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Abstract

1. Insects play a vital role in ecosystem functioning, but in some parts of the world,

their populations have declined significantly in recent decades due to environmen-

tal change, agricultural intensification and other anthropogenic drivers. Monitoring

insect populations is crucial for understanding and mitigating biodiversity loss, espe-

cially in agro-ecosystems where a focus on pests and beneficial insects is gaining

momentum in the context of sustainable food systems.

2. Biomonitoring has long played an important role in providing early warnings of

insect pests and their vectored pathogens and for assessing agro-ecosystem man-

agement. However, identification of invertebrates by taxonomists is time-

consuming and fraught with numerous other challenges, particularly when it comes

to real-time monitoring.

3. Recent technological advances in both computational image recognition and molec-

ular ecology have enhanced biomonitoring efficiency and accuracy, reducing labour

efforts, but leading to unprecedented volumes of data generated.

4. This perspective article examines the significance and further potential of deep

learning with image-based recognition, aided by complementary technologies, in

advancing entomological biomonitoring. Using entomological sticky traps as an

example, we discuss each step of the workflow required to create ecological net-

works using image-based recognition, multimodal data and deep learning, and we

identify the challenges inherent to this method and other insect survey techniques.

5. In order to become mainstream for global biomonitoring, access to long-term, stan-

dardised multimodal data is required for comprehending ecosystem dynamics,

structure and function and for mitigating insect population declines.
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INTRODUCTION

Insects play a crucial role in ecosystems, providing important ecologi-

cal processes such as pollination and nutrient cycling as well as being

embedded in complex food webs (Leather, 2005). Recent research

suggests serious declines in insect populations in many parts of the

world due to a range of factors including agricultural intensification,

climate change, increases in urban spaces and light pollution (Ärje

et al., 2020; Blair et al., 2022; Boyes et al., 2021; Coulibaly

et al., 2022; Høye et al., 2021; Ramalingam et al., 2020; Zapico

et al., 2021). Fewer than 1% of the 1.4 million described invertebrate

species have been assessed by the International Union for Conserva-

tion of Nature (IUCN), but of those that have �40% are considered

threatened, with terrestrial insect abundances in particular undergoing

significant declines in recent years (Dirzo et al., 2014; van Klink

et al., 2023). There is an urgent call to better understand and mitigate

insect population declines through effective monitoring (Blair

et al., 2020; Gerovichev et al., 2021).

Whilst insect biodiversity and abundance have generally declined

globally, agricultural and forest insect pests as well as vectored patho-

gens are increasing in many parts of the world (e.g., Shortall

et al., 2024) and their ranges have expanded due to climate change

(Skendži�c et al., 2021). Thus, a greater understanding of the functional

roles of insects within these ecosystems is important for sustainable

pest management. Agricultural pests varyingly impact nearly half of

the world’s crops, costing the global economy around $200 billion

USD every year (Karar et al., 2021). Outbreaks of insect pests there-

fore pose a serious threat to food production. The increase in pests is

due to a combination of factors including climate change (air-tempera-

ture, relative humidity, etc.), extreme weather conditions and seasonal

variability (Markovi�c et al., 2021). Invasive alien species are also of

considerable concern to agriculture and forestry. The Intergovern-

mental Science-Policy Platform on Biodiversity and Ecosystem Ser-

vices’ (IPBES) Thematic Assessment of Invasive Alien Species and their

Control asserts the importance of early detection of the spread of

invasive alien species through effective biomonitoring, as this is vital

to policymakers for intervention and decision making (Roy

et al., 2023). Biomonitoring strategies are therefore key for early

detection and effective control of insect pests in agriculture and for-

estry (Coulibaly et al., 2022; de Cesaro Júnior et al., 2022;

Saradopoulos et al., 2022).

There are a number of well-established entomological trapping

techniques that are used to collect specific invertebrate samples in

the field for biomonitoring purposes, including pan, pitfall, aerial suc-

tion and sticky traps (see Strickland, (1961) and Hawthorne et al.,

(2024) for reviews of methods used in agriculture and (Leather, 2005)

for a comprehensive overview in forest ecosystems). Such entomolog-

ical trapping methods are used in different scenarios to trap specific

types of insects for a range of purposes, but each trapping technique

has its own advantages and disadvantages (Cuff, Deivarajan Suresh,

et al., 2023; Cuff, Tercel, et al., 2024; Hawthorne et al., 2024). In agri-

cultural and forestry settings, these methods are predominantly used

for detecting pests (including disease vectors). The identification and

classification of caught target insects is typically done manually by

highly trained taxonomists; however, taxonomic skills are in decline

(Engel et al., 2021). Furthermore, the process of manual taxonomic

identification is time-consuming, costly and does not scale (Besson

et al., 2022), making real-time monitoring of pest species is more chal-

lenging (Bjerge et al., 2022; Wang et al., 2020; Wang, Zeng,

et al., 2023; Wang, Zhang, et al., 2023; Wang, Zhao, et al., 2023).

Recent advances in both computational image-based recognition

technology and molecular ecology are helping improve, automate and

computerise this process thereby potentially making biomonitoring

extremely efficient, accurate and ultimately easier to scale up with

less manual labour (van Klink et al., 2022). Long-term monitoring sam-

ples obtained through various biomonitoring schemes can enable

streamlining and the integration of various techniques, thereby

enabling researchers to construct advanced ecological networks

through inference methods to assess ecological changes (Cuff, Deivar-

ajan Suresh, et al., 2023). With multiple data types and contexts (loca-

tion, time, temperature, behaviour, functional traits, etc.) available

from a diverse range of biomonitoring techniques, it is beneficial to

combine them to form multimodal datasets. Ultimately, this can help

in the progression towards large-scale automation of multimodal bio-

monitoring data using deep learning (DL; Cuff, Deivarajan Suresh,

et al., 2023).

