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Simple Summary: To meet current global food supply challenges, researchers and technicians are
searching for alternative livestock systems that promote highly sustainable animal productivity and
farm profitability, while having a positive environmental footprint. In this narrative review, we
highlight one such system, Voisin Rational Grazing (VRG). VRG is a regenerative livestock farming
system proposed by French scientist Andre Voisin in the 1950s and further developed in Brazil in
the 1970s. VRG has been applied in many countries with vastly different ecosystems. Like other
regenerative systems, VRG provides a range of ecosystem services, including negative net carbon
emission, reduced soil erosion, and increased biodiversity. Because VRG is also focused on animal
performance, farmers applying VRG are more resilient against the adversities confronting farmers
practicing more conventional farming systems. VRG requires a paradigm shift from the farmers and
thus its uptake may be hindered if there is not enough support within the community. Here, we
provide a comprehensive overview of VRG, along with its benefits and constraints.

Abstract: Current livestock practices do not meet current real-world social and environmental re-
quirements, pushing farmers away from rural areas and only sustaining high productivity through
the overuse of fossil fuels, causing numerous environmental side effects. In this narrative review,
we explore how the Voisin Rational Grazing (VRG) system responds to this problem. VRG is an
agroecological system based on four principles that maximise pasture growth and ruminant intake,
while, at the same time, maintaining system sustainability. It applies a wide range of regenerative
agricultural practices, such as the use of multispecies swards combined with agroforestry. Planning
allows grazing to take place when pastures reach their optimal resting period, thus promoting
vigorous pasture regrowth. Moreover, paddocks are designed in a way that allow animals to have
free access to water and shade, improving overall animal welfare. In combination, these practices
result in increased soil C uptake and soil health, boost water retention, and protect water quality.
VRG may be used to provide ecosystem services that mitigate some of the current global challenges
and create opportunities for farmers to apply greener practices and become more resilient. It can be
said that VRG practitioners are part of the initiatives that are rethinking modern livestock agriculture.
Its main challenges, however, arise from social constraints. More specifically, local incentives and
initiatives that encourage farmers to take an interest in the ecological processes involved in livestock
farming are still lacking. Little research has been conducted to validate the empirical evidence of
VRG benefits on animal performance or to overcome VRG limitations.
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1. Introduction

Countries around the world have faced limitations in using the planet’s biophysical
resources to meet basic needs. Achieving a high standard of living for all would require
the use of biophysical resources two to six times greater than the level considered sustain-
able [1], depleting our resources and threatening life on the planet. Agriculture plays a
central role in providing food resources, but the current agricultural model has caused
serious environmental and social impacts [2].

According to the UNCCD (United Nations Convention to Combat Desertification;
https://www.unccd.int/message-land-and-soil), the planet loses 28–75 billion tons of
fertile soil to erosion annually. Livestock has been considered responsible for 14.5% of
anthropogenic greenhouse gases (GHG) emitted, of which meat and dairy products rep-
resent 41% and 21%, respectively [3]. The current agricultural model, which is based
on the “Green Revolution”, has also promoted massive rural exodus, changing the rural
landscape from its cultural richness and biodiversity to the monotony of monocultures in
large farms [4].

Promoting sustainable livestock production systems is imperative, and the current
challenge is to combine intensification of animal production and maintenance of ecosystem
services [5]. Well-managed pastureland provides a range of ecosystem services [6,7], but
perhaps this is not enough. A key aspect of sustainable livestock production is to identify
the best management practices to optimize environmental services, while supporting
farmers’ profitability [8]. Maintaining high animal productivity is in line with farmers’
motivations [9,10] and may help bridge the gap between the trade-offs of confinement
and extensive systems. Ecologically based systems require a paradigm that focuses on
agroecological processes involving soil, plants, and animals in order to optimise the use
of renewable resources [10,11]. This means shifting away from intensive agriculture
heavily based on fossil fuel inputs and moving toward intensification based on pasture
management and solar energy [12].

Permanent meadows and pastures encompass about 67% (33.6 million km2) of the
world’s agricultural land [13]. This large area is probably sufficient to sustain not only
wildlife, but also the current livestock population of ruminants: 1.5 billion head of cattle,
204 million head of buffaloes, 1.24 billion sheep, and 1.09 billion goats [13] in sustainable,
regenerative systems. Many types of systems may be considered ecologically based or
regenerative: holistic grazing management [14], adaptive multi-paddock grazing manage-
ment (AMP; [15]), management intensive grazing (MIG; [16]) and Voisin Rational Grazing
(VRG; [12,17]). All these systems rely on pastoral ecosystems and share the basis of agroe-
cological reasoning, notwithstanding there are different reasons for applying one system
instead of another. While some systems are applied mostly with the aim of land recovery,
others focus on increased animal productivity.

Another agriculture is possible and necessary, with sustainability as a fundamen-
tal guide. For ruminants, in particular, Voisin Rational Grazing (VRG) [12,17] addresses
sustainability in all its dimensions: economic, energetic, productive, social, cultural, en-
vironmental, and animal welfare, bolstering the pastoral ecosystem. VRG is part of an
agricultural system based on ecology, compatible with the integration of livestock and
agriculture, through the rotation of pasture and crop areas, the use of cover crops without
disturbing the soil and without the use of pesticides. It optimises the use of endogenous
resources and minimises external dependence, reducing costs and increasing profitability.

In this narrative review, we argue that VRG delivers high animal productivity, while
improving other ecosystem services. VRG focuses on four basic principles (recovery period,
occupation time, maximum performance, and regular performance principles; see Section 2)
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that account for forage growth and management, as well as animal requirements. Because
it is based on simple ecological principles, VRG can be applied in a range of ecosystems,
making VRG a universally viable option for the future of animal production worldwide.
The objective of this review is to describe the key management practices of VRG and
explore their potential for increasing productivity, improving ecosystem services and farm
resilience, in addition to mitigating the negative effects of animal production. In the first
section, we highlight the principles that guide VRG and the refinements proposed by
several researchers to improve its productivity and identify other grazing systems that are
similar to VRG. Secondly, we demonstrate how VRG responds to current global challenges
in livestock management. Thirdly, we discuss the barriers against the adoption of VRG. We
finish with future directions and limitations.

