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Abstract 

Growing demands for increased global yields are driving researchers to develop 

improved crops, capable of securing higher yields in the face of significant challenges 

including climate change and competition for resources. However, abilities to measure 

favourable physical characteristics (phenotypes) of key crops in response to these 

challenges is limited. For crop breeders and researchers, current abilities to phenotype 

field-based experiments with sufficient precision, resolution and throughput is 

restricting any meaningful advances in crop development. This PhD thesis presents 

work focused on the development and evaluation of Unmanned Aerial Vehicles (UAVs) 

in combination with remote sensing technologies as a solution for improved 

phenotyping of field-based crop experiments. Chapter 2 presents first, a review of 

specific target phenotypic traits within the categories of crop morphology and spectral 

reflectance, together with critical review of current standard measurement protocols. 

After reviewing phenotypic traits, focus turns to UAVs and UAV specific technologies 

suitable for the application of crop phenotyping, including critical evaluation of both the 

strengths and current limitations associated with UAV methods and technologies, 

highlighting specific areas for improvement. Chapter 3 presents a published paper 

successfully developing and evaluating Structure from Motion photogrammetry for 

accurate (R2 ≥ 0.93, RMSE ≤ 0.077m, and Bias ≤ -0.064m) and temporally consistent 3D 

reconstructions of wheat plot heights. The superior throughput achieved further 

facilitated measures of crop growth rate through the season; whilst very high spatial 

resolutions highlighted both the inter- and intra-plot variability in crop heights, 
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something unachievable with the traditional manual ruler methods.  Chapter 4 presents 

published work developing and evaluating modified Commercial ‘Off the Shelf’ (COTS) 

cameras for obtaining radiometrically calibrated imagery of canopy spectral reflectance. 

Specifically, development focussed on improving application of these cameras under 

variable illumination conditions, via application of camera exposure, vignetting, and 

irradiance corrections. Validation of UAV derived Normalised Difference Vegetation 

Index (NDVI) against a ground spectrometer from the COTS cameras (0.94 ≤ R2 ≥ 0.88) 

indicated successful calibration and correction of the cameras. The higher spatial 

resolution obtained from the COTS cameras, facilitated the assessment of the impact of 

background soil reflectance on derived mean Normalised Difference Vegetation Index 

(NDVI) measures of experimental plots, highlighting the impact of incomplete canopy 

on derived indices. Chapter 5 utilises the developed methods and cameras from Chapter 

4 to assess the impact of nitrogen fertiliser application on the formation and senescence 

dynamics of canopy traits over multiple growing seasons. Quantification of changes in 

canopy reflectance, via NDVI, through three select trends in the wheat growth cycle 

were used to assess any impact of nitrogen on these periods of growth. Results showed 

consistent impact of zero nitrogen application on crop canopies within all three 

development phases. Additional results found statistically significant positive 

correlations between quantified phases and harvest metrics (e.g. final yield), with 

greatest correlations occurring within the second (Full Canopy) and third (Senescence) 

phases. Chapter 6 focusses on evaluation of the financial costs and throughput 

associated with UAVs; with specific focus on comparison to conventional methods in a 

real-world phenotyping scenario. A ‘cost throughput’ analysis based on real-world 
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experiments at Rothasmted Research, provided quantitative assessment demonstrating 

both the financial savings (£4.11 per plot savings) and superior throughput obtained 

(229% faster) from implementing a UAV based phenotyping strategy to long term 

phenotyping of field-based experiments. Overall the methods and tools developed in 

this PhD thesis demonstrate UAVs combined with appropriate remote sensing tools can 

replicate and even surpass the precision, accuracy, cost and throughput of current 

strategies.  
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Chapter 1:  Introduction 

The Food and Agriculture Organisation (FAO) of the United Nations (UN) 

predicts that an increase of at least 50% in the yield potential of key cereal crops (e.g. rice, 

barley, wheat) is needed by 2050 (Food and Agriculture Organization of the United 

Nations, 2017). This is required to meet demands of a growing World population, 

forecasted to reach 10 billion by the same year (United Nations, 2015). Furthermore, 

securing increases in yield potential must be achieved in the face of significant challenges 

posed by climate change (Altieri and Nicholls, 2017; Hunter et al., 2017), biotic and 

abiotic stresses (Ashraf and Harris, 2005), and increasing competition for natural 

resources and arable land (Oerke, 2006; Rathmann et al., 2010; Valentine et al., 2012). 

Though past improvements in crop varieties, technologies and agricultural practices 

have more than tripled yields in key cereal crops in the last 50 years, these varieties and 

strategies are no longer delivering the required gains in yield potential (Evenson and 

Gollin, 2003; Pingali, 2012). Therefore, pursuit of new sustainable, integrated, and 

multidisciplinary approaches is concentrating on achieving meaningful gains in 

potential yield of major agricultural crop types in the face of modern challenges (Lobos 

et al., 2017; Parry and Hawkesford, 2010; Tanger et al., 2017). Important to these 

approaches will be the utilisation of genetics and natural genetic variation within key 

crop species to develop new, better adapted crops and achieve the ultimate goal of 

improved yield potentials. Advances in genotyping techniques, including high-

throughput DNA sequencing, bioinformatics and genetic technologies have vastly 

improved the ability to analyse and dissect genetic variation, producing significantly 
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greater quality and quantity of genetic information (Araus and Cairns, 2014a).  However, 

in order to harness this wealth of new information, careful and comprehensive 

understanding, or phenotyping, of the association, interaction and impression of 

genetics (genotypes) on target physical characteristics (phenotypes) such as yield and 

stress tolerance is required (Furbank and Tester, 2011a).  

Phenotyping is the application of methods, technologies and protocols used to 

measure a specific observable trait or set of traits related to plant structures or functions 

at a range of scales from cellular to whole-plant levels (Fiorani and Schurr, 2013a; 

Ghanem et al., 2015). Successful phenotyping facilitates the understanding of these traits 

as a result of the plant’s genotype and growing environment, including interactions 

between the two over time and space (Gaudin et al., 2013; Yang et al., 2015). The 

challenge or difficulty of phenotyping relates to the plasticity and dynamic nature of 

phenotypes over both temporal and spatial scales, as plants grow through their life cycle 

and adapt to their growing environment (Houle et al., 2010; Pieruschka and Schurr, 

2019). Many current methods for phenotyping lack adequate detail, precision and speed 

of throughput to facilitate sufficient exploitation of new genetic material and 

technologies to their maxima (Virlet et al., 2016). This is especially the case for 

phenotyping of field-based experiments, where conventional techniques are considered 

labour intensive, limited in throughput, economically inefficient, often subjective due to 

the reliance on visual scoring, and frequently lack any measures of spatial variation 

(Furbank and Tester, 2011a; Jones et al., 2003). This is despite the known superiority of 

results of field experiments over alternative controlled environments such as growth 

chambers and greenhouses, where translation of results into real-world yield gains have 
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suffered from lack of true environmental conditions (Araus and Cairns, 2014a; 

Passioura, 2006; Poorter et al., 2012; Reynolds et al., 2012; White et al., 2012a). Therefore, 

only by making significant improvements in the methods, technologies and protocols 

available for phenotyping plants in field-based experiments, can the wealth of new 

genetic material and tools be exploited and the challenges of improving crop yield 

potentials be met. 

Remote sensing (RS) is a prime candidate for improved phenotyping methods 

and technologies due to its rapid and non-invasive data capture, and proven application 

to temporal and spatial monitoring tasks (Tattaris et al., 2016). RS sensors and methods 

are already employed for phenotyping applications in numerous growth chambers and 

glass houses around the World (e.g. European Plant Phenotyping Network (European 

Plant Phenotyping Network, 2019), and the Australian Plant Phenomics Facility 

(Australian Plant Phenomics Facility, 2019). Techniques such as multispectral, 

hyperspectral, and thermal infrared imaging, along with laser scanning, are providing 

researchers with a suite of new methods for collecting valuable phenotypic information. 

Importantly, these methods provide fast, non-destructive measures of target 

phenotypes, allowing researchers to observe the continuous, dynamic development of 

plants in response to environmental conditions (Araus and Kefauver, 2018)  However, 

adoption of these technologies and methods to field-based experiments, sufficient to 

overcome the bottleneck in phenotyping, remains to be achieved (Araus and Cairns, 

2014a; Cobb et al., 2013; White et al., 2012b).  

Several RS options for phenotyping in the field are available, however limitations 

restrict their widespread application. Data from satellite and high-altitude aerial remote 
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sensing (e.g. from helicopters and planes) is widely used in vegetation monitoring (Berni 

et al., 2012, 2009b, 2009a) . However, the generally low spatial resolution and challenge 

of obtaining cloud-free images at regular return intervals from satellites, as well as the 

high costs associated with aerial imaging campaigns, make these options largely 

unsuitable for most phenotyping field experiments (Gago et al., 2015; Mahlein, 2015). 

Ground based RS options provide far more options for repeated measurements at 

frequent intervals, and detail at a spatial scale, and these include handheld devices, 

vehicles and fixed platforms. The simplest of these options are handheld devices, 

including spectrometers or imagers, manually walked through experiments (Pietragalla 

et al., 2012). These low-cost devices require little to no training; however, data collection 

is labour intensive, and the low throughput makes them inefficient overall unless 

significant amounts of manual labour is available. Improved throughput, and increased 

automation can be achieved via the mounting of sensors to vehicles (e.g. Tractors) or 

fixed platforms (e.g. Lemnatec Field Scanalyzer (Lemnatec, Aachen, Germany)) (Virlet 

et al., 2016). Automation and the carrying of multiple sensors allows for high 

throughput, reduced labour requirements, and simultaneous measurements of multiple 

phenotypes (Deery et al., 2014; Liebisch et al., 2015; White et al., 2012b). However, 

limitations with field access in poor weather conditions, as well as the impact of heavy 

vehicles on soil structure make vehicles an unpopular option for many situations 

(Liebisch et al., 2015), whilst limited plot coverage of fixed platforms combined with high 

investment costs makes this option prohibitive. A potentially viable alternative to these, 

gaining popularity and recognition over the course of the period that this thesis research 

was undertaken, is the use of low-altitude Unmanned Aerial Vehicles (UAVs). 



Introduction 

 

 

18 
 

UAVs, also referred to as Drones, Unmanned Aerial Systems (UAS), or Remotely 

Piloted Aerial Systems (RPAS) are defined as any aircraft whose pilot is not on-board 

(CAA, 2019). Initially developed by the military for photographic monitoring as early as 

1955 (Rango et al., 2009), rapid advances in the accuracy, economic efficiency and 

miniaturisation of many technologies including Global Navigation Satellite Systems 

(GNSS) such as Global Positioning Systems (GPS), cameras and microprocessors has 

promoted UAV systems from military tools to cost effective, innovative and 

commercially available remote sensing platforms for use in a wide variety of 

applications – including research activities and agriculture (Pajares, 2015; Yao et al., 

2019). UAV platforms have the ability to offer high spatial and temporal resolution data 

at high throughputs, filling a gap in current phenotyping options (Chapman et al., 2014). 

However, UAVs do suffer from several recognised limitations such as payload size, 

flight endurance, and risk of damage - which means they do not currently provide a 

single, ‘out of the box’ solution to overcome all limitations of alternative field 

phenotyping platforms. The limited payload does restrict the size and number of RS 

sensors available for use with UAVs (Sankaran et al., 2015), whilst the endurance 

restricts the area able to be covered per flight, though this is still comparable to that of 

ground based vehicles and platforms (Anderson and Gaston, 2013; Dandois and Ellis, 

2013).  

The need for new field phenotyping technologies and methods is apparent. 

Remote sensing from UAVs is one viable candidate for providing phenotypic data at 

sufficient temporal and spatial resolutions to overcome some of the current phenotyping 

bottlenecks. However, the success of any new phenotyping system will depend on (i) 
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the quality of the phenotypic information provided; (ii) the affordability; (iii) data 

management; and (iv) validation of its high throughput abilities (Araus et al., 2018). In 

respect of this, the broad aims of this thesis are to (i) investigate the use of UAV based 

remote sensing technologies, data capture methods, and processing methodologies for 

providing high throughput data collection of phenotypic traits in the field; (ii) validate 

derived phenotypic measurements against current standard measurement techniques; 

(iii) prove integration and application of developed methods to phenotyping of on-going 

field-based wheat crop experiments, (iv) assess affordability and high throughput 

abilities.  

1.1  Outline of Thesis Structure 

This thesis is comprised of this Introductory chapter, along with a Background, 

four chapters reporting empirical research (of which two culminated in published 

articles presented herein in their published format) and a Summary and Conclusion 

chapter. Due to the inclusions of these publications, readers may notice some parts of 

repetition between chapters. The structure of this thesis, as well as details of each chapter 

is as follows: 

Chapter 2: Background and Specific Objectives  

This chapter provides an overview of specific phenotypic traits typically 

measured in the field, along with critical evaluation of existing methods, highlighting 

the target phenotypes for this thesis research. The chapter also discusses and reviews 

UAVs as a remote sensing platform. From the review of phenotypic traits and UAVs, a 

review of suitable RS technologies and methodologies applicable to UAV phenotyping 
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of targets traits is then provided. Finally, the chapter concludes with an outline of the 

specific research objectives addressed in subsequent chapters. 

Chapter 3: High Throughput Field Phenotyping of Wheat Plant Height and Growth 

Rate in Field Plot Trials Using UAV Based Remote Sensing 

This chapter comprises work conducted developing and testing a methodology 

for measuring 3D crop structure, specifically plant height, of field trial plots. The work 

for this chapter culminated in a publication in the international journal Remote Sensing: 

 Holman, F.H.; Riche, A.B.; Michalski, A.; Castle, M.; Wooster, M.J.; Hawkesford, M.J. 

High Throughput Field Phenotyping of Wheat Plant Height and Growth Rate in Field 

Plot Trials Using UAV Based Remote Sensing. Remote Sens. 2016, 8, 1031.  

Alongside the published article, additional work investigating Digital Elevation 

Model (DEM) processing, and Digital Surface Model (DSM) normalising procedures is 

presented. 

Chapter 4: Radiometric Calibration of Commercial ‘Off the Shelf’ Cameras for UAV-

based High-Resolution Crop Phenotyping of Reflectance and NDVI 

This chapter comprises work conducted developing a methodology for 

capturing radiometrically calibrated imagery of canopy reflectance. The work for this 

chapter culminated in a publication in the international journal Remote Sensing:  

Holman, F.H.; Riche, A.B.; Castle, M.; Wooster, M.J.; Hawkesford, M.J. Radiometric 

Calibration of ‘Commercial off the Shelf’ Cameras for UAV-Based High-Resolution 

Temporal Crop Phenotyping of Reflectance and NDVI. Remote Sens. 2019, 11, 1657.  

Alongside the published article, a more detailed description of the procedure 

used for determining spectral responses of the cameras is presented. 
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Chapter 5: Dynamic Quantifying of Canopy Trait Response of Modern Wheat 

Cultivars to Varied Nitrogen Applications 

This chapter presents further validation of UAV methods into a longer-term field-based 

wheat experiment. The chapter focuses on the utilisation of high temporal resolution 

data from UAVs to assess the impact of nitrogen fertiliser treatments on canopy 

formation and maturation. 

Chapter 6: ‘Cost-throughput’ Analysis of UAVs for Long Term Phenotyping of Field-

based Crop Trial Experiments 

 This chapter presents a cost benefit analysis of UAVs for field-based phenotyping 

compared to traditional manual methods. The focus of this chapter is on the assessment 

on the financial and measurement throughput benefits/drawbacks of UAVs in 

comparison to alternative conventional methods. 

Chapter 7: Summary of Findings, Conclusions and Future Work 

 The final chapter collates together the major findings of this thesis and assesses 

the extent to which the proposed research aims and objectives were met. 

Recommendations for future work are also discussed. 
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Chapter 2:  Background and Specific 

Objectives 

2.1 Introduction 

The aim of this chapter is to critically assess current standard field phenotyping 

methods, as well as identify suitable UAV based remote sensing alternatives to facilitate 

high throughput field phenotyping in the future.  

Firstly, the importance of field-based phenotyping is discussed in relation to key 

target crop characteristics of interest to crop breeders and researchers. Within this 

discussion, the specific phenotypes selected for focus within this PhD are identified, with 

focus on their relevance to field phenotyping, as well as known limitations of current 

standard field phenotyping. The second section introduces and discusses UAVs as low-

cost remote sensing platforms, with a focus on their use in high throughput 

phenotyping. This section also provides a critical review of UAV relevant sensors and 

methodologies, with a focus on identifying shortcomings and opportunities for 

improvement. Finally, from these reviews of phenotypes and UAV methods, the third 

section will summarise the main points from Chapter 2 and present the specific research 

questions, aims and objectives for the remaining chapters of this thesis. 

2.2 Phenotypes and Phenotyping 

Phenotyping is the application of methods, technologies and protocols to 

measure a specific observable trait or traits related to plant structure or function. It is 

considered a vital step in the development of new cultivars, as measurement and 
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monitoring of target traits can provide a quantifiable expression of the interaction 

between a crop’s genotype and its growing environment (Walter et al., 2015).  

Phenotypes are widely used by breeders and scientists looking to develop new cultivars 

with favourable characteristics such as enhanced nutrient and water use efficiency, 

better drought and heat tolerance, resistance to diseases and pests, photosynthetic 

capacity, and improved yield quality and quantity. With yield used as an example target 

trait, a wide range of phenotypes have been assessed and applied to generating direct or 

indirect measures of predicted final crop yield. Traits such as in-season biomass, date of 

anthesis (flowering), early vigour, canopy morphology, growth rates, root structures, 

spectral reflective properties of canopies, in-season damage and leaf area index have all 

been utilised to understand and predict final yields during the life cycle of crops pre-

harvest (Reynolds et al., 2012).For drought and heat tolerance, traits of interest include 

canopy temperature, stomatal conductance, leaf water potential, and root structures 

(Pask et al., 2012).  

There is a wide range of phenotypic traits available and applicable to breeding 

and development of new superior crops. However, these phenotypes are diverse and 

occur at a range of scales from cellular to whole-plant levels, such that many phenotypes 

are not suitable for targeted monitoring via UAV based remote sensing techniques 

(Walter et al., 2015). Therefore, careful selection of phenotypes is required to ensure the 

developed methods are applicable to real-world end-users, such as breeders. For 

example, though root structure is of interest in relation to water use efficiency and 

drought tolerance, it is not suitable for monitoring via remote sensing in the field. 

Similarly, fine scale traits such as anthesis (flowering) will be more challenging to 
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monitor from UAVs compared to leaf or even whole canopy scale traits. Considering 

these factors two categories/areas/types of phenotypic traits have been identified for 

focus within this PhD through discussions with crop breeders (Rothamsted Research 

and Bayer Crop Sciences). Selection of these phenotypes was driven by both their 

application in cultivar development, and their suitability for assessment via remote 

sensing and UAVs. The phenotypes are crop morphology, specifically plant height and 

growth; and spectral canopy reflectance, with focus on the visible and near infrared 

regions of the spectrum. The following section will provide both further specific 

justification for monitoring these traits in their worth to breeders and researchers; and 

discussion of current standard techniques implemented in the field along with their 

advantages and disadvantages.  

 Crop Morphology: Plant Height and Growth 

Crop morphology is the study of the physical form and external structure of 

plants (Evert and Eichhorn, 2013). Plant height is a fundamental morphological 

phenotype utilised by crop breeders. Typical applications include direct indication of 

plant growth and development stages if measured temporally (Figure 2.1). In addition 

to growth status it has been shown to be a strong predictor for in-season biomass, harvest 

index, and final grain yields (AHDB, 2015; Erten et al., 2016; Pittman et al., 2015; 

Schirrmann et al., 2016b; Torres and Pietragalla, 2012); as well as a useful indicator for 

sensitivity to in-season damage such as lodging, a source of yield loss (Blonquist et al., 

2009). Plant growth rate, the changes in height over time, have also been shown to 

provide good indications of plant responses to environmental stresses, e.g. stunted 

growth due nitrogen deficiency. Plant height is also often used as a key parameter in 
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numerous computer-based models including those to evaluate water stress and canopy 

temperatures (Doelling et al., 2018). Beyond crop breeding and cultivar development, 

plant height is also an essential parameter for site specific management practices and 

precision agriculture. For example, taller plants offer the advantage of easier mechanical 

harvesting, however, this is opposed by increased risk of crop damage resulting from 

lodging (Lati et al., 2013). 

  

Figure 2.1. Crop height presents a typical temporal trend over the plants life cycle, with the main 

period of growth occurring between April and June. GS = Growth Stage, and GSXX refers to the 

specific numbered growth stages as outlined by the Agricultural and Horticultural Development 

Board (Agriculture and Horticulture Development Board, 2015). 
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Clearly plant height is a useful phenotype applicable to assessing several 

important breeding traits such as in-season biomass, risk of lodging and final yields. Yet 

despite this, current standards for in-field phenotyping of crop height and growth rate 

are limited. Conventional protocols for field phenotyping of crop height is most 

commonly performed manually, based simply on use of a meter rule (Torres and 

Pietragalla, 2012). The method typically involves subsampling of five plants within each 

experimental plot adjudged to visually represent the average height of the plot. Their 

heights are measured, and their average defines the plant height for the entire 

experimental plot. Advantages of this method include its simplicity, minimal training 

requirements, as well as being a non-destructive assessment. However, several 

significant limitations are recognised, such that this method is not suitable for large-scale 

experiments. These include; limited spatially representative sample size, low 

throughput, labour intensive, and susceptibility to subjectivity and error between 

measurements (Jiang et al., 2016). The manual, low throughput nature of this method in 

turn limits the collection of height data to a few time points per season, resulting in a 

clear loss of dynamic measurements of growth rate through the plant’s life cycle (Figure 

2.1).  
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 Spectral Reflectance and Absorbance 

This section discusses phenotypic traits associated with the spectral reflectance 

and absorbance of light by above-ground plant structures (e.g. canopy), and their 

applications in crop breeding programs.  

The term ‘reflectance’ refers to the ratio between the light reflected and light 

arriving on a target surface (Khan et al., 2018a). Measurement of canopy reflectance is a 

widely used phenotypic metric for measuring a variety of traits including canopy size, 

photosynthetic capacity, chlorophyll content, nitrogen status, water status, and biomass 

(Li et al., 2014). This technique utilises understanding of the interaction of light at 

different wavelengths of the electromagnetic spectrum with specific constituents within 

the canopy, in order to produce applicable proxy measures of crop canopies (Pietragalla 

et al., 2012). Crops exhibit a typical reflectance curve across the electromagnetic 

spectrum (Figure 2.2), within which sub-domains of the spectrum are related to different 

typical properties. The visible domain (400-700nm) exhibits high absorption and low 

reflectance, particularly within the blue (450-490nm) and red (625-700nm) regions 

caused by foliar pigments of interest such as chlorophyll, carotene and xanthophyll. A 

sharp increase in reflectance at the red-edge (~700nm) and into the near infrared (NIR) 

domain (700-1300nm) is related to leaf structure, and in particular the reflective 

properties of healthy mesophyll structure in the NIR light (Pettorelli et al., 2005). Beyond 

the NIR, reflectance the short-wave infrared (SWIR) (1300-2500nm) domain is influenced 

by water content, nitrogen concentration and non-photosynthetic components of the 

canopy including cellulose and starch (Peña-Barragán et al., 2011). The reflectance curves 

exhibited by crops within these spectral domains will change in relation to the afore 
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mentioned canopy components, and how these change through the life cycle of the crops 

as well ins response to stressors such as drought or nutrient deficiency. Utilising the 

known relationships between canopy components and reflectance, allows for the 

development of useful proxy measures for numerous crop health and breeding traits.  

  

Figure 2.2. Typical trend of reflectance spectra of healthy vegetation in the visible, near infrared 

and short-wave infrared regions of the electromagnetic spectrum (Li et al., 2014). 
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Most commonly these measurements of canopy features are achieved through 

the use of spectral vegetation indices (VIs), formulated to compare reflectance between 

absorbing and non-absorbing wavelengths (Roberts et al., 2011). Selection of vegetation 

index is dependent on the canopy component of interest as well as the specific 

wavelengths available (dictated by monitoring equipment). Table 2.1 provides several 

examples of previously used VIs applied to vegetation monitoring and crop 

phenotyping. Most common, these VIs use wavebands in the visible and near infrared 

regions due to the characteristic photosynthetic response of green vegetation to incident 

light (Khan et al., 2018b). Of these, the Normalised Difference Vegetation Index (NDVI) 

is the most commonly used in numerous applications including crop phenotyping. 

Calculated to relate the difference between reflectance in NIR and red wavebands, 

NDVI’s proven applications include biomass prediction (Bendig et al., 2014; Cabrera-

Bosquet et al., 2011), leaf area index and green area index (Ali et al., 2015; Zheng et al., 

2009), plant nitrogen status (Muñoz-Huerta et al., 2013), vigour (Khan et al., 2018; Kipp 

et al., 2014) and final yield prediction (Lopresti et al., 2015).  
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Table 2.1. Examples of vegetation indices calculated using either visible wavebands, 

near-infrared wavebands or a combination of both. R = reflectance (%), RB = reflectance 

in the Blue waveband, RG = reflectance in the Green waveband, RR = reflectance in the 

Red waveband, RNIR = reflectance in the NIR waveband; L = soil adjustment factor. 

Index Name Equation Reference 

NDVI 
Normalised Difference 

Vegetation Index 

𝑅𝑁𝐼𝑅 − 𝑅𝑅

𝑅𝑁𝐼𝑅 + 𝑅𝑅
 

(Pettorelli, 

2013) 

GNDVI 

Green Normalised 

Difference Vegetation 

Index 

𝑅𝑁𝐼𝑅 − 𝑅𝐺

𝑅𝑁𝐼𝑅 + 𝑅𝐺
 

(Hunt et al., 

2008) 

SR Simple Ratio 
𝑅𝑁𝐼𝑅

𝑅𝑅
 (Slafer, 2012) 

PRI 
Photochemical 

Reflectance Index 

𝑅531 − 𝑅570

𝑅531 + 𝑅570
 

(Berni et al., 

2009a) 

RGI Red Green Index 
𝑅𝑅

𝑅𝐺
 

(Coops et al., 

2006) 

GRVI 
Green Red Vegetation 

Index 

𝑅𝐺 − 𝑅𝑅

𝑅𝐺 + 𝑅𝑅
 

(Motohka et al., 

2010) 

GLI Green Leaf Index 
2 ×  (𝑅𝐺−𝑅𝑅 − 𝑅𝐵)

2 × (𝑅𝐺 + 𝑅𝑅 + 𝑅𝐵)
 

(Hunt Jr. et al., 

2013) 

ExG Excess Green 2 × 𝐺 − 𝑅 − 𝐵 

(Woebbecke et 

al., 1995) 

ExR Excess Red 1.4 × 𝑅 − 𝐺 

(Meyer et al., 

1999) 

ExGR Excess Green Red 𝐸𝑥𝐺 − 𝐸𝑥𝑅 

(Meyer et al., 

2004) 

SAVI 
Soil Adjusted Vegetation 

Index 
(

𝑅𝑁𝐼𝑅 − 𝑅𝐺

𝑅𝑁𝐼𝑅 + 𝑅𝐺 + 𝐿
) × (1 + 𝐿) (Huete, 1988) 

MSAVI 
Modified Soil Adjusted 

Vegetation Index 
(

𝑅𝑁𝐼𝑅 − 𝑅𝑅

𝑅𝑁𝐼𝑅 + 𝑅𝑅 + 𝐿
) × (1 + 𝐿) (Qi et al., 1994) 
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Standard methods for measuring canopy reflectance in the field use 

spectrometers to measure reflectance either over a range of wavebands or at preselected 

wavebands (e.g. red and NIR for NDVI) suitable for calculation of target VIs. Examples 

include simple hand-held dedicated devices (e.g. GreenSeeker (Govaerts and Verhulst, 

2010), SPAD meter (Bullock and Anderson, 1998)) which are designed for measuring a 

single VI quickly and consistently over multiple measurements. Alternatively, multi- or 

hyperspectral spectrometers provide a more sophisticated technology able to collect 

measurements at a range of wave bands (e.g. VIS-NIR) from which the user can calculate 

a wealth of VIs. Advantages of the dedicated hand-held devices is their simplicity, and 

the automation of data processing, thus requiring minimal expertise or training to collect 

data. The more complex spectrometers provide greater flexibility and increased 

phenotypic information by calculating multiple VIs from a single measurement; though, 

their increased complexity makes training a requirement (Steele et al., 2008).  

A common limitation of both these techniques is the lack of spatial resolution 

and the inability to dissect any trends in spatial variability within the area of 

measurement (Daughtry et al., 2000). All these devices provide single point 

measurements from the entire scene contained within the field of view. This poses a 

significant problem as any measurement of reflectance at the canopy scale will be a 

measure, not only of the target canopy, but also of the background soil brightness, 

colour, minerology and canopy architecture (Latorre-Carmona et al., 2014). As such, any 

derived VIs, and in turn, any measures of specific phenotypes, will be formed from the 

combination and interaction of these factors into a single measure (Jay et al., 2017a). For 

example, a crop presenting of low canopy cover, but high vegetation vigour may present 



Background and Specific Objectives 

 

 

32 
 

the same VI measurement as a crop expressing high canopy cover but lower vegetation 

vigour.  Though the same VI measurement is derived, the causation varies between the 

two situations, specifically variations in canopy size vs. canopy quality. Such situations 

can provide false measures of phenotypic traits, and lead to subsequent errors in crop 

management practices or prediction models (Knyazikhin et al., 2013).  

2.2.2.1 Crop Ground Cover 

Crop ground cover is used to assess crop establishment, early vigour and the 

early stages of the plant’s life cycle (Mullan and Barcello Garcia, 2012). It represents the 

percentage of soil surface covered by the crop (Figure 2.3), and is characterised by fast 

developing leaf area and/or above-ground biomass (Jimenez-Berni et al., 2018). Rapid 

early formation of canopies is a target trait, as it has the potential to improved crop 

photosynthesis. The total period a canopy is able to intercept light directly affects 

photosynthetic ability, biomass production and yield (Parry et al., 2011a; Parry and 

Hawkesford, 2010). Early establishment of canopies also leads to increased levels of soil 

shading which in turn reduces soil water loss from evaporation (Mullan and Reynolds, 

2010). This relationship between ground cover and soil water loss is of particular interest 

in water-limited environments, where water use efficiency is a key requirement for 

crops. For example, a 16% increase in yield has been previously achieved from high 

ground cover wheat varieties grown in water limited conditions (Zhao et al., 2019). In 

addition to water use efficiency, the increased shading from early vigour and high 

ground cover may positively suppress weed growth through reduced light availability 

at the soil surface (Coleman et al., 2001). 
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Accurate phenotyping of ground cover has typically been achieved by 

destructive sampling methods in controlled environments (Botwright et al., 2002; 

Rebetzke and Richards, 1999). In the field, three standard methods exist for measuring 

crop ground cover, (i) visual scoring, (ii) digital RGB (Red, Green, Blue) photography 

and image analysis and (iii) spectral indices from spectral scanning or imaging systems 

(Jimenez-Berni et al., 2018). Visual scoring involves an estimation of the percentage of 

ground cover, in increments of 10% (Pask and Pietragalla, 2012). As discussed earlier, 

the subjectivity of visual scoring severely limits the validity or accuracy of the 

phenotypic data produced, and therefore is not a robust method for generating 

quantitative measures of crop ground cover. Digital photography has been used to 

obtain measures of ground cover by counting number of vegetation pixels versus soil 

Figure 2.3. Examples of crop ground cover percentages. Top left = 10% cover; top right = 30% 

cover; bottom left = 50% cover; bottom right = 90% cover. (Li et al., 2014). 
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pixels within an image. Utilising contrast between soils and vegetation, often enhanced 

via vegetation indices, this process can be easily automated and standardised to ensure 

consistency between images and datasets (Li et al., 2010). Finally, the use of spectral 

systems such as handheld scanners, and spectral indices (e.g. NDVI) has been shown to 

exhibit good correlation with crop ground cover (Prabhakara et al., 2015). However, as 

discussed and described before in relation to canopy reflectance measurements, there is 

a chance of multiple contrasting spatial ground cover situations producing similar VI 

values. Comparison of digital imagery and VIs, found that photography performed 

better when compared to visual assessments (Duan, 2017).  The ability of the imagery to 

mirror visual assessments, specifically to acknowledge and assess spatial variability, 

compared to single point VI measurements is the likely cause of improved results.  