In order to respond to anthropogenic impacts such as environ-

mental change, agricultural intensification and land-use change, a bet-

ter spatio-temporal and real-time understanding of global biodiversity

is required. Distributions, ecological functions and species interactions

are good indicators of the state and/or condition of ecosystems (Chua

et al., 2023), but for invertebrates, much work is needed to improve

taxonomic databases at relevant scales for effective biomonitoring

(McGee et al., 2019; van Klink et al., 2022). Currently, large numbers

of taxa and diverse geographic locations make it hard to standardise

monitoring of global insect biodiversity and at least 80% of the insect

population still remains undescribed (McGee et al., 2019;

Saradopoulos et al., 2022; van Klink et al., 2022). New methods for

biomonitoring insects at appropriate spatio-temporal scales are

urgently needed for crop and forest protection, which can also help in

understanding ecosystem processes and restoration, and ultimately

human health. This perspective article examines the development and

application of DL with image-based recognition and other technolo-

gies in advancing entomological biomonitoring. Taking sticky traps as

an example of a common entomological research method primarily to

trap aerial insects, we discuss how DL with image-based recognition

can be applied to provide a better understanding of species richness,

abundance, trait and interaction data and how such data should be

handled—from bugs to bytes. By describing each step of a workflow,

we aim to (i) provide a brief overview of the state-of-the-art;

(ii) identify the benefits and limitations of the existing approaches;

(iii) discuss the potential applications, whilst acknowledging the

knowledge gaps and lack of well-established frameworks for ecosys-

tem insights; and (iv) explore how multimodal data can be used to

construct ecological networks that provide a framework for under-

standing biodiversity, ecological functioning and ecosystem resilience.
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Our overall aim is to provide an introduction to a rapidly developing

technical topic of interest to agricultural and forest entomologists,

sign-posting researchers to in-depth papers and reviews on particular

aspects of our perspective. We provide a glossary of the technical

terms used throughout the article as a supplementary document.

FROM BUGS TO BYTES: STEPS TO CREATE
ECOLOGICAL NETWORKS USING IMAGE-
BASED RECOGNITION, MULTIMODAL DATA
AND DL

We provide a unifying framework that combines molecular and

image-based monitoring for automated identification/classification of

insects from sticky traps (Figure 1). Specifically, the workflow enables

the construction and analysis of ecological networks (here, interspe-

cific species-interaction networks), moving beyond simple species lists

currently obtained from most biomonitoring schemes to new metrics

for assessing both biodiversity and ecosystem function (see Cuff, Dei-

varajan Suresh, et al., 2023; Cuff, Tercel, et al., 2024). We examine

the state-of-the-art of each step separately (Figure 1a–f), identifying

some of the outstanding challenges, and then discuss the merits of

this integrative approach.

Insect sample collection for biomonitoring

Many government agencies, organisations and researchers use ento-

mological surveys for early detection and mitigation of insect pests,

invasive species and/or assessing insect populations. But there is a

geographical skew in entomological surveys and specificity in

monitoring of certain insects. The UK, however, has a long history of

well-established insect surveillance and monitoring programmes. For

example, biomonitoring schemes such as the Rothamsted Insect Sur-

vey (RIS), Butterfly Monitoring Scheme (UKBMS), UK Environmental

Change Network (ECN) and Fera Yellow Water Pan trap network

(YWP) are trusted and respected for a range of purposes. For these

and other similar schemes across the world, some of the entomologi-

cal data are archived in physical form whilst others are stored digitally

after taxonomic classification is completed (Høye et al., 2021;

Petsopoulos et al., 2024). However, most non-target insect catches

are often discarded due to lack of resource for identification meaning

valuable biodiversity data are lost (but for RIS, see Petsopoulos

et al., 2024).

Classical biomonitoring methods are manual and shown to be

inefficient (Høye et al., 2021). Typically, the workflow includes trap-

ping, manual inspection, morphological identification and counting of

insects that are time- and labour-intensive tasks requiring highly

trained personnel (Albanese et al., 2021; Ärje et al., 2020; De Cesaro

Júnior et al., 2022; Høye et al., 2021; Høye et al., 2022; Lins

et al., 2020; Roosjen et al., 2020; Süt}o, 2021; Zhao, Zhou,

et al., 2022). The morphological identification and counting of insects

in high-density samples are prone to a range of human errors includ-

ing observer biases and fatigue as well as factors such as inadequate

magnification and similarity between insects (Albanese et al., 2021;

Barbedo, 2014; Butterwort et al., 2022; Lins et al., 2020; Thenmozhi &

Srinivasulu Reddy, 2019; Zhao, Liu, et al., 2022). Small insects and

debris present in traps also reduce the identification efficiency

(Barbedo et al., 2020), thus making accurate counting and detection

of insects difficult, especially on sticky traps (Diller et al., 2022; Rustia

et al., 2021). Furthermore, spatiotemporal replication of monitoring

traps in the field is difficult due to the labour involved in setting,

F I GU R E 1 Methodological workflow depicting the combination of complementary data types from image-based recognition and validation
using metabarcoding to produce inferred ecological networks from sticky traps. Starting with (a) sample collection from the field; sticky traps are
then (b) digitised before DL is used to automatically identify/classify insects (c), providing contextual data. Species identification can be
(d) validated using DNA/RNA metabarcoding (providing additional information, such as host–parasitoid detections), providing resolution to
taxonomical identities. (e) Information on species identification, abundance, traits and other data is merged and then used to (f) construct
ecological networks using inference (Image created using BioRender).

DEEP LEARNING FOR INSECT BIOMONITORING 3
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maintaining and collecting a large number of traps and the area that

must be covered by the field scientists (Roosjen et al., 2020). In-field

biomonitoring is mostly used for identifying economically significant

flying insects (such as aphid pests) using manual identification, with

non-target catches mostly discarded. However, other trap types such

as pitfall traps, delta traps and sticky traps can also be deployed

depending on the question being asked (Chua et al., 2023). Sticky

traps often capture non-target insects, termed ‘bycatch’, which can

compound biomonitoring problems. This is especially true in the case

of pest biomonitoring schemes that are deployed to monitor certain

insects, but also result in a significant amount of non-target bycatch.

However, a more holistic understanding of insect populations within

ecosystems could identify impacts of land management (e.g. farm till-

age practices and implementation of agri-environment schemes) on

ecosystem functioning across scales. Such relationships can ultimately

be analysed using ecological networks, but this first requires better

resolved and more complete data that could be obtained by identify-

ing bycatch using methods such as DL and/or DNA/RNA metabarcod-

ing (Chua et al., 2023; Petsopoulos et al., 2021; discussed further in

section F).

Data digitisation

In the past decades, there has been a steady rise in the development

of sensor-based automated insect biomonitoring systems involving

cameras, radars and microphones that produce vast amounts of data

(Big Data). Such systems reduce the need for continuous and expen-

sive biomonitoring that accompanies traditional methods (Li

et al., 2021; Nanni et al., 2020) and reduce the bias of observers and

sample handling time, whilst increasing the amount of samples col-

lected and reproducibility, thereby giving a more holistic spatio-

temporal resolution of communities for ecological assessments (Ärje

et al., 2020; Beermann et al., 2021; Høye et al., 2022).