2. Voisin Rational Grazing and Its Four Principles

VRG can be defined as a rational method for managing the soil–plant–animal com-
plex through direct grazing and well-planned pasture rotation. The system was first
described in André Voisin’s book entitled Productivité de l’herbe (1957; [17]). Among other
works, he later published Dynamique des herbages (1960; [18]) to complement the concept
of pasture management. Voisin’s work was first implemented in South America in 1964
by the agronomist Nilo Ferreira Romero on his farm called Conquista located in Bagé,
southern Brazil [12,19,20].

Further, the Brazilian agronomist and professor, Luiz Carlos Pinheiro Machado, coined
the term “Pastoreio Racional Voisin” (Voisin Rational Grazing) and introduced advances in
the system, such as the concept of bringing water to the animal and not the animal to the
water, the need for shade in the paddocks and the concept of dividing the area with square
paddocks and internal and external corridors designed to facilitate the flow of animals and
prevent soil erosion. Pinheiro Machado left his book Pastoreio Racional Voisin (2004; [12]) as
his main legacy. Developed in Brazil in the 1970s and 1980s, VRG spread to other countries
in the Americas. The American professor Bill Murphy brought VRG to the USA from Brazil
and began to teach and research the method at the University of Vermont, USA. In his
work, professor Murphy used the term “MIG” (Management Intensive Grazing; [16]). More
recently, in December 2020, the French Academy of Agriculture acknowledged and recog-
nized the work of Andre Marcel Voisin in a Webinar promoted by the Association pour l’étude
de l’histoire de l’agriculture (https://www.academie-agriculture.fr/actualites/academie/
seance/academie/seance-organisee-par-laeha-andre-voisin-controverses-autour-de;
3 August 2021).

The VRG system follows four “laws” (principles) of rational grazing, as first enunci-
ated by Voisin (1957; [17]) and summarized below:

(I) “First Law”—recovery period principle: Before a sward, sheared with the animal’s
teeth, can achieve its maximum productivity, a sufficient interval must have elapsed
between two successive shearings to allow the grass (1) to accumulate in its roots the
reserves necessary for a vigorous spurt of regrowth and (2) to produce its “blaze of growth”
(or highest daily yield per hectare).

Time of recovery period is always variable and should provide an optimum post-
grazing period that enables full plant recovery after the following grazing bout. This
optimum recovery period (ORP; Figure 1) can be defined as the moment when the acceler-
ation of pasture growth curve is equal to zero; the moment of maximum herbage growth
rate [21], which has been related to the regrowth moment when light interception reaches
95% [19]. The ORP coincides with the maximum accumulation rate of protein, energy, and
organic matter digestibility in herbage [20,22,23]. On the other hand, after the plant has
reached its ORP, it rapidly redirects nutrients and energy to enter into the reproductive
stages, followed by the decline of herbage mass growth rate, drop in leaf to stem ratio, and
severe reduction of herbage quality [23–25]. The ORP can be determined by the plant’s
phenological stages, right before it directs its energies towards flowering. For instance,
at the paddock level, ORP occurs when (i) plants begin stem elongation, (ii) the flag leaf

https://www.academie-agriculture.fr/actualites/academie/seance/academie/seance-organisee-par-laeha-andre-voisin-controverses-autour-de
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emerges [26], (iii) boot stages occur, which is common in most grass species, and/or (iv)
the first emerged leaves become senescent or when 30 to 50% of plants are in flowering
stage for temperate legumes [12].
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For the first principle to be achieved, VRG does not follow a pre-established sequential
pasture rotation scheme. Instead, it uses each paddock at the moment its ORP has been
reached by the targeted pasture species within the paddock or field to be grazed. Species
growth is dependent on soil characteristics and environmental conditions, particularly the
lack of adequate soil moisture or precipitation [27]. Therefore, ORP for a given species is
site-specific and varies along the grazing season [17]. In order to attain ORP for a given
species at any moment of the season, it is necessary to determine a set number of paddocks
according to the longest ORP of the intended species. The number of paddocks is key to
allow for a high degree of control over the timing of occupancy of a grazed area [12,15].
Most commonly, a paddock is grazed using a mean ORP when most of the desired species
have attained their ORP. However, the ORP of a particular species can be targeted to allow
it to increase its presence in the paddock [12]. Moreover, targeting the ORP of the most
productive and/or best nutritive value plant species may promote ideal conditions to
maximise overall annual herbage production and nutritive value [11], in turn hampering
the survival of undesirable species or weeds [26–28]. Such effects are related to the fact that
when the plant is cut at its ORP, there is the best combination of accumulated reserves and
the lowest fibre content in the plant tissue [28]. Thus, when cut at this point, it will have
a faster and more vigorous regrowth than other plants that have not attained their ORP
and will have fewer reserves to promote a vigorous regrowth. More mature plants that
have passed their ORP will have already redirected some of the accumulated reserves to
the flower and seed formation, and will be less palatable to animals due to a higher fibre
content. As a consequence, the grazed plant will have a higher senescent residue, with
greater respiration and lower photosynthetic rate during the regrowth [29], reducing their
competitiveness compared with plants cut at their ORP. Pratensis plants, as Voisin (1957)
called them, or plants growing in meadows that co-evolved with ruminants, have high
tolerance to grazing. Compared with a 60-day cutting interval, frequent defoliation reduced
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root and shoot biomass in species with high tolerance to grazing, but not in species with
low grazing tolerance [30]. Thus, it is expected that in a multispecies pasture cut at its ORP,
this characteristic would favour the presence of high-tolerance grazing species and reduce
the participation of non-grazing species.

(II) “Second Law”—occupation principle: The total occupation period on one pad-
dock should be sufficiently short for a grass sheared on the first day (or at the beginning) of
occupation not to be cut again by the teeth of these animals before they leave the paddock.

This principle is tightly related to the first law in order to prevent grazing of plant
regrowth. In this sense and as a rule of thumb, the animals should not stay more than 3 days
grazing the same paddock, ideally allocating one or even two paddocks per day [15,31].
However, this period is site-specific. For example, in tropical areas where herbage growth
rates are high, the period to avoid grazing of herbage regrowth should be shorter. On
the other hand, in conditions where herbage growth is slow or dormant, as in summer in
Mediterranean climates or winter in temperate climates, these periods can be extended [32].
To obtain short occupation times, it is necessary to use high stocking densities, which
results in concentrated manure deposits [10], promoting large flows of readily available
organic matter to activate soil biocenosis [33] that will provide the required nutrients
to ultimately guarantee a fast growth rate of herbage after defoliation and during the
growing season [12].