2.2.2.2 Canopy Maturation/Senescence 

Canopy maturation or senescence is associated with the final phase of a plant’s life 

cycle, occurring post-anthesis and is characterised by a series of degenerative processes 

which lead to plant death (Distelfeld et al., 2014). Its initiation, after anthesis, and 

duration, under optimal growth conditions, is defined by a ‘developmentally-regulated, 

age-dependent process’ (Heyneke et al., 2019). During senescence, nutrients are 

mobilised and moved from sources (e.g. leaves) to sinks for storage (Balazadeh et al., 

2014). Senescence of wheat crops overlaps with grain filling, and the synchronisation of 

these two phases plays a highly important role in determining crop yield (Liang et al., 

2018). For crop development, canopy senescence traits are a target, due to their influence 

on total period of photosynthetically active canopy. ‘Stay-green’ traits, present in some 

varieties, delay the onset of senescence and have been shown to lead to increased yields 
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and improved performance in response to drought stress (Bagherikia et al., 2019; 

Christopher et al., 2014). Senescence has also been shown to influence grain quality 

parameters including protein content (Gaju et al., 2016).  Despite the importance of 

senescence on final yield and grain development, phenotyping of this growth stage is 

often limited and basic.  The most common method is to visually score senescence on a 

scale from 1-10 depending on the percentage of dead leaf area (Figure 2.4) 

(Magorokosho, 2010; Pask and Pietragalla, 2012). Obvious limitations including 

subjectivity, slow through-put, and lack of interpretation of spatial variability result in a 

sub-par measurement of an important phase of crop development (Pask and Pietragalla, 

2012).  

 

  

Figure 2.4. Examples of the different stages of wheat leaf senescence, with visual rating scale for 

each stage indicated (Li et al., 2014). 
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An alternative has been to use image analysis via digital cameras to analyse the loss 

of canopy colour during anthesis (Makanza et al., 2018). As with monitoring crop ground 

cover, quantification of area senesced can be improved through the use of digital images, 

providing a more robust and less subjective method for measurement. 

This review of morphological and spectral reflectance crop traits has highlighted 

several shortcomings in existing standard conventional field phenotyping methods. 

These techniques are resulting in a loss of valuable spatial and temporal data, limiting 

the progress breeders can make via the linking of genotypic and phenotypic 

measurements. Key limitations common amongst the various traits are the requirement 

for subjective visual assessments, along with slow throughputs, limited spatial 

resolution, and costly and laborious methods. Considering these limitations, the need 

for new techniques capable of high-throughput phenotyping is clear. The next step is to 

investigate the potential solutions offered by UAV and remote sensing. This will include 

a critical review of suitable techniques and technologies available for the application of 

monitoring both crop morphology and canopy reflectance in the visible and near-

infrared wavelengths. 
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2.3 UAVs, Remote Sensing, and Phenotyping. 

This next section reviews Unmanned Aerial Vehicles (UAVs) as remote sensing 

platforms, and covers both their advantages and disadvantages. Focus then moves to 

sensors and methods applicable to UAV-based phenotyping of morphology and spectral 

reflectance traits in the field, with attention on improving precision, objectivity and 

throughput of phenotypic measurements. 

 Unmanned Aerial Vehicles 

Unmanned Aerial Vehicles, sometimes referred to as Drones or Unmanned 

Aerial Systems (UAS), are a group of technologies rapidly being adopted into both the 

public and scientific communities, based largely on ideas originally developed for 

military applications (Rango et al., 2009). Advances in the accuracy, miniaturisation, and 

cost of key technologies including GNSS (e.g. GPS) and computer processors has enabled 

UAVs to become a cost effective and innovative aerial platform. High levels of flight 

automation, user defined spatial and temporal resolutions, and the reduction of risk in 

certain situations, e.g. in natural hazard monitoring (Niethammer et al., 2012), makes 

UAVs an attractive option. Furthermore, coupled with a range of different remote 

sensing devices (Table 2.2. Examples of different UAV specific sensors commercially 

available. 

Type Examples 
Weight 

(g) 
Cost Resolution Advantages Limitations 

RGB 

DSLR 500-

1000 

£500-

£3000 

10-40 MP Very high 

resolution, in built 

storage, easy to 

integrate with 

UAVs 

 

Heavy, lack 

calibration, limited 

to visible bands 

 



Background and Specific Objectives 

 

 

38 
 

), UAVs have the potential to be used for data acquisition in a range of 

environmental monitoring applications and disciplines. This includes modelling of the 

temporal changes in landslide dynamics (Turner et al., 2015); 3D reconstruction of fluvial 

topography of UK streams (Woodget et al., 2015); monitoring of rangeland (Laliberte 

and Rango, 2009; Rango et al., 2006) and conservation applications such as surveying of 

habitats and animal numbers (Koh and Wich, 2012). Alternatively, UAVs have been 

applied in the documenting of archaeological sites, where the rapid collection of very 

high-resolution 3D reconstructions from UAV-based methods has proven useful 

(Fernández-Hernandez et al., 2015). In terms of agriculture, UAVs have been used for 

the monitoring of water status and drought stresses (Berni et al., 2012); additionally, 

collecting multispectral and hyperspectral imagery for use in spectral indices (Panda et 

al., 2010) and even chlorophyll fluorescence (Zarco-Tejada et al., 2013).  
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Table 2.2. Examples of different UAV specific sensors commercially available. 

Type Examples 
Weight 

(g) 
Cost Resolution Advantages Limitations 

RGB 

DSLRi 500-

1000 

£500-

£3000 

10-40 MPii Very high resolution, in built storage, easy to 

integrate with UAVs 

 

Heavy, lack calibration, limited to visible 

bands 

 

Compact 100-

1000 

 10-24 MP Fixed lenses, lack calibration, limited to 

visible bands 

Multi-

spectral 

Micasense-

MX 

230 £4,500 

(per 

camera) 

1.2 MP 

(RGBiii, REiv 

+ NIRv 

bands) 

Small, includes DLSvi sensor, 

Images geo-tagged during capture. Addition of 

second camera increases number of spectral 

bands. 

Low spatial resolution spectral imagery. 

No high resolution RGB camera. 

Parrot 

Sequoia 

107 £3,600 1.2 MP 

spectral 

bands (RG, 

RE + NIR) + 

16 MP 

uncalibrated 

RGB camera 

Small, includes DLS sensor, 

Images geo-tagged during capture. 

High spatial resolution RGB camera. 

Low spatial resolution spectral imagery, no 

blue spectral band 

Tetracam 

ADC 

90 £4,000 3.2 MP 

(user-

defined 

bands) 

Lightweight. Limited bands (only G, R, NIR), 

No DLS 

Adapted 

RGB 

cameras 

 £500-

£1000 

+ filter 

costs 

10-40 MP 

(RGB + NIR) 

Very high resolution, 

easy to integrate with UAVs. 

Wide spectral bands, requires custom 

radiometric calibration, 

No included DLS 
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Hyperspectral 
Firefly 490 - 1 MP High number of bands Expensive, very low resolution, requires 

high technical knowledge Rikola 700 £40,000 1 MP 

Thermal 

 

Flir Duo 

Pro R 

375 £7,500 0.3 MP 

thermal 

12 MP 

Visible 

RGB and thermal combined in single image, 

Calibrated thermal measurements 

Low spatial resolution, 

High knowledge of calibration and 

processing required. 

Wiris 640 390 £8,600 0.3MP 

(RGB, RE + 

NIR bands) 

High thermal resolution (0.05°C), factory 

calibrated 

No visible camera incorporated, low spatial 

resolution, 

high knowledge of calibration and 

processing required. 

‘Hybrid’ 
Altum 406 £10,000 3.2 MP 

(spectral) 
Thermal and Spectral (RGB, RE, NIR) imaging 

combined, small form factor 

Low spatial resolution, 

thermal not calibrated. 

LiDAR 
Riegel 3000 £50,000-

£300,000 

 High 3d resolution, 

Offers good canopy structure reconstruction 

Complex workflow, 

Heavy 

i DSLR – Digital Single-Lens Reflex;  
ii MP = Megapixels; 
iii RGB = Red Green Blue; 
iv RE = Red Edge; 
v NIR = Near Infrared; 
vi DLS = Downwelling Light Sensor. 
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However, despite the advantageous features offered by these aerial platforms, 

limitations remain. The somewhat low carrying capacity of many UAVs, restricted by 

reduced take-off weights places limits on the choice of sensors flown. This impacts 

particularly in the case of larger, more advanced sensors e.g. LiDAR, which are typically 

larger in volume and mass then standard cameras, for which most UAVs are designed 

to carry. Short flight times imposed as a result of restricted battery capacity and take-off 

weight, reduce spatial coverage and leads to the requirement for multiple flights if a 

large area is being covered. Whilst increasing size or number of batteries is possible to 

increase fight duration, this comes with increases in mass which will negate some of the 

gains in flight time. Some of these constraints can be overcome by choice of form factor, 

though selection of either form factor comes with individual caveats (Table 2.3). 

Table 2.3. Discussion of UAV form factors, their advantages and disadvantages (Colomina and 

Molina, 2014; Nex and Remondino, 2014). 

UAV Form factor Advantages Disadvantages 

Fixed Wing 
Increased flight time and area 

coverage; automated flights 

Take-off and landing more 

complex; Limited sensor 

carrying capacity. 

Weather limited 

Rotary Wing 

Good carrying capacity; 

ability hover at low altitude 

over targets; automated 

flights; Portability 

Limited flight time and area 

coverage. Weather limited 

Heli-kites and 

blimps 

High carrying capacity; simple 

design and set-up 

Fixed position, limited spatial 

coverage; require anchorage. 
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Sensor choice also limits the application of UAVs and data collected. Depending 

on data requirements, a range of sensors are available. Miniaturisation of technologies 

has allowed for UAV specific versions of conventional remote sensing systems to be 

developed. However, increased miniaturisation results in increased cost, especially if the 

sensor is designed to deliver data of equal quality and resolution as larger counterparts 

(Barbedo, 2019; Roy and Miller, 2017). Alternative, low costs sensors exist; however, 

these come with the caveat of less work focussed on the development and validation of 

the necessary workflows, calibrations and radiometric corrections required to ensure 

robust, accurate quantitative measurements (Berni et al., 2009b; Lebourgeois et al., 2008). 

Finally, with all UAV sensor types, challenges related to processing and storage of high-

resolution UAV data remain, adding to the difficulties of generating quantitative 

information. Though the range of consumer-grade software packages focussed at 

automatic processing of UAV derived data is increasing to help overcome this problem 

(Aasen et al., 2018). 

The popularity and success of UAVs in remote sensing and mapping 

applications has been in large part down to their ease of use. The level of technology and 

automation related to these aerial platforms makes them simple to use. However, 

limitations remain, particularly related to the sensors and data processing. A current 

trade-off between high costs or lack of calibration makes sensor choice problematic. In 

acknowledgement of this, the next two sections focus on available sensor options and 

methodologies suitable for the measurement of morphology and spectral reflectance. 
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 UAVs, Remote Sensing and 3D Structure 

Crop morphology has been previously identified in Section 2.2 as a group of 

phenotypic traits of interest. Traditional methods for measuring morphological traits 

such as height, growth rate and lodging have been identified as insufficient in terms of 

resolution, objectivity and throughput for current phenotyping requirements. 

Alternative remote sensing methods for determination of crop height exist, including 

laser rangefinders (LiDAR) (Hoffmeister et al., 2010; Zhang and Grift, 2012), ultrasonic 

sensors (Scotford and Miller, 2004), and three-dimensional time-of-flight cameras 

(Andújar et al., 2015; Azzari et al., 2013). Of these, LiDAR is the most common, and its 

use has been proven for collecting accurate measurements of crop height in the field 

(Bareth et al., 2016; Hoffmeister et al., 2010). However, all the above systems are typically 

mounted to ground-based vehicles or fixed platforms, because of the constraints related 

to weight and power supply. As a result, limitations related to the coverage of multiple 

locations and access to field sites during bad weather impact on throughput of these 

systems (Virlet et al., 2017). Furthermore, the cost of UAV specific LiDAR sensors, 

upwards of £50,000, prohibits the widespread adoption of this option. An alternative 

UAV suitable technique is Structure from Motion (SfM) photogrammetry which has 

gained popularity in recent years. 

Originally developed for computer vision applications, SfM photogrammetry 

uses images acquired at multiple viewpoints in order to model the three-dimensional 

(3D) structure of an object or surface (Fonstad et al., 2013). However, unlike traditional 

photogrammetry where careful pre-planned and structured image acquisition (e.g. on a 
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consistent plane or axis) is required; SfM utilises advanced matching algorithms to 

identify and tag common features between multiple images without any prior 

information or image processing (Westoby et al., 2012). A detailed review of the exact 

algorithms utilised in SfM software to achieve this is beyond the scope of this chapter, 

though readers can refer to Snavely et al. (Snavely, 2011; Snavely et al., 2008, 2006) for 

more detailed descriptions.  

Fundamental to the success of SfM processing is its ability to track features 

between images independent of variations in image scale, resolution, brightness, and 

view point make them ideal to application with UAV imagery (James et al., 2017). 

Additionally, SfM processing is able to determine scene geometry and camera position 

and orientation without inclusion of targets of known 3D position (Snavely, 2011). This 

allows for much simpler, user-friendly data collection processes, with reduced expertise. 

Finally, the recent development of both commercial (e.g. Agisoft Photoscan (Agisoft 

LLC, St. Petersburg, Russia) and Pix4D (Pix4D, Lausanne, Switzerland)) and open-

source (e.g. Microsoft ICE (Microsoft, Redmond, USA)) SfM automation software 

packages, has simplified the required data processing of this method considerably 

(Woodget et al., 2015). In timely combination with the rise of UAVs for remote sensing, 

SfM software packages have enhanced the ease of operation of these methods, 

importantly with minimal training required. However, the use of these relatively user-

friendly software packages, does not necessarily promote consideration of the data 

collection and processing parameters involved, such as the image capture and 

georeferencing, and their impact on accuracies of the final 3D models (James et al., 2017). 
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Therefore, consideration of these parameters is needed to ensure consistent and robust 

data is produced. 

In terms of image capture, image resolution has a direct influence on the accuracy 

of derived elevation models. Higher resolution imagery maintains more fine scale 

structural detail, which is less susceptible to loss via filtering during SfM processing (Jay 

et al., 2015; Küng et al., 2011; Willkomm et al., 2016) . As such, sensor selection and UAV 

flight altitude will be key influencers on final model outputs. Also related to image 

capture, several studies identified a ‘dome-like’ distortion towards the edges of 3D 

models (Smith and Vericat, 2015). Both flying height (Woodget et al., 2015) and nadir 

viewing imagery (Smith and Vericat, 2015) have been identified as causation factors. 

Whilst the inclusion of oblique imagery alongside nadir imagery has been identified as 

a solution offering positive reduction in the distortion (Wackrow and Chandler, 2011). 

The other key variable influencing model accuracies relates to the georeferencing 

of final models. Although SfM processing is able to reconstruct scene geometry and 

relative camera positions, these models remain within an arbitrary coordinate space. 

Geo-referencing of 3D models is therefore required in order to transform the model from 

an arbitrary to an absolute coordinate system (Westoby et al., 2012). This processing step 

requires the user to provide additional data relating to geographic locations either of the 

cameras, or of the targets captured within the imagery. Ground Control Points (GCPs) 

are the simplest and most common technique and have been shown to provide superior 

accuracy to alternative georeferencing solutions e.g. geo-tagged images (Ruiz et al., 

2013). However, poor accuracies from the GPS unit used to locate GCPs, can lead to 

propagation of error into final models (Bendig et al., 2013a, 2013b).  
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The use of UAVs and Structure from Motion processing is a fast-moving area of 

research, that has seen a sharp increase in knowledge development over recent years. 

The work presented within Chapter 3 of this PhD thesis focussed on the development 

and validation of these methods for measuring crop heights, and was undertaken and 

published in 2015/16. Since publication a number of developments and further proof-of-

concepts have been achieved. The following section will provide an up-to-date review 

of the applications of UAVs and SFM for monitoring crop heights, including those 

developments that have succeeded the work presented in Chapter 3 of this thesis. 

Initial investigations into the suitability of SfM processing for measuring crop 

morphology and height, produced mixed accuracies (0.22 ≤ R2 ≥ 0.71) for both barley and 

rice crops at different crop growth stages (Bendig et al., 2013a, 2013b). Subsequent 

studies produced similar results, with more consistent accuracies (R2 ≥ 0.7) (Aasen et al., 

2015a; Willkomm et al., 2016). Though accuracies were low, these studies did identify a 

number of sources of error and key processing steps required to produce crop heights 

from SfM model outputs. Bendig et al., (2013b) identified sub-optimal accuracies from 

the GPS (> 1m precision) used for used for GCP measurements as a key source of error 

present in the final crop height models. The GPS data is required by SfM processing 

software for geo-referencing of final models, and as such any inaccuracies in these values 

will be carried through the SfM processing workflow and be incorporated into the final 

height models. Subsequent studies utilised Differential-GPS (D-GPS) systems, with 

superior accuracies (≤ 10cm) and found a significant reduction in error of crop height 

models, and in-turn, increased accuracy of derived crop heights (Aasen and Bolten, 2018; 

Bareth et al., 2016; Holman et al., 2016). Furthermore, the improper placement and 
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insufficient spatial coverage of GCPs has been identified as source of doming effects in 

final models (Woodget et al., 2015). This effect was found to result from using nadir 

imagery for the SfM processing (Wackrow and Chandler, 2011), and can be minimised 

through appropriate placement and density of GCPs throughout the target survey area. 

In addition to the errors associated with inaccurate GNSS systems, some of the 

initial studies found SfM derived height models were prone to underestimation, when 

compared to heights measured by standard rule methods (Aasen et al., 2015a). The 

authors questioned the suitability of rulers for use as ground validation data, due to 

known limitations with this method; though this criticism is opposed by the rulers use 

as the traditional standard method, which the UAV is proposed to replace. An 

alternative source of validation data is to use high accuracy terrestrial LiDAR scanners 

to generate high resolution point clouds, from which crop can be determined (Ziliani et 

al., 2018). Madec et al., (2017) produced a detailed comparison of UAV and LiDAR 

derived wheat crop heights over a large number of plots (n=1173). Initial accuracy 

assessments between LiDAR and manual ruler measurements showed high agreements 

in measured heights (R2 = 0.9) and no consistent negative bias in results (Bias = 1.4cm). 

Further comparison of LiDAR and UAV derived heights indicated underestimations of 

height from the UAV models persisted, ultimately indicating its source is likely from the 

UAV data or methodology as opposed to poor quality validation data. Suggested 

reasons for underestimation focussed on the reduced spatial resolution of the UAV 

models resulting in loss of small plant structures e.g. grain heads. Filtering the plot 

canopy pixels using percentiles (e.g. 95% or 99%) did improve underestimations of 
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height, but did not remove the trend all together (Bareth et al., 2016; Voort, 2016), 

ultimately due to the spatial resolutions filtering out some plant material.  

A key component of the SfM workflow highlighted by the initial studies of 

Bendig et al, (2013a, 2013b), and in turn an influencer on final model accuracies, was the 

requirement to normalise the final model for underlying topography (Geipel et al., 2014). 

Without removal of this topography, extraction of crop heights is difficult and prone to 

error. Two main methods for achieving normalised models, typically referred to as Crop 

Surface Models (CSMs) do exist, and work via the subtraction of a bare ground 

topography map or model from SfM derived models. The most common of these, due to 

practicality and ease of application, is to generate a bare-ground topography model, 

which is subtracted from the crop SfM models, thus isolating pure crop heights. This 

method requires the generation of a bare-ground surface model, which is then 

subtracted from crop models in order to produce normalised CSMs. The alternative 

method is to filter out soil and vegetation from within models in order to determine crop 

height from a single flight without requirement for a bare soil map (Tilly et al., 2014; 

Varela et al., 2017). However, practicality, simplicity and speed of processing has 

resulted in the subtraction method generally being the preferred solution for generating 

normalised CSMs. More specific analysis of this technique, found bare ground maps 

generated for each flight offered marginally superior crop height accuracies compared 

to bare soil maps generated at the beginning or end of the season (Chapman et al., 2014; 

Holman et al., 2016). Though the practicality of generating individual, flight specific bare 

ground maps is often viewed as impractical, compared to the only slight reduction in 

final height accuracy (RMSE = 0.068m versus RMSE = 0.038m) (Holman et al., 2016). 
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The above review has outlined the development and validation of SfM 

photogrammetry methods and techniques for accurate phenotyping of crop height in 

the field. More recently, as a result of these validations, there has been an increase in the 

application of SfM derived data for improved phenotyping. Example applications 

include temporal tracking of plant height, via high-throughput phenotyping though not 

using a UAV, facilitating the identification of additional quantitative trait loci within 

wheat, which showed influences on crop height within the tillering stage of growth (Lyra 

et al., 2020). The ability to utilise multiple timepoints for genetic analysis of crop height 

greatly increased the available information of growth-stage specific traits; though a 

trade-off was identified in the increased volume of data required to process in order to 

utilise this data. Madec et al., (2017) investigated the relationship of wheat crop height 

with flowering stage, biomass and yield. Maximum plant height and flowering stage 

were found to be well correlated (R2 = 0.7), whilst biomass and plant height were found 

to be strongly correlated (R2 = 0.91). Yield was found to be poorly correlated with plant 

heights (R2 = 0.13). Several studies have also managed to identify the occurrence of 

lodging within fields from SfM 3D models of plant height. The presence of lodging 

within fields when measuring crop heights was noted by some, but no attempt to 

quantify the extent of lodging was attempted (Bendig et al., 2014; Madec et al., 2017). 

Studies that have quantified lodging from SfM models and UAV imagery, used 

thresholding to indicate the occurrence of lodging (Chapman et al., 2014; Chu et al., 

2017). Comparison of results against standard visual assessments of lodging severity 

achieved average accuracy (R2 = 0.48). These results show the potential for lodging to be 

assessed in conjunction with temporal height measurements from UAVs and SfM. 
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However, the poor accuracy highlights the need to develop improved methods for the 

identification and quantification of lodging events. More recently, Singh et al., (2019) 

utilised the high temporal resolutions offered by UAVs to enable genetic dissection of 

crop lodging in wheat. Comparison with simplistic yet industry standard visual 

assessments showed both techniques identified the same genome responsible for 

lodging susceptibility. Ultimately the UAV was proven to provide both the phenotypic 

accuracy and throughput required for the large-scale assessment of lodging resilience, 

required by breeders. 

This review of the relevant literature has highlighted the key workflow steps 

required to generate accurate topographic reconstructions from UAV imagery and SfM 

processing. The literature also highlights the initial sub-optimal results achieved for 

measurement of crop heights from UAV imagery and SfM processing. A number of data 

collection and processing variables were identified as probable sources of error, and 

development of workflows and techniques, including the work presented in Chapter 3 

of this thesis, has solved many of these factors. More recently, there has been increased 

uptake of these methods for temporal monitoring of crop heights, and application of 

these data into phenotypic studies of commercial crops such as wheat. 
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 UAVs and Spectral Reflectance 

 Quantitative measurements of the spectral reflectance of plant canopies, 

particularly in visible and near-infrared wavebands, are an already proven method for 

phenotyping various phenotypic traits. Though, as highlighted in Section 2.2.2, existing 

ground-based methods, using hand-held sensors, suffer from poor spatial resolutions 

and throughput.  

Multi- or hyper-spectral imagers are an obvious alternative solution to the lack 

of spatial resolution found in current methods. Furthermore, the existence of several 

UAV-based specific spectral imagers (e.g. Parrot Sequoia (Parrot, Paris, France), 

Micasense RedEdge (Micasense, Seattle, USA)), in combination with numerous 

examples of their application in crop phenotyping, clearly demonstrate their potential 

fit for UAV-based high-throughput phenotyping. The simplest of application for UAV-

sourced imagery, is the quantification of ground cover, of particular interest to breeders 

during the crop establishment phase. Utilising both RGB and multi-spectral indices, 

Torres-Sánchez et al., (2014) demonstrated the use of UAVs for large scale mapping of 

vegetation fraction of field-based wheat crop trials. The authors were able to achieve 

accuracies up to 92% when flying at a 30m altitude in order to maximise image 

resolution. Employing the same principles, and similar techniques, UAVs have been 

used to identify and map weeds within fields, offering data for more targeted herbicide 

applications (Castro et al., 2012; Gómez-Candón et al., 2014). Similarly, Guo et al., (2018) 

utilised the high spatial resolutions, in combination with machine learning based image 

processing, to perform Sorghum head counting. Using simple RGB images, the methods 
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were found to accurately reproduce manual head counts (R2 = 0.84). Other example 

applications include assessing the relationship between canopy reflectance and key 

breeder traits e.g. crop biomass and yield. Numerous studies have investigated a range 

of spectral indices, spatial and temporal resolutions for mapping final yields of different 

crops including wheat (Du and Noguchi, 2017; Guan et al., 2019; Kanning et al., 2018), 

maize (Maresma et al., 2016; Wahab et al., 2018) and rice (Stroppiana et al., 2015; Yang et 

al., 2019; Zhou et al., 2017). Common amongst these studies, was the advantageous 

spatial mapping of yield within field and trail plots, offering greater detail in-to under- 

or over-performing crops. Monitoring for nitrogen status and uptake has also been 

investigated via UAV based spectral imaging. Liu et al., (2018) investigated a number of 

spectral indices for diagnosing nitrogen status of oilseed rape with results varying 

between the different indices (0.62 ≤ R2 ≥ 0.73). Similarly, Walsh et al., (2018) utilised 

UAVs to temporally monitor nitrogen status of wheat via vegetation indices including 

NDVI and red edge focussed indices. The temporal monitoring facilitated by the UAV 

based system, allowed for the monitoring of in-season wheat crop nitrogen status, 

importantly at different growth stages. 

The studies discussed above utilised commercially available spectral imagers 

which have the advantage of pre-determined and automated processing and calibration 

workflows This makes them attractive options for applying to phenotyping straight out 

of the box. However, certain limitations remain with regards spatial resolutions. In order 

to obtain individual spectral bands, these systems use individual sensors to measure 

each spectral band (Rabatel et al., 2014). This solution for multiple bands, is both costly 

and limited in resolution due to the need to fit multiple sensors within a small form 
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factor. Resolution can be increased, either through larger individual sensors or custom 

built multiband single sensors; though this comes with significant increases in cost 

pushing the sensors beyond the affordability for many end-users (Rabatel et al., 2011). 

In response to the poor spatial resolution and prohibitive costs of existing 

sensors, some researchers have investigated alternative options, including the potential 

of Commercial ‘Off the Shelf’ (COTS) digital cameras (Lebourgeois et al., 2008; Rabatel 

et al., 2014, 2011). These cameras have the useful feature of natural sensitivity of their 

internal CMOS (Complementary metal-oxide-semiconductor) or CCD (Charge-coupled 

device) sensors to both visible and near-infrared light (Verhoeven, 2008). Manufacturers 

install NIR blocking filters during manufacture to inhibit the NIR sensitivity because it 

is an unwanted feature for normal everyday use. However, the removal or replacement 

of these filters with visible blocking filters, reopens this sensitivity to NIR light. This 

produces a camera in which the combination of visible and NIR light or just NIR light 

can be measured in all 3 channels (Aber et al., 2010). This sensitivity to visible and NIR 

light, combined with high resolution sensors, in-built data storage, user-friendly 

operating interfaces and simple integration with UAVs, makes digital COTS cameras an 

attractive option for UAV-based spectral reflectance monitoring (Dare, 2008).  

Several studies have investigated quantitative measurements of reflectance from 

COTS cameras (Burud et al., 2017; Kyratzis et al., 2017; Sankaran et al., 2015), though the 

lack of validation data leaves uncertainties in the translation of results into proof of 

concept for these cameras (Lebourgeois et al., 2008). More recently, validation of results 

against ground measured spectral reflectances have indicated that accurate reflectance 

data can be achieved (Berra et al., 2017). However, instability of results over time 
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highlights the need for further work to improve the robustness of these methods. The 

DIY nature of these cameras means complete and proper radiometric calibration and 

corrections are vital for generating quantitative spectral reflectance data. A number of 

variables related to the camera including processing workflow and environmental 

factors  impact on the generation of accurate measurements of reflectance (Lebourgeois 

et al., 2008). Camera related factors include; i) camera exposure settings, ii) vignetting, 

iii) image file format and conversion.  

Exposure settings (aperture, shutter speed, and ISO) work in combination to 

control the level of light reaching the sensor to maximise the quality of exposure of 

images. However, where the purpose of the image is to provide a quantitative measure 

of light, this artificial change in light introduced by the camera is unwanted. Typically, 

studies have fixed the settings to remove any impact from exposure settings on data 

(Berra et al., 2017; Gibson-Poole et al., 2017). However, this solution does, present a 

significant trade-off by narrowing the dynamic range of the camera sensor and 

increasing the risk of under- or over-exposure in images, which equates to a loss of data 

(G. L. Ritchie et al., 2008). An alternative approach would be to allow the cameras to 

adjust exposure settings as required during flights. Proven linear relationships between 

pixel digital number (DN) and varying ISO, shutter speed and aperture settings 

(Hiscocks, 2011), indicate normalisation of exposure settings in post-processing to be 

possible. If confirmed, the use of these linear relationships would allow for an image 

collected under certain exposure settings to be adjusted in post processing to represent 

light levels of different exposure settings. Ultimately this would simplify the data 

collection workflow by using automatic exposure settings on the camera, rather than 
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user defined and fixed settings. Additionally, the risk of poor image exposure would be 

minimised, particularly when flights are conducted under variable irradiance 

conditions. 

Vignetting is the darkening, or loss of brightness towards the edges of an image 

(Conrady, 2013). It is the result of several factors relating to the camera lens and to the 

geometric nature in which light enters the camera lens falling on the sensor. However, 

the primary factor behind vignetting is the blocking of light rays by the effective size of 

the aperture (Yu, 2004; Zheng et al., 2009). Therefore, the level of vignetting distortion 

in an image is dependent on the lens and aperture used. The impact of vignetting and, 

in turn, the  correction for it has been widely researched in various applications 

including microscopy, image mosaicking, and digital photography (Bevilacqua et al., 

2011; Kim and Pollefeys, 2008; Leong et al., 2003). Typical methods for correcting 

vignetting involve modelling the vignetting pattern of the camera-lens set-up via a 

polynomial function, and from this deriving pixel specific correction factors. Alternative 

solutions include using 8th degree polynomial functions to model the loss in brightness 

of a flat field image, before application of these models to correct vignetting within 

individual images (Berra et al., 2017). Though difficulties with illumination and camera 

angle complicate the ease and ability to produce a perfectly flat field. Alternatively, 

averaging over an entire image set, such as those collected during UAV campaigns, in 

combination with 2nd degree polynomials can provide comparable results with a 

simplified workflow (Lebourgeois et al., 2008; Lelong et al., 2008). For all these methods, 

correction of vignetting for individual bands and exposure settings separately is used 

to ensure robust corrections for entire datasets of UAV imagery is achieved. Application 
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of correction filters or models is also worth noting; should the adjustments brighten the 

corners, or darken the centre of the image? The most common method is to brighten the 

corners, in order to avoid a loss of data through saturation of pixels during adjustment 

(Lelong et al., 2008). 