Image acquisition from sticky traps (and other types of traps), by

scanning and digitising the insect images under controlled lab environ-

ments, provides better image quality than in-field photographs (Ärje

et al., 2020; Lins et al., 2020; Zhao, Zhou, et al., 2022) and also impor-

tantly provides a consistent image quality, collected from a static

viewpoint (Roosjen et al., 2020); in-field automated detection of

insects on plants, whilst now available, has technical limitations due to

the detection of insects in complex differing backgrounds and insect

population densities (Albanese et al., 2021; Li et al., 2022; Lins

et al., 2020). This is an important consideration for image-based rec-

ognition training (see section C). Digitisation of traps in lab settings is

done manually using flatbed scanners or for other types of samples

through automated imaging systems, such as the BIODISCOVER

robot-enabled image-based identification machine (Ärje et al., 2020;

Wührl et al., 2022).

Data cleaning, such as removing irrelevant or blurred images, and

alterations such as augmentation and data annotation are done during

this step of preparing data that will later be used for model training.

The cleaned data with appropriate annotation are then stored locally

or on cloud-based servers for ease of access. However, standardised,

well annotated insect image-based and multimodal datasets and pipe-

lines are currently lacking for the different trapping methods, includ-

ing sticky traps. The lack of such datasets causes severe issues, which

are further explained in the sections below.

Image preprocessing (image resizing and data augmentation) is

vital for dataset preparation, especially for digitised sticky trap scans

(Figure 1b). This tackles problems such as occlusion, object

overlapping, insufficient number of images for rare insect species,

morphologically damaged insects, varying image sizes and overall

improvement of detection accuracy (Albanese et al., 2021; Ärje

et al., 2020; Diller et al., 2022; Li et al., 2021). Given the random fixed

positions of insects on sticky traps, image data collected from sticky

traps are likely to be particularly susceptible to these problems.

Image-based recognition

Deep learning and machine learning for image-based
recognition

Image-based approaches for studying invertebrates have recently

been gaining attention (Høye et al., 2022; Lürig et al., 2021) and

advancements in computer vision (CV) have given rise to identification

of insects using automatic image-based technologies (Ärje

et al., 2020; Li et al., 2021). These new systems can be utilised to their

maximum efficiency by employing DL as a tool for counting and iden-

tifying insects (Besson et al., 2022). Machine learning (ML) is a field of

artificial intelligence that enables systems to learn patterns from data

and make predictions or decisions through interconnected artificial

neurons (neural networks). DL is a subset of ML that comprises types

of neural networks that are large in size with multiple hidden layers,

which can extract higher level features (individual measurable proper-

ties) from data fed into them.

Due to ease of accessibility of big data, application of ML and DL

has risen sharply in recent years, especially in ecology and evolution,

but their relationship with classical data analysis tools is still debated

(Pichler & Hartig, 2023). Overall, DL performs better in classification/

identification than ML methods in terms of accuracy, but is slower in

image-based tasks (Karar et al., 2021). For automated biomonitoring,

time taken to taxonomically identify specimens will be an important

consideration for selecting these methods rather than traditional bio-

monitoring with morphological identification (Ärje et al., 2020).

The main advantage of DL is that it can help computers build

complex descriptions using only simple concepts and deeper algo-

rithms, unlike ML. DL has a greater capacity than ML to identify the

intrinsic image characteristics from any presented image dataset (Li

et al., 2021). Data are typically split into 70%–80% for training, 10%–

15% for testing and 10%–15% for validation of DL algorithms (Karar

et al., 2021). Another distinction is that ML requires hand-crafted fea-

tures whilst DL automatically extracts features through the neural

networks. ML techniques were widely used in entomological identifi-

cation before the development of DL methodologies (Høye

4 SURESH ET AL.
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et al., 2021; Kirkeby et al., 2021), but DL is now often preferred due

to its greater performance. However, all the limitations (like insect

densities, lack of rare insect samples) and alternative model enhance-

ment techniques (such as data augmentation) used to tackle case-

specific entomological classification/identification issues should be

considered when building DL models for automated insect biomoni-

toring. Limitations prevalent in developing databases for automated

entomological biomonitoring include the inability to identifying insects

that are not present in the reference database (Ärje et al., 2020) and

poor generalisation issues between the model trained and the data

being input for analysis, particularly due to differences in image qual-

ity (Hansen et al., 2020; Li et al., 2021; Popkov et al., 2022).

Other limitations in DL methods are collecting, standardising and

annotating reliable data, which itself can be expensive, labour-

intensive and time-consuming (Barbedo et al., 2020; Høye

et al., 2021; Rustia et al., 2021), at least in the short-term set-up of

such data. For multimodal data, it is challenging to fuse the data from

different modalities during the training. The amount of training data

required for image-based DL classification is also a limiting factor, as

large, high-quality datasets with many classes are required (Ärje

et al., 2020; Gerovichev et al., 2021; Høye et al., 2022; Süt}o, 2021),

which will increase the time taken for training (Barbedo et al., 2020).

But once sufficiently large, quality databases are built, the future itera-

tions of DL training and implementations can be much faster and effi-

cient. In the case of sticky traps, this brings other complications as

some insects may be damaged during the trapping process or get

trapped in positions where important distinguishing features are

obscured, making morphological identification difficult (Butterwort

et al., 2022). Decay, lighting glare and movement of the trap are also

some of the other challenges that make image-based detection and

classification of insects from sticky traps much harder.

Convolutional neural networks (CNNs), a type of multi-layered

DL model, have a convolutional layer, in addition to the usual input

layer, rectified linear unit layer, pooling layer, fully connected layer

and classification layer, which are also present in other DL models

(Chodey & Noorullah Shariff, 2022). CNNs automatically extract fea-

tures from raw pixels of images (Karar et al., 2021) and have been

widely implemented in insect identification and classification tasks

with varied amounts of successes and limitations, depending on image

data source (Alves et al., 2020; Cheng et al., 2017; Nanni et al., 2020).

Usually, for training of such automated CNN models, with data such

as sticky trap images, the specimens (insects) are annotated by draw-

ing bounding boxes around them and manually identifying them. DL

methodologies such as Inception v3, Deep CNN, Residual Neural Net-

work (ResNet-50), VGG-16/19 and many others have been used in

several studies for entomological identification and classification

(Karar et al., 2021). Generally, two-stage algorithms (Faster-R CNN

and Mask-R CNN) are more accurate, whilst one-stage algorithms are

faster (Li et al., 2022). However, combining different CNN architec-

tures can help boost the generalisation of methods, rather than build-

ing a single large CNN (Li et al., 2021).