(III) “Third Law”—maximum performance principle: The animals with the greatest
nutritional requirements must be helped to harvest the greatest quantity of grass of the
best possible quality.

To achieve maximum herd performance, animals of higher nutritional demand should
be allowed the herbage of greatest nutritive value. Herbage nutritional value is greatest
at the top fraction of the canopy and lowest at the lower fractions [31,32]. Thus, to follow
this rationale one may separate groups of animals by their nutritional requirements. For
example, lactating animals (higher nutritional demand) may enter a fresh paddock while
non-lactating animals (lower nutritional demand) may enter that same paddock shortly
after the lactating herd has left to a new fresh paddock. This management is deemed first
and second grazing groups [34].

(IV) “Fourth Law”—regular performance principle: If a cow is to give regular milk
yields she must not stay any longer than three days on the same paddock. Yields will be at
their maximum if the cow stays on one paddock for only one day.

Animals should be offered herbage of consistent quality to maximise their performance
and avoid unstable productivity. Although ruminant animals are resilient to irregular feed
offering, it does decrease overall productivity and promote irregular performance [35].
Thus, in line with the second principle, to achieve the best and most consistent performance,
lactating dairy cows, for example, should be moved to a fresh pasture after each milking
(e.g., twice a day). Likewise, finishing steers should not stay more than one day grazing
the same paddock. To ensure proper tight grazing, following the first grazing group, a
category of animals with lower requirements should occupy the paddock for similar length
of time [12]. Tight grazing regime promotes herbage regrowth of new photosynthetically
active tissue with higher leaf to tiller rates. Thus, increased grazing severity maintains
high-nutritive value grass [36].

The dynamic and complete observance of VRG principles is key to attaining max-
imum system production efficiency, including positive responses in the quality of food
produced [17]. The application of the four principles must be dynamic, dialectic, and con-
stantly evaluated, but without fixed rules, fixed times, or fixed stocking densities. However,
this requires good planning. It is a dynamic management process of the soil–plant–animal
complex with holistic evaluation throughout the pastoral ecosystems. The key aspect to
achieve such management is time. ORP never has the same length, therefore the sequence
of paddocks’ use is not repeated in consecutive grazing seasons. Likewise, occupation time
varies with pasture productivity over the season. In the first–second group dynamic, the
first group will leave to a fresh paddock when all pasture of the second group´s paddock
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is consumed. Therefore, the second group defines the moment of paddock change for
both groups. These management principles (Table 1) are oriented toward satisfying both
herbage and animal requirements [17].

Table 1. The four “laws” (principles) of Voisin Rational Grazing.

Principle (Law) Goal(s) Description/Management

(1) Recovery
period

Maximum pasture productivity
and restoration of reserves

Observe the correct ORP 1 in order to allow maximum herbage
productivity, high forage quality and reserve storage for following

regrowth. The period of rest of the grass between two successive cuts
will be variable according to the plant species, season of the year, climatic

conditions, soil potential, and other environmental factors.

(2) Occupation
Avoid cutting early regrowth,
promote soil biocenosis and

grazing efficiency

Observe high stocking densities for a short period of time to prevent
grazing of plants in early regrowth and to deposit large amounts of

manure. Apart from exceptional situations, occupation time should not
exceed 3 days, and ideally it would be 12 h for dairy or 1 day for beef.

(3) Maximum
performance Increase animal productivity

Allow animals to graze pastures of nutritive value that match their
nutritional needs. Split the herd according to the nutritional needs of the
animals into 2 or 3 groups, moving firsts, seconds, and thirds in sequence

in all paddocks.
(4) Regular

performance
Ensure regularity in animal

productivity
Observe short periods of occupation per group to provide regular pasture
allowance according to the animals needs and constant nutrient intake.

1 OPR: optimum recovery period.

Among different grassland management systems that have been described, we see
close similarities between VRG and the adaptive multi-paddock system (AMP; [15]), as
well as management-intensive grazing (MIG) or management-intensive rotational grazing
(MIRG) [16]. These management methods follow principles very similar to the four previ-
ously described for VRG, thus we will use the research outputs from studies undertaken
using these systems, along with studies done with VRG, to support the rationale and
mechanism underlying VRG responses.

3. Voisin Rational Grazing Refinements and Implementation

Maximum efficiency of pasture and animal performance is obtained with the dynamic
and complete application of the four principles of rational grazing [17], which, together,
presuppose the division of an area into multiple paddocks. This is achieved by planning
the use of pastures by calculating the number of paddocks, estimating the evolution of the
animal stocking rate and the flow of animals within the farm, and allocating shade, drinking
water, and forage species. The concept of square paddocks, along with the perimeter
corridors and the use of water troughs within paddocks, were important advances in
the application of VRG [12]. Modern VRG systems are designed with multiple corridors,
allowing more than one choice to move from one paddock to another, and with water
troughs available in all paddocks. This design avoids excessive use of the same corridor for
herd movement, which may cause soil erosion, and ensures water supply for all animals.
An example of such design can be seen in Figure 2a. When no fixed rotational pasture
schedule is used, the grazing area assumes a non-uniform pattern, sometimes called a
“chess” pattern (Figure 2b; [12]).

Overall, the integration of the four principles results in an intensive grazing system
through the use of first–second grazing groups that graze for short periods of time in
a small area, resulting in a high stocking density. This approach, when combined with
targeted ORP, maximises both herbage production and nutritive value, and ultimately
maximises animal productivity along a series of additional ecosystem services (see below).

Under VRG, the animals are less selective in their grazing behaviour, becoming
more voracious. This means that animals graze almost all species available, leaving few
unconsumed species in the sward [11,14,25,27]. As plants are repeatedly cut in this way,
there is a tendency to reduce the presence of non-grazing species, although not decreasing
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diversity. Azevedo et al. [37] reported 81 plant species from 23 different families per square
meter in a VRG in Bom Retiro, SC, Brazil. If the high animal density leads to a more
voracious ingestive behaviour, applying excessive stocking density may affect overall
animal behaviour and welfare. For example, comparing two high stocking densities (200
cows/ha and 500 cows/ha), cows in the lower stocking density group performed more
grazing and had less aggressive behaviour than cows in the higher stocking density [38].
Furthermore, the use of a very high stocking density may require three or more paddock
changes per day, increasing labour.
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Figure 2. Eight-year-old commercial beef Voisin Rational Grazing (VRG) farm in Bom Retiro, Santa
Catarina, Brazil. The total pasture area is 45 ha. (a) Blueprint of paddocks, alleyways (corridors)
and hydraulic system. The total number of paddocks is 68. In VRG, water goes to the animals [12];
(b) satellite footage (Map Source—QGIS 3.16. (November 2018), Google Earth, Maxar Technologies,
of the farm (accessed on 16 August 2021). The non-sequential use of paddocks creates what is called
a “chess pattern” [12].