Image file format and conversion plays an important role in maintaining the 

original, unaffected DN values as measured by the camera sensor. Due to the non-linear 

response of the human eye to changing light levels, camera manufacturers introduce a 

non-linear correction to improve the visual appeal of images produced (Bull, 2014). Use 

of non-raw formats (e.g. Joint Photographic Experts Group (JPEG), Portable Network 

Graphics (PNG)) result in a loss of the linear relationship between light and sensor 

measurement (Verhoeven, 2010). As quantified measures of reflected light are the 

intended application of this imagery for crop phenotyping, maintaining this linear trend 

is vital to ensure the quantitative value of the results generated. Results from previous 

studies using JPEG imagery, suffered due to the non-linear corrections introduced by 

the JPEG image file format (Mathews, 2015). The alternative is to use the raw image file 

format, which stops any post capture processing by the camera to ensure the original 

pixel values remain unchanged (Lebourgeois et al., 2008). However, raw formats are 

proprietary, requiring conversion to standard formats (e.g. Tagged Image File Format 

(TIFF)) to gain compatibility with most post processing software packages such as SfM. 

Further issues arise from the introduction of this processing step, because the 

conversion is not performed consistently between conversion software options, with 

many software packages still introducing non-linear gamma corrections during the 

conversion process (Gehrke and Greiwe, 2014). As such, the use of the open source 
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conversion software DCRAW (Coffin, 2007) for conversion is widely recommended and 

performed as it allows for linear conversions of raw to TIFF format, ensuring the raw 

pixel DN values are maintained. 

Moving away from camera properties, the key environmental factor that requires 

consideration is the radiometric conversion of the data contained in the imagery from 

radiances to reflectance. Conversion of measured radiances to spectral reflectance 

estimates requires a measure of incoming solar irradiance in the same waveband (), as 

per Equation 1. 

A key difficulty with UAV spectral measurement campaigns lies in obtaining 

temporally relevant measures of spectral irradiance (Miura and Huete, 2009). Solutions 

previously investigated include the use of ground-based targets of known reflectance to 

be captured within images (Berra et al., 2017). Inconsistent target capture during UAV 

flights, limits the success of this method, particularly under variable illumination 

conditions. Furthermore, the temporal stability of target reflectances if left in the field 

permanently as is often preferred, can vary by up to 16% over a season as a result of dirt 

build up, degradation via weathering, or vegetative growth on the surface of the target; 

thereby impacting on the stability of time series measurements (Anderson and Milton, 

2005). An alternative is to utilise a second device to measure incoming solar irradiance 

simultaneously with collection of UAV imagery, and in the same wavebands of interest. 

An example of such a sensor is the downwelling light sensor utilised by the Parrot 

Sequoia (Parrot, Paris, France). Constant temporal measures of total irradiance in 

conjunction with collection of reflectance imagery, has been proven to provide more 

  
𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒() =

𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒()

𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒()
 (1) 
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reliable results, with minimal biases compared to single measurements such as those 

from ground-based targets (Miura and Huete, 2009). 

The final area of consideration is the production of georeferenced orthomosaics 

from the final calibrated images. All previous studies have utilised SfM software to 

produce reflectance mosaics of UAV captured imagery. Within SfM software, such as 

Agisoft Photoscan (Agisoft, 2016) three possible methods can be used for the merging of 

pixels: Mosaic, Average and Disabled. Mosaic utilises custom proprietary algorithms 

and therefore, potentially alters true pixel values without user knowledge. Average 

combines all pixels from individual images for a single orthomosaic pixel, and assigns 

the mean value to it. Disabled uses the value of a single pixel from the single image 

closest to the nadir. Comparison of these processing settings, has proven that the 

disabled setting maintains the original quantitative data best (Aasen and Bolten, 2018). 

The disabled processing methods use of nadir imagery, also ensures a comparable 

viewing angle to ground-based sensors, such as those already used in phenotyping of 

field-based experiments. 

 There is proven application of high-resolution spectral imagery from UAVs for 

high-throughput phenotyping of several phenotypic traits. However, spatial resolutions 

or cost have left a gap for development of alternative imaging systems for use with 

UAVs. The low cost, high resolution, and ease of integration with UAVs of Commercial 

‘Off the Shelf’ (COTS) digital cameras makes them an attractive alternative to 

commercially available multispectral imagers. Nevertheless, as has been highlighted, the 

process for obtaining radiometrically calibrated spectral reflectance estimates from the 

collected imagery is very important, complex, and which at the time of writing remains 
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incomplete. Further development and validation of temporal stability of these cameras 

is needed, before their application in UAV phenotyping can be confirmed.  

2.4 Summary and Research Objectives  

A number of phenotypic traits related to crop morphology and spectral 

reflectance have been discussed in this chapter. Yet despite their relevance and value to 

in developing new, improved, high yielding crops capable of adapting to future 

challenges, the methods for phenotyping them in a field setting remain imperfect and 

insufficient. Consistent limitations highlighted in Section 2.1, are low spatial resolutions, 

low throughput and in some cases lack of robust, objective measurements. Alternative 

UAV-based remote sensing methods exist and are capable of offering improved spatial 

resolutions, throughput and objective measurements of field-based experiments. 

Commercial digital cameras have the potential to provide data for both 3D 

reconstructions, via SfM processing, and spectral reflectance measures, via camera 

adaptation. Significantly these measurements are offered at lower costs, and better 

spatial resolutions compared to alternative sensors. However, lack of development and 

validation of data collection and processing workflows has meant that they ultimately 

remain as unproven conceptual phenotyping sensors.  

Therefore, building on the existing work outlined in this chapter, the specific 

objectives of this thesis are as follows: 

Objective 1:   To develop and evaluate use of imagery collected from a UAV-mounted 

camera in combination with Structure from Motion photogrammetric 

processing workflows for the spatial and temporal mapping of field-
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based wheat crop trials, most specifically focused on derivation of plant 

height and growth rate (addressed in Chapter 3) 

Objective 2:  To develop and evaluate the ability to derive radiometrically 

accurate, high spatial resolution spectral reflectance imagery and 

vegetation indices of growing crop canopies using UAV-mounted 

modified Commercial ‘Off the Shelf’ (COTS) digital cameras 

(addressed in Chapter 4). 

Objective 3:  To evaluate the ability of the UAV-based phenotyping methods 

developed in Chapters 3 and 4 to provide long term phenotyping of 

nitrogen fertiliser application on canopy development and 

senescence dynamics of a modern wheat germplasm panel 

(addressed in Chapter 5). 

Objective 4:    To assess and quantify the true costs and throughput associated 

with a UAV-based phenotyping system for long term field 

experiments (addressed in Chapter 6). 
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Chapter 3:  High Throughput Field 

Phenotyping of Wheat Plant Height and 

Growth Rate in Field Plot Trials Using 

UAV Based Remote Sensing 

3.1 Introduction 

Crop morphology was previously identified as a key phenotypic trait category, 

within which crop height is a useful parameter for understanding crop dynamics. 

However, despite useful applications in the monitoring of crop development and the 

prediction of final yields and biomass (Torres and Pietragalla, 2012), conventional 

methods for field measurements are limited. For crop height, these methods are manual, 

low throughput and subjective, leading to data which is lacking spatial and temporal 

measurements of crop height in response to environmental stresses. There is a need to 

improve the efficiency, consistency, throughput and resolution of crop height 

measurements to assist in overcoming the current bottleneck in the phenotyping of field-

based experiments. UAVs and specifically Structure from Motion photogrammetry 

image processing workflows was identified as an alternative for measuring crop heights 

and 3D crop morphology. However, incomplete methods and sub-par accuracy 

assessments indicate further work on developing a complete workflow is required to 

validate this technique as a viable phenotyping method. 
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This chapter presents the development and evaluation of Unmanned Aerial 

Vehicle (UAV) based methods for measuring crop morphology and specifically height 

of field-based wheat plants within crop phenotyping experiments. The methods are 

focussed towards the development of improved temporal and spatial resolution data 

related to plant height, as well as to enhance throughput of measurements. The method 

is based on standard RGB imagery collected from a UAV mounted Commercial ‘Off the 

Shelf’ (COTS) camera, and Structure from Motion (SfM) photogrammetry to process the 

imagery into 3-dimensional reconstructions. Review of phenotyping plant height, as 

well as UAV-based SfM photogrammetry can be found in Chapter 2, Section 2.3.2. The 

work undertaken for this chapter culminated in a published research article in the 

international journal Remote Sensing, for which primary authorship, method 

development, data processing and analysis was performed by the thesis author. M. 

Castle assisted in data collection and processing; A. Riche assisted in method 

development, data collection and manuscript editing; A. Michalski assisted in data 

processing and analysis; M. Wooster and M. Hawkesford assisted in method 

development and editing of manuscript. The article is included within this chapter 

following the requirements of King’s College London thesis rules. 

In addition to the published article, further work was carried out investigating 

methods for normalising the digital surface models. This additional work was not fully 

included within the final article but is provided in Section 3.3 of this chapter.  

3.2 Published Article 
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Abstract: There is a growing need to increase global crop yields, whilst minimising use of resources
such as land, fertilisers and water. Agricultural researchers use ground-based observations to identify,
select and develop crops with favourable genotypes and phenotypes; however, the ability to collect
rapid, high quality and high volume phenotypic data in open fields is restricting this. This study
develops and assesses a method for deriving crop height and growth rate rapidly from multi-temporal,
very high spatial resolution (1 cm/pixel), 3D digital surface models of crop field trials produced
via Structure from Motion (SfM) photogrammetry using aerial imagery collected through repeated
campaigns flying an Unmanned Aerial Vehicle (UAV) with a mounted Red Green Blue (RGB) camera.
We compare UAV SfM modelled crop heights to those derived from terrestrial laser scanner (TLS)
and to the standard field measurement of crop height conducted using a 2 m rule. The most accurate
UAV-derived surface model and the TLS both achieve a Root Mean Squared Error (RMSE) of 0.03 m
compared to the existing manual 2 m rule method. The optimised UAV method was then applied to
the growing season of a winter wheat field phenotyping experiment containing 25 different varieties
grown in 27 m2 plots and subject to four different nitrogen fertiliser treatments. Accuracy assessments
at different stages of crop growth produced consistently low RMSE values (0.07, 0.02 and 0.03 m
for May, June and July, respectively), enabling crop growth rate to be derived from differencing of
the multi-temporal surface models. We find growth rates range from −13 mm/day to 17 mm/day.
Our results clearly display the impact of variable nitrogen fertiliser rates on crop growth. Digital
surface models produced provide a novel spatial mapping of crop height variation both at the field
scale and also within individual plots. This study proves UAV based SfM has the potential to become
a new standard for high-throughput phenotyping of in-field crop heights.

Keywords: Unmanned Aerial Vehicle; Structure from Motion; photogrammetry; crop height; phenotyping

1. Introduction

1.1. Global Food and Agriculture

There is a need to double output of agricultural systems by 2050 to meet the increasing
food demands from a growing global population; forecasted to peak at 9.22 billion by 2050 [1,2].
Wheat continues to provide the sole vital daily nutrition for 35% of the world’s population [3] and is
therefore a key focus of yield improvement research.
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Projects such as the 20:20 Wheat® project at Rothamsted Research, aim to provide the
knowledge and tools to increase the UK’s wheat yield potential to 20 tonnes of wheat per hectare
within 20 years [4], whilst combating the new challenges agriculture is facing such as climate
change. These projects focus on developing new improved varieties through methods such as
selective breeding.

Key to this is the monitoring of different varieties for favourable genotypes and phenotypes,
by providing a continuous stream of data documenting the course of the crops development and
responses to environmental conditions [5,6].

1.2. Phenotyping

Phenotyping of crops involves the measurement and assessment of physical observable
characteristics [7]. Current phenotyping techniques particularly the capacity to collect quality
repeatable phenotypic data in field representative growing conditions is a bottleneck for further
advancements in knowledge and development of crop varieties and yield gains [8].

Height may be a useful indicator of yield, carbohydrate storage capacity and susceptibility to
lodging [9,10] as well as being an essential parameter for site-specific management practices [11].
Monitoring crop height during development stages is a reflection of cultivar and growing conditions.
Crop development stages are often defined by the Zadoks Scale [12,13], and in terms of crop growth
and height changes the key period of growth in UK grown wheat occurs between the start of stem
elongation in early April, stage GS30, and anthesis in mid-June, stage GS61. Anthesis, or flowering,
is the point at which crop height is considered to be at maximum [14]. Whilst exact timings of specific
development stages will vary between cultivars, it is an important that any method of measuring crop
height is able to accurately measure height during all stages between GS30 and GS61 where vegetative
structure can vary.

1.3. Measuring Height

Crop height is classified as the shortest distance between the upper boundary of the main
photosynthetic tissues on a plant and the ground level [15,16]. Most commonly height data is collected
with a measuring rule [10] which although simple, is both laborious, inefficient and can introduce a
level of subjectivity into data collected. Applying this method over large trial fields, totalling upwards
of 1000 plots, limits the repeatability of this method.

There is a need for rapid, precise, continuous and in-season acquisition of this data [17] in order
to better understand external, environmental influences throughout the crops development cycle.
Current methods are not sufficient to meet this need, in particular for use in crop trials where the
number of measurements required is large and as such development of new technologies and methods
is needed.

Within this paper, we introduce and investigate quantitatively the method of
Structure-from-Motion (SfM) photogrammetry using high resolution Unmanned Aerial Vehicle (UAV)
imagery to accurately model crop trials, from which generation of crop heights can be calculated.

1.4. UAVs in Research

Unmanned Aerial Vehicles (UAVs), also referred to as Unmanned Aerial Systems (UAS), are a
growing technology that is rapidly gaining popularity in both the public and scientific communities.
UAVs offer a customisable aerial platform from which a variety of sensors can be mounted and flown to
collect aerial imagery with very high spatial and temporal resolutions. Advancements in the accuracy,
economic efficiency and miniaturisation of many technologies including GPS and computer processors
has pushed UAV systems into a cost effective, innovative remote sensing platform.

Of most significance for research applications is the gap which this technology fills in the remote
sensing domain. UAVs overcome the restrictions of resolution and cost that often hamper the use
of satellite and airborne remote sensing respectively. The wide variety of sensors which can be
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mounted and flown over a predetermined area, means an almost endless list of possible applications
for this technology.

A review of the literature highlights the wide range of applications UAVs and mounted sensors
have been utilised for. For environmental monitoring, examples include modelling of the temporal
changes in landslide dynamics [18]; 3D reconstruction of fluvial topography of UK streams [19];
monitoring of rangeland [20,21] and conservation applications such as surveying of habitats and
animal numbers [22]. Alternatively, UAVs have been applied in documenting of archaeological sites,
where the rapid collection of very high-resolution 3D reconstructions from UAV based methods has
been proven useful [23]. In terms of agriculture, UAVs have been used for the monitoring of water
status and drought stresses in fruit trees [24]; additionally, collecting multispectral and hyperspectral
imagery for use in spectral indices [25] and even chlorophyll fluorescence [26].

1.5. Structure-from-Motion and Crop Modelling

SfM photogrammetry is an emerging method that offers high resolution 3D topographic or
structural reconstruction from overlapping imagery [27,28]. Key to SfM methods is the ability
to calculate camera position, orientation and scene geometry purely from the set of overlapping
images provided, offering a simple processing workflow compared to alternative photogrammetry
techniques [29,30]. The simple and easy workflow of SfM for generating 3D digital reconstructions of
landscapes or scenes makes it applicable for use a variety of research fields as well as in agricultural
crop monitoring.

A number of studies have applied UAV based SfM to modelling crop heights and/or growth over
the growing season. Bendig et al. [31,32] applied UAV based SfM methods to model and calculate
heights of barley and rice crops in the field. Results showed room for development in the methods
and technologies used; comparisons with ground measured heights of barley produced regression
coefficients values of 0.55, 0.22 and 0.71 on three different dates. The authors highlight issues with
GPS accuracy as a main source of crop height error, as well as suggesting using higher quality cameras
for image collection. Ruiz et al. [33] also found the SfM algorithms suffer from errors present in
GPS datasets. Ground-based Control Points (GCP) located within the scene are recommended as
best-practice for spatial accuracy and minimisation of model error. Turner et al. [34] found GCPs
offered a significant improvement in spatial accuracy compared to directly georeferenced imagery
using the UAVs on-board GPS. Aasen et al. [35] used hyperspectral imagery collected from a UAV for
vegetation monitoring including height. Results from this study were found to be comparable with
others (R2 = 0.7) with a consistent underestimation of plant height by 0.19 m. The authors highlight
the fact that the rule has its own issues when it comes to accuracy and therefore may not offer the
best source of ground validation. However, as the standard procedure currently in practice, rule
measurements still hold a level of importance when proving the validity of UAV based SfM methods.

Image resolution is particularly important for early season crop modelling where the lack
of closed canopies impacts on “Crop Surface Model (CSM)” production [36]. Higher resolutions
offer a good level of improvement in model accuracy. Willkomm et al. [37] generated models with
spatial resolutions of 0.5 cm, with height reconstructions comparable to the other studies discussed
(R2 = 0.75) and point out a tendency of the UAV models to underestimate heights. Interestingly the
authors highlight the inability to isolate singular plant details within the model due plant movement
during acquisition, likely due to wind. There is a potential that this crop movement, caused by windy
conditions, and subsequent loss of some plant structures may be the cause of the underestimation of
the model.

The review of relevant literature has shown UAV based SFM is applicable to modelling of plant
heights however accuracy of models achieved in these studies highlights improvements are needed.
It is clear that a proof of concept has been achieved, however the development of this concept into a
working procedure applicable to real world agricultural research is now the next step.
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The aim of this study is to produce a highly accurate and repeatable method for collecting crop
heights from UAV based Structure from Motion Photogrammetry models as an alternative to current
manual rule based phenotyping methods.

The research will involve accuracy assessments and comparisons with alternative technologies,
method development and full season testing of the SfM technique. A full quantitative assessment will
address the following research questions:

1. How accurate are the models and crop heights generated, compared to the rule method;
the existing industry standard?

2. How replicable is the method over the development cycle of wheat crops, particularly between
stages GS30 and GS61 (Zadoks Scale); can growth be monitored?

3. Can these methods be applied in crop research and does it offer a better quality of data compared
to the rule method?

2. Materials and Methods

2.1. Field Site

The experiment was performed at Rothamsted Research, UK (51◦48′34.56′ ′N, 0◦21′22.68′ ′W)
as a contribution to the 20:20 Wheat Project, where field trials of a wide range of wheat varieties are
ongoing [4]. This study used data collected over the Defra-funded WGIN (Wheat Genetic Improvement
Network) Diversity Field Experiment conducted at Rothamsted, which is testing the influence of four
different nitrogen fertiliser treatments (0, 100, 200, 350 kg N ha−1) on 25 varieties of wheat, with
each treatment having three repetitions [38]. Each repetition consists of a plot of wheat comprising
a 9 m × 3 m “main plot”, and a 2.5 m × 3 m “sampling plot”, used for non-destructive and destructive
sampling respectively; all plots are separated by 0.5 m uncropped buffer zones and each treatment strip
is separated by 5 m buffers that mostly comprise vehicle tracks. The order of varieties is randomised
in each strip. Figure 1 shows an example of one strip containing the 25 wheat varieties subject to
one of the four nitrogen treatments. The work used data collected over two growing seasons of the
diversity experiment (2014 and 2015), with crop rotation resulting in the location of the plots changing
between the years but the experimental set-up remained as shown in Figure 1. The 2014 growing
season was used for the pilot project, this included collection and comparison of terrestrial laser scans
and UAV SfM photogrammetry against the existing rule method in order to compare methods and
determine the performance of the UAV method in crop height estimation. The 2015 main study used
the UAV method to derive crop height and growth rate over the entire field as well as to confirm the
accuracy levels of height estimation over wider areas and more wheat varieties than the pilot project
had included.
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Figure 1. Layout of a single diversity experiment field planting strip, consisting of 25 plots each
growing a different wheat cultivar. This layout was repeated 12 times, 3 times for each of the four
different nitrogen treatments, and so the field contained 300 plots in total (with each plot consisting of
a larger 9 m × 3 m “main plot”, and a 2.5 m × 3 m “sampling plot”).
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For simplicity, N1, N2, N3 and N4 will be used herein to refer to the four different nitrogen
fertiliser treatments of 0, 100, 200, 350 kg N ha−1 as detailed in Table 1. The 25 different wheat varieties
are listed in Table 2 and will from hereon be referred to by the initials codes shown.

Table 1. Details of the four nitrogen fertiliser treatments applied to the diversity field experiment
in 2015.

Treatment Code Total Nitrogen Application
(kg N ha−1) Application Dates Amount of Nitrogen Applied

(kg N ha−1)

N1 0 - 0
- 0
- 0

N2 100 16 March 2015 50
1 April 2015 50

30 April 2015 0
N3 200 16 March 2015 50

1 April 2015 100
30 April 2015 50

N4 350 16 March 2015 50
1 April 2015 250

30 April 2015 50

Table 2. Codes for each cultivar of wheat crop grown in the diversity field experiment.

Cultivar Code

Avalon AV
Bonham BO
Cadenza CA

Claire CL
Cocoon CC

Conqueror CN
Cordiale CO
Crusoe CR
Evoke EV

Gallant GA
Hereford HF
Hereward HE

Hystar HY
Istabraq IS
Malacca MA

Maris Widgeon MW
Mercia ME

Paragon PA
Riband RI
Robigus RO
Skyfall SY
Stigg ST

Soissons SS
Solstice SL

Xi19 XI

2.2. Pilot Project (2014)

A pilot project in 2014 focused on providing an initial accuracy assessment of UAV based SfM
approach to crop height determination, as compared to the alternative method of terrestrial laser
scanning (LiDAR). Both were compared to the ground based method currently employed on the
diversity experiment and which is standard practice in field phenotyping, i.e., manual measurement
using a 2 m rule of five random stems from which the mean plot height is determined. All data were
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collected 14–18 July 2014 post-anthesis when the crop were undergoing senescence, so no further crop
growth was expected.

2.2.1. UAV SfM Method

To provide data for the UAV SfM approach, a Cinestar Octocopter UAV with a DJI Wookong M
flight controller carrying a Sony NEX 7 24.3 megapixel camera was flown over the diversity experiment
field at two altitudes (90 m and 40 m), using fixed camera settings and a pre-programmed flight
path (Figure 2), and using DJI ground station software. The flight path was designed in order to
ensure overlapping imagery of at least 60% side overlap and 80% forward overlap; these values were
decided on after consultation of existing literature [32,39,40], as well as the Agisoft Photoscan Software
manual [41] (Table 3).
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Figure 2. Orthomosaic of the 2014 field, displaying the location of Ground Control Points (GCP), LiDAR
scan targets, the UAV flight path and the 10 experimental plots measured for this study. Coordinates
are displayed in WGS 1984 Coordinate System.

Table 3. Camera settings and image parameters used for the two data collection flights made
during 2014.

Altitude
(m) Aperture Focal

Length ISO Shutter
Speed

Image Resolution
(cm/Pixel)

Image
Format

90 f/5.6 14 100 Auto 1.4 JPEG
40 f/4.5 14 100 Auto 0.7 JPEG

The pilot project used only 10 plots of the full diversity field experiment and a set of Ground
Control Points (GCPs) consisting of ten 50 cm × 50 cm numbered acrylic panels which were placed
evenly across this target area prior to all data collection (Figure 2). The GCP locations were recorded
using a differential Global Positioning System (dGPS, Trimble Geo 7, Sunnyvale, CA, USA) to provide
sub-centimetre locational precision. Identification of the GCPs in the imagery later allowed for the
re-projection of the image mosaic and 3D models into a real-world coordinate system.
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Processing of the individual images into an image orthomosaic and Digital Surface Model (DSM)
was performed in Agisoft Photoscan Pro (version 1.2.4) [41] (Figure 3), with different models generated
using different processing settings and different subsets of the full image database, such as altitude,
in order to assess the impact of these on crop height retrieval accuracy. Table 4 provides a summary of
the parameters used for the models generated.
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Figure 3. Workflow for processing the collected UAV imagery and Terrestrial LiDAR point clouds into
the normalised Digital Surface Model.

Table 4. Parameters of the UAV flights and Agisoft Photoscan processing used in the 2014 Pilot Study.
Model resolution is the reported model resolution provide by Agisoft Photoscan.

Model Altitude (m) Alignment
Accuracy

Dense Cloud
Quality

Depth
Filtering

Model Resolution
(cm/ Pixel)

Model
Reference

1 90 High Medium Aggressive 2.0 UAV90A

2 90 and 40
combined High Medium Aggressive 1.7 UAV90+40A

3 40 High Medium Aggressive 1.0 UAV40A
4 40 High Medium Mild 1.0 UAV40M

Review of relevant literature pointed to some disparity in the terminology used to describe
the different computed 3D models created in SfM processing. One such example is the use of Crop



Remote Sens. 2016, 8, 1031 8 of 24

Surface Model (CSM), for which Bendig et al. [31,32] describes as the absolute height of crop canopies.
Geipel et al. [36], in comparison define a CSM as the difference between the Digital Terrain Model
(DTM) and DEM. To prevent confusion and ambiguity, terminology in this article will use definitions
as set out by Granshaw [42]. The three model types created within this study, as shown in Figure 4,
are Digital Elevation Models (DEM), Digital Surface Models (DSM) and normalised Digital Surface
Models (nDSM), definitions are provided in Table 5. It should be noted that the final output from
Agisoft Photoscan is what it calls a DEM, this is technically a DSM as it includes both the scene
features and underlying topography captured in the imagery although application of depth filtering
in processing may remove some top surface features which means use of depth filtering should be
acknowledged when assuming a model is a DSM.
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Table 5. Definitions of types of models generated in this study, based on definitions offered by
Granshaw [42].

Model Name Abbreviation Description

Digital Elevation Model DEM Model of the underlying field topography without features.

Digital Surface Model DSM Combined model of the underlying topography and field
features e.g., crops.

Normalised Digital Surface Model nDSM Model of field features only (crop heights).

A key step in the production of a final nDSM is the removal of underlying field topography,
performed using Equation (1), in order to isolate the pure crop heights.

nDSM = DSM−DEM (1)

where DSM is the final output model from Agisoft Photoscan Pro and DEM is the underlying field
topography, created through extraction of bare ground heights located in the unplanted buffer zones
between the plots throughout the field. These bare ground heights were then extrapolated into a DEM.
Investigation was also carried out to assess a potentially more universal method for use where large
buffer zones are not included in the field layout, such as those in commercial fields. This alternative
method involved generating a DEM from the field when no crops were present in order to measure
the bare ground.

2.2.2. Terrestrial LiDAR Method

Alongside the UAV data, a Leica HDS6100 Terrestrial LiDAR was used to collect LiDAR point
clouds of nine plots, this system providing a very high 5 mm measurement precision but with the
disadvantage of a relatively time-consuming measurement procedure compared to the UAV when
multiple scans from different directions are required. Here we used six scans from different positions
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around the plots (Figure 2) to ensure both a highly dense point cloud and minimal shadowing.
Scanner settings are detailed in Table 6, with six Leica “Tip and Turn” targets placed within the
scan area whose location was also measured with dGPS and whose record in the scans were used
for inter-scan registration and point cloud geo-referencing in the Leica Cyclone 8.1 software [43].
Point clouds were generated from first return pulses and after registration and geo-location,
were analysed and crop heights extracted (Figure 3).

Table 6. LiDAR settings used during 2014 study.

Scanner Parameter Settings Used

Laser Poser High
Scan Resolution Super High
Vertical Extent 25◦–180◦

Horizontal Extent Manually selected depending on scan.

2.3. Main Study (2015)

The objective of the Main study was to apply the UAV based crop height retrieval method
developed in the 2014 Pilot at the full field scale and over the whole growing season—using it to
assess the crop growth rate of the different varieties and nitrogen fertiliser application levels of the
diversity experiment. During this study, ground-based (rule) measures of the height of all 300 plots
were collected on two occasions (18 June 2015 and 17 July 2015) for comparison to the UAV-derived
crop height measures; a sub sample of 100 plots was also measured by rule on 22 May 2015.

UAV SfM Method

Image collection flights were conducted over the full diversity experiment field on a regular basis,
weather and equipment permitting between March and July 2015. Flight altitude was kept at 45 m
on the basis of the findings of the pilot project, and the same flight plan used each time (Figure 5).
Camera settings were kept as consistent as possible, though changes were needed occasionally to
allow for changing illumination conditions as well as a change in lens due to damage (Table 7).
These changes had not detrimental effect on final model resolutions. Between 21 March and 21 April
2015 no flights were conducted due to technical problems with the UAV. Thirty two GCPs were located
in the field (Figure 5), evenly spread throughout and with their location measured with dGPS as before.
Images were processed using Agisoft Photoscan under the same workflow as Figure 3. There were
two changes to processing settings however; investigation of high and ultra-high dense cloud quality
settings found DSM quality could be increased when using high quality but ultra-high introduced
very high levels of noise, as such all models in the 2015 study were processed with the high setting.
The second change was due to updates to the Photoscan software which allowed for depth filtering
to be disabled on all models used for monitoring growth. This was done to reduce the smoothing of
features such as the tops of the wheat crops in the models. Table 8 details the key model parameters.

Table 7. Camera settings and image parameters for each flight used in the 2015 study.

Date Focal Length Aperture ISO Shutter Speed Image Resolution (cm/Pixel)

19 March 2015 20 f/4 Auto 1/1000 0.9
2 April 2015 18 f/4 Auto 1/1600 0.9
14 April 2015 18 f/4 Auto 1/1600 0.9
21 April 2015 15 f/4 Auto 1/1600 0.9
21 May 2015 17 f/4 Auto 1/1600 0.9
4 June 2015 18 f/4 Auto 1/1600 0.9

17 June 2015 20 f/4 Auto 1/1600 0.9
26 June 2015 20 f/4 Auto 1/1600 0.9
6 July 2015 20 f/4 Auto 1/1600 0.9

20 July 2015 20 f/4 Auto 1/1000 0.9
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Table 8. Agisoft processing parameters used in the 2015 study. The model resolution provided is the
resolution reported by Agisoft Photoscan.

Alignment Accuracy Dense Cloud Quality Depth Filtering Model Resolution (cm/Pixel)

High High Disabled 1

As a potential alternative to using the heights of the buffer zones as a means to create a bare
ground DEM over this much larger area than that used in the 2014 Pilot study, flights were also
conducted in 2015 after harvest (but before ploughing) on 25 September 2015 to enable a bare ground
DEM to be derived using imagery of the non-cropped field. As this was post-harvest some crop stubble
was still remaining in the field.

After creating and normalising the models for field topography, a plot map was created before
crop heights for each plot were extracted and mean heights calculated. Plot borders were created
in ArcGIS using the experimental layout dimensions (Figure 1). Some actual field plots did not fit
the layout plan exactly and so were shifted and rotated manually as necessary to the right position.
To prevent plot edge effect influencing calculations, plots were shrunk by 50 cm on each edge using
an ArcGIS buffer tool (Figure 6). This value (50 cm) was arbitrarily chosen for this experiment.
This approach will require automation in the future for experiments consisting of thousands of plots,
where the outlining of individual plots manually is very time consuming.

Initial analyses highlighted an issue with some plots displaying mean heights much lower
than the corresponding ground-based measures taken with the measuring rule. Examination of the
original imagery indicated that, similar to the findings of [36], a lack of canopy development and
stem population density in the unfertilised (N1) plots compared to the fertilised plots was the cause.
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The reduced canopy coverage increased the proportion of pixels showing either lower level plant
structures or even patches of bare ground between plants (Figure 7). In order to remove this effect,
all future mean plot heights were generated from the 99th percentile, rather than the total mean,
such that the top height of the plants were reported, as is the case with the current ground-based
method. This method was chosen over standard mean or median as it was best at isolating the
top photosynthetic tissue of each plant, and avoiding occasional contaminating individual rogue or
anomalous plants, which is required in order to obtain true plant height as defined in Section 1.3.
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shown in both cases.

3. Results

3.1. Pilot Project Results

Results from the 2014 Pilot study are focused on a comparison of the different UAV-derived and
LiDAR-derived nDSMs with those from the standard ground-based method (Figure 8). All linear best
fits between the UAV and LiDAR models and the ground-based measures heights show intercepts
close to 0, but with slopes varying from close to 1.0 (LiDAR and UAV40M) to 0.73 (UAV9040A).
The LiDAR and lower altitude UAV-derived results also show the highest regression coefficients with
the ground-based data (R2 =0.97 for LiDAR and R2 = 0.99 for UAV40M). Root Mean Squared Error



Remote Sens. 2016, 8, 1031 12 of 24

(RMSE) statistics indicate both these methods are providing crop height retrievals to within around
3 cm of the ground-based measures. However, there are some biases shown, with all the UAV-derived
nDSMs underestimating height to some degree (by 24 mm to 158 mm), with the lowest altitude imagery
showing the lowest bias. LiDAR biases are by comparison only 4 mm.Remote Sens. 2016, 8, 1031 12 of 23 
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The results show both the LiDAR and UAV based SfM techniques are fully capable of recreating
accurate 3D models and subsequent crop heights of wheat crop trials in the field.