Python is commonly used for training of DL models, which are for

object detection and classification tasks. TensorFlow and PyTorch

libraries are particularly used for training DL models in Python (Lins

et al., 2020). Commonly used object detection benchmarks are

ImageNet, Pascal VOC and MS COCO, which can be used for model

pre-training (Li et al., 2022; Wang et al., 2020). Presently, running DL

networks requires high parallel computing power for processing and

training data, usually by utilising powerful Graphical Processing Units

(GPUs) (Karar et al., 2021; Rustia et al., 2021).

Supervision, imaging techniques and data sources

Supervision in the context of supervised learning involves human

annotators providing labelled examples, which the DL model uses to

learn and generalise patterns for accurate predictions on unseen data.

This is an important determinant of accuracy. Automated insect iden-

tification using DL, under the fully supervised learning setting, is more

reliable with tasks such as counting, size and weight estimation, com-

pared to unsupervised learning. Supervised learning implemented to

identify specimens, such as aphids (Li et al., 2022), show high reliabil-

ity and accuracy, on par with humans. Fully supervised, standardised

species level classification DL algorithms like this can potentially aid in

building a reliable, interoperable generalistic automated insect classifi-

cation system of the future.

Species level identification is currently hard to classify using DL

and ML, whilst genera is comparatively easier in terms of accuracy,

depending on the taxonomic group (Ärje et al., 2020; Hansen

et al., 2020; Høye et al., 2022; Johnson & Khoshgoftaar, 2019;

Kirkeby et al., 2021; Lima et al., 2020; Popkov et al., 2022). Morpho-

logically demanding species (‘classes’ in DL) require more training data

and demanding tests to establish how error rates can vary depending

on the number of closely related species (Ärje et al., 2020; Høye

et al., 2022). Adding more classes reduces the performance of the

classifier in identification of the targeted classes (Rustia et al., 2021).

Low availability of training data of certain classes can lead to poor

multi-class classifications, and hence, it is important to balance,

increase the dataset and have images of specimens from different

imaging conditions, angles and presentations (Albanese et al., 2021;

Blair et al., 2022; Høye et al., 2022; Li et al., 2022; Lins et al., 2020).

Taxonomic identification of insects depends on the quality of

images and the quantity of training data used for training DL algo-

rithms (Ärje et al., 2020; Høye et al., 2022). The primary images

acquired for DL are from internet searches, public data sets (IP102,

D0, etc), mobile cameras and stationary cameras. Image datasets built

on images from the internet alone have limitations such as varying

image quality, inconsistent resolution of images, images with texts,

incorrect identification/labelling and lack of required images, all of

which reduces training data availability and increases development

time of DL. Internet-sourced images must be cleaned before using it

for DL algorithms. Whilst public images are used for training of DL

algorithms for general insect identification, they are not yet used in

the specific case of identifying insects on sticky traps. This may be

due to the above-mentioned issues arising from images collected from

the internet. Additionally, models trained on insects will not generalise

DEEP LEARNING FOR INSECT BIOMONITORING 5
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to the specific nature of sticky trap images due to size variations of

insects, occlusion, etc. Hence, bespoke datasets specific to sticky

traps are required.

Current automated biomonitoring systems often use cameras

alongside DL methods to capture and analyse images of insects from

traps, or in the environment (e.g. on crops to detect pests). Micropro-

cessors and Internet of Things (IoT) are used to send the collected

data to the cloud for further processing (Ayaz et al., 2019). Fully

autonomous biomonitoring systems for insect scanning, identification

and classification are currently being developed (Ärje et al., 2020;

Høye et al., 2021; Li et al., 2021). By integrating various in-field bio-

monitoring techniques with wider data collection methods, large mul-

timodal datasets with valuable contextual data (e.g. location, time,

temperature) can be obtained (Besson et al., 2022). This big data

enables the building of well-defined DL systems and will broaden the

scope of analyses of biomonitoring data using other data sources. In

order to do this, cleaning, annotating and storage of standardised

image data are required (Figure 1b). By successfully implementing this

step, a sufficient amount of high-quality multimodal training data is

available to build and train efficient DL systems. Training of such DL

systems using appropriate resources (such as robust algorithms, high

quality data) can create a positive feedback loop by which future

automated biomonitoring DL systems can be easily created with sig-

nificantly less hassle. However, the initial annotation and digitisation

of data require a considerable amount of time, money and effort

(Barbedo et al., 2020; Høye et al., 2021; Rustia et al., 2021) but pay

dividends in the long-term.

Automated and semi-automated identification of insects has

potential applications not just for biodiversity monitoring but also

for museum collections and wider ecological studies (Hansen

et al., 2020). Museum collections paired with image-based monitor-

ing can substantially increase occurrence data and will be helpful to

analyse long-term ecological responses to environmental changes,

but cannot help with the generalisation of the DL models applied to

ongoing monitoring, because of the difference between training data

and the data fed into the model for analysis (Hansen et al., 2020;

Popkov et al., 2022). The EU-funded DISSCo project and the UK’s

NHM Digital Collection Programme are some examples of museum

specimen digitisation efforts that will help in developing better DL

models, through the valuable image databases they provide (Høye

et al., 2021; Popkov et al., 2022).

There have been attempts to implement automated morphologi-

cal classification models for similar insect species in museum speci-

mens (Hansen et al., 2020; Popkov et al., 2022). Dead specimens are

useful as lighting and background can be kept uniform in order for the

DL models to learn better, which will greatly help in the validation

process (van Klink et al., 2022), but CNN models should be trained

with diverse mixed datasets, so that the models avoid failure in real-

world conditions. Models trained with high-quality images pose a

problem in recognising poorer quality images, but the reverse is not

true (Barbedo et al., 2020; Süt}o, 2021). Hence, variability of image

quality through different sources should be assessed further, as this

will open up a huge potential to utilise the digitised images from

museums to pre-train DL algorithms that can be used in automated

biomonitoring.