Paddocks must be designed with water troughs and shade access. In VRG systems for
dairy and beef cattle, readily available water troughs increase animal productivity [39,40].
Like any social species, ruminants form social hierarchies that influence group behaviour;
subordinate animals may not have fulfilled their physiological needs before the dominant,
and high-ranking animals start moving away from the water resources, for example.
Water, shade, and other valuable resources (e.g., mineral supplements) located within the
paddock must be planned to minimise the herd dominance effect. As a demonstration of
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this phenomenon, researchers have compared the effect of water trough location on the
drinking behaviour of dairy cows. When located at the end of a common corridor, some
subordinated animals stayed up to 48 h without accessing water [41].

Because paddocks should be designed to allow for prompt access to water and shade,
VRG systems have been combined with other types of regenerative agricultural systems,
such as silvopastoral. The integration of the silvopastoral system with VRG is fully com-
patible. The presence of silvopastoral nuclei within VRG paddocks improves the ambience
and welfare of dairy cows [42], regulates the microclimate [42], sequesters C in soils [43],
increases biomass [44], improves nutrient cycling [43], and provides habitat for pollinators
and other species [45–47].

4. Voisin Rational Grazing Responds to Current Global Challenges
4.1. Climate Change

Cattle are thought to be a threat to climate change, mostly because of enteric methane
(CH4) emissions. This reputation was mainly propounded as a consequence of GHG inven-
tories from Life Cycle Assessments (LCA) based on guidelines of the Intergovernmental
Panel on Climate Change (IPCC) Tier 1 [48,49]. These guidelines are essential tools to
understand emissions, but they have some limitations. They presume that soil C is in
equilibrium [50] and may underestimate grassland C sequestration potential and sink
capacity [51,52], overestimating the global warming potential of CH4, a short-lived climate
pollutant [53]. This might lead to false conclusions, such as feedlots having lower potential
to climate change per kilogram of product than grass-fed systems [54–58]. LCA is the best
internationally accepted approach to model and measure the potential impact of a given
product but it may fail to achieve the actual positive impact of C sequestration on C balance
of sustainable livestock systems, as is shown when soil organic carbon change is directly
measured in soils.

Stanley et al. [59] used the same guidelines to consider C sequestration. When C
sequestration was not sampled, they found that the adaptive multi-paddock grazing
system (AMP) emitted 1.6 times more CO2 eq than grain-based systems. However, when
soil C was systematically taken into consideration, net GHG fluxes resulted in an overall
negative 6.65 CO2 eq kg−1 carcass weight (net C sequestration) for AMP and a positive
6.12 CO2 eq kg−1 carcass weight (net C emissions) for the feedlot system. These differences
in C fluxes between systems indicate that well-managed pastures can offset emissions
from the finishing phase of beef production. In fact, on-farm data showed that AMP had
13% and 9% more soil C and N, respectively, than conventional or set-stocking-managed
grasslands [60] and that VRG grasslands stocked 25% more C than non-tillage fields for
grain production [61].

Converting degraded agricultural areas to intensively managed grasslands has a
high potential to mitigate climate change through fast increase in soil C. MacHmuller
et al. [62] have determined a sequestration of 8.0 Mg C ha−1 yr−1 at peak accumulation
near the sixth year after the conversion from cropland to intensively managed pastures.
Putting this into perspective, only agroforestry performs better than this [63,64]. Other
studies also found negative C balance for AMP with values for C sequestration of 3.53
and 3.59 Mg C ha−1 yr−1 [59,65]. However, soil is not a perpetual C sink [66]. It is part
of the C cycle, and C storage is sensitive and reversible. C accumulation in a given site
diminishes over time as levels of soil organic C content build up. Thus, caution should be
applied in extrapolations and comparisons since estimations are always associated with
their concomitant uncertainties [67].

Although some regenerative systems can maintain C sequestration for decades
(e.g., [65]), others may arrive at an apparent plateau around 6 years following land use
change [62]. The saturation of soil C depends on pedoclimatic, vegetation, and manage-
ment characteristics. When this occurs, the area will become a source of C emissions
owing to enteric CH4 emissions, a characteristic of livestock production. However, this will
only happen when soil achieves a high organic matter content, so all the benefits from a
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sustainable system and healthy soil are available [62]. Under these conditions, VRG has its
maximum potential to mitigate climate change when applied in highly degraded soil where
C has been lost. The loss of 50% of the world’s agricultural land to soil degradation [68]
affords an opportunity to sequester C from the atmosphere into the soil using adequate
grazing management practices.

Reducing Emissions

Reduction of GHG emissions by the livestock sector mainly depends on reducing
enteric CH4. Of the total livestock emissions, 40%, on average, comes from enteric fermen-
tation, although manure management (N2O and CH4) is also relevant [69]. Secondarily, the
other critical sources of emissions to the environment are from concentrate and synthetic
fertilizers used to grow grains and pastures [60,70,71].

CH4 emissions from animal maintenance cannot be removed through management
practices. However, it is possible to dilute animal maintenance through strategies that
improve productivity and that may have strong efficiency in reducing GHG emissions on
a per product basis [72]. As animal production increases, the proportion of energy and
nutrients required for maintenance decreases, allowing for a greater proportion for milk
or meat production [73]. However, one should always take into account environmental
externalities and other production costs related to increased productivity. Animal breeding
to increase animal productivity is key to reducing CH4 emissions but may also reduce
animal resilience to environmental challenges in low-input farms or pasture farms [74].
Herd level management strategies to increase overall productivity (or reduce production
inefficiency), e.g., culling unproductive heifers and administering vaccines, may also reduce
livestock emissions [7].

