number, size, shape and spatial arrangement of seeds to

be integrated into models of plant development. It could also

potentially be applied to 3D μCT imagery of seeds from other

species or other plant structures with relatively little retraining effort

provided the target objects can appropriately be described as star-

convex polygons. The gradient of seed growth within a pod, the

difference of seed growth and abortion within pods in different

positions in the main inflorescence, comparison of pods between

the main and the secondary inflorescences and the effect of different

environmental perturbations, such as heat stress, could be studied.

Hence, this method of analysis that does not require opening pods

will help to better understand SNPP and seed abortion and their

relation to plant seed yield in several crops. A multi-class version of

the StarDist-3D model could be trained to predict shape and

position of beaks, pedicels and post-fertilisation aborted seeds as

these structures can also be accurately reconstructed as star-convex

polygons. This will allow the automatically extraction of further

metrics such as beak length and overall pod length, as well as reduce

the potential of false negative errors caused by aborted seeds that

tend to be unusually small and irregularly shaped compared to

mature seeds. This extension would rely upon annotating a larger

number of full 3D μCT as each only contains a single beak and

pedicel, however, since accurate results were obtained with the

number of seeds labelled for training data in this study researchers

TABLE 4 Accuracy metrics for automated detection of Brassica napus seeds in 3D micro-computed tomography scans of pods from the ‘test’ dataset.

Seed
Pod ID

True Number
of Seeds

Predicted
Number of

Seeds

Number of
True Positives

Number of
False Positives

Number of False
Negatives

Recall Precision F1-
score

C0007186 5 5 5 0 0 100 100 100

C0007197 19 20 19 1 0 100 95 97.44

C0007198 4 4 4 0 0 100 100 100

C0007205 2 2 2 0 0 100 100 100

C0007224 34 34 34 0 0 100 100 100

C0007226 6 6 6 0 0 100 100 100

C0007239 8 8 8 0 0 100 100 100

C0007256 30 30 30 0 0 100 100 100

C0007262 2 2 2 0 0 100 100 100

C0007269 1 1 1 0 0 100 100 100

C0007274 34 34 34 0 0 100 100 100

C0007299 3 3 3 0 0 100 100 100

C0007311 15 15 15 0 0 100 100 100

C0007420 7 7 7 0 0 100 100 100

C0007440 21 19 19 0 2 90.48 100 95

C0007456 4 4 4 0 0 100 100 100

C0007853 6 6 6 0 0 100 100 100

C0007864 4 4 4 0 0 100 100 100

C0007865 4 4 4 0 0 100 100 100

Total 209 208 207 1 2 99.04 99.52 99.28
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may only need to label beaks and pedicels in further imagery in

order to prepare an adequate multi-class training dataset.

Scale has been shown to have negligible impact on accuracy of

StarDist-3D object detection and segmentation, therefore the fine-

tuned model described could reliably be applied to images of B.

napus seed pods that vary significantly in size, both in terms of the

pods themselves and size of individual seeds. The findings of this

study also demonstrated that the Stardist-3D method could be

applied to imagery of seed from other plant species, as well as other

plant structures such as peas, nuts or grains that are rounded or

ovate in shape and therefore can be accurately reconstructed as star-

convex polyhedra. This potentially includes more unusually shaped,

less spherical seeds and nuts from species such as Arabidopsis

thaliana, Camelina sativa and Arachis hypogaea (peanuts) as the

anisotropy, or non-spherical irregularities of these seeds, could be

taken into account with the Stardist-3D method.

The fine-tuned StarDist-3D model can also likely be reliably

applied to datasets with lower contrast than the Scanco μCT images

used in this study, as the StarDist-3D methods have been

demonstrated to yield more accurate results for low contrast, low

signal-to-noise 3D volume data compared to other contemporary

deep learning based instance segmentation methods (Schmidt et al.,

2018; Weigert et al., 2020). It is recommended that data augmentation

methods be applied to the study dataset in future to explore the effect

of resolution on performance, as at a sufficiently low resolution the

accuracy of shape prediction may be impacted due to the borders of

seeds being blurred (Schmidt et al., 2018; Weigert et al., 2020).