Additional classification, annotation and data
processing methods

The dataset size currently available is relatively small for annotated

sticky trap images (Li et al., 2021; Rustia et al., 2021). Lack of open-

source code and public datasets is a common problem in ecology and

evolution, especially in research focused on developing AI for biomo-

nitoring purposes. Only a few research papers have open source code

(i.e. Blair et al., 2020, 2022; Diller et al., 2022; Gerovichev et al., 2021;

Gomes & Borges, 2022; Li et al., 2021; Popkov et al., 2022;

Saradopoulos et al., 2022) and even less have datasets publicly avail-

able (these tend to be unique groups of invertebrates) (Ärje

et al., 2020; Blair et al., 2020; Chodey & Noorullah Shariff, 2022;

Hansen et al., 2020). In many instances of insect biomonitoring, the

training dataset required is rarely available and ecological data of dif-

ferent scales are harder to combine. To tackle this in the short term,

few shot learning and transfer learning (TL) can be used in DL

(Pichler & Hartig, 2023). Few-shot learning (FSL) can specifically be

helpful in focusing on one species for a particular context (eg. one

crop) (Gomes & Borges, 2022).

Most research commonly uses various CNN models for insect

identification/classification tasks. Recently, vision transformers (ViT)

such as Swin transformers are being developed in tandem with CNNs

for automatic insect biomonitoring purposes. ViT require substantially

lower computational resources than their CNN counterparts and per-

form equally or better. ViTs are used alone or in combination with

CNNs for increasing efficiency in insect identification/classification

tasks (An et al., 2023; Batz et al., 2023; Guo et al., 2023; Hechen

et al., 2024; Lee et al., 2023; Peng & Wang, 2022;

Venkatasaichandrakanthand & Iyapparaja, 2023; Wang, Zeng,

et al., 2023; Wang, Zhao, et al., 2023; Xia et al., 2022).

Learning strategies can be used to tackle the limitations of CNNs

in automated insect classification/identification. These include TL

(Pichler & Hartig, 2023), FSL (Gomes & Borges, 2022), attention

mechanisms (Zhao, Liu, et al., 2022), density map estimation

(Bereciartua-Pérez et al., 2023), weakly supervised learning (WSL)

(Coulibaly et al., 2022), cascading classification (Rustia et al., 2021),

fused pest context detection (Wang et al., 2020), network pruning

(Albanese et al., 2021), mutual information scoring (Coulibaly

et al., 2022), coarse-to-fine network (CFN) (Li et al., 2021) and adding

contextual information such as location, time and temperature (Blair

et al., 2022). These methods are implemented on a case-by-case basis

depending on the quantity and the quality of the data.

Fine-grained classification is particularly useful for detailed classi-

fication processes when differences between classes are subtle, for

example, to classify closely related species or smaller insects that are

hard to identify correctly because they are represented by fewer

pixels, but it requires a very large amount of data to be trained on. A

large balanced training dataset helps with accurate classification, but

6 SURESH ET AL.
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most biological samples have class imbalances (i.e. some species are

more abundant than others). This is hard for invertebrate classification

when datasets often do not have enough specimens for training,

which is currently the case for many rare insect species. Classification

accuracy is consequently better achieved at the genus-level rather

than the species-level (Ärje et al., 2020; Hansen et al., 2020; Høye

et al., 2022; Johnson & Khoshgoftaar, 2019; Lima et al., 2020). Atten-

tion mechanisms are another method that is capable of extracting

global features and discriminative features in regions of interest.

Attention mechanisms can improve multi-scale feature extraction of

insects, without increasing the number of model parameters (Zhao,

Liu, et al., 2022). They help in much more efficiently extracting fea-

tures of small insects much more efficiently (Li et al., 2021).

The manual drawing of bounding boxes is a key obstacle for

building datasets and can be addressed by density map estimation.

Density map estimation is robust and scalable and can enhance the

specimen annotation process by making it simpler and faster than

drawing bounding boxes on specimens; instead, this method just

involves placing a dot on each specimen (Bereciartua-Pérez

et al., 2023). WSL, on the other hand, can help identify certain speci-

mens without the need for bounding boxes or other forms of complex

labelling (Coulibaly et al., 2022).

Fused pest context detection can help increase the accuracy of

pest detection and recognition in complex environments by adding

contextual information as prior information from the images (geo-

graphic location, time, temperature, etc), and mutual information scor-

ing can further help with increasing accuracy of insect detection and

recognition (Coulibaly et al., 2022; Wang et al., 2020). Neural network

pruning, the removal of unnecessary neurons or weights from a

trained model, can help to make the DL algorithm more lightweight,

without losing its functionality and can enable remote deployment of

advanced identification/classification algorithms in the field on edge

devices (Albanese et al., 2021).

Validation of image-based monitoring using molecular
techniques (eDNA and metabarcoding)

Validation of biomonitoring data by independent verification of detec-

tions is a critical challenge in DL to conclusively identify insects from

images. In the case of our proposed workflow (Figure 1), validation of

image data (identified insects) is compared with a list of insects identi-

fied from the independently generated metabarcoding. We contend

that a combination of taxonomic expertise, complemented by meta-

barcoding, is optimal for data validation (ground truthing). Indeed,

DNA/RNA metabarcoding and traditional barcoding, when implemen-

ted alongside image-based DL techniques, will become invaluable for

highly resolved insect identification and classification to validate and

enhance taxonomic resolution (Høye et al., 2021). In our sticky trap

example, the image-derived insect data (identified insects) are com-

pared with the complementary list of insects identified by metabar-

coding to validate those identifications and subsequently form a

comprehensive multimodal species list (whilst also providing

additional detections that could yield interaction data, such as parasit-

ism, which cannot be detected using images alone).

DNA/RNA metabarcoding of bulk and environmental invertebrate

samples (eDNA) is gaining considerable traction as a biomonitoring

tool in its own right, not least as it can distinguish morphologically

similar insects (Derocles et al., 2016). This can help standardise biomo-

nitoring and provide highly resolved data for wider ecosystem assess-

ment (McGee et al., 2019). Of particular interest is the identification

of bycatch typically ignored in morphological identification, which can

be identified in parallel with target taxa using metabarcoding, and this

process can be scaled-up by using automated techniques

(Petsopoulos et al., 2021). Specifically, DNA-based techniques such as

high throughput sequencing (HTS) have enabled researchers to simul-

taneously identify multiple target species and have reduced the time

needed for identification of bulk insect samples (Chua et al., 2023).