For the UAV results, lower altitudes produced significantly more accurate crop heights, due to the
higher image ground resolution achieved at the lower altitude. There was a clear advantage to using
“mild depth filtering” during processing in order to achieve greater crop height accuracy, likely due to
the reduction in “smoothing” of the model allowing for more of the small plant features of interest to
remain during the depth filtering step of model processing.

3.2. Main Study Results

3.2.1. “Bare Ground” DEM Selection

Due to its importance in producing the final nDSMs, analysis of two methods for producing
the bare ground DEMs was performed. nDSMs were produced using the same “buffer zone height”
approach used in the 2014 Pilot, and the alternative “post-harvest DEM” based on a bare ground DEM
derived from post-harvest imagery. The resulting maps of crop height were then compared to the
corresponding ground-based measures, with both sets of results showing R2 values of >0.93 (Figure 9).
However, the RMSE statistics indicate that use of the DEM based on the buffer zone heights produces
crop heights with reduced levels of error compared to that based on the post-harvest imagery. This is
likely due to any bias present in the “buffer zone” DEM is also present in the model and crop heights
being taken at the same time, therefore this bias is cancelled out, whereas in the case of the post-harvest
DEM, any bias present, including the potential impact of the post-harvest stubble will not be cancelled
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out when plant heights are extracted. All subsequent nDSMs in this study were generated using the
“buffer zone” DEM approach.Remote Sens. 2016, 8, 1031 13 of 23 
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Figure 9. Comparison of “buffer zone” (red) and “post-harvest” (black) DEM generated crop heights
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3.2.2. Accuracy Assessments

In addition to the accuracy assessment conducted in the Pilot Study during the crop senescent
stage, three further similar assessments were conducted in May, June and July of 2015 at different
periods during the crop growing cycle (Figure 10). For these accuracy assessments, the mean height of
the three replicates measured from the UAV models was compared to the rule measured mean heights.

The comparison between UAV-derived and ground-based crop heights shown in Figure 10
indicates consistently high levels of accuracy, most particularly in the June and July assessments.
May aerial measurements show a much more significant underestimation of height compared to July,
and June shows some very small overestimation bias (3 mm). The lower accuracy achieved in the
May assessment is thought to be caused by the earlier development phase of the varieties where
canopies were not fully complete, an influence discussed previously in Section 2.3. Comparison
between nitrogen treatments (Table 9) shows the N1 treatment generally has lower accuracy levels,
again likely due to the influence of reduced canopy development in these plots.

Table 9. Accuracy Assessment results of three different comparisons of rule measured and UAV
measured heights. The results are grouped by the four nitrogen treatments applied within the diversity
field experiment.

Model Treatment RMSE (m) BIAS (m) R2

May
N1 (0 kg·hectare−1) 0.094 −0.089 0.76 (n = 25)

N2 (100 kg·hectare−1) 0.099 −0.096 0.85 (n = 25)
N3 (200 kg·hectare−1) 0.063 −0.051 0.52 (n = 25)
N4 (350 kg·hectare−1) 0.026 −0.02 0.91 (n = 25)

June
N1 (0 kg·hectare−1) 0.028 −0.007 0.83 (n = 25)

N2 (100 kg·hectare−1) 0.015 0 0.97 (n = 25)
N3 (200 kg·hectare−1) 0.020 0.007 0.99 (n = 25)
N4 (350 kg·hectare−1) 0.024 0.013 0.97 (n = 25)

July
N1 (0 kg·hectare−1) 0.033 −0.026 0.89 (n = 25)

N2 (100 kg·hectare−1) 0.022 −0.018 0.98 (n = 25)
N3 (200 kg·hectare−1) 0.021 −0.009 0.98 (n = 25)
N4 (350 kg·hectare−1) 0.020 0.007 0.96 (n = 25)
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Figure 10. The 2015 accuracy assessments of UAV-derived mean crop heights made against standard
ground-based rule measures performed as per Section 2.2). Accuracy assessment covered the
four nitrogen treatments in: (a) May 2015 where the crops were still growing; and (b) June 2015;
and (c) July 2015 when the crops were post anthesis and no longer expected to grow. The error bars
represent the standard deviation of crop height between the three replicates from each cultivar and
treatment. The blue dashed line indicates a 1:1 slope.

The replicate standard deviation shown by the error bars show a small amount of variation
between replicates as would be expected in a field based experiment such as this, importantly this
variation is displayed both in the heights measured by the rule and by the UAV model. The June
assessment shows one plot has noticeably larger variation in the rule measured heights compared with
the UAV heights for the same plot.

3.2.3. Plant Height

A key objective of the Main Study was to demonstrate the capability to assess crop growth and
growth rates over the growing season.
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All processed models show consistent patterns with the rule measured heights except for one
error in plot 298, Maris Widgeon, in the 4 June 2016 nDSM. On examination this plot showed the
presence of noise in the model located above plot 298 resulting in larger than expected heights for this
plot. The sources of this noise is unknown and has not impacted on any other plots within this nDSM
or other nDSMs. This erroneous plot was omitted from the height and growth rate calculations from
this 4 June nDSM, using only data from the other two Maris Widgeon N1 plots.

Figure 11 shows the crop height measures obtained from imagery collected from March 2015
to July 2015, which indicate that the predominant growth in all varieties occurs from mid-April to
mid-June. After this point some varieties show a levelling off in crop height suggesting no further
growth occurs whilst other varieties and particularly crops grown in the N1 treatment show a decline
in height after mid-June.

Overall, there is relatively little variation between the heights of replicates (as depicted by the
error bars of Figure 11), similar to the levels seen in the accuracy assessments (Figure 10).
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Figure 11. Changes in average crop height of the wheat varieties at the four N treatments. Variation in
crop height between replicate plots is displayed by error bars. Crop varieties are referred to by their
code as set out in Table 2 and all data are the means of three replicate plots, except Maris Widgeon N1
on the 4 June 2015 which is the mean of two replicates due to plot 298 being omitted because of noise
in the model.
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3.2.4. Growth Rate

Once the change in crop height was calculated with confidence, crop growth rate was assessed
by dividing height change by the date interval to examine how growth rate changes between
nitrogen treatments.

Figure 12 presents the growth rate of the different crop varieties and nitrogen treatments. As with
crop height data shown in Figure 11, the replicate means and standard deviation of growth for each
replicate set is show. Results show a common bell shaped pattern in growth rate between mid-April
and mid-June, corresponding to the main period of crop height increase seen in Figure 11. This trend
is less apparent in the N1 treatments, which tend to show lower growth rates until June where there is
a spike in growth rates displayed by most varieties in the N1 treatments.
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Figure 12. Mean growth rate inferred from height increase of wheat varieties subjected to different
nitrogen fertiliser treatments. Growth rate is calculated from the data of Figure 12 and the time interval
between the dates of each normalised digital surface model. Crop varieties are referred to by their code
as set out in Table 2 and all data are the means of three replicate plots, except Maris Widgeon N1 on
the 4 June 2015 which is the mean of two replicates due to plot 298 being omitted because of noise in
the model.

All varieties and treatments show a drop into negative growth rates in mid-June. One possible
explanation is due to the ears of the plants bending over, sometimes referred to as necking, as the plant
matures. Another potential source of the negative growth rate is due to decreasing plant water content
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from around 80% when the plants are fully green to <20% at harvest. This decline in water will lead to
some level of cell shrinkage and subsequently decreasing plant height after mid-June. It is likely a mix
of these two reasons explain the negative growth rate displayed by the crops in mid-June.

3.2.5. Spatial Mapping

The current standard method of using 5 point based rule measures of crop height for each plot
offers very little in terms of measuring spatial variability, particularly within individual plots where
growing conditions may cause variations in height. The nDSMs produced from the UAV method in
this study not only offer measures of height but also visual maps of crop height variability on a field
scale (Figure 13), comparing plots side by side throughout crop development. In addition, due to the
very high resolution of the models (1cm), variability of crop heights within each plot can be assessed
as shown by Figure 14 which even shows areas where the crops have been unable to grow leaving a
hole within the plot. This is something unlikely to be noticed from ground based assessments of the
fields, particularly when crops are more developed.
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Figure 13. Normalised Digital Surface Models (nDSM) for three different wheat development stages
captured on the 14 April 2015, 4 June 2015 and 6 July 2015 respectively. Clearly visible in the
middle and right-hand figures are the 0 Kg·hectare−1 nitrogen treatment strips where crop height
has been noticeably stunted compared to surrounding plots. Coordinates are displayed in WGS 1984
Coordinate System.
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Figure 14. Side-by-side comparison of different cultivar plots in the N4 Treatment highlight the
within-plot variability mapping achieved through the UAV based SfM technique. A hole (red circle) in
the one of the plots is hard to make out in the orthomosaic (a) whilst being clearly visible in the nDSM
(b). Data captured on 17 June 2015 and coordinates are displayed in WGS 1984 Coordinate System.
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3.3. Nitrogen Application and Cultivar Responses

A key focus of this study was to produce a practical high throughput crop measurement system
that provides valuable data to crop researchers for use in on-going crop development experiments.
The experimental field used in this study was assessing how different wheat varieties were influenced
by the quantity of nitrogen (N) fertiliser applied through the season.

The results in Figure 15 show the pattern of crop height increase through the season for each
cultivar and the influence of N fertilization. Crop height increases rapidly at the beginning of
April in a recognised wheat crop growth phase known as the start of stem elongation (GS30–GS61).
The start and rate of stem elongation is earlier and at a greater rate, respectively at the higher N inputs.
Maximal height is achieved in mid-June irrespective of the N-treatment but is noticeably lower at
the zero N treatment (N1). Individual varieties are characterised by their mature height with Maris
Widgeon being notable as a taller cultivar, reflecting the origin of this cultivar as being bred prior to the
incorporation of dwarfing alleles. This tall cultivar is very susceptible to wind and rain and may easily
lodge (fall over), reflected in the variable data obtained for this cultivar and the apparent decrease
seen in some cases during the June period. Plots recover from mild lodging but in severe cases the
flattening is irreversible.
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Figure 15. Comparison of crop height over the season grouped by nitrogen treatment. Vertical lines in
each figure represent the date and quantity of nitrogen applied to plots for each treatment. All data
represent the means of three replicates.

4. Discussion

This study has provided a quantifiable assessment of Unmanned Aerial Vehicle (UAV) based
Structure from Motion (SfM) Photogrammetry for deriving accurate measurements of crop height
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and crop growth rate, in this case to support field phenotyping efforts of 25 wheat varieties grown
under four different nitrogen fertiliser treatments. The method presented is relatively straightforward,
easily repeatable, and time and cost efficient in comparison to the terrestrial LiDAR and currently used
rule method also investigated in this study.

In terms of accuracy, the data produced provide good agreement with the currently
applied procedure of manual measurement with a rule (R2 = ≥0.93, Root Mean Squared Error
(RMSE) = ≤0.077 m) but this approach is more consistent and spatially extensive, reducing user
error associated with the ruler measurement [35,44]. Assessment of model derived crop heights from
a highly accurate (5 mm) Terrestrial LiDAR (R2 = 0.97, RMSE = 0.027 m) and the best UAV model
(R2 = 0.99, RMSE = 0.03 m) shows both system’s ability to produce highly accurate results; however
extremely high costs and poor time efficiency of the LiDAR due to the high number of individual scans
required, severely lower the suitability of LiDAR for this application. The UAV method was found
to often underestimate crop heights, as discussed by previous studies [35,37], but overall the results
showed an improvement in accuracy compared to similar studies [31,32,45], even when the method
was applied over a significantly larger number of trial plots (300).

Collection of crop heights over the growing season has proven the ability of this method to collect
valuable phenotypic data at development stages between GS30 and GS61 (Zadoks Scale), and is in
agreement with literature [31,46]. A number of field based variables were identified from the study as
key influencers on final results; namely canopy structure and density were found to impact on model
height accuracy both in early growth stages and in crops grown under nutrient deficient conditions,
as also discussed by [36]. The repetition of height measurements from the UAV method allowed crop
growth rates to be calculated and assessed. The main results of this study were in agreement with the
literature which defines the main period of UK wheat crop growth in terms of height gain between
early-April and mid-June [14].

As a high-throughput field phenotyping system, this study has demonstrated that UAV SfM is
capable of collecting quality, high volume field based phenotypic data. Comparison to the LiDAR
shows the UAV method is able to achieve the same high level of accuracy whilst bettering the LiDAR
in terms of time and cost efficiency. Alternative high-throughput platforms that have been developed
and investigated further show the value of a system for rapid monitoring of canopy dynamics;
such as the Field Scanalyzer [47] as well as movable tractor based systems [48,49]. Advantages of
these systems over the UAV focus strongly on the lack of weight restrictions, allowing for multiple
sensors to be used to collect very high resolution data from multiple sensors simultaneously. However,
these systems are limited in their application over larger areas, or across different field locations,
something the UAV is better suited to. The tractor based system proposed by Comar et al. [49],
was able to sample ~100 plots per hour, which equates to 1000 plots within three days assuming 4–5 h
of measuring per day. The UAV method was able to cover 300 plots within a single flight of maximum
15 min, indicating coverage of 1000 plots could be achieved in less than an hour. Clearly there is a
trade-off between the systems discussed here as well as other alternatives. The choice of which system
is most suitable will be dependent on the data required, the time frame available and the area of
coverage needed.

Whilst the method developed in this study has been shown to produce quality results over the
temporal scale of a growing season, there is still room for improvement in the understanding of SfM
photogrammetry dependencies. For example, in relation to the camera viewing angle, James and
Robson [29] found the inclusion of oblique imagery into a NADIR image data set can further improve
3D model accuracy. In this study, software settings were also found to be influential on accuracy of
model outputs, therefore in future these should be carefully selected and accurately reported in order
to facilitate further advances in UAV based SfM methods and in the accuracy of results. The use of
NIR imagery instead of RGB is also an area of interest, as the increased contrast between plant and soil
offered by NIR imagery may improve model processing; a potential solution to the negative influence
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of decreased canopy structure on model derived heights as shown by the May accuracy assessment
results (Figure 10) and also discussed in the literature [36].

5. Conclusions

The work presented in this paper develops a rapid and accurate method for collecting
in-field measurements of crop height using Unmanned Aerial Vehicle (UAV) based remote sensing.
The UAV method developed utilises very high resolution UAV imagery and a Structure from Motion
photogrammetry workflow to produce 3D topographic reconstructions of the crop trial field. Accuracy
assessments of the UAV derived crop heights showed the method was able to produce measures
of height comparable in accuracy to those measured by the existing manual, rule based method
(R2 = ≥0.92, Root Mean Squared Error (RMSE) = ≤0.07m). The very high spatial resolution of the UAV
derived data allows for assessment of spatial variability in crop height at both the field and plot scale.
UAV flight campaigns throughout the season allowed for the monitoring of changes in crop height as
well as the calculation of growth rate.

Future work will look to increase the temporal resolution of the methods in order to provide a more
complete picture of this phenotypic trait throughout the development stages of the different cultivars.
It will also look to develop methods using other imaging equipment such as multi-spectral [50–52],
hyper-spectral [35] and thermal cameras [53,54] to provide information beyond just plant height and
growth rate. This should help to open up the opportunity to collect a more complete set of crop
phenotype metrics at a spatial and temporal resolution usually unavailable to plant scientists, offering
greater insights into varieties behaviours and adaptability under different growing conditions.

Overall, UAV SfM has the potential to become a valuable tool for rapid high-throughput in-field
phenotyping of crop heights at very high resolution and accuracy for use in crop trials or more general
agricultural applications.
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3.3 Published article additions. 

In addition to the published article, additional information with regards specific 

aspects of the developed method and results are provided in the following sections. 

3.3.1 Lens replacement and calibration parameters. 

As stated on page 9 of the published article, replacement of the UAV camera lens 

occurred due to damage to the original. This damage and replacement occurred between 

the 21st April 2015 and 21st May 2015 flights. As part of the Agisoft Photoscan SfM 

workflow, geometric lens calibration corrections were performed on each flight dataset. 

Details of the parameters used to perform these corrections are detailed in Table 3.1. 

Details of the different correction parameters determined and applied by Agisoft 

Photoscan when applying geometric lens distortion corrections to imagery. (Agisoft, 

2016). 

Table 3.1. Details of the different correction parameters determined and applied by Agisoft 

Photoscan when applying geometric lens distortion corrections to imagery. 

Agisoft Parameter Description 

fx, fy Focal length in the x and y dimensions 

measured in pixels. 

cx, cy Principal point coordinates i.e. the 

interception of lens optical axis and 

sensor plane 

Skew Skew transformation coefficient 

k1, k2, k3, k4 Radial distortion coefficients 

p1, p2, p3, p4 Tangential distortion coefficients 
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3.3.2 Model accuracy and RMSE calculation 

Assessments of the predictive capabilities of the derived models presented in the 

published article are provided through the calculation of root mean square error (RMSE). 

For this work, RMSE were calculated on all available data points, for example 10 points 

for the preliminary study, and 300 for the main study in June and July assessments. As 

the two-crop height (ruler and UAV) datasets were independent of each other, i.e. one 

was not used to calibrate the other, it was deemed appropriate to calculate RMSE on all 

available data points.  

3.3.3 LiDAR vs. UAV heights. 

Within the paper, focus was on recreating ruler measured heights, and as such 

accuracy assessments were compared to the ruler. Figure 3.1 presents accuracy 

assessments of the UAV derived mean plot heights compared to LiDAR derived mean 

heights for the 10 plots used in the 2014 pilot study. Results indicate comparable mean 

plot height measurements from the two techniques, R2 ≥ 0.93. Interestingly comparison 

of these two methods shows less negative impact on height errors from the higher 

altitude (90A) and combined UAV models. This trend is likely to be a result of the 

spatial nature of both methods in comparison to the ruler measurements. As discussed 

in the paper, the 90A and combined models suffer from smoothing or filtering of small 

plant features as a result of lower spatial resolutions, which will include the specific 

features measured by the ruler method. By contrast the LiDAR and UAV methods, both 

include and subsequently average out all layers or components of the canopy into a 
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single result, increasing the comparability seen in the results. The UAV heights still 

indicate underestimation compared to the LiDAR, as also seen when compared to the 

ruler measurements. This is likely a result of the superior resolution of the LiDAR 

versus the UAV, achieving 0.05cm and 0.5cm resolutions respectively.  

 

Figure 3.1. Correlation plots comparing LiDAR and UAV derived crop heights for 10 wheat plots 

measured in the 2014 pilot study. These results are initially presented as Figure 8 of the published 

article in this chapter (Holman et al. 2016). Solid black line indicates the 1:1 line. 
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3.3.4 Digital Elevation Models 

For the published article, two methods for creating bare ground DEMs were 

presented and tested. For the buffer zone DEM, a more detailed description of the 

method used for generating these DEMs is provided. Buffer zone DEMs were 

generated for each UAV flight date to remove underlying field topography from the 

generated models and isolate pure crop heights. To generate the buffer zone DEMs, 

first single points were placed manually at the corner of each plot and within the buffer 

zones (Figure 3.2). This step was performed manually and repeated for each date to 

ensure the points were positioned on true bare ground rather than crops. From these 

points, the Z (height) values from the DSM were interpolated spatially using the 

Triangulated Irregular Network (TIN) tool in ArcMap. The resulting TIN was then 

rasterised at the same spatial resolution as the original DSM, before subtracting it from 

the DSM to generate the nDSM.  
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Figure 3.2. Example of point placement used to extract bare ground heights for generation of bare 

ground Digital Elevation Models. Red points indicate typical location of points used, though 

placement was manually performed for each separate DSM generated. 
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3.3.5 Normalising Digital Surface Models 

The work presented within this section builds on the findings of the published 

article, presenting further analysis of SfM software settings and processing workflows, 

with a focus on understanding how they can be altered to optimise processing efficiency. 

Typically, previous studies, including the work in this Chapter, have utilised an 

‘as high as possible’ approach when selecting processing settings in SfM software. This 

is done in an attempt to ensure that model resolutions and quality is maximised and 

hopefully ensures the best reconstruction and accuracy are obtained. However, this can 

lead to significantly longer processing times for only relatively minor and perhaps 

insignificant gains in model accuracy. Results from previous studies have shown that 

ultra-high and medium quality require vastly different processing times (ultra-high = 64 

hours vs. medium = 9 hours), and produce differing model resolutions of 2.5cm and 10cm 

for ultra-high and medium quality respectively (Schirrmann et al., 2016a; Ziliani et al., 

2018). Comparison of the UAV derived maize crop heights to LiDAR heights from these 

two models indicated only slight improvements in accuracy were obtained in R2 (ultra-

high = 0.99 vs. medium = 0.98), and RMSE (ultra-high = 0.0199m vs. medium = 0.0241m). 

These results and processing times were obtained using high powered computing 

equipment and Agisoft Photoscan and highlight how the ‘as high as possible’ approach 

does not necessarily provide the best option for height measurements. On the other 

hand, for some applications the loss of resolution may be significant; for example, where 

fine 3D detail within canopies is required or desired, the loss of resolution from lower 

quality models will be detrimental to this.  
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In addition to assessing processing settings, it was theorised that the combination 

of models processed at different qualities, during normalisation of DSMs, may offer 

improved results. Specifically, can a high-quality (HQ) DEM be used to normalise a 

medium quality (MQ) DSM and achieve any improvement in accuracy of derived crop 

heights. The theory underlying this being that the reduced error in the DEM will 

improve accuracies; whilst the shorter processing times of the multiple DSMs will 

improve overall throughput of the SfM process. Therefore, further investigation was 

performed to better understand the impact of model processing quality on accuracy and 

turn-around time of crop height retrieval in wheat experiments from UAV imagery.  

 Methods 

UAV imagery of the same experimental field at Rothamsted Research, was 

collected for the 2017 season using the same procedure as outlined in the published 

article in Section 3.2. A bare ground DEM was produced from an early season flight (11th 

November 2016), shortly after the experiment was planted. A single DSM was produced 

from a flight carried out on 4th July 2017, the closest date to when manual measurements 

of height were collected. For both the DEM and DSM, two versions were produced, of 

medium and high-quality processing. Full details of processing settings and model 

parameters are outlined in Table 3.2.  
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Table 3.2. Agisoft Photoscan model processing parameters for bare ground and crop 

DSMs. 

Model GSD 

(m) 

No. of 

photos 

Alignment 

parameters 

Dense 

point 

Cloud 

parameters 

DEM 

parameters 

Orthomosaic 

Parameters 

DEM 

Resolution 

(m) 

High 

Quality 

(HQ) 

0.01 573 Accuracy = 

Highest 

 

High - 

Disabled 

Dense 

cloud 

Blending - 

Disabled 

0.02 

Medium 

Quality 

(MQ) 

0.01 573 Accuracy = 

Highest 

Medium - 

Disabled 

Dense 

cloud 

Blending - 

Disabled 

0.04 

 

 Results and Discussion 

3.3.7.1 Processing Times 

Total processing times for the medium and high-quality models are detailed in 

Table 3.3 below. Results show a marked difference in processing times between the MQ 

and HQ settings, despite the settings being different by only one step in quality. The HQ 

models takes an extra 11 hours to produce, results which fit with those found by other 

studies (Ziliani et al., 2018). A seven-hour processing time for the MQ model, indicates 

that in theory results could be obtained on the same day as data collection. 
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Table 3.3. Agisoft Photoscan processing times for each processing step involved in generating 

DSMs. Total time is also provided. 

Model Alignment 

time 

(hh:mm:ss) 

Dense point 

Cloud time 

(hh:mm:ss) 

DEM time 

(hh:mm:ss) 

Orthomosaic 

time 

(hh:mm:ss) 

Total Time 

(hh:mm:ss) 

High 

Quality 

(HQ) 

01:24:00 15:34:00 00:02:40 00:53:51 17:54:34 

Medium 

Quality 

(MQ) 

01:24:00 04:40:00 00:02:59 00:53:51 07:00:50 

 

3.3.7.2 Accuracy Assessments 

Comparison of UAV and ruler derived crop heights was used to assess accuracy 

of the UAV models (Figure 3.3). Results show the model generated from high quality 

DEM and DSM (HQ+HQ) produces the best results in terms of R2, RMSE and bias. As 

expected, the MQ+MQ model produces good accuracy but lower than that achieved by 

the HQ+HQ model. This trend fits with the results achieved by Ziliani et al. (2018), who 

also found that all models gave good accuracy, though increasing processing quality did 

improve accuracy. The new combined model of high-quality DEM and medium quality 

DSM, showed good results outperforming the MQ model, but still below the HQ model. 

These results suggest that some of the drop-in accuracy of the MQ model is related to 

errors associated with either resolution or processing, which can be reduced with the 

inclusion of the HQ bare ground DEM. It is known that reducing the model quality level 

leads to an increase in the filtering applied by the SfM software, which in turn lowers 

the spatial resolutions. As discussed in Chapter 2.3.2, reduced spatial resolutions, have 

been identified as a source of increased error in SfM derived height models (Sadeghi-

Tehran et al., 2017). The use of the medium quality CSM in the combined model results, 
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will still suffer from loss of fine-scale crop structures, ultimately resulting in an increase 

in underestimation of mean plot height as seen in Figure 3.3.  

  The results highlight the impact of processing settings on both processing time, 

model accuracy, and model resolution. These results and trends fit with those of other 

studies, though processing times were shorter for this study compared to those of Ziliani 

et al., (2018). This is likely to be a result of smaller spatial area covered and the smaller 

number of images. Use of higher quality bare ground DEMs for normalisation of lower 

quality DSMs produced gains in accuracy over the use of lower quality DEMs and DSMs. 

This mixed model approach also produces positive improvements on processing times, 

an advantage where results in reduced return time are important. Clearly selection of 

processing settings is important, not only for accuracy, but resolution and processing 

Figure 3.3. Comparisons of accuracy assessments for UAV and ruler derived wheat crop 

heights from the three different normalised Digital Surface Models (nDSMs). From right to 

left the subplots are produced from medium quality (MQ) Digital Elevation Model (DEM) 

and Digital Surface Model (DSM); medium-quality DSM and high-quality (HQ) DEM; and 

high-quality models DEM and DSM.  
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speeds as well. Future studies should look to include more detail on the processing 

parameters, including software version and settings, hardware used and imagery 

details, to improve understanding, development, and optimisation of SfM processing 

workflows. 

3.4 Summary and Conclusion 

 This chapter has presented work which developed methods for high throughput 

measurement of wheat crop height, using Structure from Motion photogrammetric 

processing workflows and RGB imagery collected from a rotary wing UAV. A clear and 

complete workflow has been presented and tested against the traditional standard used 

for measuring crop heights of field-based wheat trials, a meter rule. Results of accuracy 

assessments showed the UAV photogrammetry reconstructions of wheat plots heights 

to be comparable to ruler measurements (R2 ≥ 0.92), though the UAV did present 

consistent underestimation errors of heights in the main study (RMSE ≤ 0.07m and Bias 

≤ -0.064).  

Comparison of these results to the initial studies of (Bendig et al., 2013a, 2013b; 

Bendig, 2015) and (Aasen et al., 2015a) shows improvements in both consistency of 

height measurements (R2 ≥ 0.93 compared to 0.71 ≥ R2 ≤ 0.22). The trend for the UAV 

results to underestimate true plant heights remained, though it was significantly 

reduced by the method improvements developed by the work in this chapter with biases 

≤ -0.064 compared to -0.19 achieved by (Aasen et al., 2015a).  These results demonstrate 

successful development and improvement of the SfM method to reduce the sources of 

error and their impacts as identified by Bendig et al., (2015, 2013). Even so, the negative 
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biases and underestimation of height remained within the results of this study. Further 

comparison of results to other studies, post publication of this chapter, show comparable 

accuracies over large scale trials and a range of crop types. Madec et al., (2017) 

investigated both LiDAR and UAV methods applied to measuring 1137 field-based 

wheat trial plots. UAV accuracies achieved over this greater number of plots were 

comparable to the results in this chapter (R2: 0.9 vs 0.92, and RMSE: 0.08m vs. 0.07m). 

Another study by Malambo et al., (2018) provided greater temporal accuracy tests of 

UAV derived maize and sorghum heights against a LiDAR system. Although not 

assessing the exact same crop, using the same technique, the authors were able to achieve 

similar R2 values (≥0.88) and RMSE (≤0.02m) and importantly these accuracies were 

maintained over 6 separate measurements and crop growth stages. Ziliani et al., (2018) 

also provided accuracy assessments of UAV SfM modelled heights for maize crops over 

a significantly larger area, totalling 50 hectares. Assessment of accuracies against a 

terrestrial LiDAR system found similar levels of accuracy obtained by the UAV SfM 

method as obtained within this chapter and other studies. Of interest when comparing 

results from all these studies is that despite different target crops, results are consistent 

including the common underestimation of crop heights from the UAV SfM method. The 

question still remains, as to whether this is an error associated with the UAV results, or 

with the source of validation data used for accuracy assessments. Aasen et al., (2015) 

highlighted the difficulty of obtaining true accuracy assessments of new methods such 

as SfM photogrammetry, when using a ruler as this method itself is prone to various 

user errors and subjectivities between measurements. In addition, the lack of spatial 

measurements, limits how well the ruler measurements can represent all spatial 
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variability within a trial plot. Geipel et al., (2014) concluded that results should be 

validated against ‘perfectly co-registered’ high resolution LiDAR data in order to 

ascertain true tests of accuracy for the UAV method. Additional work in this chapter 

compared UAV and LiDAR measured heights and highlighted the accuracy achieved 

from UAVs compared to a high spatial resolution and accuracy terrestrial LiDAR 

system. However, spatial and temporal coverage of plots with the LiDAR used in this 

chapter was limited by the laborious and slow data collection workflows required for 

LiDAR. The study by Madec et al., (2017), using both a vehicle-based LiDAR and a UAV 

to measure a large volume of experimental plots, found the trend to underestimate of 

crop heights persisted even when using highly accurate LiDAR measurements for 

validation data. The consistent negative biases displayed by the SfM results in all studies, 

has been hypothesised to be a result of the spatial resolution of UAV imagery limiting 

the SfM software’s ability to reconstruct fine canopy structures (e.g. grain heads) thus 

reducing the apparent canopy height within the final 3D models (Bareth et al., 2016; 

Grenzdörffer, 2014; Voort, 2016). Further work presented in this chapter investigated the 

impact of spatial resolution, defined by model quality, in combination with normalising 

of DEMs on final height accuracies. Increasing of model quality, and in turn spatial 

resolution, did produce very slight improvements in both R2 and RMSE, indicating that 

increasing resolution may reduce model error. However, Brocks et al., (2016) found 

increasing spatial resolutions too much, introduced unacceptable levels of noise into 

models, negating any improvements in error.  
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Clearly, further work is needed to understand the sources and reasons for the 

underestimation, and whether these trends can be improved further. Despite this 

consistent error presented by SfM results, it continues to be widely adopted and applied 

to phenotyping for predictions of biomass, yield and stress tolerance in field-based trials 

(Araus and Kefauver, 2018; Shakoor et al., 2017; Yang et al., 2017). The superior 

throughput and spatial coverage achieved using SfM and UAVs makes the slight loss in 

accuracy an acceptable trade-off for the application of phenotyping crop height.  