Moreover, CH4 emissions can be lessened through management practices that provide
diets of high nutritional value, to optimize animal productivity, leading to a reduction in
enteric CH4 emissions. Diets with high fibrous carbohydrates slow enteric digestion and
increase the CH4 emitted per unit digested when compared with feed with high concentra-
tion of starch and sucrose, such as grains, characterised by fast digestion [75], increasing
rumen acidity, and thus reducing the emission of CH4 per animal unit. Grass-based diets
cannot equal grain-based emissions based on these digestive conditions. However, by
using grains as feed, one must acknowledge the share of deforestation responsibility for
soy production in the Amazon [70,71], as well as in Brazilian Cerrado [76]. Neither can
the spatial dependence of an indirect relationship between the expansion of croplands
over pastures and further deforestation in neighbourhoods for new pasture areas be ne-
glected [77]. Additionally, some studies point out that the hotspot for GHG emissions is the
use of concentrate [78] and fertilizers in the production of grains [56]. Besides that, using
grains ignores the importance of ruminants in converting food otherwise unsuitable for
humans, such as cellulose, into high-quality protein [79]. Alternatively, VRG presents not
only a high daily productivity per area, but it also maintains pasture in a vegetative state
for a longer period, producing less fibrous forage [20] with the resultant lower potential for
enteric CH4 emissions [80] than that in other grass-based systems.

When comparing grazing systems, DeRamus et al. [81] collected direct enteric CH4
emissions and demonstrated that MIG emitted 22% less CH4 annually when compared with
continuous grazing systems. Effectively, recent in vitro results suggest that CH4 emissions
can be minimised when herbage is at ORP (Figure 1). This is the time when plants have
the highest protein and lowest fibre content associated with the highest herbage mass
accumulation rate [80]. This shows that timing in grazing management is crucial to decrease
CH4 emissions from grazing livestock. The end of the ascendant phase of the sigmoidal
growth curve of plants is the ideal target to start grazing, which is also efficient in mitigating
CH4 [7,80]. Intensification plays an important role on a global scale; however, owing to its
effect on climate change, appealing to intensification of conventional livestock farming (or
conventional agriculture in general) may cause equally important environmental impacts,
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such as acidification, eutrophication, and energy demand, and these effects are positively
associated with the degree of intensification of production [82,83].

Other technologies can be combined and applied to grassland management. Feed
additives have been used to reduce CH4 emissions; compared with stearic acid and soy
oil, linseed oil can reduce enteric CH4 emissions from pasture-fed dairy cows [84]. Studies
show that seaweed (Asparagopsis spp.) added in feed reduces from 80% up to 98% of CH4
emissions from livestock, depending on feed digestibility [85,86]. Other feed additives,
such as 3-nitrooxypropanol (3-NOP) synthetic product [87] and other alternatives have
been studied such as slurry chemical amendments [88] and protected urea [89–91] to reduce
overall livestock GHG emissions. However, most are still being studied. They are also
costly, and their uptake by farmers remains uncertain. The above options are useful as a
palliative to minimise specific processes to reduce GHG emissions. However, we encourage
more holistic options that address the underlying causes of global warming and move
towards sustainable husbandry systems.

4.2. Ecosystem Services
4.2.1. Maximising Carbon Sequestration and Storage in VRG

It is not enough to just reduce emissions; it is also necessary to maximise C stocks in
soil. Suppose our goal in livestock production involves sequestration and storage of as
much C from the atmosphere as possible. VRG management practices are precisely those
recommended to do just that [64,92,93].

VRG grasslands are managed to minimise losses of C from soil through minimal soil
disturbance before and during planting, maximising ground covering plants all year, and
allowing adequate resting periods [94], as well as good design of corridors and tracks and
judicious use of external inputs [95] such as fertilizers, supplemental feed, and the use of
perennial species [96].

Moreover, VRG not only maximises the rate of C sequestration in biomass through
ORP management, but it also includes other techniques that increase this rate, such as use
of forage legumes, inclusion of especially deep-rooted plants to improve nutrient uptake,
the increase in species diversity in pasture [97,98], introduction of fast-growing trees for
shade and forage purposes, introduction of perennial species, and the use of inoculants [99].
Most effectively, integrating trees and pastures (silvopastoralism) makes it possible to
neutralize CH4 emissions [92] by requiring a low number of trees to offset emissions from
livestock production (17 to 44 trees ha−1; [63]).

Additionally, VRG maximises rates of transfer of C from biomass into soil [61]. In a
recent study, Mosier et al. [60] reported a greater stabilization of soil C stocks in the AMP
system when compared with conventionally grazed grasslands. Grazing high stocking
densities associated with short grazing occupation returns much of the C ingested in forages
back to the land in animal manure, basically pumping C back into the soil [10]. Systems
could also use swales/terraces, avoid steep sites, use windbreaks to reduce wind erosion
and de-compact compacted soil using deep-rooted plants [99]. Livestock management then
becomes a tool for C sequestration.

4.2.2. Soil Health and Biodiversity of Swards

In the VRG system, productivity and nutritive value of herbage produced, nutrient
and hydrological cycles, as well as ecological services, all depend on the overall quality of
soil, or health, and ultimately, therefore, the type of management practices used. Soil health
is defined as the capacity of a living soil to function, sustain plant and animal productivity,
maintain or enhance water and air quality, and promote plant and animal health [93]. To
meet the requirements of this definition, VRG systems maximise aerial and below ground
biomass production through the four principles previously mentioned as the main fluxes
of C and nitrogen sources into the system.

Since living organisms within soil comprise a key pillar of VRG, VRG practices target
improving the dynamics of microbes in soils. Science has only begun to understand
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the factors regulating soil microbiome and soil nutrient availability as a broader concept
beyond that of a property characteristic of an external medium to which plants adapt [100].
Plant nutrition is a result of a functional, whole plant–soil–living organisms ecosystem
where biodiversity underground affects several ecosystem functions [101]. Basically, the
VRG approach focuses on nutrient management through microbial and plant-mediated
processes [102–105]. Therefore, management practices are built on premises that rely on
minimum soil disturbance and maximising C inputs. Processes in soil are undertaken by
living roots and microorganisms sensitive to management. When living roots exudate
liquid C, it feeds the microbiota that creates nutrient cycling and makes nutrients available
to plants [103]. Such exudates create soil aggregates which open space for water infiltration
and gas exchange, allowing microorganisms growth and further accelerating the process of
organic matter accumulation. Soils with reduced disturbance have increased earthworm
activity [106], further contributing to soil aggregation and increasing water entry into soil.
Organic matter and living organisms in soil not only improve nutrient cycle dynamics,
but also the water cycle since building aggregates helps water infiltration and retention.
Accumulating soil C improves soil cation exchange capacity, water holding capacity and
infiltration rates [8,62].