This is important when moving on to the next step of merging

community data (Figure 1e). However, before discussing this, it is

important to consider the limitations of molecular ecological methods,

particularly in the context of validation. Insect specimens caught on

sticky traps are exposed to different temperatures, UV radiation and

humidity, leading to reduction in DNA integrity and recovery that

affects DNA-based techniques. Currently, metabarcoding for sticky

trap bulk sample processing is not commonplace, likely due to inher-

ent problems such as manually removing the insects from the sticky

traps. The effect of glue and clearing agents can further degrade DNA

and inhibit PCR (Butterwort et al., 2022; Maxwell et al., 2011). Some

decay and genetic degradation of insects on traps can be prevented

by collecting traps more frequently (Rustia et al., 2021) and processing

the traps as soon as possible after collection. The latter is particularly

important for image-based DL systems, as morphologically degraded

insects are likely to make it harder for DL to generalise from the data

it is trained on. The ability of molecular data to determine species

abundances for quantitative network construction and analyses from

bulk samples is currently problematic, but species richness can be

determined (Evans & Kitson, 2020); however, the lack of abundance

from molecular data mitigated by incorporation of functional, contex-

tual and trait data determined through DL, which can introduce con-

text such as the roles that different species play towards ecosystem

function (Chua et al., 2023; Høye et al., 2021). As an example for

functional traits, CV can provide measurements of morphological fea-

tures linked with interactions (e.g. tongue length in pollinators), whilst

DNA metabarcoding can provide detection of species not visible to

CV (e.g. endoparasites), highly resolved species identities and genetic

diversity (Chua et al., 2023; Høye et al., 2021). Indeed, quantitative

community data can still be generated based on this experimental

design by merging these datasets.

Metabarcoding, particularly for smaller sample sizes, can be more

expensive than traditional morphological identification because sam-

ple collection still requires manual labour (Ärje et al., 2020; Besson

et al., 2022). However, metabarcoding is scalable and cost/time effi-

cient on a large-scale (van Klink et al., 2022) and varying depths and

breadths in terms of analysis are required for different environmental

sample types (McGee et al., 2019). Some specimens may not be

DEEP LEARNING FOR INSECT BIOMONITORING 7
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identified from bulk samples via metabarcoding, and it may not always

be possible to relate data to morphology afterwards (Chua

et al., 2023; Høye et al., 2021). Further misclassifications can occur

because of sequencing errors and reference database inaccuracies.

These limitations related to barcode database completeness are now

being tackled by national and international taxon-specific initiatives

(van Klink et al., 2022). Also, collaborative efforts such as International

Barcode of Life (iBOL) and GenBank help in standardising workflows

and promoting best practices in building these genetic databases

(Chua et al., 2023; McGee et al., 2019). Different clustering (grouping

similar sequences together) and filtering (removing erroneous

sequences) thresholds can also lead to misclassification of taxa

(McGee et al., 2019). Misclassifications and poor quantitative mea-

surements from the metabarcoding process could cause potential

problems for the validation of DL in our workflow. The validation pro-

cess of comparing the data between DL (relative frequency) and meta-

barcoding (binary detections or inaccurate quantities) data might

affect the accuracy and, in turn, impair the decision making surround-

ing the accuracy of DL. More research in this area is needed.

Rapidly developing DNA sequencing technologies help in highly

resolved identification of communities and help towards building

plant-insect ecological networks, including insect pollination, host–

parasitoid interactions and wider food-web studies (Evans &

Kitson, 2020). Molecular data containing species interaction informa-

tion can then be incorporated into ecological networks (Popkov

et al., 2022).

Merged community data

Towards better understanding of ecosystem functioning, there is

growing interest in combining biodiversity data from different trap-

ping methods, especially the inclusion of interactions, which in turn

has promoted the development of new biomonitoring frameworks

(Cuff, Deivarajan Suresh, et al., 2023; Cuff, Tercel, et al., 2024). The

ability to collect and combine community data made possible through

new technologies has given researchers potential to construct com-

plex merged ecological networks in a range of biomes

(Windsor, 2023). Although challenges remain (Cuff, Deivarajan Suresh,

et al., 2023; Cuff, Tercel, et al., 2024), the successful combination of

community data from different methods has been shown to provide a

more complete understanding of complex ecosystem dynamics

(Quintero et al., 2022).

Image-based recognition and metabarcoding of sticky trap sam-

ples can separately provide information on species identity, abun-

dance, biomass, traits and some interactions (Figure 1e), all of which

can be merged to create context-rich community data and, down-

stream from that, ecological networks.

In Figure 1d, metabarcoding is suggested as a way of confirming

the identity of species from image-based recognition in the previous

step (1C). Whilst this is shown for validation purposes, metabarcoding

data will also provide a range of species interactions not detected by

image-recognition, through remnant DNA either in or on the insects

(Cuff, Deivarajan Suresh, et al., 2023; Cuff, Tercel, et al., 2024; Høye

et al., 2021). Metabarcoding therefore also help towards building

interspecific (e.g. plant–insect, insect–pathogen, dietary and endosym-

biont interactions) ecological networks, including insect pollination,

host–parasitoid interactions and wider food webs by detecting these

interactions (Evans & Kitson, 2020; Popkov et al., 2022). However,

creating networks from entomological community data such as those

generated from sticky traps alone presents a particular challenge, even

when using a combination of methods, as most species interactions

necessary to build them need to be inferred.

Network construction

We have already shown that new technologies for biomonitoring can

yield vast amounts of data, especially when including other data from

metabarcoding (e.g. parasitoids; Miller et al., 2021). Finding ways of

moving beyond long species inventories generated from biomonitor-

ing schemes to new metrics that better describe ecosystem ‘health’
and resilience is a priority (Cuff, Deivarajan Suresh, et al., 2023; Cuff,

Tercel, et al., 2024).

Ecological networks describe the interactions between species,

the underlying structure of communities and the function and stability

of ecosystems (Montoya et al., 2006). They have been shown to quan-

tify the effects of human activities on a wide range of complex eco-

logical interactions (Memmott et al., 2007; Tylianakis et al., 2008) and

have the potential to guide ecological restoration, particularly when

integrated with high-resolution methods such as metabarcoding

(Raimundo et al., 2018). There is increased interest in studying plant–

herbivore, plant–pollinator and host–parasitoid networks using molec-

ular methods to answer previously intractable questions in ecology

and evolution (Evans et al., 2016), as well as helping to detect cryptic

interactions (e.g. host–parasitoid interaction; Derocles et al., 2016;

Yang et al., 2023). Unravelling cryptic interactions can be vastly

improved by utilising the advantages of molecular methods as a vali-

dation method in tandem with DL techniques, as described previously.

With regard to biomonitoring, a recent review by Cuff, Deivarajan

Suresh, et al. (2023), Cuff, Tercel, et al. (2024) provided a detailed dis-

cussion of how combining technologies to create ecological networks

can lead to new metrics for assessing biodiversity and ecosystem

functioning. The metrics, based on the structure and complexity of

the networks, are important because these are more informative for

studying ecological resilience compared to traditional richness

measures.