Overall the work presented in this chapter has successfully developed and 

applied the use of UAVs and Structure from Motion photogrammetry image processing 

to generate accurate measures of crop heights in the field. The superior throughput 

obtained using UAVs over ground-based alternatives (e.g. ruler or LiDAR) allows for 

the monitoring of crop heights in the field at high spatial and temporal resolutions 

previously unachievable with traditional standard practices. This offers new insights 

into how crop height changes over time and space, for example the calculation of growth 

rates as presented in this chapter. However, as discussed, this method is still subject to 

errors in height, specifically underestimation. Clearly this consistent trend, found in 

several studies,  needs further investigation before UAVs and SfM can be classed as the 

new standard method for obtaining crop heights. Other opportunities for future work 

should look to include additional equipment and/or methods to facilitate measurement 

of multiple phenotypes simultaneously, e.g. multi-spectral and thermal cameras. This 

will allow for better analysis of the complex and dynamic interaction of multiple 

phenotypic traits in response to genes and growing environment.   
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Chapter 4:  Radiometric Calibration of 

Commercial ‘Off the Shelf’ Cameras for 

UAV-based High-Resolution Crop 

Phenotyping of Reflectance and NDVI 

4.1 Introduction 

The spectral reflectance of plant canopies is influenced by the optical properties 

of the plant and the plant’s structural properties. These properties produce a unique 

spectral signature, measurements of which have been shown useful for relating to 

physiological traits, as highlighted in Chapter 2. Methods for measuring the spectral 

reflectance of canopies are widely used for field-based phenotyping; however, many 

conventional techniques suffer from low throughput and poor spatial information (e.g. 

are point-based or offer low spatial resolutions). Therefore, much of the dynamic 

temporal and spatial expressions of target traits in response to environmental conditions 

are lost. Unmanned Aerial Vehicles (UAVs) and multispectral remote sensing imagers 

have the potential to overcome the limitations associated with ground-based methods. 

However, many commercial imagers suffer from lack of spatial resolution or high costs, 

or a combination of the two. Adaptation of Commercial ‘Off the Shelf’ (COTS) cameras 

are an alternative low-cost option, which offer superior spatial resolutions and ease of 

use. However, lack of complete and validated radiometric calibration workflows, as well 

as derived reflectance measures, restricts their application for high throughput UAV 

phenotyping. 
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This Chapter presents the development and assessment of a custom dual camera 

system for measuring four band multi-spectral reflectance imagery from Unmanned 

Aerial Vehicles (UAV). The equipment and methods are developed to improve the 

spatial and temporal resolution of measured canopy reflectance, with to the aim of 

obtaining sufficient spatial resolutions to isolate the key components of canopy 

reflectance, canopy size and canopy quality. The work utilises two Commercial ‘Off the 

Shelf’ (COTS) digital cameras, one modified to collect imagery in near infrared (NIR); 

while the second, unmodified to collect multi-spectral, visible and near-infrared imagery 

of wheat canopies. Custom developed calibration workflows are applied to convert the 

pixel values from these two data sources to measures of reflectance. The work 

undertaken for this chapter culminated in a published research article in the journal 

Remote Sensing, for which primary authorship, method development, data processing 

and analysis was performed by the thesis author. M. Castle assisted in data collection 

and processing; A. Riche assisted in method development, data collection and 

manuscript editing; M. Wooster and M. Hawkesford assisted in method development 

and editing of manuscript. The article is included within this chapter following the 

requirements of King’s College London PhD thesis rules. 

In addition to the published article, Section 4.3 provides more detail on the 

derived spectral responses of the two COTS cameras used in this chapter. This includes 

details of the methodology used and results obtained. 

4.2 Published Article  
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Abstract: Vegetation indices, such as the Normalised Difference Vegetation Index (NDVI), are common
metrics used for measuring traits of interest in crop phenotyping. However, traditional measurements
of these indices are often influenced by multiple confounding factors such as canopy cover and
reflectance of underlying soil, visible in canopy gaps. Digital cameras mounted to Unmanned Aerial
Vehicles offer the spatial resolution to investigate these confounding factors, however incomplete
methods for radiometric calibration into reflectance units limits how the data can be applied to
phenotyping. In this study, we assess the applicability of very high spatial resolution (1 cm) UAV-based
imagery taken with commercial off the shelf (COTS) digital cameras for both deriving calibrated
reflectance imagery, and isolating vegetation canopy reflectance from that of the underlying soil. We
present new methods for successfully normalising COTS camera imagery for exposure and solar
irradiance effects, generating multispectral (RGB-NIR) orthomosaics of our target field-based wheat
crop trial. Validation against measurements from a ground spectrometer showed good results for
reflectance (R2

≥ 0.6) and NDVI (R2
≥ 0.88). Application of imagery collected through the growing

season and masked using the Excess Green Red index was used to assess the impact of canopy cover
on NDVI measurements. Results showed the impact of canopy cover artificially reducing plot NDVI
values in the early season, where canopy development is low.

Keywords: Unmanned Aerial Vehicle; reflectance; radiometric calibration; NDVI; digital cameras;
canopy reflectance

1. Introduction

In crop phenotyping, vegetation indices (e.g., NDVI) derived from canopy reflectance are
commonly used to assess certain physiological traits of interest [1], including (i) plant vigour [2,3],
(ii) plant biomass [4,5], (iii) plant nitrogen status [6], (iv) plant Leaf Area Index (LAI) [7,8] and (v) final
crop yield [9]. However, these indices are typically influenced by both the target vegetation condition
and variables such as background soil properties and canopy cover/density [10]. The combined
influence of each variable quite often remains unacknowledged when associating vegetation indices
(VIs) to traits of interest—a problem when there are multiple situations (e.g., low canopy cover and
high vegetation vigour versus high canopy cover and low vegetation vigour) that may equate to similar
VI measures. Such situations can provide significant uncertainty, and even false indications of plant
status [11]. Traditional methods of measuring canopy spectral reflectance (e.g., ground spectrometers
and/or satellite based remote sensing) offer insufficient spatial resolution to investigate and dissect
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the influences of the many variables involved in controlling VI measures. Unmanned Aerial Vehicle
(UAV) based remote sensing systems may, however, offer this capability, and are becoming a prominent
method for high throughput phenotyping of field-based crop trials, largely thanks to their very high
spatial resolution imagery [12].

In combination with modified digital cameras or commercially available multispectral imagers,
low-cost UAVs are increasingly being used for high temporal resolution crop condition monitoring and
field phenotyping. More recently, modified single and dual ‘commercial off the shelf’ (COTS) digital
camera systems are being used for collection of multispectral (RGB-NIR) imagery at spatial resolutions
superior to those achieved by commercial cameras such as the Parrot Sequoia [13]. However, captured
imagery is still subject to distortions from camera (exposure, vignetting, file format and spectral
sensitivity), and environmental factors (predominantly solar spectral irradiance) [14–23], weakening
the capacity to extract accurate quantitative information [15,24]. Whilst calibration methods for the
bulk of these factors have been investigated, shortcomings remain in relation to long-term consistency,
particularly with respect to variable solar irradiance. Firstly, obtaining temporally relevant measures of
irradiance for individual UAV images is a challenge. Berra et al. [25] used ground-based artificial targets
of known reflectance, along with the empirical line method, to convert camera measures to reflectance
units. However, inconsistent capturing of targets within individual images limited calibration to final
orthomosaics. Therefore, variations in irradiance during the flight were not corrected for, increasing
errors in the derived reflectance datasets [26]. Furthermore, the temporal stability of reflectance of such
artificial targets left out in the field can vary by up to 16% over a season [27]. An alternative is to use a
supplementary device measuring irradiance concurrently with COTS camera data collection, providing
the information to convert individual images into reflectance units. The Parrot Sequoia employs this
method, utilising its own downwelling light sensor operating at the same spectral bands as the imager
itself. The second shortcoming identified relates to the fixing of exposure settings (aperture, shutter
speed and ISO) to remove influence of camera exposure settings on the amount of light reaching the
sensor, or the sensitivity of the sensor to light. This “fixed settings” approach increases risk of under or
over exposure of images—which equates to lost data [28]. Linear relationships between image Digital
Number (DN) and varying ISO, shutter speed and aperture have been previously demonstrated [29],
indicating post-capture normalising of images of varying exposure can be achieved. As far as we can
tell, this feature has not been utilised for this purpose before.

Given the above, the aim of the current study is to calibrate individual wavebands of dual COTS
cameras to reflectance, with a focus to include individual image irradiance corrections from a separate
irradiance sensor and allowance for non-fixing of camera exposure. Then, within a field phenotyping
setting, using a low-cost UAV utilise the very high-resolution reflectance imagery to temporally analyse
the influence of canopy structure and soil reflectance on derived vegetation indices, specifically NDVI.
Within this framework, specific objectives are to:

1. Develop a method for full radiometric calibration of COTS camera imagery, with new methods
for exposure normalisation and individual image incoming solar irradiance adjustment.

2. Quantitatively assess the influence of the radiometric calibration steps and the final quality of the
derived reflectance and NDVI datasets.

3. Utilise the very high-resolution maps derived from the UAV imagery to analyse the influence of
canopy cover on NDVI trends for a field-based wheat crop trial.

2. Materials and Methods

2.1. Field Site

All data were collected at the experimental farm operated by Rothamsted Research, UK
(51◦48′34.56”N, 0◦21′22.68”W). We focused on the Defra-funded Wheat Genetic Improvement Network
(WGIN) Diversity Field Experiment [24], whose aim is to test the influence of applying different
nitrogen fertiliser treatments to different wheat cultivars. A total of 30 different cultivars were grown
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at 4 different nitrogen application rates, with three replicates making a total of 360 plots. (Table 1) [25].
Each plot consisted of a 9 m × 3 m non-destructive plot and a 2.5 m × 3 m plot reserved for destructive
sampling. This study focuses on the non-destructive part only.

Table 1. Details of the four nitrogen treatments applied to the diversity field experiment for 2017.

Treatment Code Total Nitrogen
Application (kg N ha−1)

Application Date Nitrogen Applied
(kg n ha−1)

N1 0 - 0
- 0
- 0

N2 100 15/03/2017 50
05/04/2017 50
09/05/2017 0

N3 200 15/03/2017 50
05/04/2017 100
09/05/2017 50

N4 350 15/03/2017 50
05/04/2017 250
09/05/2017 50

2.2. UAV Imagery

A DJI S900 UAV [30] fitted with a DJI flight controller was flown on a pre-determined flight plan
at 45 m altitude over the field site nine times between 7 March 2017 and 4 July 2017. The flight plan
was designed to ensure 80% overlap between concurrent images was obtained. Two Sony (Tokyo,
Japan) α5100 mirrorless digital cameras [31] mounted on the UAV were used for the image collection.
These cameras contain 24.3 mega pixel complementary metal-oxide semiconductor (CMOS) sensors,
and both were fitted with 20 mm F2.8 Sony prime lenses. One camera was left as standard to record
RGB imagery, and one had had its internal NIR-blocking filter replaced with an 830 nm long pass filter
to block visible light and enable recording of NIR waveband imagery. The 830 nm filter was selected
to ensure minimal capturing of visible light in the imagery, as seen with the 660 nm filter used by
Berra et al. [25,32].

All images were captured at 1-sec intervals and in Raw format, with focus set to 45 m to reflect the
UAV flying height. Aperture and ISO were left on automatic, whilst shutter speed was fixed to 1/500sec
to ensure minimisation of motion blur. The UAV and cameras were flown over the field site at a time
relatively close to local solar noon, with actual recording times varying from 10:11 to 13.25. Twelve
Ground Control Points, whose positions were measured with a Trimble Geo 7 DGPS [33], were used
for georeferencing final orthomosaics. To provide measures of total incoming solar irradiance, a Tec5
HandySpec Field spectrometer (Oberursel, Germany) [34] fitted with a cosine corrected downwelling
optic was deployed at a fixed location next to the field and set to measure at 1-second intervals. Spectral
measurements were collected at 10 nm spectral resolution across the wavelength range 360–1000 nm.

2.3. Validation Data

Mean plot canopy reflectance, measured with the Tec5 HandySpec Field spectrometer, was used
for validation of UAV derived canopy reflectance measures. To collect the spectrometer measurements,
a single scan of each plot’s canopy was collected with the spectrometer optic held approximately
1 m above the plot; the standard procedure employed by Rothamsted Research. Each scan produced
one spectral reflectance measure for the plot at 10 nm spectral resolution across the wavelength
range 360–1000 nm. This procedure was repeated for all 360 plots on three separate dates during
the growing season between 19 April and 4 July 2017. The Tec5 HandySpec adjusts for changes in
solar illumination between measurements using a downwelling optic fitted with a cosine diffuser;
reflectance is calculated using proprietary software. Before comparing to UAV results, the Tec5 results
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were convolved to the same spectral wavebands as the cameras. These ground-based measurements
were not always collected on the same days as UAV flights due to logistical constraints, but were within
3 days. Additional validation data was obtained by flying a Parrot Sequoia multispectral imager [13]
simultaneously with the dual camera system for a single date (21 June 2017). The Sequoia was set
to capture images every second and the Sequoia’s downwelling sunshine sensor was mounted atop
the UAV for collection of irradiance measurements. The Sequoia images were processed using Pix4D
(Lausanne, Switzerland) (Version 4.3.1) [35] using standard recommended settings, downwelling
light sensor data and manufacturer derived calibrations, producing Green, Red, and NIR reflectance
orthomosaics at a ground sampling distance (GSD) of 5 cm.

Due to the differences between COTS camera and Parrot Sequoia spectral responses (Table 2),
direct comparison between the cameras was not possible. Therefore, assessment of accuracy of the
individual UAV-based imaging systems was conducted by comparing both against the Tec5.

Table 2. Spectral sensitivities for the Parrot Sequoia’s four spectral bands.

Camera Channel Wavelength Range (nm)

Green 530–570
Red 640–680

Red Edge 730–740
NIR 770–810

2.4. Post-Processing of Captured Imagery

The processing of the dual-camera imagery followed the workflow outlined in Figure 1. Specific
details on the main correction steps, including the novel exposure corrections are provided.
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Figure 1. Flow chart of key processing steps used to convert raw images to reflectance images. The blue
circles indicate inputs, green squares indicate processing steps and yellow squares derived products.

2.4.1. Relative Spectral Response

Relative Spectral Responses (RSR), Figure 2, of both cameras were determined using a double
monochromator fitted with an integrating sphere, using the method described by Berra et al. [32]. The
unmodified RGB camera shows greatest sensitivity in the green channel, as expected from a Bayer
matrix colour filter array [32]. For the modified NIR camera, overall sensitivity was similar in all three
bands that originally measured Red, Green and Blue waveband light. Whilst now mostly sensitive to
NIR wavelength light, all channels show some sensitivity to light below 830 nm (i.e., sensitivity to
radiation outside the NIR spectral range remained), indicating that the modified internal filter was
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not performing at 100% at 830 nm. The ‘Blue’ channel of the NIR-adapted camera displayed the least
sensitivity to light below 830 nm, therefore was best suited for use as the NIR channel. The wavebands
determined for each channel of the RGB and NIR channels are presented in Table 3.
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Figure 2. Relative Spectral response of the two Sony cameras used in this study. Vertical dotted line
indicates the 830 nm blocking filter present in the adapted Sony NIR camera.

Table 3. Sony α5100 camera band sensitivities. Sensitivities were measured using a double
monochromator fitted with an integrating sphere.

Model Channel Wavelength Range (nm)

“RGB” Camera Red 580–660
Green 420–610
Blue 410–540

“NIR” Camera NIR (blue channel) 800–900

2.4.2. RAW Conversion

Images were collected in RAW format before conversion to 16-bit Tagged Image File Format (TIFF)
format using DCRAW 9.27 [36]. This was done using bilinear conversion algorithms and a dark current
correction, to maintain original sensor DN measurements. The exact settings are presented in Table 4.
Dark current correction images for each camera were captured in complete darkness (i.e., lens cap on
and lights turned off), and used for the DCRAW processing.

Table 4. Details of DCRAW settings used to convert images from raw to Tagged Image File Format (TIFF).

DCRAW Command Action

–v Print verbose messages
–6 Write 16bit
–W No automatic image brightening

–g 1 1 Apply unadjusted gamma curve
–T Write Tiff format

–r 1 1 1 1 Set unadjusted white balance
–t 0 Do not rotate image
–q 0 Apply linear demosaicing
–o 0 Raw output colour space

–K darkimage.pgm Apply dark image correction using file specified

2.4.3. Exposure Corrections

To determine the relationships between DN and exposure settings (aperture and ISO), a series of
images were collected of a Lambertian spectralon reflectance panel, set up indoors under constant
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illumination with a white incandescent bulb light. For each exposure setting (aperture, ISO and shutter
speed), a series of images were captured under the settings full range (e.g., ISO100–ISO1000), whilst
other settings remained fixed. As illumination remained constant; three image sets were produced,
each modelling the influence of changing one exposure setting on image DNs.

Linear relationships between pixel DN and aperture and ISO were observed (Figure 3). From
these relationships, the aperture correction factor (CFapp) was derived to normalise images captured
under varied aperture to an aperture value of 1 (Equations (1) and (2)).

Imageapp =
ImageRAW

CFapp
(1)

where
CFapp =

1(
f stopimage

)2 (2)

where f-stop is the aperture value the image was captured with and ImageRAW is the DCRAW converted
TIFF image and Imageapp is the aperture corrected image.
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For ISO, Equation (3) was used to normalise images to an ISO value of 100, the lowest and most
commonly used setting on the cameras.

ImageISO =
Imageapp(

ISOimage
100

) (3)

where ISOimage is the ISO setting used to capture the image; Imageapp is the aperture corrected image;
and ImageISO is the ISO and aperture corrected image.

2.4.4. Vignetting Correction

An adapted version of the method outlined by LeLong et al. [16] was used in this study; such that
camera, band and aperture-specific vignetting correction filters were generated for each data collection
date. For each flight, the following steps were taken to produce vignetting filters:

1. Images of matching camera, band and aperture settings were summed together and averaged.
2. The radial vignetting profile of the averaged image was modelled using the median of evenly

spaced concentric rings.
3. A 2nd degree polynomial function interpolated the vignetting profile from the median of rings.
4. The interpolation values were then divided by the minimum value to produce a multiplicative

correction factor which brightened the corners.
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5. The concentric rings are given the value of the correction factor corresponding to its distance
from the centre to produce the final vignetting filter (Figure 4 middle).

Unlike LeLong et al. [16], the vignetting filter was applied as a multiplicative filter rather than
additive—this is in order to preserve the underlying patterns within the original images.
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Figure 4. The input NIR image (left), generated vignetting filter (middle) and vignetting corrected
image (right).

2.4.5. Cross Calibration Factor and Reflectance Calibration

Before converting image DNs to reflectance, it was necessary to cross calibrate the Tec5 downwelling
sensor and the cameras. To do this, the empirical line method was used to retrieve the relationship
between Tec5 irradiance measures and exposure and vignetting corrected image DN, over 5 Lambertian
reference targets (Figure 5).
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Figure 5. Results of relationships between exposure and vignetting corrected image DNs and Tec5
spectrometer reflectance in wavebands (a) Blue, (b) Green, (c) Red and (d) Near Infrared (NIR). All
camera bands show strong linear agreements with Tec5 reflectance. Measurements of five black, grey
and white spectral reflectance targets were used for this.
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The camera and band specific calibration factors, Table 5, were applied to individual images,
before Equation (4) was used to convert images from DN to reflectance using time matched Tec5
irradiance measurements.

Rb,t =
Imageb,t

Tec5 irradianceb,t
(4)

where Rb,t is the final reflectance image at time t and waveband b, Imageb,t is the single image captured
at time t and band b, and Tec5 irradianceb,t is the Tec5 irradiance measurement captured at the same
time, t and convolved to the same band b as the image.

Table 5. Calibration equations for each of the four camera bands. Equations were derived from
comparison of camera and Tec5 measurements of five reference targets.

Camera and Band Calibration Equation

RGB-Blue 0.0092 × DN + 0.00889
RGB-Green 0.00773 × DN + 0.00757

RGB-Red 0.0189 × DN + 0.00603
NIR-Blue 0.0249 × DN− 0.00706

2.4.6. Orthomosaic Generation

Agisoft Photoscan (St. Petersburg, Russia) (1.4.3) [37] was used to process final imagery to
orthomosaics, including automatic lens correction. For each date, two orthomosaics were generated,
RGB and NIR. Agisoft processing settings, Table 6, were kept consistent for all orthomosaics. In order
to minimise the impact of geometric distortion and variation, the disabled blending mode was used to
generate the orthomosaic [38]. This mode takes pixel data from the image whose view is closest to
nadir. Orthomosaics were generated and exported at 1 cm Ground Sampling Distance (GSD).

Table 6. Processing settings for Agisoft Photoscan. The same settings were used for all
Orthomosaics generated.

Processing Step Setting

Align photos High
Generate dense point cloud Medium

Generate mesh High
Generate orthomosaic Disabled

NDVI orthomosaics were generated using Equation (5), before mean values for each plot in
each camera band and NDVI were extracted using custom Python-based processing tools. As in
Holman et al. [12], a 50 cm buffer was applied to each plot before extracting mean values in order to
prevent the influence of the plot edge effect.

NDVI =
RNIR −Rr

RNIR + Rr
(5)

where RNIR is measured reflectance in the NIR band and Rr is measured reflectance in the red band.

2.5. Canopy Masking

To dissect green canopy from background variables, the Excess Green Red (ExGR) index was used
(Equation (6)), with a threshold of > 0 to classify green vegetation [39,40]. Figure 6 shows an example
of the produced mask, with reasonable agreement between visual green canopy and pixels classified
as green by ExGR. The masks were used to extract mean plot NDVI of green pixels only.

ExGR = (2×G−R− B) − (1.4×R−G) (6)
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June 2017 UAV data collection campaign.

3. Results

3.1. Validation of Calibrations

The influence of the calibration steps applied to COTS camera imagery on precision of results was
first assessed. For a single date (21 June 2017), camera imagery was processed with corrections applied
cumulatively to understand their influence on results. For clarity, extracted mean plot results for the
red and NIR bands have been scaled to a range 0–1.

Red band results (Figure 7) show little impact on linear trend and intercept from correction steps,
with consistent slopes around 1.2 and intercepts of 0.07. Correlations show improvement with addition
of corrections, R2

RAW = 0.82 up to R2
Vignetting = 0.89, with camera-related exposure and vignetting

offering the greatest gains. No meaningful effect on nRMSE and bias is gained from corrections.
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Figure 7. Assessment of the cumulative influence of correction steps on the precision of scaled mean
plot measurements in the Red band. Scaled reflectance for (a) Raw, (b) Irradiance, (c) Exposure and (d)
Vignetting corrected images are compared to scaled COTS camera convolved Tec5 measurements of
mean plot reflectance. The dashed line represents the 1:1 line.
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For the NIR band (Figure 8), a more significant impact of correction steps is observed. Gains in
both the linear fit and R2 are achieved at each step, with vignetting indicating the most significant
influence. Both nRMSE and bias decline in accuracy with the addition of correction steps.
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Figure 8. Assessment of the cumulative influence of correction steps on the precision of scaled mean
plot measurements in the NIR band. Scaled reflectance for (a) Raw, (b) Irradiance, (c) Exposure and
(d) Vignetting corrected images are compared to scaled COTS camera convolved Tec5 measurements of
mean plot reflectance. The dashed line represents the 1:1 line.

The influence of corrections on NDVI, calculated from non-scaled data (Figure 9), indicates high
precision (R2 = 0.91) but poor accuracy (nRMSE = 0.85, Bias = −0.57) compared to the ground validation
data. Addition of irradiance correction greatly improves accuracy, particularly nRMSE, bias and linear
trend. Exposure corrections improve correlation, though drops in nRMSE and bias are also introduced.
Finally, the addition of vignetting improves all statistics, indicating that the complete collection of
calibration steps produces best results in terms of both accuracy and precision.
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Figure 9. Assessment of the cumulative influence of radiometric corrections applied to COTS
camera-derived NDVI. Results for (a) Raw, (b) Irradiance, (c) Exposure and (d) Vignetting corrected
NDVI are compared to scaled COTS camera convolved Tec5 measurements of mean plot NDVI. Dashed
line indicates the 1:1 line.

Further investigation of camera settings (Figure 10), via calculation on Exposure Value
(Equation (7)), highlights how the cameras adjusted exposure independently during UAV flight.
This independence explains the poor accuracy of NDVI from raw images, where variable camera
settings (which can vary between the independent cameras used to gather RGB and NIR data) artificially
altering the red to NIR ratio. Inclusion of the varying solar spectral irradiance data corrects this,
improving the data consistency greatly; inclusion of exposure and vignetting corrections removes all
influence of variable exposure settings, producing even higher accuracy data.

ExposureValuei = 2× log2( fi) − log2(ti) − log2(ISOi/100) (7)

where fi is the image aperture, ti is the image shutter speed and ISOi is the image ISO value.
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Figure 10. Exposure value for the RGB and NIR cameras over the duration of a flight showing the
cameras adjusting exposure independently. Data is from the flight on 21 June 2017.

3.2. Accuracy Assessment of COTS Camera Reflectance

For three dates (19 April 2017, 21 June 2017, and 4 July 2017), the COTS camera-derived mean plot
reflectance and calculated NDVI were assessed against Tec5 results. Results for the blue reflectance
band (Figure 11) show good fit against the Tec5 in the first two dates (R2 > 0.79), with slopes close to 1
and intercepts close to 0. Small nRMSE and biases also indicate good agreement with the spectrometer.
Poorer results in all statistics in the last date (4 July 2017) show reduced agreement with Tec5 reflectance
measurements. At this later date, onset of senescence will increase the variability in canopy reflectance
both within and between plots, as seen by the increase in vertical error bars. This spatial non-uniformity
of senescence onset is better measured by the UAV data as opposed to the spectrometer, leading to
poorer statistics at this time point.
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Figure 11. Accuracy assessments of blue band reflectance for three dates. Tec5 reflectance is convolved
to the spectral response of the COTS cameras for comparison. The points are coloured based on nitrogen
treatment applied to the plot. Standard deviation of reflectance measured by the COTS cameras is
presented by vertical error bars. The dashed line represents the 1:1 line.
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The green (Figure 12) and red bands (Figure 13) show very similar trends in accuracy to the blue
band. Both bands show good fit (R2

≥ 0.84) and consistent small negative biases, indicating slight
underestimation of reflectance from the cameras. The same trend between nitrogen treatments over
time is also present, as well as the greater within-plot variation for the last date compared to the
earlier two.
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Figure 12. Accuracy assessments of green band reflectance for three dates. Tec5 reflectance is convolved
to the spectral response of the COTS cameras for comparison. The points are coloured based on nitrogen
treatment applied to the plot. Standard deviation of reflectance measured by the COTS cameras is
presented by vertical error bars. The dashed line represents the 1:1 line.
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Figure 13. Accuracy assessments of red band reflectance for three dates. Tec5 reflectance is convolved to
the spectral response of the COTS cameras for comparison. The points are coloured based on nitrogen
treatment applied to the plot. Standard deviation of reflectance measured by the COTS cameras is
presented by vertical error bars. The dashed line represents the 1:1 line.

The NIR band (Figure 14) shows reduced fit in comparison to the visible bands (0.64 ≥ R2
≤ 0.7)

and larger biases indicate lower accuracies achieved in the NIR band. In contrast to the visible
bands, the NIR shows lowest accuracy in the first date before improving for the subsequent two dates.
Trends between nitrogen treatments show that N1 treatments consistently have the lowest reflectance,
indicating reduced vegetation in these plots, as expected. Standard deviations show the same increased
variability in plot reflectance of the last date. Overall, the results of the NIR camera indicate lower
sensitivity to higher canopy reflectance compared to the Tec5.
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Figure 14. Accuracy assessments of NIR band reflectance for three dates. Tec5 reflectance is convolved
to the spectral response of the COTS cameras for comparison. The points are coloured based on nitrogen
treatment applied to the plot. Standard deviation of reflectance measured by the COTS cameras is
presented by vertical error bars. The dashed line represents the 1:1 line.

Accuracy assessments of calculated NDVI (Figure 15) show high correlations (R2
≥ 0.88) and

low nRMSE. Additionally, biases indicating overall very good accuracy are achieved from the COTS
cameras. Temporal accuracy shows a similar drop in accuracy for the final date, as seen in the visible
bands, but overall good stability is achieved. The lower accuracy of the NIR band appears to not
impact the accuracy of calculated NDVI.
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Figure 15. Accuracy assessments COTS camera-derived NDVI for three dates. The points are coloured
based on nitrogen treatment applied to the plot. Standard deviation of reflectance measured by the
COTS cameras is presented by vertical error bars. The dashed line represents the 1:1 line.

Additional assessment compared results from the COTS cameras with the Parrot Sequoia
(Figure 16), a commercially available multispectral imager whose data is processed using proprietary
calibrations. Of the individual bands, green showed the strongest agreement between the two camera
systems, with comparable R2, nRMSE and bias. The red band indicated poorer accuracy achieved by
the Sequoia, with large nRMSE, negative biases and poorer linear agreement with the Tec5. In the NIR
band, both camera systems showed comparable accuracy levels and precision. NDVI results show
greater accuracy achieved by the COTS cameras, with the Sequoia overestimating NDVI compared to
the TEC5 (as indicated by positive bias). The similarity in results between the COTS cameras and Parrot
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Sequoia, particularly in the NIR waveband, suggests discrepancy between imaging and non-imaging
spectral monitoring technologies.Remote Sens. 2019, 11, x FOR PEER REVIEW 16 of 21 
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variation achieved from the COTS cameras (Figure 17). 

Figure 16. Comparison of accuracies achieved by COTS (blue) cameras and Parrot Sequoia (red) in
(a) green, (b) red and (c) NIR reflectance and (d) NDVI. Comparisons are made against Tec5 measure
reflectances and NDVI. Reflectance was measured from both cameras on the same date (21 June 2017),
whilst Tec5 measurements were collected two days later. The dashed line represents the 1:1 line.

3.3. Influence of Canopy on NDVI

The focus of this component of the study was to investigate the potential for high spatial resolution
imagery to be used to dissect the influence of canopy cover on derived vegetation indices. For nine
dates, the COTS camera imagery was calibrated, processed and NDVI calculated. For one date, 18 May
2017, significant shadowing impacted on the results of masking; as such, this date was removed from
further processing. For the remaining eight dates, a subset of ten cultivars have been used. Examples
of cropped NDVI orthomosaics for three dates highlight the temporal and spatial variation achieved
from the COTS cameras (Figure 17).

Assessment of NDVIunmasked (Figure 18a, top row) shows typical trends over time and between
nitrogen treatments. All cultivars and treatment levels show a starting NDVI value around 0.4,
increasing to a peak in late-May before dropping off at the end of the season. Comparison between
nitrogen treatments shows clear differences between plots with (N2, N3 and N4) and without (N1)
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fertiliser application, with the N1 treatment showing lower maximum NDVI, despite similar initial
NDVI values (~0.4). The drop in NDVI values at the end of the season is likely a result of senescence
and the browning of crop canopy. Application of ExGR derived masks (Figure 18b, second row) to
extract NDVI of green classified pixels only, produces new trends between treatments and over time.
For all treatments, shallower temporal trends in NDVI are observed, with the N1 treatment displaying
a close to horizontal trend with the peak in late-May no longer featuring. Comparing the difference
between NDVIunmasked and NDVIExGR (Figure 18c, third row) shows the greatest influence of masking
occurs early season where % green pixel is lowest (Figure 18d, bottom row).
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Figure 18. Temporal trends of ten wheat cultivars grown under four different nitrogen treatments for:
(a) the standard unmasked mean NDVI; (b) mean NDVI derived from ExGR masked plots to remove
the influence of background soil; (c) displaying temporal differences between masked and unmasked
NDVI results; (d) percentage green pixel as calculated from the ExGR masks. Nitrogen application
dates and quantities for the N2, N3 and N4 treatments are presented by the vertical lines. All data
represent the means of three replicates.
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4. Discussion

This study has provided a quantitative assessment of commercial off the shelf (COTS) digital
cameras for supporting the UAV-based remote sensing of field-based crop trials. COTS cameras
provide very high spatial resolution imagery, potentially enabling the separation of canopy influences
on vegetation indices from those of the background soil and thus making the derived information
more relevant to crop health assessment and monitoring.