VRG also aims to minimise the utilization of external inputs, such as N fertilizer.
Within this context, legume forage usage is promoted as it plays a key role in incorporating
N into the system through N biological fixation. To maximise this effect, the ORP of
legumes is frequently followed, aiming to favour the natural growth disadvantage that
these species have in terms of photosynthesis rate, persistency, nutrients uptake, and
growth rates when compared with grasses [107–110]. Effectively, recent research has
shown that legumes can improve overall pasture multifunctionality, playing a key role in
improving herbage production, N cycling, and herbage nutritional value when compared
with monocultures [111].

Promotion of grassland ecosystem biodiversity is crucial to further enhance the sys-
tem’s soil health. Under VRG systems, the use of permanent multispecies swards with
perennial species of different families is paramount to maximise both the individual ben-
efits as well as the synergistic benefits that the species can attain. When compared with
monocultures, multispecies swards can: (a) increase overall herbage production, commonly
showing increased biomass overyielding [98,111–114] and increased root biomass [115,116];
(b) better exploit the soil column and its available nutrients [115–117], improving overall
nutrient utilization, reducing nutrient loses [118] and improving soil physical proper-
ties (e.g., density, structure and porosity), owing to complementarity in species radicu-
lar system characteristics [115–117,119]; (c) improve soil micro and mesofauna biodiver-
sity [112,120]; and (d) have the potential to reduce soil erosion and reduce the presence
of unsown species [113,114], as a consequence of higher spatial and temporal soil cover
and protection [112,118].

The increase in overall system biomass productivity has been related to species sea-
sonal growth asynchrony [117] and other complementarity scales [121]. Forbs play an
important function in multispecies swards as well. For example, under temperate climates,
some forb species (e.g., Plantago lanceolata, Cichorium intybus, Achillea millefolium, and Tarax-
acum officinale) have been included in the seed mix used in mixed swards due to their
deep rooting system [117], high nutrient content, especially minerals that result in better
animal nutrition [122,123], and anthelmintic properties [123,124]. On the other hand, in
tropical climates, the presence of forbs increased resilience to drought, fire, and herbivory
of pastoral ecosystems in a dynamic coexistence regime between grasses and forbs [125].

VRG typically uses multispecies swards, and the observation of ORP may result in
higher root dry matter production (kg/ha) at 0–5 cm depth of the soil. The variable interval
(ORP) averaged 7282 kg of DM/ha, while treatments of 21 and 42 days fixed cutting
intervals averaged 6065 and 6404 kg of DM/ha, respectively [20]. Multispecies swards can
also improve the hydrological cycle, reducing water runoff, increasing water infiltration,
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conferring potential tolerance to droughts [126,127], and increasing the variability of water
supply, e.g., less frequent, but more intense, rainfall [128].

4.3. Food Quality

Human health can benefit from grass-fed dairy and beef products by their fatty acid
composition. Individual fatty acids may have different roles in human health, and they
can influence not only cardiovascular disease but also a range of other diseases, including
metabolic diseases, such as type 2 diabetes, inflammatory diseases, and cancer [129]. High
levels of saturated fatty acids (SFA) may increase the risk of cardiovascular diseases, coro-
nary heart disease, and type 2 diabetes. On the other hand, some major monounsaturated
fatty acids (MUFA, palmitoleic, and oleic acids) and polyunsaturated fatty acids (PUFA,
linoleic acid) are shown to lower low-density lipoprotein (LDL) cholesterol concentrations
associated with lower cardiovascular risk. Other PUFA omega-3 fatty acids are likely to
prevent cardiovascular disease and a number of metabolic and inflammatory diseases.
They may also have a role in the prevention and treatment of cancer [129].

Furthermore, increasing the proportion of grass in the diet resulted in a decrease
in SFA, whereas MUFA, PUFA (mainly C18:3 n-3), and conjugated linoleic acid (CLA)
increased linearly [130]. When fed grass, ruminants produce milk and meat with different
profiles of secondary compounds, e.g., CLA and omega 3 [131,132], which have been linked
to better human health [133,134], but see [135]. The change in milk FA composition from
grass in the diet is also an opportunity to shift not only to a more nutritious source of food,
but also to the consumption of nutraceutical diets.

Although grass-fed cattle under different grazing systems have been shown to pro-
duce a healthier milk and meat regarding FAs content, differences between organic and
conventional pasture systems have not been found [136]. However, irrespective of con-
ventional or organic, the stage at which the pasture is consumed affects the bioactive
compounds of the herbage. Under the VRG system, comparing the content of secondary
metabolites in the species Avena strigosa and Lolium multiflorum in three cutting intervals
(38 and 54 days and a variable interval used by the farmer), Kuhnen et al. [137] found that
the latter interval resulted in lower levels of carotenoids, flavonoids, and phenolics on
pasture since the pasture had already passed the ORP which was close to the 38 d interval.
Variations in bioactive compounds on pasture composition owing to its phenological stage
has consequences on milk composition. A high correlation was found for values in milk
and pasture samples in total phenolic content and ferric-reducing antioxidant power [138].
Pasture used at its ORP is richer in bioactive compounds, and this is likely to positively
influence the quality of milk and meat and, therefore, human health.

4.4. Animal Productivity

When compared with other systems, VRG is considered to have the disadvantage of
lower animal productivity. A study among small dairy farmers in the western part of Santa
Catarina, for example, reports average milk yield of 10 kg/cow·day−1 on VRG farms [139],
much lower than the semi-intensive systems in the same region (21–30 kg/cow·day−1; [140]).
However, some VRG farms reported average daily milk production greater than
21 kg/cow·day−1 [140], which equals 6400 kg/lactation, far above the average of
2800 kg/cow·year−1 for the region [141] and even higher than the average of dairy produc-
tion from Ireland (5438 L/cow·year−1 in 2018; [142]) and New Zealand (4296 L/cow·year−1

in 2019; [143]). The study from Balcão et al. [140] in western Santa Catarina also showed
VRG presenting the highest milk yield response per kilo of concentrate offered (5.3 kg of
milk/kg of concentrate vs. 3.7 kg of milk/kg of concentrate for continuous grazing and
4.0 kg of milk/kg of concentrate for semi-intensive).