A key challenge for biomonitoring is how to convert basic species

community data into ecological networks, particularly when most

species-interaction data are absent (Dubart et al., 2021). Here, both

mathematical and computational network inference methods have

roles to play. To date, co-occurrence analysis tends to be the default

method for researchers grappling with similar issues where context is

lacking (e.g., eDNA data; Djurhuus et al., 2020; Seymour et al., 2020).

However, Blanchet et al. (2020) showed that spatial associations

poorly relate to ecological interactions. Morales-Castilla et al. (2015)

8 SURESH ET AL.
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propose predictions of ecological interactions from the type of data

generated in our workflow, in particular functional traits, phylogenies

and geography, as well as relying on a priori expectations that are

often available in well-studied agro-ecosystems. Theoretically, Max-

Ent network inference methods (Volkov et al., 2009) and matrix auto-

regression (MAR), with either single (Hampton et al., 2013) or multiple

delays (Barraquand et al., 2021), show particular promise but are yet

to be widely tested empirically. Of the few studies that have, Ovaskai-

nen et al. (2017) used MAR to investigate community-level drivers of

network properties and successfully predicted community dynamics

with empirical data.

Networks are usually represented as a graph, where nodes

denote insect species. The data for each node can be structured in a

tabular format or other database schema, including the species taxo-

nomic identification along with additional data modalities such as

visual representations, acoustic signatures and other relevant informa-

tion. The edges in the graph represent interactions occurring between

the nodes. Network analysis metrics, including connectance, central-

ity, nestedness and modularity, can be computed to characterise the

topology and attributes of the graph network, and these can then be

compared, for example, to null models.

ML is rapidly developing as a method to automate network infer-

ence and elucidate novel ecological interactions with even limited

data (Bohan et al., 2017; Strydom et al., 2021). This can more accu-

rately predict ecological interactions than conventional regression

models (Pichler et al., 2020) but still requires high-quality training data.

According to Cuff, Deivarajan Suresh, et al. (2023), Cuff, Tercel, et al.

(2024), such datasets must be purposefully collected to represent spe-

cific contexts (e.g. study systems, taxa, seasonality, traits) and compu-

tational tasks (e.g. translating presence-absence, trait-based or count

data into networks), for which as-yet-non-existent network-based

databases could form an invaluable source of standardised data

(Strydom et al., 2021). Looking ahead, the creation of multilayer net-

works for understanding the individual and synergetic effects caused

by multiple environmental stressors on invertebrates are gaining trac-

tion (Beermann et al., 2021; Evans & Kitson, 2020). Graph neural net-

works (GNNs) could also become an important embedding/predictive

technique in the future for building interaction networks (Strydom

et al., 2023).

FUTURE OF AUTOMATED BIOMONITORING

Development is underway for the integration of deep neural network

with cutting-edge, automated biomonitoring tools for identification

and classification of insects, currently including Edge devices

(Albanese et al., 2021; Saradopoulos et al., 2022), mobile ID-DL

devices (van Klink et al., 2022), automated imaging systems for exam-

ple BIODISCOVER (Ärje et al., 2020), networks of time-lapse cameras

with swarm intelligence (Besson et al., 2022; Høye et al., 2021) and

unmanned aerial vehicle–based trap monitoring and robotics (Besson

et al., 2022). Automated monitoring equipment is currently much

more expensive than traditional methods, but these costs might

reduce in future (Roosjen et al., 2020). A combination of eDNA tech-

nologies and sensor data could help in scaling up automated data

gathering and creation of robust datasets (Pichler & Hartig, 2023;

Zapico et al., 2021), as damage to morphological features of insects

can reduce of taxonomic resolution in DL models if used alone (Chua

et al., 2023). Large-scale multimodal data sets are likely required for

DL algorithms to work on par with humans. Lack of sufficient properly

annotated datasets is a major challenge especially regarding sticky

traps, as are issues of accessibility (open source) and standardisation

of reliable data sets (Li et al., 2021). For datasets containing classes

(e.g. species/taxonomic groups) with very few specimens, alternative

DL methods such as ViT can help considerably.

Substantial investment in interdisciplinary research is required to

bring the full potential of DL in entomology to fruition. This will also

provide a unique opportunity for cross-fertilisation of both the fields

of computing and biological sciences (Høye et al., 2021). Such inter-

disciplinary ventures can help establish biological laws as constraints

for ML/DL models, which in turn can help development of better

Explainable AI (xAI) models for ecology research (Pichler &

Hartig, 2023), as current DL models are opaque in how they work and

what they have learnt. Next-generation biomonitoring techniques can

produce larger datasets on species interactions, which in turn have

potential for GNNs to become an applicable embedding/predictive

technique in the future for building interaction networks (Strydom

et al., 2023), although testing and validation of these approaches are

going to be key to their success. Real-time analysis of massive data-

sets has the potential to improve over time with the development of

Quantum computing and can therefore significantly help towards the

development of complete automation of biomonitoring (Woolnough

et al., 2023).

DISCUSSION AND CONCLUSION

DL has great potential to tackle future challenges and improve the

field of automated biomonitoring for both biodiversity assessment

and pest management. This potential can be further enhanced when it

is used in tandem with other technologies such as metabarcoding, as

demonstrated for the example of sticky traps throughout this article.

Here, the bottlenecks and opportunities for each step of our workflow

are summarised in Table 1.

Whilst DL models can help to determine the insects present in

agricultural ecosystems, image data alone cannot, as yet holistically

identify communities as some cryptically interacting insects are over-

looked, or morphologically similar species are difficult to delineate

(Miller et al., 2021). For example, insects that are parasitised and simi-

lar looking insects on a sticky trap could be detected using DL meth-

odologies, but their parasitoids would be overlooked. Holistic species

lists and the interactions between species are hard to obtain through

a single biomonitoring method (van Klink et al., 2022). Complementing

DL on image data with the addition of eDNA/metabarcoding

(or indeed other technologies, such as acoustic monitoring; Mankin

et al., 2011) will greatly enhance the detection and identification of
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pest and beneficial insects and could give us deeper insight into

insects in various ecosystems.