We have designed and tested a data processing workflow to radiometrically calibrate COTS
camera imagery into reflectance units, in blue, green, red and NIR wavebands. Cameras were allowed
to vary their exposure settings during flight, to cope with varying solar illumination conditions, whilst
having a fixed shutter speed to avoid blurring from the UAV-motion. We find that our processing
workflow can cope with this setup, and that the influence of the different pre-processing steps varies by
band. In particular, the NIR band showed greater impact from vignetting corrections than the visible
wavebands, agreeing with past studies which found that the modified internal filters used in NIR
COTS cameras increase the impact of vignetting in images by up to 30% [16,25]. The influence of varied
exposure settings as well as the success of the developed corrections was perhaps most clear during
calculations of NDVI, because the separate visible and NIR COTS cameras used did not necessarily
change their exposure settings in the same way at the same time, leading to artificial changes in
derived NDVI. Even without corrections, good precision is observed in COTS camera calculated NDVI.
However, NDVI values calculated from such raw camera data (or that calibrated into radiances rather
than reflectances) are always significantly different to those derived from calibrated reflectances, and
this difference is sensor specific [41]. Ultimately, this means VIs calculated from different sensors can
only be intercompared in a fully meaningful way if calculated from calibrated reflectance measures.

Temporal consistency of the developed workflow was tested over three dates via comparison
of COTS camera and Tec5 field-spectrometer-derived mean plot reflectance. Results showed good
accuracy with NDVI results (R2

≥ 0.88, nRMSE ≤ 0.15) comparable to those achieved by other
studies [25,42,43]. Consistency of results over this period indicates a good level of robustness in the
developed methods for variable weather conditions both during and between data collection flights.
Some variability occurred between time points in all bands and NDVI; likely a result of the UAV and
Tec5 spectrometer obtaining measurements at different spatial resolutions [38] and datasets not being
collected on the same date. Rossi et al. [44] demonstrated the impact of non-concurrent data collection
when comparing different reflectance from different sensors, with a single day lag negatively impacting
on correlation results. Variability in accuracy also occurred between bands, particularly for visible
versus NIR, which was observed consistently over time. The same variations were also observed in
the Parrot Sequoia results, as well as by Aasen and Bolten [38], who found that the varying field of
views between cameras and spectrometers coupled with varying bidirectional reflectance factors in
visible and NIR wavelengths impacted on correlations in the NIR band. Lack of influence of the NIR
results on NDVI accuracy further indicates disparity between imaging and non-imaging measurement
systems, as opposed to error in the NIR band. Investigation of this variability between bands and data
sources should be a focus of future work.

Application of the very high resolution (GSD = 1 cm) reflectance imagery over time was used to
investigate the impact of canopy cover and background soil on derived NDVI. Results of the unmasked
NDVI presented temporal trends over a season in relation to differing nitrogen treatments and for
different wheat cultivars. Masking of background soil pixels, via Excess Green Red, offered new insights
into temporal NDVI trends in relation to canopy cover. Greatest differences between NDVIunmasked

and NDVIExGR (Figure 18d) occurred in the early season, where canopy cover is lowest [45], indicating
that background soil and canopy cover can artificially influence measured vegetation indices. Isolation
of the crop canopy for VI measurements should provide improved relationships between VI and
traits of interest such as yield, canopy quality, senescence and canopy chlorophyll content [10,46], and
therefore should be a focus of future studies.
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5. Conclusions

This study has presented methods for radiometric calibration of commercial off the shelf
digital camera imagery to reflectance for use in plant phenotyping. New calibrations for image
exposure normalisation, combined with robust vignetting and irradiance corrections produced
accurate reflectance and NDVI, comparable to a Parrot Sequoia multispectral camera and Tec5 ground
spectrometer. The very high-resolution imagery obtained provided new insights into the influence of
canopy cover and background soil on derived plot NDVI, especially in the early season. Future studies
should look to incorporate additional UAV phenotyping methods such as 3D structure and thermal
measurements to provide a more extensive low-cost phenotyping UAV-based system.
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4.3 Additions to Published Article 

Improvements and corrections to two figures from the published article are provided 

below. Paper figure 6 has been brightened to improve image clarity (Figure 4.2); and 

paper figure 14 X-axis has been corrected to read NIR reflectance (Figure 4.1).  

Figure 4.2. Example image of an RGB image of wheat trial plots and right the ExGR mask output. 

In the ExGR mask, white represents green classified pixels and black non-green pixels. Imagery 

is from the 21 June 2017 UAV data collection campaign. This figure has been brightened to 

improve clarity; original image is Figure 6 in Holman et al. (2019). 

 

Figure 4.1. Accuracy assessments of NIR band reflectance from three dates. Tec reflectance is 

convolved to the spectral response of the OCTS cameras for comparison. The points are coloured 

based on nitrogen treatment applied to the plot. Standard deviation of reflectance measured by 

the COTS cameras is presented by vertical error bars. The dashed line represents the 1:1 line. 

Original figure is from Holman et al.  (2019) and has been corrected for an incorrect x-axis label. 
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4.4 Camera Spectral Response Determination 

 As discussed in the published article (Section 4.2), knowing the exact spectral 

sensitivities and wavebands of COTS cameras is imperative for accurate correction of 

pixel digital numbers to measures of reflectance (Berra et al., 2015). However, the 

spectral sensitivity of most digital cameras internal CMOS (Complementary Metal-

Oxide-Semiconductor) or CCD (Charge-Coupled Device) sensors are typically not 

published by manufacturers. Furthermore, when adapting these cameras to make use of 

their natural sensitivity to NIR, the replacement of the internal NIR blocking filter for an 

RGB blocking filter will have unknown influence on spectral response of the camera. 

Therefore, it is necessary for users to estimate the unique spectral response of each 

individual camera (Darrodi et al., 2015; Jiang et al., 2013). The methods used to do this, 

and results achieved are outlined with this section of the chapter. 

 Materials and Methods 

 A double monochromator (OL 750-M-D Double Grating Monochromator, 

Optronic Laboratories Inc., Orlando, Florida, USA) was used to produce monochromatic 

light at user defined wavelengths. An integrating sphere was attached to the exit 

opening of the monochromator to produce an evenly illuminated surface which could 

be photographed (Figure 4.3). The camera, whose spectral response was being 

determined, was positioned with its lens covering the viewing port of the integrating 

sphere to capture images of monochromatic light (Figure 4.4). All external lights were 

turned off, and a black cloth placed over the sphere and camera to remove any chances 

of contamination of imagery from external light sources. 
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Figure 4.3. An integrating sphere attached to the exit port of the double monochromator. Opening 

in the integrating sphere shows internal illumination of the sphere from the monochromator. 

Figure 4.4. Camera positioned with its lens covering the opening of the integrating sphere. A 

black cloth was used to cover the camera and sphere to block any light from external sources 

contaminating images. 
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A tungsten halogen bulb was used as the light source for the monochromator. 

Lamp current and monochromator slit opening sizes were kept constant for all 

wavelengths (Table 4.1). The monochromator filter was changed from #2 for 350-650nm 

wavelengths, to #3 for 550-1100nm wavelength light. 

Table 4.1. Lamp and double monochromator set-up setting used for all light wavelengths 

imaged. 

Monochromatic wavelengths (nm) 350-650 550-1100 

Lamp Current (Amps) 5.6 5.6 

Filter #2 #3 

Slit opening (mm) 

(entrance/middle/exit) 
5/5/5 5/5/5 

 

 For both visible (Sony_RGB) and near infrared (Sony_NIR) cameras, all images 

were captured under constant camera settings specific to each camera, Table 4.2. 

Imagery was captured in raw format to maintain the linear response of the camera 

sensors to light. 

Table 4.2. Camera exposure settings used to capture single wavelength imagery for both the 

visible RGB and NIR cameras. Slower settings for the NIR camera are due to reduced sensitivity 

of the camera to NIR light. 

Camera Aperture ISO 

Shutter 

Speed 

(seconds) 

Light 

range (nm) 

Sony_RGB f/2.8 100 1/3 350-850 

Sony_NIR f/2.8 100 8 750-1150 
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 For image processing, the raw imagery was converted to TIFF format using 

DCRAW open source software (Coffin, 2007). After conversion, average values of a 4×4-

pixel area in the centre of each image was extracted and used for deriving spectral 

responses. Due to variations in monochromator settings and filters used for different 

wavelengths, images required adjustment for variability in brightness of light produced 

between wavelengths. To do this a reference silicon photodiode spectrometer measured 

the same wavelengths produced under the same settings as each of the two cameras. 

Individual images were adjusted in post processing to normalise for variations between 

wavelengths, using these reference measurements. 
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 Results 

 Reference measures of monochromatic light wavelengths produced by the 

monochromator (Figure 4.5) demonstrate how the level of monochromatic light 

produced varies with wavelength and between filter used.  

 Final relative spectral responses for the visible RGB, and NIR cameras 

are presented in Figure 4.6. Results for the unadapted RGB camera present typical 

trends expected of a CMOS sensor, as used within these Sony cameras. Increased 

Figure 4.5. Relative spectral radiances of the OL5 double monochromator as measured by a 

reference silicone photodiode spectrometer. The two lines refer to the two monochromator filter 

settings used for the two different wavelengths ranges measured. Blue = 350-650nm and Filter #2, 

Orange = 550-1100nm and Filter #3. 

Figure 4.6. Relative spectral responses of each band of the visible RGB (solid lines) and adapted 

NIR (dashed lines) Sony cameras. Line colours indicate camera band. Vertical dashed line 

indicates the wavelength location of the 830nm visible blocking filter installed in the NIR camera. 
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sensitivity of the green band is a result of the Bayer matrix filter on the sensors (Nijland 

et al., 2014). For the adapted NIR camera, results show very similar level and trend in 

sensitivity between all three bands. All bands show some sensitivity below the 830nm 

of the blocking filter, suggesting it is not a perfect filter. Of the three bands, the blue 

band shows the lowest sensitivity below 830nm, making it the most suitable for 

providing ‘pure’ NIR imagery. The other two bands are likely to be contaminated by 

inclusion of red edge wavelengths.  

 Finally, comparison against, a number of other commercial cameras tested at the 

same time as the Sony cameras indicates that differences between cameras and 

manufacturers are present (Figure 4.7). This highlights the importance of measuring 

each individual camera’s spectral responses to ensure the accuracy of derived 

reflectances. 
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Figure 4.7. Relative spectral responses for (a) Canon 500D RGB camera, and (b) Panasonic DMX-

LX7 RGB camera. Line colours indicate camera band. 
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4.5 Summary and Conclusion 

The work in this chapter has detailed the development and assessment of 

‘commercial off the shelf’ (COTS) cameras for capturing very high resolution, 

radiometrically calibrated reflectance imagery in visible and near-infrared spectral 

bands. The targeted application of these cameras is for high-throughput canopy 

reflectance phenotyping of field-based wheat trials, where existing standard methods 

used (e.g. ground-based spectrometers) often lack spatial resolution. It is known that 

multiple factors, including canopy structure and background soil, influence measured 

reflectances and derived vegetation indices. The use of high-resolution COTS cameras 

should provide the required spatial resolution in order to filter and mask non-vegetation 

pixels and derive canopy measurements independent of other influencers.  

Accuracy assessments were performed against canopy reflectances collected 

using a ground-based vis-NIR spectrometer. Results indicated variabilities in accuracy 

between spectral bands and time points during the growing season. Of the camera bands 

the NIR camera presented notably reduced agreement with the spectrometer compared 

to the visible bands. This trend dominated in the higher reflectance plots, associated with 

the N4 treatment level, and was consistent over the different validation dates. 

Interestingly, the professionally calibrated Parrot Sequoia multispectral imager also 

presented the same trend between visible and NIR bands when compared to the ground 

spectrometer. The consistency of these trends in the data obtained by the two camera 

systems, indicates that its source is a result of differences between measurements by the 
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spectrometer compared to the imaging systems of the two cameras. Aasen and Bolten, 

(2018) found similar trends when comparing a UAV-mounted hyperspectral imager and 

ground spectrometer for wheat canopy reflectances. The authors found that the 

differences in field of view between the spectrometers and cameras, coupled with 

varying the bi-directional reflectance factors between visible and NIR spectral bands, 

had greater impact on the NIR band accuracy compared to the visible bands. For this 

chapter the difference in field of view between the spectrometer (25o) and the cameras 

(42o) were significant such that it could be the cause of the differences in accuracy. 

However, the Parrot Sequoia has a field of view of 32o, which sits between the 

spectrometer and COTS cameras. Another study by Deng et al., (2018) also presented 

comparison of a ground spectrometer (ASD) and a UAV based Parrot Sequoia when 

measuring a 30% reflectance panel. The authors found clear differences between the two 

systems, with the greatest difference occurring within the red edge and NIR bands. 

Interestingly, the authors also found this trend remained consistent between cloudy and 

sunny weather conditions. Further accuracy assessments in this chapter, of wheat 

canopy NDVI measurements found notably higher levels of agreement between the 

sensors, compared to the individual spectral bands. With R2 ≥ 0.88 and nRMSE ≤ 0.15, 

these results indicate that in the case of NDVI, the cameras and spectrometers are 

accurately comparable in their measurements. In addition, the results for the single flight 

conducted with both camera systems showed the same level of agreement for the COTS 

cameras (R2 ≥ 0.94 and nRMSE ≤ 0.062) and Parrot Sequoia (R2 ≥ 0.96 and nRMSE ≤ 0.068). 

These results indicate that although the NIR band presented reduced accuracy compared 

to the visible, these reduced accuracies have not carried through into calculated NDVI 
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measurements. This further points to a non-erroneous difference between point-based 

spectrometers and imaging-based systems such as the cameras used in this chapter. 

However, without further investigation it is difficult to identify the cause or reason for 

these trends. 

Building on previous work investigating calibration of COTS cameras, a key area 

of focus for this chapter was improving the temporal stability of the methods. To do this, 

cameras were allowed to automatically vary their exposure settings during all flights in 

order to maximise image quality with the varying solar conditions during flights as well 

as over the growing season. Linear trends between exposure settings and image DN 

were identified for both aperture and ISO, agreeing with other studies (Hiscocks, 2011). 

These trends allowed for the application of custom developed corrections for camera 

ISO and aperture to normalise all images post capture. Tests of temporal consistency 

over multiple dates in the growing season were used to test the methods. Despite the 

varying levels of accuracy obtained between bands, the temporal consistency achieved 

indicates the good robustness of the methods and data. The added exposure 

normalisation steps, developed in this chapter, aid in maintaining consistent measures 

of reflectance over variable weather and irradiance conditions. Some variability did 

occur between dates, but this was to be expected due to the non-concurrent collection of 

ground and UAV data. Collection of data occurred up to 5 days apart, with just a single 

day lag between collections proving to impact negatively on correlation results (Rossi et 

al., 2019).  
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The proposed application of the COTS cameras was to utilise the very high 

resolution (GSD = 1cm) calibrated reflectance imagery collected over time, to investigate 

the impact of canopy cover and background soil on derived canopy NDVI of 

experimental wheat plots. Using the popular ExGR index to mask out non-vegetation 

pixels, the application of COTS cameras to provide true measures of vegetation-only 

NDVI monitoring was tested and proven. Comparison of masked and unmasked 

temporal NDVI trends showed that greatest differences occurred in the early season 

(March - April), where crop ground cover is typically low (AHDB, 2015). Through the 

middle of the growing period, little difference was observed between masked and 

unmasked NDVI, indicating canopies were fully established and ground cover was at a 

maximum. Some differences were also observed within the senescence period of the 

crops (June - July), where rate of senescence, and therefore loss of green canopy may 

vary between varieties and nitrogen treatments. Without validation of these trends, it is 

difficult to ascertain the true relationships between the measured trends in NDVI and 

the phenotypic trait responsible. Despite these uncertainties, this initial proof of concept 

has indicated the potential for using very high-resolution imagery in generating greater 

canopy phenotypic information from spectral reflectance measurements. Proposed areas 

of work for future studies include the development of the masking techniques used to 

isolate green vegetation from other background materials. The ExGR method, whilst 

widely used, is simplistic and does not account for senescing vegetation. Machine 

learning has been previously demonstrated in the application of identifying specific 

plant structures, monitoring senescence, and classifying different vegetation (Sadeghi-

Tehran et al., 2017). Application of these techniques would likely expand the 
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applications of COTS camera data for high-throughput phenotyping via UAVs, and 

therefore should be investigated further. 

The work presented in this chapter has developed and refined the data collection 

and processing workflows of calibrated reflectance imagery from commercial off the 

shelf cameras. Results demonstrated new correction workflows for camera exposure 

settings developed in this chapter, in combination with robust vignetting and irradiance 

corrections were successful; facilitating greater flexibility in image capture under varied 

illumination conditions. Accuracy assessments between a ground spectrometer and the 

cameras showed variable levels of accuracy, highlighting potential difficulties in the 

comparison of scanning-based and image-based reflectance measurements. This trend 

was found to be consistent between different imaging sensors, e.g. a Parrot Sequoia, and 

points to the need for further work in understanding the reasons and solutions for this 

disparity between systems. Application of the COTS cameras to filtering out background 

soil from canopy NDVI measurements, highlighted the impact of these factors on mean 

canopy NDVI, especially in the early season.  Future studies should look at the 

incorporation of additional phenotypes, via additional sensors or data processing. For 

example, the imagery produced by the COTS cameras, can easily be processed to 

produce both multispectral orthomosaics, and also normalised Digital Surface Models 

(nDSM) for assessment of crop morphology traits including crop height and growth rate 

(Chapter 3). This will provide a more complete analysis of the complex interactions 

between plant phenotypes and genotypes and growing environment. 
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Chapter 5:  Dynamic Quantifying of 

Canopy Trait Response of Modern 

Wheat Cultivars to Varied Nitrogen 

Applications 

5.1 Introduction 

 This chapter focusses on further evaluation of UAV techniques for phenotyping 

of field-based crop trial experiments. Specifically, the focus is on further assessment of 

application of the methodologies and technologies developed within this PhD project to 

ongoing field experiments at Rothamsted Research.  

Increases in global wheat yields are a key target for ensuring food security in the 

face of increasing pressures, such as climate change, competition for resources and 

demands from growing populations into the future (Furbank and Tester, 2011b). 

Photosynthesis has previously been identified as a key source of advancement in 

improving crop yields, playing a major role in determining above-ground biomass and 

final yield (Parry et al., 2006). Within this, strategies have looked to increase both the 

light capture efficiency of plant canopies, and the duration of light capture through the 

life cycle of plants (Parry et al., 2011b). Whilst improvements in canopy light capture 

efficiency have been largely maximised, there are still opportunities to extend the 

duration of photosynthetically active canopies by manipulating the plant’s life cycle 

(Dohleman et al., 2009).  
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Past improvements in the efficiency and duration of canopy light capture of 

wheat crops have largely been brought about by increased inputs of nitrogen fertiliser, 

which ensure that canopy size, quality and duration are maximised (Hawkesford, 2014). 

However, increases in nitrogen fertiliser application come with significant financial and 

environmental costs. In light of these costs, moves to improve sustainable use of nitrogen 

in agriculture are required (Bingham et al., 2012; Gaju et al., 2011). In response to these 

issues, focus has turned to developing new crop genotypes better adapted to efficient 

nitrogen use, such that photosynthetic capacity, biomass and yield are maximised with 

reduced nitrogen fertiliser applications. Key phenotypic targets for this include the early 

development and closure of canopies, and delayed canopy senescence (Hawkesford, 

2012). The promotion of early canopy formation, and extended canopy duration, under 

varied nitrogen conditions, have been identified as important factors in potential yield 

gains (Shearman et al., 2005).  

Both canopy formation and senescence are dynamic phenotypic traits, whose 

onset and duration will vary between crop varieties, growing seasons, and 

environmental growing conditions (Hawkesford, 2017; Lopes and Reynolds, 2012). 

However, commonly used standard methods (e.g. visual scoring) for phenotyping traits 

associated with canopy formation and senescence are inadequate (Christopher et al., 

2014). Past studies have used ground-based temporal NDVI measures to assess dynamic 

canopy traits over time, specifically focussing on quantifying senescence rates in 

canopies. Linear regressions, for example, are a simple solution, however temporal 

senescence curves are inevitably non-linear such that this method lacks sufficient 

interpretation of dynamic changes (Christopher et al., 2014; Vijayalakshmi et al., 2010). 
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An alternative approach has used a logistic function to quantify senescence as a two 

phase, slow, then rapid, process (Gaju et al., 2011). Results indicated strong positive 

correlations between senescence rate with final grain yield and nitrogen use efficiency. 

Another study demonstrated how comparisons of integrated weekly NDVI 

measurements during senescence, produced superior relationships between variety and 

yield, compared to alternative single timepoint measurements (Christopher et al., 2014). 

These studies indicate that integration of canopy dynamics over the canopy senescence 

phase provides useful indicators of crop performance. However, lack of spatial 

measurements, and limitations with temporal measurements associated with these 

methods restricts their application for multiple large-scale field trials. Unmanned Aerial 

Vehicles (UAVs) are an alternative solution capable of high temporal and spatial 

resolution and proven in the application throughput phenotyping of field based crop 

trials (Holman et al., 2016; Madec et al., 2017; Malambo et al., 2018).  

This chapter aims to utilise UAV phenotyping platforms to evaluate how 

nitrogen fertiliser application affects canopy formation and senescence dynamics in a 

modern wheat germplasm breeding panel. To achieve this, the chapter will develop a 

method for phenotyping dynamic changes in canopy NDVI traits over time, with 

specific focus on canopy formation and senescence phases.  
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5.2  Methods 

 Field Site  

All data were collected at the experimental farm operated by Rothamsted 

Research, UK (51°48′34.56′′N, 0°21′22.68′′W). The Defra-funded Wheat Genetic 

Improvement Network (WGIN) Diversity Field Experiment (Barraclough et al., 2010) 

was used for all data collection. The aim of the WGIN experiment is to test the influence 

of different nitrogen fertiliser application levels to different wheat cultivars. The data for 

this chapter was collected over three years, 2016, 2017 and 2018; and for each year 30 

cultivars were grown under four different nitrogen treatment levels (Table 5.1, Table 5.2, 

and Table 5.3). In 2018, weather conditions limited vehicular access to the field early in 

the season, such that only two nitrogen applications were performed. Nitrogen 

applications for 2018 were adjusted to ensure total nitrogen applied was consistent with 

2016 and 2017 totals. For each cultivar and nitrogen treatment, three replicates were 

grown in 9m × 3m non-destructive plots and an adjacent 2.5 m × 3 m destructive 

sampling plots; planting layout maps can be found in Appendix A. Of the 30 cultivars 

grown each year, 25 were repeated for all years and therefore these 25 will be the focus 

of this study (Table 5.4). This study focuses on measurements of the non-destructive 

plots only. 
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Table 5.1. Nitrogen fertiliser rates and application dates for the four treatments in 2016. 

Treatment 

code 

Total N 

applied (kg-

N /ha) 

Application 1 

(21/03/2016) 

Application 2 

(08/04/2016) 

Application 3 

(26/04/2016) 

N1 0 - - - 

N2 100 50 50 - 

N3 200 50 100 50 

N4 350 50 250 50 

Table 5.2. Nitrogen fertiliser rates and application dates for the four treatments in 2017. 

Treatment 

code 

Total N 

applied (kg-

N/ha) 

Application 1 

(15/03/2017) 

Application 2 

(05/04/2017) 

Application 3 

(09/05/2017) 

N1 0 - - - 

N2 100 50 50 - 

N3 200 50 100 50 

N4 350 50 250 50 

 

Table 5.3. Nitrogen fertiliser rates and application dates for the four treatments in 2018. 

Treatment 

code 

Total N applied 

(kg-N /ha) 

Application 1 

(19/04/2018) 

Application 2 

(04/05/2018) 

N1 0 - - 

N2 100 100 - 

N3 200 100 100 

N4 350 175 175 

 

  



Dynamic Quantifying of Canopy Trait Response of Modern Wheat Cultivars to Varied Nitrogen Applications 

 
 

 
141 

 

 

Table 5.4. Wheat varieties and codes for the 25 varieties grown over the 3 years 2016, 2017 and 

2018. 

Variety Code  Variety Code 

Avalon AV  Leeds LE 

Cadenza CA  Lili LI 

Claire CL  Malacca MA 

Conqueror CN  Mercia ME 

Cordiale CO  
Maris 

Widgeon 
MW 

Crusoe CR  Paragon PA 

Evolution EL  Reflection RF 

Hereward HE  Riband RI 

Hereford HF  Robigus RO 

Hylux HL  Solstice SL 

Hystar HY  Skyfall SY 

Illustrious IL  Xi19 Xi 

Istabraq IS    

 

 Meteorological Data 

 Daily measures of meteorological data were collected by the Rothamsted 

Research’s weather station, and made available by the electronic Rothamsted Archive 

(Perryman et al., 2018). From this daily rainfall (mm), and average, minimum and 

maximum daily temperatures (°C) were extracted for all three growing seasons and used 

to assess and understand variability in environmental conditions between seasons.  
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 Crop Measurements 

For all three seasons, plots were harvested, and fresh grain weighed using a 

Haldrup GMbH C-85 specialist plot combine harvester (Haldrup, Ilshofen, Germany). 

For straw yield, a sub-sample of the destructive plot was cut by hand just before harvest, 

and fresh weight measured. Dry matter straw and grain weights were determined by 

oven-drying approximately 80g sub-samples of fresh grain and straw in an oven 

overnight at 105 °C (800C for straw). From these samples, grain yield at 85% dry matter 

in tonnes per hectare (t/ha), biomass tonnes at 100% dry matter in tonnes per hectare 

(t/ha) respectively, and total nitrogen uptake in kg of nitrogen per hectare (kg-N/ha) 

were determined (Barraclough et al., 2010). 

 UAV imagery 

A DJI S900 UAV (DJI, Shengzhen, China) was flown on a pre-determined flight 

plan at 50m altitude over the experimental field. The flight plan was designed to ensure 

that an 80% overlap between concurrent images was obtained. Two Sony (Tokyo, Japan) 

α5100 mirrorless digital cameras mounted on the UAV were used for the spectral visible 

(RGB) and near infrared (NIR) image collection, as detailed in Chapter 4 (Holman et al., 

2019). Both cameras were fitted with 20mm F2.8 Sony prime lenses, and the NIR camera, 

an internal 830nm long pass blocking filter.  

All images were captured at 1-second intervals and in Raw format, with focus set 

to 50 m to reflect the UAV flying height. Aperture and ISO were left on automatic, whilst 

shutter speed was fixed to 1/500sec to ensure minimisation of motion blur. The UAV and 

cameras were flown over the field site at a time as close as possible to local solar noon. 
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Twelve Ground Control Points, whose positions were measured with a Trimble Geo 7 

DGPS (Trimble, Sunnyvale, USA), were used for georeferencing final orthomosaics. To 

provide measurements of total incoming solar irradiance, a Tec5 HandySpec Field 

spectrometer (Tec5, Oberursel, Germany) fitted with a cosine corrected downwelling 

optic was deployed at a fixed location next to the field and set to measure at 1-second 

intervals. Spectral measurements were collected at 10 nm spectral resolution across the 

wavelength range 360–1000 nm. 

 Reflectance imagery processing 

 All raw imagery collected by the UAVs was processed to calibrated reflectances 

using the workflow outlined in Chapter 4. Corrections for vignetting, exposure settings 

and reflectance calibration were all applied (Holman et al., 2019). For the 2016 data, 

misaligned clocks between cameras meant that calibration of individual images to 

reflectance using Tec5 downwelling was not possible. As the total flight times were 

below 15 minutes, a single reflectance calibration value can be used, whilst still achieving 

good accuracy (Miura and Huete, 2009). Therefore, for the 2016 flights an average of the 

Tec5 downwelling measurements for the entire flight time was used to calibrate each 

camera band into reflectance. 

 Orthomosaic processing 

 Agisoft Photoscan (Agisoft, St. Petersburg, Russia) (Version 1.4.3) was used to 

process final imagery to orthomosaics, including automatic lens correction. For each 

date, two orthomosaics were generated, RGB and NIR. Agisoft processing settings, Table 

5.5, were kept consistent for all orthomosaics. Orthomosaics were generated and 
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exported at 1 cm Ground Sampling Distance (GSD). NDVI orthomosaics were generated 

using Equation 2. 

 

 

Where RR is the measured reflectance in the red waveband, and RNIR is measured 

reflectance in the near infrared waveband. 

Table 5.5. Agisoft processing steps and parameter settings relevant to each step. 

Processing Step Setting 

Align photos High 

Generate dense point cloud Medium 

Generate mesh High 

Generate orthomosaic Disabled 

 

 

The Excess Green Red (ExGR) (Equation 3) was calculated and used to mask 

NDVI orthomosaics and remove the influence of background soil reflectance. A 

threshold of >0 to classify green vegetation, was set to produce ‘vegetation only’ 

measures of plot canopy NDVI. 

 

Where RR is the measured reflectance in the red waveband, and RG is reflectance 

measured in the green waveband, and RB is reflectance measured in the blue waveband. 

 
𝑁𝐷𝑉𝐼 =

𝑅𝑁𝐼𝑅 − 𝑅𝑅

𝑅𝑁𝐼𝑅 + 𝑅𝑅
 (2) 

 𝐸𝑥𝐺𝑅 = (2 × 𝑅𝐺 − 𝑅𝑅 − 𝑅𝐵) − (1.4 × 𝑅𝑅 − 𝑅𝐺) (3) 
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 In addition to masking NDVI, the percentage of vegetation within each plot was 

calculated from the ExGR derived vegetation masks. This was derived by the number of 

pixels classified as vegetation (>0 ExGR) over the total number of pixels within each plot. 

 Three different orthomosaics were generated to assess canopy traits, NDVI, 

ExGR_NDVI, and GreenPixel as described in Table 5.6.  From each orthomosaic, mean 

plot values were extracted for each plot. As in Holman et al. (2016, 2019) a 50cm buffer 

was applied to each plot to remove the influence of plot edge effect. 

Table 5.6. Definitions of the phenotypic traits generated from orthomosaics derived from UAV 

imagery. 

Model Description 

NDVI NDVI calculated from red and NIR reflectance imagery. 

ExGR_NDVI NDVI of pixels classified as green vegetation by ExGR values > 0. 

GreenPixel The percentage of pixels within each plot classified as green vegetation 

by ExGR > 0. 

 

 Quantification of development phases 

To isolate the three development phases, canopy formation, full canopy, and 

senescence, thresholding was applied to mean NDVI values for all plots (Figure 5.1). 

Formation phase was isolated as the period from NDVImin to NDVI90%. Senescence phase 

was identified as the period post second NDVI90% until the end of the season. Full canopy 

was identified as the period between formation and senescence thresholds, where 

canopy NDVI was at its maximum and top 10%. For each defined phase, the integral 

(area under the curve) of the curve was calculated using the trapezoid method via R 

computer software (Jurasinski et al., 2014). Comparison of derived integrals for each of 
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the nitrogen fertiliser application level was used, via Kruskal Wallis tests, to assess the 

impact of nitrogen fertiliser on each of these three development phases. The specific 

metrics used to define the different periods (NDVImin and NDVI90%) were selected in line 

with the expected seasonal trend in wheat canopy green area index (AHDB, 2015), as 

well as with discussions with crop researchers at Rothamsted Research, UK. The 

proposed metrics were designed to isolate the period of maximum canopy, as well as 

the phases either side, namely the development and senescence of the canopy.  

  

Figure 5.1. Example of the isolation of three development phases based on the minimum, 

maximum and 90% NDVI values. Phase 1 = Formation phase; Phase 2 = Full canopy phase; Phase 

3 = Senescence phase. 
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5.3 Results 

 Crop parameters  

5.3.1.1 Grain Yield 

 Grain yield varied between 2.49 and 12.86 tonnes per hectare (t/ha, 85% 

dry matter) depending on variety, season, and nitrogen treatment level (Figure 5.2). 