The automated clustering of the segmented images of individual

seeds that are output by the fine-tuned StarDist-3D with a rotationally

invariant method can also be explored, as a high degree of variation

was observed in the internal structure of the seeds. The segmented

seed images would need to be represented as rotationally invariant

images in order to explore clustering, as seeds are oriented at different

directions within pods and rotationally invariant representation would

negate the effect of these differing orientations so that other similarities

and differences in the internal appearance of the seeds could be

quantified (Zhao & Singer 2014). This is a very promising step once

images with higher resolution are acquired. Clustering could reveal

similarities in internal appearance between groups of seeds that could

be linked to biological origins, which could be ground-truthed through

manual examination and seed dissection after 3D μCT. Moreover,

synchrony and different orientation of the seeds could be further

explored. This knowledge is of high importance as breeders pursue

good and synchrony of seed maturation. Therefore, links between

FIGURE 7

Example of segmentation results for Brassica napus seeds detected in 3D micro-computed tomography scans of seed pods from the ‘validation’ dataset (t =
0.7).
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TABLE 5 Number and percentage of Brassica napus seeds automatically sorted into the correct pod valve.

Seed
Pod ID

Valve 1 Valve 2 Number of Cor-
rectly Sorted Seeds

Percentage of Correctly
Sorted Seeds (%)

True Number
of Seeds

Predicted
Number of

Seeds

True Number
of Seeds

Predicted
Number of

Seeds

C0007186 4 5 1 0 4 80

C0007197 9 10 10 10 19 100

C0007198 3 3 1 1 4 100

C0007205 1 2 1 0 1 50

C0007224 16 16 18 18 34 100

C0007226 3 3 3 3 6 100

C0007239 2 3 6 5 7 87.5

C0007256 17 17 13 13 30 100

C0007262 2 2 0 0 2 100

C0007269 0 0 1 1 1 100

C0007274 18 19 16 15 33 97.06

C0007299 0 0 3 3 3 100

C0007311 8 8 7 7 15 100

C0007420 5 4 2 3 6 85.71

C0007440 11 12 10 7 18 85.71

(Continued)

FIGURE 8

2D XY, YZ, and XZ slice images of individual Brassica napus seeds detected and segmented with a fine-tuned StarDist-3D algorithm from the same
pod displaying variation in internal structure, particularly empty (black) space inside of seeds.
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these traits and the growing conditions and genotypes of the plants

that the seeds were collected from can be explored in order to better

understand factors affecting seed maturation and plant yield.

5 Conclusion

High-throughput plant image datasets have the potential to

greatly improve our understanding of the factors affecting dynamic

responses in plant development and crop yield, however a lack of

reliable and efficient methods for extracting phenotype data from

these datasets remains a major bottleneck. This paper demonstrates

that an existing, state-of-the-art object detection and segmentation

method, StarDist-3D, can be applied with little modification to

automatically obtain seed number, size, shape and spatial seed

arrangement from 3D μCT images of B. napus pods in a time-

saving and non-destructive manner with a high degree of accuracy.

This method could enable the study of seed development within a

specific time-point or during different phases of pod growth, obtaining

very specific and detailed information that otherwise, would not be

possible to accurately capture. Acquiring information regarding the

internal structure of opaque pods can be incorporated into high-

throughput plant phenotyping platforms and enables the opportunity

of understanding and linking pod, seed development and disposition

within different germplasm and plant developmental responses to

biotic and abiotic stresses. The findings of this paper also demonstrate

how current gold standard computer vision methods can be

generalised to accurately analyse imagery collected using a variety of

sensors, at different scales and from a wide range of scientific domains.
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TABLE 5 Continued

Seed
Pod ID

Valve 1 Valve 2 Number of Cor-
rectly Sorted Seeds

Percentage of Correctly
Sorted Seeds (%)

True Number
of Seeds

Predicted
Number of

Seeds

True Number
of Seeds

Predicted
Number of

Seeds

C0007456 3 2 1 2 3 75

C0007853 4 3 2 3 5 83.33

C0007864 1 1 3 3 4 100

C0007865 1 2 3 2 3 75

Total 108 112 101 96 198 94.74
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