The complementary use of eDNA/metabarcoding may also fill

gaps in data that arise in DL methodologies caused by insects being

under- or over-represented. This representation problem has causal

factors ranging from inability to capture certain types of insects

because of the nature of traps to the insects being seasonal in nature

(Alvarado-Robledo et al., 2024). Ground-truthing using eDNA/

metabarcoding can be done periodically to enhance the results

obtained through DL. DL in turn will complement the missing bar-

codes of rare species of insects, taxonomic and sampling biases pre-

sent in eDNA/metabarcoding databases.

Currently, almost all ML/DL models used for insect identification

and classification tasks are trained through purely supervised learning.

This methodology is hard to scale up due to human limitations such as

manual annotation, limited availability of samples, unidentified insects

and taxonomical classification complexity. In order to overcome this

bottleneck, a transition towards semi-supervised learning is required.

This transition can be done using methodologies like generalised cate-

gory discovery combined with few shot learning. These methodolo-

gies can help in identifying and categorising new and unidentified

species of insects using very few annotated samples, thereby aiding

researchers in better describing the vast biodiversity of insects. Off-

the-shelf algorithms (e.g. YOLO, ResNet) trained on image data per-

form less than optimal on unknown testing data. Hence, in the initial

stages of developing a custom semi-supervised learning model, a fully

supervised learning model should be built in parallel, with the help of

taxonomists in order to compare the models’ performance and for

error correction. This approach can pave the way for the future of

entomological biomonitoring in a rapidly changing world. Automated

biomonitoring with its multidimensional data can help create ecologi-

cal networks to analyse community structure, complexity and vulnera-

bility; such spatiotemporal data are otherwise prohibitively laborious

to obtain using conventional manual methods (Besson et al., 2022).

Trophic networks involving invertebrate predators and prey can also

reap the benefits of Big Data obtained through combinations of sam-

pling methodologies. Molecular methods can determine the prey that

predators are eating, which is influenced by the abundance of those

prey or sometimes the preferences of the predator. To explore this,

molecular methods are poorly positioned to establish prey availability

because they lack reliable quantitative data, whereas automated

image-based methods could overcome these data shortfalls without

the time-intensive process of sorting and identifying hundreds of indi-

vidual arthropods, thus tackling the scalability issue (Cuff, Tercel,

et al., 2024).

Integrated pest management (IPM), which is a critical tool for sus-

tainable crop protection, and farm ecosystem management requires

rapid detection, identification, classification and counting of insects to

prevent the spread of pests, pathogens and/or invasive species in a

timely manner (Barbedo et al., 2020; Butterwort et al., 2022; Diller

T AB L E 1 The bottlenecks and opportunities of the sticky trap methodological workflow that combines complementary data types from
image-based recognition and validation using metabarcoding to produce ecological networks.

Pipeline stages Bottlenecks Opportunities

Sample collection • Manual collection of traps and long-term storage

• Different type of traps and types of insects captured

• Ethics of insect trapping, especially rare species

• Unified methods for long-term data collection

• Standardisation for trapping methodology

• Establish insect ethics for insect collection

Data digitisation • Cost of digitisation equipment

• Manual labour and time involved in digitisation

initially

• Requirement of taxonomic knowledge–
differentiation between similar looking species

• Curation and data storage

• Complexity of directly collecting digital data in field

• Open databases curated through collaboration

• Interdisciplinary ventures for automated digitisation of traps

• Transition to semi-supervised learning for auto-annotation

• Semi-hybrid edge systems

Image-based

recognition

• Lack of publicly available, standardised spatio-

temporal data for algorithm training

• Off-the-shelf algorithms with poor direct

performance

• Manual labour involved in fully supervised learning

• Undiscovered species of insects and limited data

• Current processing power requirements and

technical limitations

• Building publicly available, standardised spatio-temporal data

available in the UK, using bycatch

• Implementing advanced learning strategies

• Customised DL algorithms

• Advancement of semi-supervised learning in parallel to supervised

learning methods

• Utilising edge systems, IoT and other technical advancements

Validation using

metabarcoding

• DNA degradation on sticky traps

• Insect removal from sticky traps involves manual

labour and cost

• Highly replicated bulk samples reduce overall cost

• Complementing data through computer vision

Merged

community data

• Incomplete multimodal datasets encompassing large

spatio-temporal biodiversity

• Ground truthing with useful metrics as output

• Enhanced efforts from national and international taxon-specific

initiatives and museum collection digitisation

• Combining various methodologies and interdisciplinary efforts

Network

construction

• Accurate and efficient network inference for

informed decision making

• Rapid interpretations when combined data are used

• Assisting policy through useful metrics and ground-truthing

10 SURESH ET AL.
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et al., 2022; Li et al., 2021; Martinez et al., 2020; Roosjen et al., 2020;

Rustia et al., 2021). Implementation of advancements in AI, miniaturi-

sation of efficient microprocessors, IoT and cloud computing have

improved traditional IPM systems giving rise to a new method known

as smart pest monitoring (SPM). SPM can help improve automatic col-

lection of data on crop pest abundance and aid in accurate decision

making. It is currently implemented on an experimental basis only

(Ayaz et al., 2019; Karar et al., 2021; Li et al., 2021; Lima et al., 2020)

but has the potential to be further advanced using the methodological

pipeline suggested in this article.

For next-generation biomonitoring to come of age, Cuff, Deivara-

jan Suresh, et al. (2023) highlights three distinct challenge areas in

need of urgent progress: (1) unified methods for data collection,

(2) reproducible and robust big data and (3) accurately inferring and

analysing networks. We exemplified each of these challenges using

the single example of sticky traps. Moving forward, a combination of

methods and technologies will be needed for surveillance and biomo-

nitoring in agro-ecosystems, bringing complementary data sources

together. Sticky traps combined with pan traps and plant–insect sur-

vey transects are currently being used to create species interaction

networks as part of the EU Horizon 2020 ‘EcoStack’ project (https://
ecostack-h2020.eu/) to better understand invertebrate ecosystem

service provisioning in crop and non-crop habitats across the

UK. Here, there is a need to establish a versatile tailor-made DL algo-

rithm and build a UK-based (and beyond) standardised multi-class

open-source benchmark insect dataset for automated biomonitoring

as there are presently no large-scale annotated datasets for agricul-

tural landscapes. Building a large-scale standardised annotated dataset

is a priority, and this will pave the way to advance automated biomo-

nitoring technology. A UK/EU specific DL algorithm and a standar-

dised dataset are the primary focus of this methodological initiative.

An open access approach towards building such a dataset will foster

transparency, enhance research utility and empower evidence-based

policy making to address UN SDG Goals (Barlow & O’Neill, 2020; Cuff

et al., 2024; Li et al., 2022).
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