Variation between years was apparent, with 2018 yields lower for all varieties and 

nitrogen treatments compared to 2016 and 2017.  The variety Maris Widgeon (MW) 

consistently presented lowest yields, though this trend was reduced in the 2018 growing 

season. Comparison between nitrogen treatments indicates the greatest differences to 

occur between N1 and all other treatment levels. Variability between the N2, N3 and N4 

treatment levels is less consistent between years.  
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Figure 5.2. Grain yields (t/ha, 85% dry matter) for 25 wheat varieties over three growing seasons 

(2016, 2017 and 2018) and four nitrogen treatment levels. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 

= 200 kg-N/ha, N4 = 350 kg-N/ha. 
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5.3.1.2 Biomass (100% Dry Matter) 

Final biomass measurements ranged between 3.56 and 22.06 t/ha depending on 

variety, season, and nitrogen treatment level (Figure 5.3). For all growing seasons, clear 

differences in biomass occur between N1 and other nitrogen treatments. In 2016, MW 

shows markedly reduced biomass compared to all other varieties. Variability in biomass 

as a factor of nitrogen treatment is present between wheat varieties, and this occurs 

within all seasons. Though as with yield, the 2018 season shows much reduced 

variability with the N2, N3 and N4 application levels. 

 

Figure 5.3. Total biomass (t/ha, 100% dry matter) for 25 wheat varieties over three growing 

seasons (2016, 2017 and 2018) and four nitrogen treatment levels. N1 = 0 kg-N/ha, N2 = 100 kg-

N/ha, N3 = 200 kg-N/ha, N4 = 350 kg-N/ha. 
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5.3.1.3 Total Nitrogen Uptake 

Total nitrogen uptake, measured at anthesis, ranged from 21.49 to 281.68 kg-N/ha 

depending on variety, season, and nitrogen treatment level (Figure 5.4). Unlike yield and 

biomass results, there was a clear impact of nitrogen treatments on total nitrogen uptake 

for all three seasons. Variability between wheat varieties is present though these trends 

are inconsistent between seasons. 

 

 

 

Figure 5.4. Total nitrogen uptake (kg-N/ha) for 25 wheat varieties over three growing seasons 

(2016, 2017 and 2018) and four nitrogen treatment levels. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 

= 200 kg-N/ha, N4 = 350 kg-N/ha. 
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 UAV Results 

 For the 2016 growing season (Figure 5.5), mean canopy NDVI values derived 

from UAV imagery present low values in the early season. Some noise between varieties 

during this early stage, including some drops in NDVI, could be a result of older leaves 

senescing before full canopy formation begins. A rapid increase in NDVI from early-

April to mid-May is followed by a plateau in NDVI until mid-June. Finally, values show 

rapid decrease from mid-June until the end of the season. The lower NDVI values for 

the N1 nitrogen treatment compared to N2, N3 and N4 is clear, whilst any variation 

between the higher three treatment levels is less distinguishable. Between wheat 

varieties, most variability in NDVI is seen in the early season, before the main period of 

increasing NDVI from early-April. For the remainder of the growing season, all varieties 

follow the same temporal trends for each nitrogen treatment, showing no clear 

differences between varieties. For ExGR_NDVI, results show very similar temporal 

trends to NDVI as well as between the different nitrogen treatments. More variability 

between wheat varieties is seen for the N1 treatment at the beginning of the growing 

season. Whilst, as with NDVI, little discernible variations between varieties is seen in 

higher nitrogen treatments. Finally, for percentage of green pixels (GreenPixel), 

temporal trends for N2, N3 and N4 treatments are the same as NDVI and ExGR_NDVI. 

A consistent drop and recovery in GreenPixel towards the end of June is of interest. The 

consistency between nitrogen treatment levels indicates either a field-wide influencer, 

or some variation in the UAV data for that date, e.g. more variable lighting conditions 

for this flight. For the N1 treatments, very little increase in GreenPixel over time is seen. 

Between wheat varieties, variability in GreenPixel is much clearer compared to NDVI 
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and ExGR_NDVI, with the variety MW sticking out in the N1, N2 and N3 treatments 

with higher maximum GreenPixel. The variety Maris Widgeon is an older variety, 

known to express greater biomass yields and lower grain yields implying higher canopy 

cover. 

  

  

Figure 5.5. 2016 growing season temporal trends of canopy NDVI, ExGR masked NDVI 

(ExGR_NDVI) and percentage green pixels (GreenPixel) derived from UAV imagery. Results 

provided for 25 wheat varieties grown under 4 different nitrogen fertiliser treatment levels. N1 = 

0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350 kg-N/ha. 
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Results for the 2017 (Figure 5.6) growing season show the same 3 phases of 

increase, plateau, and subsequent decrease observed in 2016, however, differences are 

present. For NDVI, a drop and then recovery in values in the plateau period is a 

noticeable difference to the 2016 growing season. A potential explanation for this is the 

occurrence of ear emergence during this period, altering the reflective and structural 

properties of the canopies. Though this does not explain the recovery observed 

subsequently. Similar variation between nitrogen treatments is observed, whilst there is 

less variability between wheat varieties in the 2017 results compared to 2016. For 

ExGR_NDVI, very similar results are again seen in comparison to NDVI. For N1 

treatments, the trend for increasing values early in the season is noticeably flatter in the 

ExGR_NDVI results. For GreenPixel, higher maximum values are achieved by all 

nitrogen levels compared to 2016, though the period of high green pixel percentage is 

shorter. Overall less variability is seen between wheat varieties compared to 2016. 
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Figure 5.6. 2017 growing season temporal trends of canopy NDVI, ExGR masked NDVI 

(ExGR_NDVI) and percentage green pixels (GreenPixel) derived from UAV imagery. Results 

provided for 25 wheat varieties grown under 4 different nitrogen fertiliser treatment levels. N1 = 

0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350 kg-N/ha. 
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Results for 2018 (Figure 5.7) again show the same temporal trends over the season 

as in 2016 and 2017. As in 2017, NDVI and ExGR results show a slight drop and recovery 

in values during the plateau phase, though the drop is smaller in 2018 compared to 2017. 

Variations between nitrogen treatments show the same trends as 2016 and 2017 results. 

For wheat varieties, more variability is seen for NDVI and ExGR_NDVI in the early part 

of season, as expressed in the 2016 results. GreenPixel results also show similar variation 

between both nitrogen treatments and wheat varieties. Again, the variety MW, stands 

out as having higher GreenPixel values compared to other varieties. 

Figure 5.7. 2018 growing season temporal trends of canopy NDVI, ExGR masked NDVI 

(ExGR_NDVI) and percentage green pixels (GreenPixel) derived from UAV imagery. Results 

provided for 25 wheat varieties grown under 4 different nitrogen fertiliser treatment levels. N1 = 

0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350 kg-N/ha. 
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 Correlation plots comparing the three canopy metrics for each year are provided in 

Appendix B. The results of the plots show strong linear agreement between NDVI and 

EXGR_NDVI metrics, and much weaker linear agreement between the two NDVI based 

metrics and canopy green pixel counts.  

 Development phase determination  

 Exact development phase periods for each growing season were calculated from 

mean NDVI values for all plots in each season. Results in Table 5.7 show the start and 

end dates for each phase vary between growing seasons.  

Table 5.7. Derived phase start and end dates as well as durations for each growing 

season.  

Year Phase Start date End date Duration (days) 

2016 Formation 18/03/2016 29/04/2016 42 

 Full Canopy 29/04/2016 27/06/2016 59 

 Senescence 27/06/2016 22/07/2016 25 

2017 Formation 07/03/2017 01/05/2017 55 

 Full Canopy 01/05/2017 15/06/2017 45 

 Senescence 15/06/2017 27/07/2017 42 

2018 Formation 21/02/2018 16/05/2018 84 

 Full Canopy 16/05/2018 21/06/2018 36 

 Senescence 21/06/2018 04/07/2018 13 

  

Figure 5.8 presents results for derived development phases, as well as daily 

rainfall for the same period. Results show formation phase does not begin at first UAV 

data collection date, but at the second flight instead. Canopy formation lasts 42 days in 

total, and interestingly encompasses all nitrogen fertiliser applications for the 2016 

season. Full canopy phase succeeds formation, lasting for 59 days; and finally, 



Dynamic Quantifying of Canopy Trait Response of Modern Wheat Cultivars to Varied Nitrogen Applications 

 
 

 
157 

 

senescence, which lasts just 25 days from late-June until the last UAV flight of the season. 

Comparison of mean NDVI trends for each of the nitrogen treatment levels shows the 

N1 treatment NDVI values are clearly below the other treatment levels, and this trend 

begins after the first nitrogen fertiliser application. Between the N2, N3 and N4 

treatments, there is little variability in the formation phase. For full canopy, the N2 

treatment NDVI results start to separate from the N3 and N4, and this separation 

becomes greater and clearer in senescence. Daily rainfall trends for the 2016 growing 

season show several noticeable rainfall events occur through the season, particularly in 

March, April and June. These events do not appear to have influenced NDVI trends over 

time however.  
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Results for the 2017 growing season (Figure 5.9) present a longer formation phase 

compared to 2016, 55 days compared to 42. The phase started earlier, and finished later 

in 2017. For a full canopy, 2017 results produced a shorter phase of only 45 days 

compared to 59. Senescence results show a longer phase of 42 days from mid-June until 

the last UAV flight in late July. As for nitrogen fertiliser application, formation covers 

only two of the applications, whilst the third is applied during full canopy. Rainfall 

results demonstrate that 2017 was a drier year compared to 2016, although there was one 

significant rainfall event in mid-May. Visually, this rainfall event appears to coincide 

with a drop in N1 and N3 NDVI values. Again, NDVI trends between treatment levels 

Figure 5.8. Mean NDVI trends for the four nitrogen treatments for the 2016 growing season, with 

nitrogen application dates and derived development phases shown. NDVI trends are calculated 

from means of 25 varieties. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350 kg-

N/ha. Daily rainfall (mm) data shows several noticeable rainfall events occurring through the 

2016 growing season. Daily average temperature (°C) is represented by the red line, the grey error 

area indicates the range between daily minimum and maximum temperatures. All meteorological 

data is obtained from the electronic Rothamsted Archive (Perryman et al., 2018). 
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show the clear difference between N1 and all other treatment levels through all 

development phases. Between the higher treatment levels, results show little obvious 

differences until the start of senescence. In the senescence period, as with 2016, the N2 

treatment shows a drop in NDVI values away from those of N3 and N4. 

  

  

Figure 5.9. Mean NDVI trends for the four nitrogen treatments for the 2017 growing season, with 

nitrogen application dates and derived development phases shown. NDVI trends are calculated 

from means of 25 varieties. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350 kg-

N/ha. Daily rainfall (mm) data shows one noticeable rainfall events occurring in the 2017 growing 

season. Daily average temperature (°C) is represented by the red line, the grey error area indicates 

the range between daily minimum and maximum temperatures. All meteorological data is 

obtained from the electronic Rothamsted Archive (Perryman et al., 2018). 
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The 2018 growing season results (Figure 5.10) show the longest formation period, 

lasting 84 days. This is in part due to the earlier UAV flights, starting in February 2018 

compared to March 2016 and 2017. However, the 2018 formation phase also finished 

later compared to 2016 and 2017, suggesting that the longer phase was not solely due to 

the earlier flights. Full canopy occurs from mid-May and lasts only 36 days, whilst 

senescence lasts only 13 days. The short senescence period is more than likely to be a 

result of the lack of UAV flights after 04/07/2018. Flights in 2016 and 2017 finished at 

later date; at the end of August. Only two nitrogen applications occurred in 2018, and 

both occurred within the formation period. Comparison of NDVI results between 

nitrogen treatments once again shows the N1 treatment to be noticeably lower, with an 

apparent date of divergence in mid-April. As for the other treatment levels, no clear 

differentiation is present between N2, N3 and N4 treatments across all three phases. 

Finally, rainfall results show that 2018 was a wet season, like 2016. A high volume of 

rainfall early in the season was the main reason for a third nitrogen application not being 

applied. Two larger rainfall events occur in late April and late May 2018.  Reduced 

rainfall is observed from May onwards, after the second and final nitrogen application 

date. No obvious impact from the first event is seen in NDVI trends whilst a small dip 

in NDVI values for N2, N3 and N4 is seen shortly after the late May rainfall event. 
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Figure 5.10. Mean NDVI trends for the four nitrogen treatments for the 2018 growing season, 

with nitrogen application dates and derived development phases shown. NDVI trends are 

calculated from means of 25 varieties. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 

350 kg-N/ha. Daily rainfall (mm) data shows two noticeable rainfall events occurring in the 2018 

growing season. Daily average temperature (°C) is represented by the red line, the grey error area 

indicates the range between daily minimum and maximum temperatures. All meteorological 

data is obtained from the electronic Rothamsted Archive (Perryman et al., 2018). 
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 Development phase integrals 

 Using the derived phases presented in the previous section, ‘area under curve’ 

integrals were calculated for each development phase, canopy trait (NDVI, ExGR_NDVI, 

and GreenPixel), and growing season. Additional analysis was also performed focussing 

on differences between the grown wheat varieties, but was not the main focus of this 

chapter; these results are provided in Appendix C.  

Figure 5.11 and Table 5.8 presents boxplots of phase-derived integrals comparing 

nitrogen treatment, growing season and canopy trait. P-values for Kruskall Wallis tests 

of significant differences between nitrogen treatments for canopy formation integrals are 

also provided (Table 5.8). Results for the canopy formation phase show that the N1 

treatment results are significantly lower than all other treatment levels across all canopy 

traits and growing seasons. Differences between the higher treatment levels (N2, N3 and 

N4) are visually less clear. For 2016, no significant differences were observed between 

the higher treatment levels in NDVI and ExGR_NDVI canopy traits. GreenPixel results 

do, however, show the N2 treatment to be significantly lower then N3 and N4, whilstlt 

there is no differences between N3 and N4. 2017 results present a different trend in all 

traits, most noticeably no significant differences for GreenPixel in N2, N3 and N4 

treatments. With NDVI, N2 is significantly lower then N3, and ExGR_NDVI N2 is 

significantly lower than both N3 and N4. Finally 2018, GreenPixel trait presents no 

differences between N2, N3 and N4 treatments as seen in 2017. For NDVI N3 is 

signifincalty lower then N4, but interestingly not N2. ExGR_NDVI results show N3 

treatments lower then both N2 and N4. 
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Figure 5.11. Boxplots describing differences in derived integral values for the Formation phase 

(Phase 1). Comparisons are between growing season (columns), canopy trait (rows) and nitrogen 

treatment levels (colours). N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350 kg-

N/ha. 
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Table 5.8. P-values for Kruskal Wallis tests of significant difference between Formation phase 

derived integrals. Test of significant differences are performed between all the four nitrogen 

treatments for each canopy trait and growing season. Green shading indicates significant results, 

red shading indicates a nonsignificant result. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-

N/ha, N4 = 350kg-N/ha. 

 

For the full canopy phase (Figure 5.12, Table 5.9), results again show the N1 

treatments are significantly lower across all canopy traits and growing season. NDVI 

also demonstrate that the differences between all nitrogen levels are significant in all 

three growing seasons (Table 5.9). ExGR_NDVI and GreenPixel results in 2016 show N2 

is significantly lower than N3 and N4, and no difference is seen between N3 and N4. For 

2017, differences between nitrogen treatments for ExGR_NDVI are all significant. For 

GreenPixel, N2 was significantly lower than N4. Finally, 2018 shows no difference 

between N3 and N4 of significance in ExGR_NDVI. GreenPixel results continue to show 

no significant differences between N2, N3 and N4 treatments. 

Year Metric N1 × N2 N1 × N3 N1 × N4 N2 × N3 N2 × N4 N3 × N4 

2016 

NDVI < 0.01 < 0.01 < 0.01 0.20 0.19 0.82 

ExGR_NDVI < 0.01 < 0.01 < 0.01 0.11 0.11 0.85 

GreenPixel < 0.01 < 0.01 < 0.01 0.03 0.03 0.92 

2017 

NDVI < 0.01 < 0.01 < 0.01 < 0.01 0.08 0.17 

ExGR_NDVI < 0.01 < 0.01 < 0.01 < 0.01 0.01 0.50 

GreenPixel < 0.01 < 0.01 < 0.01 0.18 0.55 0.40 

2018 

NDVI < 0.01 < 0.01 < 0.01 0.06 0.14 < 0.01 

ExGR_NDVI < 0.01 < 0.01 < 0.01 0.05 0.90 0.05 

GreenPixel < 0.01 < 0.01 < 0.01 1 1 0.78 
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Figure 5.12. Boxplots describing differences in derived integral values for the Full Canopy phase 

(Phase 2). Comparisons are between growing season (columns), canopy trait (rows) and nitrogen 

treatment levels (colours). N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350 kg-

N/ha. 
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Table 5.9. P-values for Kruskal Wallis tests of significant difference between Full Canopy phase 

derived integrals. Test of significant differences are performed between all the four nitrogen 

treatments for each canopy trait and growing season. Green shading indicates significant results, 

red shading indicates a nonsignificant result. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-

N/ha, N4 = 350kg-N/ha. 

Year Metric N1 × N2 N1 × N3 N1 × N4 N2 × N3 N2 × N4 N3 × N4 

2016 

NDVI < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.05 

ExGR_NDVI < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.07 

GreenPixel < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.46 

2017 

NDVI < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 

ExGR_NDVI < 0.01 < 0.01 0.03 < 0.01 < 0.01 < 0.01 

GreenPixel < 0.01 < 0.01 < 0.01 0.12 0.01 0.21 

2018 

NDVI < 0.01 < 0.01 0.01 < 0.01 < 0.01 0.03 

ExGR_NDVI < 0.01 < 0.01 0.02 < 0.01 < 0.01 0.07 

GreenPixel < 0.01 < 0.01 < 0.01 0.58 0.12 0.31 

 

Again, senescence results show lower N1 results for all canopy traits are 

significantly different in all three years (Figure 5.13, Table 5.10). Significant differences 

between all treatment levels were recorded in 2016 results for all canopy traits (Table 

5.10). The 2017 results demonstrate that all differences, except for GreenPixel N2, N3 and 

N4 were significant. Finally, the 2018 results showed no differences between N3 and N4 

in any of the canopy traits, whilst again, GreenPixel showed no significant differences 

between N2, N3 and N4 treatments. 
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Figure 5.13. Boxplots describing differences in derived integral values for the Senescence phase 

(Phase 3). Comparisons are between growing season (columns), canopy trait (rows) and nitrogen 

treatment levels (colours). N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350 kg-

N/ha. 
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Table 5.10. P-values for Kruskal Wallis tests of significant difference between Senescence phase 

derived integrals. Test of significant differences are performed between all the four nitrogen 

treatments for each canopy trait and growing season. Green shading indicates significant results, 

red shading indicates a nonsignificant result.  N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-

N/ha, N4 = 350kg-N/ha. 

Year Metric N1 × N2 N1 × N3 N1 × N4 N2 × N3 N2 × N4 N3 × N4 

2016 

NDVI < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 

ExGR_NDVI < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 

GreenPixel < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 

2017 

NDVI < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 

ExGR_NDVI < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 

GreenPixel < 0.01 < 0.01 < 0.01 0.39 0.85 0.37 

2018 

NDVI < 0.01 < 0.01 0.01 < 0.01 < 0.01 0.75 

ExGR_NDVI < 0.01 < 0.01 0.02 < 0.01 < 0.01 0.82 

GreenPixel < 0.01 < 0.01 < 0.01 0.39 0.85 0.37 

 

 Correlations with crop metrics 

 Statistically significant positive correlations between phase integrals of canopy 

traits and crop metrics were found in all seasons and development phases Figure 5.14, 

Figure 5.15, and Figure 5.16). Strong positive correlations (r > 0.70) between all three 

canopy traits and final grain yield were seen in both 2016 and 2017 seasons. Correlations 

for 2018, were weaker overall, particularly in formation where the highest correlating 

trait was NDVI (r = 0.52). Of the three canopy traits, NDVI showed the most consistency 

over phases and growing seasons. Strongest correlations were achieved in full canopy 

and senescence phases for all growing seasons. The same trend was observed for 

correlations between phase integrals derived from the three canopy traits and final 

biomass yields for each growing season. Again, NDVI showed the best and most 
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consistent positive correlations for development phase integral and growing season. 

Strongest correlations were again found in full canopy and senescence for all growing 

seasons. Correlations for 2018, stand out for their overall weaker associations compared 

to previous years. Finally, correlations with total nitrogen uptake, show increasing 

strength of correlation from formation through to the strongest correlations in 

senescence. Finally, NDVI indicates the most consistent correlations over phase and 

growing season, closely followed by ExGR_NDVI. GreenPixel correlations were 

consistently weaker compared to the other traits except for formation in 2016. 

  

Figure 5.14. Pearson’s correlation coefficient results between canopy development phase 

integrals derived from the UAV time series and final grain yields (t/ha at 85% dry matter) for all 

three growing seasons and canopy traits. * indicates statistically significant results (p-value < 

0.05). 
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Figure 5.15. Pearson’s correlation coefficient results between canopy development phase 

integrals derived from the UAV time series and final biomass yields (t/ha at 100% dry matter) for 

all three growing seasons and canopy traits. * indicates statistically significant results (p-value < 

0.05). 

Figure 5.16. Pearson’s correlation coefficient results between canopy development phase 

integrals derived from the UAV time series and phase integrals and total nitrogen uptake (kg-

N/ha) measured at anthesis for all three growing seasons and canopy traits * indicates statistically 

significant results (p-value < 0.05). 
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5.4  Discussion 

 The aim of this chapter was to produce a method for phenotyping 

dynamic canopy development phases; specifically, the periods related to canopy 

formation and senescence. Using measured ‘area under the curve’, single metrics were 

produced to quantify these dynamic phases, in order to gain better understanding of 

how nitrogen fertiliser application concentrations impact on canopy dynamics. 

The devised method utilised temporal trends in canopy NDVI to identify and 

isolate three phases; formation, full canopy and senescence. These phases were based on 

monitoring the temporal trends in canopy ‘greenness’ as measured by NDVI and 

identifying and isolating the two periods of considerable change in measured NDVI, 

considered to relate to canopy formation and senescence. A third phase was identified 

as the transition period of full canopy and maximum canopy ‘greenness’ which was 

bracketed between the formation and senescence phases. An interesting trend was 

identified in the UAV time series, with an early season drop in NDVI between the first 

and second flights presented in 2016 and 2018 growing seasons. Possible explanations 

for this include the influence of background soil. Su et al., (2019)  found a similar trend 

and attributed it to irrigation of wheat plots between the two UAV flights increasing the 

soil moisture content. In combination with lower ground cover, this would increase the 

influence of background soil reflectance on derived mean plot NDVI values. However, 

temporal ExGR masked NDVI results show this trend remains somewhat in both 2016 

and 2018, where the soil has been removed from the measurements. Alternatively, 

senescence of early leaves could also result in a dip in NDVI, though again it would be 

expected that the ExGR_NDVI would filter this out if this was the cause. Crop damage 
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is another potential source for this trend be it from rainfall as seen in mid-May of the 

2017 growing season, or frost damage as a result of cold temperatures early in the year. 

Visual assessment of meteorological data from the 3 growing seasons (Figure 5.8, Figure 

5.9, and Figure 5.10) indicate no consistent rainfall or cold weather events that may 

explain the dipping trend. An alternative option that may explain the fact that the trend 

remains in the ExGR masked NDVI results, is a change in canopy structure and form as 

the crops begin to grow. Canopy reflectance is a result of the interaction between 

irradiance and canopy architecture leading to scattering of light in multiple directions 

(Jay et al., 2017a). After emergence, the initial shoots maintain a dome shape canopy in 

order to maximise light interception. After a period, the wheat plant begins to grow and 

the canopy transitions from a dome shape to elongation; therefore, altering the canopy 

architecture (Satorre and Slafer, 1999). This transition in canopy architecture occurs 

naturally, and therefore could explain the consistent dipping trend observed in 2016 and 

2018.  Further investigation of these periods in the wheat growth, ideally using 3D 

observations, is needed in order to identify the exact reason for their occurrence. Using 

3D observations, for example LiDAR, should facilitate the modelling any changes in 

canopy architecture over time. 

Comparison of the temporal trends and defined phases to those of Green Area 

Index (Figure 5.17) demonstrates the same temporal trend is obtained (Agriculture and 

Horticulture Development Board, 2015). Specifically, the main period of rapid increase 

occurs between March/April to May, and the period of decrease occurs from June until 

August. In terms of development phases, comparison to the published wheat 

development phases (Figure 5.17) indicates that the Foundation and Construction 
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phases cover different time periods to formation and full canopy phases in this study. 

The Production phases, however, does align well with the senescence phase (phase 3) 

data in this chapter.  

Though reasonable agreement is obtained in phases derived in this chapter and 

expected according to published growth trends (Agriculture and Horticulture 

Development Board, 2015), the data and results obtained in this chapter are limited 

presenting opportunities for further study. The use of mean NDVI values across all 

varieties and nitrogen treatments to defined development phases, will have reduced the 

ability to dissect differences between crop varieties, a key focus of crop breeders. As 

highlighted in Section 5.1, a target trait for many breeders is the ability of wheat varieties 

to prolong a full canopy and delay senescence (Christopher et al., 2014). By applying a 

single method to all varieties, any discrete differences in the timings of transition 

between phases (e.g. early canopy establishment or delayed senescence) will be 

concealed. This is further hampered by the lack of temporal resolution and coverage of 

UAV data utilised in this chapter. Data from bi-weekly UAV flights was used to monitor 

temporal changes in canopy phenotypes. This low temporal resolution means derived 

phase integrals, and in particular the specific transition timings between phases, are 

strongly influenced by the timings of UAV flights, as opposed to the changes in crop 

canopy traits. For example, in both the 2016 and 208 datasets, flights end before 

convergence of NDVI across all nitrogen treatments, as would be expected at the end of 

senescence. Furthermore, senescence phase for the 2018 season, as classified in this 

chapter, is covered by only two UAV flights. It must be recognised that it is difficult to 

associate trends with target phenotypic traits, as the temporal trend is incomplete and 
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influenced more by the number and timings of UAV flights as opposed to the target 

crops. Increasing the total number of UAV flights whilst also decreasing the time gap 

(e.g. > weekly flights) between flights should provide the ability for complete 

development phases and their transition points to be defined independent of UAV flight 

times.  

 Statistical comparison of canopy dynamics highlighted the influence of nitrogen 

application concentration within all isolated canopy development phases. The lack of 

nitrogen applied within the N1 plots is a clear and consistent trend throughout 

development phases, canopy traits and growing seasons. Insufficient nitrogen is clearly 

demonstrated to be a limiting factor on canopy dynamics throughout the crop life cycle. 

Of the other nitrogen treatments, the results indicate a non-linear trend in increasing 

phase integrals with increasing nitrogen. Most notable is the lack of consistent 

Figure 5.17. Expected temporal trends for winter wheat green area index from December to 

August. Also detailed are the three main wheat development phases outlined by Agriculture and 

Horticulture Development Board (AHDB) use for monitoring wheat development and crop 

management practices. GS = growth stage. (Agriculture and Horticulture Development Board, 

2015). 



Dynamic Quantifying of Canopy Trait Response of Modern Wheat Cultivars to Varied Nitrogen Applications 

 
 

 
175 

 

differences between N3 and N4. These trends fit with the known impacts of increasing 

nitrogen concentrations on grain yield (Figure 5.18) (Hawkesford, 2014). The limited 

improvement in crop yield from nitrogen applications above 200 kg-N/ha (the N2 

treatment level) correlate with the apparent limited improvements in canopy 

development traits seen in the results of this chapter.  

 Strong correlations between derived temporal canopy trait dynamics and harvest 

metrics (final grain yield, biomass and nitrogen uptake) were observed in the results of 

this study. Interestingly, standard NDVI tended to perform as well as, or even 

outperform the other canopy traits when testing correlations against key harvest metrics. 

The incorporation of canopy quality and coverage into the standard NDVI measure 

clearly outperforms either of these factors isolated. Further, comparison of these 

correlations to those of other studies indicates that the dynamic phenotyping of traits 

Figure 5.18. Comparison of nitrogen fertiliser application (bars) and final 

grain yield (solid line) showing a non-linear trend of increasing fertiliser 

and grain yields. Dotted line indicates estimated nitrogen use efficiency 

(Hawkesford, 2014). 
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does produce increased correlations against those of single time point measurements 

(Hassan et al., 2019; Magney et al., 2016). The results of this study are consistent with 

other assessments of NDVI versus harvest metric correlations (Bendig et al., 2015; 

Hassan et al., 2019; Pietragalla and Madrigal Vega, 2012) in that they show that the best 

correlations are found at the later development stages, around anthesis (flowering). 

Interestingly, of the canopy traits, NDVI provided the most consistent correlations with 

final crop metrics, despite the known limitations of spatially averaged NDVI measures 

of incorporating reflectance from multiple sources including background soil (Jay et al., 

2017b). 

 The results in this chapter clearly demonstrate the potential value of integrated 

temporal phenotyping of crop trials for providing greater insight into how the dynamic 

development of plants is influenced by fertiliser application. Key to this, has been the 

ability to phenotype at sufficiently high temporal resolutions. The use of UAVs for this 

application produces significant time saving when compared to manual ground-based 

systems, as well as the ability to customise temporal resolution. Previous studies have 

shown that increased temporal resolution and integrated measurements of senescence 

improve understanding of genetic variation between individual genotypes, both within 

and between environments (Christopher et al., 2014). The simplicity and flexibility of 

UAVs makes it possible to achieve sufficient temporal resolution in order to dynamically 

phenotype the full life cycle of crop canopy.  

 Although the work of this chapter demonstrates the ability to phenotype 

dynamic canopy development phases, the ‘area under the curve’ method is relatively 

simplistic and does not highlight any inevitable non-linear trends during phases. Some 



Dynamic Quantifying of Canopy Trait Response of Modern Wheat Cultivars to Varied Nitrogen Applications 

 
 

 
177 

 

alternative methods, designed to better incorporate these within-phase trends, have 

been identified and should form part of the focus of future work. These include modified 

logistical models (Baret, 1986; Kouadio et al., 2012; Lauvernet, 2005); found to adequately 

estimate decreases in Green Area Index measured from satellites as a result of canopy 

senescence. Alternatively, Gaju et al., (2011), applied a function developed by (Genard 

et al., 1999) to quantify senescence as a two phase (slow and rapid) process, thereby 

incorporating non-linear trends into the final senescence metric derived. Key to the 

success of this function was obtaining data twice per week throughout the growing 

season up until canopy senescence was fully completed. This further highlights the 

temporal resolution of data in this chapter as a key limitation, for which future work 

should strongly focus on improving. Additional future work should look to apply the 

quantification of development phases method (Section 5.2.7) to individual varieties, 

rather than the entire field. This should allow better interpretation of phase integral 

trends as a result of varietal responses to varied nitrogen fertiliser application. 
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5.5 Conclusion 

This chapter evaluated the application of high temporal UAV phenotyping to 

assess the effect of nitrogen fertiliser on canopy development phases. Integration of 

NDVI time series was used to quantify temporal trends in canopy traits over three 

growing seasons. Statistical comparison of phase integrals highlighted the impact of 

nitrogen on canopy dynamics, whilst strong correlations with harvest metrics showed 

the applicability of these dynamic phenotypes for association with final yields and 

biomass. Future work should look to increase temporal resolution of NDVI time series, 

and also adapt the applied methods in order investigate the impact of genetic variability 

between wheat varieties in response to nitrogen applications.   
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Chapter 6:  ‘Cost-throughput’ Analysis 

of UAVs for Long Term Phenotyping of 

Field-based Crop Trial Experiments 

6.1 Introduction 

Advances in crop yields are needed to satisfy global food production demands, 

whilst countering biotic and abiotic stresses (Furbank and Tester, 2011b). Identification 

of current phenotyping abilities as a key bottle-neck to meaningful advances in crop 

yield gains has pushed the development of high throughput phenotyping technologies 

to the fore (Araus and Cairns, 2014b). This is especially true for phenotyping of field-

based crop experiments, where traditional methods are seen to be largely labour 

intensive, inefficient, and often subjective. Several new platform types have been 

developed, with a focus on increasing the precision, resolution and throughput of 

phenotyping of field-based experiments. These include static ground platforms (e.g. 

Scanalyzer (Virlet et al., 2016)), moving ground-based vehicles (e.g. Pheno-mobiles (Kise 

and Zhang, 2008)), and low-altitude Unmanned Aerial Vehicles (UAVs); all of which 

present both advantages and disadvantages. The success of any of these platforms will 

largely rely on the validation of results, validation of high throughput abilities, data 

management and affordability (Araus et al., 2008).  