Only a few studies have compared VRG with other systems on animal productivity
for beef and sheep. A comparison between conventional grazing and VRG found a higher
average daily gain (ADG) for the former (930 vs. 835 g/day), but a higher stocking rate
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(844 vs. 560 kg/ha) and forage production (95.5 vs. 60 kg/ha·day−1 of DM) for VRG and,
hence, a 23% higher weight gain per area [144].

High animal yields on VRG farms can be obtained by applying the third and fourth
principles of VGR (Table 1). On dairy farms, it is recommended that the lactating group
of cows enter a fresh paddock after every milking, thus using two paddocks per day.
Compared with lactating cows using depleted pasture, e.g., returning in the afternoon
to the same paddock used in the morning, a significant difference in milk production
was found, regardless of temperate (Lolium multiflorum, 28.6 vs. 26.2 kg/day) or tropical
(Pennisetum clandestinum, 23.2 vs. 21.6) grasses [145]. The authors also found a higher
pasture DM ingestion when using fresh paddocks, but a reduction in pasture DM ingestion
with increased amounts of concentrate offered. No interaction between pasture state and
concentrate level was found for intake, digestibility, or milk yield. For the harvesting of
all available pasture, a second group of nonlactating cows and heifers should be moved
to the paddocks immediately after the lactating cows leave it, providing tight grazing
management.

A larger stock of C in pasture soil than in cropland is often questioned by the fact that
one hectare of crop could produce more food than one hectare of pasture [146]. However,
when comparing the potential of one hectare of pasture managed under VRG with cropland,
Séo et al. [61] found a better result for VRG. They considered data collected in the field,
plus requirements and feed composition from NRC Dairy tables, to estimate the potential
for milk production in 1 ha of corn, followed by ryegrass vs. 1 ha of VRG pasture. It was
estimated that VRG could produce 17,085 kg/ha·yr−1 of milk and that cropland could only
produce 12,240 kg/ha·yr−1 of milk, given that all feed is destined to lactating cows.

These few studies show the need for more information on animal productivity in VRG
and may be a critical knowledge gap in VRG. Anecdotally, farmers report high ADG when
animals are first grazers. In southern Brazil, a group of 18-month-old heifers achieved an
average ADG of 1.1 kg/day, and in Argentina, an average ADG of 0.9 kg/day was reported
for 18-month-old Angus steers. In both cases, cattle were eating exclusively pasture. On
the other hand, evidence on higher pasture productivity and quality in VRG was already
obtained, as described above and in accordance with Voisin’s principles.

4.5. Farm Net Income

With more pasture becoming a component of feed, production costs decrease. An
eight-year survey (2008–2015), with an average of 257 specialized dairy farms each year and
2055 surveys in total, was conducted in Ireland [147]. The authors found that increasing
pasture use and length of season were significantly associated with an increase in net profit
of USD 204.25 per ton of DM. On the other hand, when the proportion of purchased feed
was increased by 10%, a reduction in net profit per ton of fat and protein of USD 244.39
was realized. Likewise, capital investment in machinery and buildings was negatively
associated with net profit.

Farm profitability has been positively associated with the level of adhesiveness of
VRG’s four principles and its refinements, such as water and shade or using two groups
of animals [148,149]. This is in line with results from other intensive grazing systems
where practices to improve pasture nutritional value indicated higher profitability. Thus,
well-managed grazing systems can be more profitable than zero-grazing systems [150,151].
It seems that reduced feeding costs is one of the major drivers of VRG’s increased profitabil-
ity [152]. Supporting this view is a study in the USA. When compared with zero-grazing, it
was found that VRG systems yield a USD 64 greater net return per cow and that this was
driven by lower feeding and labour costs [153]. Furthermore, grazing systems are likely to
increase animal longevity, which is related to higher profitability, as was demonstrated in
an Austrian study on organic farms [154].

Since the implementation of VRG can reduce feeding costs and external inputs such as
chemical fertilizers, farms tend to be more financially resilient [155,156]. A simulation study,
using cost and milk price data from Santa Catarina, Brazil, reported that farms of the same
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herd size (53 cows) using VRG and semi-confinement (see Balcão et al. [140] for definition of
semi-confinement) systems producing 16 and 22 kg of milk/cow·d−1, respectively, would
yield a yearly net income of USD 35,749.79 in the VRG system vs. USD 18,342.34 in the
semi-confinement system [156]. Through sensitivity analysis, the same authors concluded
that the VRG system is more resilient owing to lower production cost. This is in line with
farmer’s perceptions since the use of ecological grazing management practices allows more
resilience, independence, and success [157].

4.6. Environmental Externalities

External costs are relevant in livestock systems [158,159] and by definition, they are
not paid directly by the producer, but paid by the society [160]. These environmental costs
are multifactorial and difficult to assess. Some studies estimate that the annual cost of
environmental externalities in U.K. agriculture between 1990 and 1996 was equivalent
to GBP 208/ha for arable and permanent pastures [159]. In New Zealand, the estimated
cost of environmental externalities of dairy activity exceeded NZD 11.6 billion [160]. It is
necessary to include the external costs in net income calculations and this could tip the
scales toward more ecological livestock systems.

On the other hand, VRG as other regenerative livestock grazing systems, may explore
the possibility of profiting from ecosystem services. Carbon credits are already a viable
option, but it mostly focuses on actions for maintenance, recovery, and improvement of
vegetation cover in areas considered a priority for conservation. Credible and reliable
measurement and monitoring platforms should be considered to report sequestered C for
emissions trading [161], especially increases in soil C on a large scale through regenerative
grassland management systems. Profitability is potentially the farmer’s main goal, and
payment for C sequestration in livestock systems is more in line with farmers’ motiva-
tions [9]. Broader areas could be sustained by environmental services if greener practices
could profit farmers by directing farmers’ focus on climate change mitigation management
options.

4.7. Animal Welfare

High levels of animal welfare are reached if the animals are in good health, able
to fulfil their behavioural needs, and experience positive emotions [162,163]. In VRG,
grazing management is planned to offer high-quality nutrition from multispecies pastures,
and paddocks are designed to have water and shade available at all times, minimising
the effect of animal dominance over resources, i.e., resources are placed in ways that
maximise the access of subordinated animals (e.g., [41]). Therefore, animals are able
to fulfil their ethological needs of grazing and having outdoor access [164,165] forming
social bonds [166,167] and grooming freely, a behaviour that is highly valuable for some
ruminant species [168].

Tight grazing management exposes the lower parts of the plants and soil to solar radi-
ation, and thus, time to return to the same grazed area, directly impacting parasite burden
by reducing larvae survival and, hence, less infestation of animals [169]. This, combined
with the opportunity to forage different plant species, may help animals to better cope with
parasites since some plant toxins may reduce parasite proliferation [131,132,170]. Such
variation in the environment, e.g., multiple forage species and terrain features, has been
proposed to be a source of eutress (“good stress”) in grazing animals [171] since navigating
the environment for diet selection, resting, and socially interacting may cognitively enrich
animals’ lives. Animal agency has been proposed as a key element in the animal welfare
concept [172]. It seems that many regenerative grazing systems, VRG included, provide
the conditions needed for animals to achieve maximum welfare [173], as long as high
standards of animal husbandry and veterinary care are provided.
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5. Voisin Rational Grazing Challenges and Future Directions

Some challenges evidenced in VRG and by the farmers that have adopted this system
are common for other types of regenerative grazing systems. VRG practitioners have
experienced social constraints because of low acceptability and support [10,174] from:
(1) livestock stakeholders that do not recognize VRG as a system that maintains high pro-
ductivity along with the provision of other ecosystem services that last for mid/long term,
since their expectation is a short-term productivity-oriented system; (2) the agro-industrial
complex that relies upon the production and use of commercialized industrial feed prod-
ucts and agrochemicals, whereas regenerative grazing farmers pursue the reduction or
elimination of all agro-feed and chemical products; and (3) peers and the local community
of the farmers who have not implemented regenerative systems.

VRG requires a paradigm change in the grazing system, and such a shift is a big chal-
lenge for ordinary farmers [11,175]. The successful implementation and maintenance of re-
generative grazing systems, such as VRG, depends on a farmer’s conviction in the system, a
conviction that arises from a deep understanding of the ecological processes involved in the
system, along with a set of skills related to monitoring and planning livestock grazing [10].
The success of these ecological production systems is usually facilitated through the cre-
ation of a sense of community [157]. Indeed, several networks have been created to support
farmers, extensionists, and researchers to foster more sustainable grazing systems (e.g.,
Soil Health Institute https://soilhealthinstitute.org, Savory Institute https://savory.global,
Agricultura Regenerativa Ibérica https://www.agriculturaregenerativa.es, Pasture Fed
Livestock Association https://www.pastureforlife.org, and Nucleo de PRV/UFSC https:
//nucleoprv.paginas.ufsc.br/?lang=en). However, these initiatives should be accompanied
by complementary regional level policies as they are key in helping to sustain agroecologi-
cal initiatives [176].

Farmers perceive VRG as a high-capital and time-investment system based on in-
frastructure costs and essential management capacitation. Despite global initiatives to
promote agroecology (e.g., FAO), only minimal financial support has been forthcoming
for new agroecology-oriented research, education, project implementation, and mainte-
nance since such techniques are not in line with common industrial and Green Revolution
agricultural practices [177,178]. This has resulted in low recognition of the benefits that
agroecological-based systems can provide society from government and agricultural stake-
holders alike [170,176].

Although many commercial VRG projects can be found in vastly different pedoclimatic
conditions, from cold temperate to tropical regions, the research related to VRG outcomes
and difficulties faced by farmers have not experienced similar progress. No systematic
record of information has arisen to support the results obtained. Additionally, very few
experimental research stations exist. To overcome these challenges, multicentric studies
should be developed to validate the empirical evidence generated on commercial farms.

VRG results in increased herbage productivity immediately or a few years after imple-
mentation. However, some farmers experience two to five years of herbage productivity
stagnation, named “years of misery” by Voisin [17], which generally occurs during the soil
recovery process from previous management practices (e.g., soil compaction) to build up
stable soil microbiological activity [12]. Because of this prolonged period, many adopters
of VRG may give up this system and transition back to conventional farming. Pinheiro
Machado [12] suggested strategies to minimise this period of low pasture production,
including the use of organic fertilizer (e.g., compost, poultry litter, and swine manure),
combined with the four principles of VRG.

Another management problem experienced by VRG farmers begins with the high
herbage growing rates observed commonly during spring/summer/wet seasons that is
suddenly reduced during fall/winter/dry seasons. When this change is not followed by a
reduction in grazing intensity to compensate for the expected seasonal fluctuation, a contin-
ued shortening of the ORP, known as “untoward acceleration” [17], occurs. This untoward
acceleration goes against VRG’s first principle, hampering the overall accumulation of

https://soilhealthinstitute.org
https://savory.global
https://www.agriculturaregenerativa.es
https://www.pastureforlife.org
https://nucleoprv.paginas.ufsc.br/?lang=en
https://nucleoprv.paginas.ufsc.br/?lang=en
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plant reserves and compromising future herbage recovery and productivity. To overcome
this challenge, the farmer can apply several techniques for forage conservation, producing
silage and hay with the surplus herbage produced during the high-growth season

To help with challenges in VRG, technology can be applied. The use of satellite
images, drones, and other sensors to monitor herbage production and phenological stage
and aid in identifying OPR have been recently studied and have yielded interesting
results (e.g., [179–181]). Moreover, animal behaviour monitoring used in conventional
livestock agriculture (e.g., [182]) can be used to improve animal productivity and health.
Additionally, the use of new technologies may drive young farmers to continue in the field,
helping to avoid more rural exodus.

Finally, a structured market based on reliable measurements and monitoring plat-
forms is urgently needed to report ecosystem services in order to allow for payments to
farmers. Rewarding those who apply greener practices that benefit society as a whole may
incentivise more people to shift towards regenerative practices.

6. Conclusions

VRG is a viable option for livestock farming, given current global challenges. VRG is
based on four simple principles arising from plant and animal physiological requirements.
As a consequence, it is able to sustain regular productivity, and it is ultimately profitable.
VRG also delivers important ecosystem services, increasing soil C uptake, improving
soil health, boosting water retention, protecting water quality, and fostering biodiversity.
However, VRG is no panacea and comes with challenges that require patience to overcome,
as well as a set of actions at the farm, local, and global levels.
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