In the case of UAVs, numerous studies have presented development and 

validation of acquired phenotypic data, often promoting these platforms as cost efficient 

or low cost, high throughput phenotyping platforms. However, few studies have offered 
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any assessment of the requirements for validation of throughput, data management and 

affordability. As such the focus of this chapter will be to evaluate and discuss the costs 

and throughput related to UAVs for field phenotyping.  

 Throughput 

The throughput of any crop phenotyping platform equates to the number of plots 

or plants measured per period of time, e.g. per day (Fiorani and Schurr, 2013b). For large 

scale field experiments (>10,000 plots), the need for higher throughputs of phenotyping 

is clear. For an experiment of 20,000 plots, it was estimated that manual measurements 

of 30s per plot would require 192 hours of continuous work to complete (White et al., 

2012a). Comparison of UAVs to tractor-based phenotyping, indicated superior 

throughput achieved by the UAVs (900 plots per hours vs. 100 plots per hour) (Comar 

et al., 2012; Holman et al., 2016). However, to define throughput as just the data 

collection phase, ignores the various additional steps required to produce phenotypic 

results. This includes calibration, correction, processing and analysis of data. For manual 

methods, e.g. rulers, slow data collection is countered by minimal data processing times. 

By contrast UAVs vastly improve data collection rates over conventional manual 

methods. However, extensive processing requirements, upwards of 64 hours (Ziliani et 

al., 2018), complicates the interpretation of true high throughput abilities of UAVs. For 

a fifteen-minute flight, to cover a 50-hectare field, this means that SfM processing can 

equate to as much as 99% of total throughput time. Automated data processing, via SfM 

software does allow for the majority of this to be performed with minimal input; 

however, this delay in obtaining phenotypic results can be significant. 
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 Cost 

As with the definition of throughput, definitions of cost must acknowledge a 

range of variables to provide a true cost analysis. Equipment is most often the focus 

when assessing costs; however, equipment often only represents a variable fraction of 

the total cost of a typical phenotyping program. Previous analysis of total costs related 

to a typical phenotypic program have indicated that data analysis alone can equate to 

up to 20% of total costs (Reynolds et al., 2019). This figure was based on estimated costs 

for UAV phenotyping of 4000 micro plots (4-10m2), and total investment of $103,000. 

Total investment included $10,000 for a UAV and sensor; $24,545 per year for labour and 

training; $2,000 per year for maintenance; and $68,000 on field running costs (Reynolds 

et al., 2019). However, this review does not provide any details on target phenotypic 

traits, sensors used, or throughput achieved. Interpretation of this analysis is therefore 

difficult, particularly as costs related to both UAV platforms and sensors can vary 

significantly. For example, height measurements of a field experiment can be achieved 

using a low cost UAV (DJI Phantom 4 (DJI, Shenzhen, China)), proprietary RGB camera  

and SfM processing at a cost of £2,000 (Malambo et al., 2018). Alternatively, a UAV 

suitable LiDAR could be used in combination with a UAV capable of carrying 10kg 

(Freefly Alta (Freefly, Washington, USA)), at a cost upwards of £50,000 for the platform 

and sensor. Neither of these costs include the additional computing hardware and 

software licenses required to process and store data. Despite both offering phenotyping 

of crop height, the equipment cost related is significant. 
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Both cost and throughput associated with phenotyping systems are complex, 

highly variable, and at present insufficiently characterised to fully validate the 

affordability and efficiency of UAV phenotyping. In response to this current situation, 

this chapter will provide a more comprehensive and detailed breakdown of the costs 

and throughput associated with UAV phenotyping. In addition, comparison with 

manual ground-based methods will provide a clearer definition of the comparative low 

cost and high throughput abilities of UAVs. Utilising work from previous chapters, as 

well as discussions with Rothamsted Research, quantitative assessments of cost and 

throughput for a typical phenotyping program will be presented. 

6.2 Study Site and Assessment Parameters 

To ensure relevance of derived values, Rothamsted Research was used as the 

example research station.  This was to ensure all parameters of the analysis, such as 

number of plots measured, and throughput rates were true and relatable to the real-

world scenarios. Manual and UAV methods were based on those methods already 

applied to field phenotyping at Rothamsted Research. For the analysis, the following 

parameters were used: The total number of plots to be measured per growth season was 

set at 10,000 of two different sizes, large (9m x 3m) and small (1m x 1m). Analysis was 

set to cover five growing seasons, with 26 repeat measurements per season to measure 

phenotypes dynamically. For both methods, throughput was adjusted to reflect the 

increased throughput associated with smaller plots. 
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In terms of phenotyping methods, the manual method was assigned to 

phenotype two traits, height and canopy reflectance. Crop heights were measured using 

a meter rule and required two technicians for measurement and recording of heights. 

Canopy reflectances were measured with a hand-held Tec5 Handyspec field 

spectrometer (Tec5, Oberursel, Germany), requiring one technician to undertake 

phenotyping of canopy reflectance. UAV-based phenotyping, covered three categories 

of phenotype. Firstly, crop heights were determined using Structure from Motion 

photogrammetry with the same workflow as outlined in Chapter 3 and Holman et al. 

(2016). Phenotyping of canopy spectral reflectances was performed using the cameras 

and workflows developed in Chapter 4 and Holman et al. (2019). Additional custom-

made image calibration software, produced by the author of this thesis, was 

implemented by Rothamsted Research to maximise automation of the image calibration 

and data analysis steps. Further information about this software can be found in 

Appendix B. Finally, phenotyping of canopy temperatures was performed using a 

thermal imager, as implemented by Rothamsted research.  

Throughput assessments were based on typical plot and data throughput 

achieved by field technicians at Rothamsted Research. Cost assessments were calculated 

based on the exact field equipment, backup equipment, training, computer hardware 

and software used by Rothamsted Research. 
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6.3 Results 

 Cost Assessment  

 A full breakdown of the costs associated with manual phenotyping of crop height 

and canopy reflectance in the field is provided in Table 6.1. Costs include the 

employment of two technicians to undertake all measurements and data processing. For 

crop height, a simple meter rule was used for all measurements, adding very little to 

overall costs. A Tec5 HandySpec field spectrometer (Tec5, Oberursel, Germany) was 

used for measurements of plot canopy spectral reflectance, costing £13,362. The greatest 

cost associated with the manual method is for the two technicians, costing £100,000 per 

year for salaries and additional overheads. This is a significant cost, compared to the 

other phenotyping tools utilised; however, the necessity for skilled field technicians 

makes this cost unavoidable. Overall results show a total cost of £515,257 for the full five 

years of phenotyping. Expressed as cost per plot, this equates to £10.31 per plot for five 

years of measurements. 
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Table 6.1. Details of costs per year associated with manual phenotyping for crop height and 

canopy spectral reflectance. Costs include required equipment, labour and data processing. 

  

  

Requirement Details 
Cost 

(£) 

Additional 

Costs (£) 

Five Year 

cost (£) 

Ruler Measuring crop height 5 - 5 

Computer 
Recording crop height 

measurements 
200 - 200 

Spectrometer Tec 5 field spectrometer 13,362 
1,690 

software 
15,052 

Labour 

Salary plus overheads. 

(Minimum 2 people required 

for measuring height) 

100,000 
100,000 per 

annum 
500,000 

Total   
515,257  

(103,051 year-1) 

Cost per plot (£) – 50,000 plots over five years  10.31 
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Cost analysis for the UAV shows a requirement for more equipment compared 

to the manual methods (Table 6.2). Rothamsted Research owns two identical UAVs, both 

with custom gimbles to facilitate carrying different sensors simultaneously; with one 

acting primarily as a back-up in case of damage. A total of 16 Lithium Polymer (LiPO) 

batteries are required to fly all field experiments. Spare LiPO batteries are also included 

in case of loss of batteries due to damage or end of life span, as well as a high-powered 

battery charger to ensure timely charging of all batteries. Visible RGB and NIR cameras 

with lenses and spare parts are included for both the height and reflectance 

phenotyping. A FLIR thermal infrared camera is used for phenotyping canopy 

temperatures. Insurance and Civil Aviation Authority (CAA) permissions are required 

by UK law, as well as the proximity of Rothamsted Research to Luton Airport. 

Computing requirements included software license for Agisoft Photoscan (Agisoft, St. 

Petersburg, Russia), storage for imagery and computer hardware for processing of 

imagery. Custom open source Python-based software, developed within this PhD 

project, was used for data analysis and calibration of spectral imagery. Miscellaneous 

costs include spare parts, Ground Control Points (GCPS) in the fields, and access to a 

GPS for locating of GCPs. Finally, training and employment of one field technician is 

required to run the UAV phenotyping platform. Overall results present a total cost of 

£291, 885 for five years of phenotyping via UAV. Cost per plot was calculated at £6.20 

for the five years. As with the manual method, labour costs were the greatest single 

outlay for UAV phenotyping. 
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Table 6.2. Details of costs per year associated with UAV phenotyping for crop height and canopy 

spectral reflectance. Costs include required equipment, labour and data processing.  

* Lithium Polymer Battery. ** Permission for Commercial Operation. † Education License. 

†† Example processing computer: i7 processor (3.0ghz), 32gb Ram, 8gb Nvidia GTX 1080 

Graphics Card, 1Tb SSD. 

Requirement 
Details 

Cost 

(£) 

Additional 

Costs (£) 

5-year 

Cost (£) 

UAV DJI S900+ with custom 

gimbal. 
5,000 

Spare drone – 

5,000 
10,000 

Laptop Standard laptop able to run 

flight controller software 
1,000 - 1,000 

Batteries 

16x LiPO* batteries 3,040 

Spare 

batteries – 

1,520 

4,560 

Charger LiPO* battery charger 450  450 

RGB camera + 

lens 

Sony α5100 + 20mm 

pancake lens 
700 

Spare camera 

- 700 
1,400 

NIR camera + 

lens 

Sony α5100 + 20mm 

pancake lens + 780nm 

blocking filter replacement. 

1,000 
Spare camera 

– 1,000 
2,000 

TIR Camera FLIR thermal imaging 

camera 
5,800 - 5,800 

Spectrometer Tec 5 field spectrometer 13,362 
1,690 

software 
15,052 

Insurance Covers equipment and 3rd 

party liability (required in 

the UK) 

1,500 
1,500 per 

annum cost 
7,500 

CAA Permission Permission for Commercial 

Operation (PfCO) annual 

renewal 

185 
185 per 

annum cost 
925 

Software/ 

computing 

Data processing software 

and hardware††, storage 

(HDD) 

550† + 

5000 
- 5550 

Miscellaneous Spare parts, Ground 

Control Points etc. 
3,000 750 3,750 

Training (per 

person) Training to achieve PfCO. 2,000 - 2,000 

Labour Salary for one person plus 

overheads. 
50,000 

50,000 per 

annum 
250,000 

Total Cost   
309,987 

(61,997 year-1) 

Cost per plot (£) – 50,000 plots over five years  6.20 
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 Throughput Assessment  

 Results of calculated throughput rates for both the manual and UAV methods 

are presented in Table 6.3. For the manual method, there was variation in throughput 

between the two different plot sizes and the two different phenotypes measured. 

Unsurprisingly, the reflectance measurements were quicker than the height 

measurements, due to the ruler requiring multiple manual measurements from within a 

single plot. Data processing times for both measurements were quick (3 hours) as little 

data processing was required, except input of height measurements into a computer. 

Despite this, the total time required to phenotype the 10,000 plots with 26 repeats was 

386 days for a single year. Clearly this is impossible with the current level of labour 

employed at Rothasmted Research. One solution would be to employ more labourers; 

however, this would drive up costs. If broken down to time per measurement repetition, 

the manual methods require 15 days to collect data for what should be weekly 

measurements. 

 For the UAV, throughput did not vary between phenotypic measurements, 

because they are undertaken with the same flight. Throughput did vary however with 

plot size, as a greater number of small plots were contained within a field and therefore 

a single data collection flight. Furthermore, the deployment of multiple sensors, or the 

ability to phenotype multiple traits from the same image sets, increased throughput. The 

main disadvantage of the UAV method for throughput was the time required for data 

processing; an additional 36 hours. This was slower in comparison to the manual 

methods, and will be a problem if speed of data turnaround is a priority.  The total time 
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for the UAV method to phenotype height, spectral reflectance and canopy temperature 

was 49 days for all 26 repeated measurements. This equates to 5 days per round of 

phenotyping measurements.  

The key difference between the manual and UAV methods, is that the most time-

consuming aspect of the manual methods is the actual collection of the data. In contrast, 

the UAV method is slowed by the processing of data compared to data collection. The 

benefit of using the UAV comes from the ability to semi-automate the processing 

workflow to 24/7, at a time more convenient to the user. The manual method does not 

have this ability. 
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Table 6.3. Comparison of plot throughput per day, data processing time and total work days per year required for the manual and UAV phenotyping methods. 

Method Measurement 
Plot 

Size* 

Number 

of Plots 

Throughput 

per day 

Data 

Processing 

Time (Days) 

Days per 

measurement 

Measurements  

per Year 

Days per 

year 

Total work 

days per 

year 

Manual 

Height Large 4000 600 0.125 7 26 177 

386 

 Small 6000 1500 0.125 4 26 107 

        

Reflectance Large 4000 1500 0.125 3 26 73 

 Small 6000 6000 0.125 1 26 29 

                  

          

UAV 

Height Large 4000 3000 1.5 3 26 74 

117 

 Small 6000 40000 1.5 2 26 43 

        

Reflectance Large 4000 3000 1.5 3 26 74 

 Small 6000 40000 1.5 2 26 43 

        

Thermal Large 4000 3000 1.5 3 8 23 

 Small 6000 40000 1.5 2 8 13 

                    

* Large = 3m x 9m plot; Small = 1m x 1
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6.4 Discussion 

This chapter aimed to provide a detailed assessment of costs and throughput of 

the UAV phenotyping field experiments undertaken at Rothamsted Research, a UK-

based crop research centre. To achieve this, financial costs and plot throughputs were 

calculated for a five-season phenotyping campaign covering 10,000 plots per year. 

Cost assessment results show that overall the UAV offers superior cost per plot 

(£6.20) compared with manual methods (£10.31). Results highlight the influence of what 

may be considered hidden costs associated with both phenotyping methods. Labour 

accounted for 97% of costs for the manual method, and 80% of costs associated with 

UAV phenotyping. The importance of trained technicians for both methods clearly has 

to be acknowledged in future studies. The results also highlight the further hidden costs 

of the UAVs associated with data processing. In addition, the requirements for software 

licenses, sensor calibrations, data processing workflows and storage add considerable 

investment to the UAV. Comparison of these results to those of Reynolds et al. (2019) 

show disparity in the costs related to each aspect of the UAV method. Higher costs in all 

aspects of this study, highlights the need for more transparency in relation to costs in 

future studies of UAV-based phenotyping. 

For throughput, results strongly emphasise the benefits gained from the UAVs. 

The inability for the manual method to complete the required repeat measurements 

within each season is a considerable limitation. The throughput of UAVs is considerably 

higher in comparison and is assisted by the ability to carry multiple sensors, 

phenotyping traits simultaneously. Throughput of UAVs is, on the other hand, hindered 
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by throughput of data after capture. Unlike the data from manual methods, UAV data 

requires significant post-capture processing to extract the phenotypic data. Software 

packages are available which automate some of the steps required, though user input is 

still required at various stages of the process. Full automation of data processing is 

beginning to appear in some software packages, e.g. Pix4Dfields now offers ‘instant’ 2D 

mapping in the field without the need for an internet connection (Pix4D, 2019). 

Alternatively, further development of open source workflows could improve 

automation, throughput and software cost savings related to image processing. 

It should be noted that the costs and throughputs quantified in this chapter are 

specific to the phenotyping programme and equipment used as set out in Section 6.2. 

Therefore, costs and throughputs presented should not be applied as general costs for 

UAV phenotyping. Costs will undoubtedly fluctuate between locations, applications 

and durations of phenotyping experiments, for example labour in one country will vary 

with another (Reynolds et al., 2019).  
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6.5 Conclusions 

 Remote sensing-based monitoring from UAVs is regularly promoted as a new 

low-cost, high-throughput phenotyping solution to solve much of the phenotyping 

bottleneck associated with current crop development research. However, the lack of 

analyses in previous studies into the true costs and throughputs associated with 

obtaining phenotypic data from UAVs means these claims were relatively unproven. 

Results from this chapter demonstrate the superior throughput and cost savings 

associated with UAV phenotyping; ultimately confirming that UAVs can indeed provide 

low cost, high throughput phenotyping of field-based experiments. In the scenario 

presented within this chapter, the UAV equated to a 40% cost saving per plot over a five-

year period. 

These advantages of UAVs can be enhanced even further as future work 

continues development of the data processing side of UAV workflows to improve the 

speed and automation of data analysis workflows. Whilst the provision and reporting 

of quantitative measures of cost and throughput associated with future studies is 

important.  
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Chapter 7:  Summary of Findings, 

Conclusions and Future Work 

7.1 Research Aims and Objectives 

 As introduced in Chapter 1 and revisited throughout this thesis, the need for 

new, high throughput phenotyping methods, technologies and protocols of field-based 

crop experiments is being strongly driven by the necessity to achieve a 50% increase in 

global crop yields (Food and Agriculture Organization of the United Nations, 2017; 

Furbank and Tester, 2011b; United Nations, 2015). The development of UAV-based 

remote sensing tools, offers a potential solution to overcome these current inadequacies 

in field phenotyping, specifically resolution, precision and speed of throughput (Virlet 

et al., 2016). However, prior to the commencement of this PhD project, evaluation and 

validation of the ability of UAVs to provide phenotypically accurate, high throughput 

and cost-efficient data was insufficient. This chapter evaluates the extent to which the 

research aims and objectives set out in Chapters 1 and 2 of this thesis respectively, have 

been met. The overall aims of this thesis were to (i) investigate the use of UAV-based 

remote sensing technologies, data capture methods, and processing methodologies for 

providing high throughput data collection of phenotypic traits in the field; (ii) validate 

derived phenotypic measures against current standard measurement techniques; (iii) 

prove integration and application of developed methods to phenotyping of on-going 

field-based wheat crop experiments, (iv) assess affordability and high throughput 

capacity. To address these research aims, a series of specific objectives were defined 

(Chapter 2, Section 2.4), and addressed and evaluated (Chapters 3 – 6). The following 
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section reviews the general findings and outcomes of each of these chapters with 

references to these aims and the relevant objectives of this thesis. 

Chapter 3: Crop morphology was identified as a key category of crop 

phenotypes, not only suitable for its measurement via remote sensing, but also as a 

group of valuable phenotypic traits applicable to crop development. Specific traits 

identified within crop morphology, were crop height and lodging risk. Structure from 

Motion Photogrammetry was identified as a potential solution for generating 3D 

reconstructions of plant morphology. However, existing examples of this application for 

crop height measurements lacked the accuracy required for phenotyping (Aasen et al., 

2015b; Bendig et al., 2015, 2013a). Specifically, these studies suffered from significant 

underestimation of crop heights (Bias = 0.19m) as well as poor temporal consistency in 

results (0.77 ≤ R2 ≥ 0.22). This first data chapter sought to develop and validate the 

application of UAV derived imagery in combination with Structure from Motion 

Photogrammetric processing workflows for spatial and temporal measuring of field-

based wheat crop trials. A complete method for collection and processing of UAV 

imagery, via SfM photogrammetry, was developed. Validation of the derived mean plot 

heights was performed against both ruler and LiDAR measures of crop heights, 

producing consistently accurate results (R2 ≥ 0.92, RMSE ≤ 0.07m, Bias ≤ 0.064m) over 

three measurement dates (May, June and July). Superior throughput of measurements 

allowed the UAV method to be applied at multiple time points, from which measures of 

crop growth rate could be calculated. Higher spatial resolutions, facilitated the 

assessment of both inter- and intra-plot crop height variability, even highlighting 

features within plots unseen from ground assessments (Figure 7.1). Additional 
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investigation of SfM processing workflows also highlighted the influence of model 

processing parameters on model accuracy, resolution and processing times; all 

important factors to be considered when applying this method to real world scenarios. 

Future work should look to evaluate alternative imaging systems suitable for 

incorporation into UAV use, ultimately to facilitate measurement of multiple 

phenotypes simultaneously. This will allow for better analyses of the complex and 

dynamic interaction of multiple phenotypic traits in response to genes and growing 

environment.  

Chapter 4: Spectral reflectance of plant canopies was the other category of 

phenotyping focussed on within this thesis. Conventional methods for measuring 

spectral reflectance, typically suffer from low throughput and little to no spatial 

resolution. UAV compatible spectral imagers offer improved spatial resolutions, though 

this is still limited by a trade-off between the costs and spatial resolutions of available 

sensors. Commercial digital cameras are a low cost, high resolution alternative for multi-

spectral imaging; however, validation of workflows and accuracy of results means their 

Figure 7.1. Normalised Digital Surface Models (nDSM) for three different wheat development 

stages captured during the 2015 growing season. The dates of the nDSMs are, from left to right 

21st April, 4th June, and 6th July respectively. Originally Figure 13 in Holman et al. (2016) and 

Chapter 3 of this thesis. 
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application remains unproven. This chapter sought to develop and validate the 

application of modified Commercial ‘Off the Shelf’ (COTS) digital cameras and 

UAVs for the collection of radiometrically calibrated high-resolution spectral imagery 

of canopy reflectance.  The development of a complete radiometric calibration workflow 

was a key focus of this chapter, in order to generate accurate reflectance measures. New 

adjustments for variable image capture settings, specifically ISO and aperture value, 

were established to facilitate greater flexibility and ease of use of these cameras during 

image capture campaigns. Additional corrections for vignetting, camera spectral 

sensitivity, and temporal irradiance measures, combined to produce a system capable of 

accurate capture of high spatial resolution reflectance imagery in visible and near 

infrared wavebands. Validation of measured canopy reflectance against an alternative 

commercial UAV imager (Parrot Sequoia), and a ground-based spectrometer, 

highlighted disparity in accuracy between spectral bands when comparing imaging 

(cameras) and non-imaging (Tec5) spectrometers. Despite these trends, accuracy 

assessments of derived NDVI indicated successful calibration of COTS camera imagery 

into accurate canopy NDVI measurements (R2 ≥ 0.88, nRMSE ≤ 0.15). COTS cameras were 

investigated because they offer superior spatial resolutions over alternative UAV 

imagers. This aspect was investigated and applied to canopy reflectance measurements 

to highlight the impact of background soil inclusion in mean canopy reflectance 

measures (Figure 7.2). Isolation of pure vegetation pixels through the filtering of pixels, 

highlighted how early season measurements where greatly influenced by incomplete 

canopy coverage. Future work should focus on utilising the high spatial resolution to 

further enhance phenotypic measurements obtained from this camera system. 
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Application of machine learning and computer vision processing of the imagery could 

facilitate better monitoring of temporal phases of crops, for example, canopy formation, 

onset and duration of senescence, and grain head development. 

Chapter 5: The focus of the previous chapters was on the evaluation, 

development and validation of technologies and methodologies to produce accurate 

phenotypic data from UAV remote sensing platforms. However, as highlighted in 

Chapter 1, the full and proper evaluation and validation of the application of any new 

phenotyping strategy to phenotyping of existing real-world field-based crop 

improvement experiments is vital to their success. To provide a more complete 

evaluation of UAVs for phenotyping, it was appropriate to investigate what additional 

benefits that UAV phenotyping may offer over conventional field phenotyping 

strategies. In particular, to focus on the benefits gained from improvements to temporal 

and spatial resolutions provided by UAVs. Therefore, this chapter sought to evaluate 

the applicability of UAV phenotyping methods, developed within this thesis, to long 

Figure 7.2. Subsets of NDVI orthomosaics from three dates, 27/03/2017 (left), 18/05/2017 (middle), 

21/06/2017 (right). Orthomosaics derived from multispectral imagery captured with Commercial 

‘Off the Shelf’ (COTS) cameras, and calibrated using custom corrections developed in this PhD. 

Originally Figure 17 in Holman et al. (2019) and Chapter 4 of this thesis. 
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term, dynamic phenotyping of nitrogen fertiliser application on canopy development 

traits of a modern wheat germplasm panel. Using the high temporal resolution 

measurements, collected over the life cycle of the crops, methods were developed to 

phenotype temporal trends in canopy NDVI. The method was designed to isolate and 

quantify dynamic trends within canopy formation, full canopy and senescence phases 

of crop development. Statistical analysis of differences between dynamic canopy traits 

under different nitrogen treatments highlighted the negative impact that limiting 

nitrogen fertiliser can have on crop canopy formation, full canopy and senescence 

dynamics. Assessment of correlations with key harvest metrics showed strong 

correlations with final grain yield, biomass yield and total nitrogen uptake. The results 

highlight the applicability of the increased temporal resolution phenotyping to gaining 

new insights into how crops respond to changes in environmental growing conditions 

through their life cycles. Though they also highlight some shortcomings with the applied 

methods and datasets utilised, providing key areas of focus for future work in order to 

further develop the methods and results. Further work must include obtaining even 

greater temporal resolution to facilitate greater insight into crop growth dynamics. 

Additionally, work should look to investigate genetic variation in response to nitrogen 

treatments or other environmental variables to further enhance the application of UAVs 

to phenotyping and crop development, results were provided within this thesis 

(Appendix C), though analysis of these results. 

Chapter 6: UAVs and remote sensing techniques are widely promoted as being 

high-throughput and low cost, making them an ideal solution to current bottlenecks in 

field phenotyping strategies. However, studies often provide little or no quantitative 
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assessment of the throughput rates or the associated financial costs required in order to 

implement UAVs into long term phenotyping studies. As highlighted in Chapter 1, cost 

and throughput benefits are as important factors as phenotypic accuracy in defining the 

success of any new phenotyping system. Considering these factors, this chapter sought 

to assess and quantify the true costs and throughput associated with a UAV-based 

phenotyping system for long term field experiments. Comparison of financial cost and 

throughput rates achieved by Rothamsted Research for ground-based and UAV-based 

phenotyping strategies, were used to provide quantitative assessment of the cost and 

throughput benefits. Evaluation of all financial costs associated with both strategies 

highlighted the significance of ‘hidden’ costs (e.g. labour and training) on the total 

investment required; with labour costs amounting to 97% of total cost for ground-based 

and 85% for UAV-based phenotyping. Overall, the UAV could achieve a 47% cost saving 

per plot over ground-based manual methods when considered for a five-year time 

period. As for throughput, the UAV provided significant advantages, ultimately 

achieving a throughput rate 3x greater than those of ground-based phenotyping per year 

for the scenario presented. This superiority is achieved largely due to the rapid data 

collection facilitated by UAVs and the remote sensing techniques. Slower data 

processing times for UAVs compared to ground-based techniques, were overcome by 

automation of the subsequent processing steps. Overall, for the scenarios presented in 

Chapter 6, UAVs offered significant advantages in all aspects of cost and throughput 

compared to ground-based alternatives.  
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7.2 Recommendations for Future Work 

Unmanned Aerial Vehicles and remote sensing are no longer considered 

‘potential’ solutions or concepts for phenotyping of field-based crop trials. Work in this 

thesis has made a valuable contribution to the development and validation of UAVs in 

this application and has identified areas for future study. These include: 

• The incorporation of a wider range of sensors for phenotyping should be 

investigated to increase phenotyping capabilities. Development of low cost, UAV 

specific sensors including LiDAR and hyperspectral cameras are making them a 

feasible option for use. LiDAR offers the opportunity to generate much greater 

three-dimensional information of height, growth rates, and canopy architecture 

(Hosoi and Omasa, 2009; Jimenez-Berni et al., 2018; Liu et al., 2017); whilst 

hyperspectral increases the number and range of wavebands available for 

phenotyping, increasing the number of phenotypes available for measurement 

(Bohnenkamp et al., 2019; Li et al., 2019; Liu et al., 2020). However, as with the 

technologies and methods evaluated in this thesis, key to the success of any new 

sensor technology will be the successful development and validation of data 

capture, processing, analysis, and accuracy. 

• Standardisation of data handling, processing, analysis and storage must be 

addressed in future work, to ensure compatibility of phenotypic results from 

different years and/or locations. As the adoption of UAVs into many different 

phenotyping strategies increases, there is a necessity to develop standard 

protocols for the important steps of data analysis and storage. The methods 

developed in chapters 3 and 4, generate significant volumes of imagery data (>10 
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GB per flight), which requires sufficient storage and processing solutions. Fine-

tuning of these aspects of the entire phenotyping solution will further improve 

the overall capacity of UAVs as a high-throughput phenotyping system. 

• This PhD project has provided only a small example of the potential applications 

and phenotypes that can be derived from the UAV imagery and sensors 

developed. Further work should consider the additional phenotypic metrics that 

can be derived from high spatial and temporal resolution data available from 

UAV platforms. More advanced data analysis techniques such as machine 

learning and computer vision should be investigated for their potential in 

offering more robust and automated analysis methods for increased phenotyping 

of UAV-based datasets. This area of data processing, and analysis is seeing large 

and rapid developments. An area of particular interest is the use of machine 

learning to train computers in automated image recognition and classification. 

Examples applications of these techniques in the field of crop phenotyping 

include senescence monitoring and quantification from UAV imagery (Makanza 

et al., 2018). Elsewhere, studies have trained models to classify vegetation and 

soil pixels in order to quantify ground cover and crop establishment from aerial 

RGB imagery (Sadeghi-Tehran et al., 2017). Other applications that have shown 

promise include the monitoring of disease and pest establishment in plants (Bah 

et al., 2019; Faical et al., 2016; Pérez-Ortiz et al., 2016; Puig et al., 2015) as well as 

yield prediction models from a collection of phenotypic input data (Arroyo et al., 

2017; Chlingaryan et al., 2018; Hassan et al., 2019). 
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Integration of additional sensors alongside the dual COTS camera system of this 

PhD project should be a focus of future work. Specifically, thermal imaging 

which has been applied in monitoring crop water stress, a key target trait for 

crops grown in water limited environments (Rutkoski et al., 2016). Studies have 

utilised thermal imagers from UAVs for crop phenotyping (Berni et al., 2009a; 

Perez-Priego et al., 2005; Zarco-Tejada et al., 2012). Combining of thermal 

phenotyping with morphology and spectral reflectances as developed in this 

thesis should create a system capable high-throughput phenotyping a range of 

phenotypic data simultaneously in order to better understand how phenotypes 

interact dynamically over time and space. 

7.3 Concluding Remarks 

This PhD project has developed and evaluated UAV-based remote sensing 

technologies and methodologies for high throughput phenotyping of crop morphology 

and spectral reflectance in field-based crop trials. Conventional manual, ground-based 

phenotyping has been a bottleneck to meaningful advances in crop and yield 

development, required to meet the demands of a growing global population. The 

methods developed in this study offer superior temporal and spatial resolutions whilst 

achieving comparable accuracy for both crop morphology and spectral reflectance of 

plots. Improved throughput and cost efficiency of UAV phenotyping strategies over 

alternative options, provide further confirmation of UAVs application as valid, accurate, 

precise and high throughput phenotyping systems for application to field-based crop 

experiments. It is hoped that the work presented in this thesis will contribute to the 
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adoption of UAVs and remote sensing as the new conventional phenotyping strategy 

and support the development of crop yield advancements into the future. 
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Appendix A 

Appendix A contains details of the 2016, 2017 and 2018 field experiment used in 

Chapters 3, 4 and 5 of this thesis. Planting maps (Figures A1, A2 and A3) and a list of 

individual varieties grown (Table A1) are provided. 
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Table A. 1. Name and code of all wheat varieties grown in the 2016, 2017 and 2018 growing season 

experiments. Also detailed is which season each variety was grown in. 

Code Variety Seasons Grown. 

AV Avalon 2016, 2017, 2018 

BA Barrel 2018 

CA Cadenza 2016, 2017, 2018 

CC Cocoon 201, 2017 

CL Claire 2016, 2017, 2018 

CN Conqueror 2016, 2017, 2018 

CO Cordiale 2016, 2017, 2018 

CR Crusoe 2016, 2017, 2018 

EL Evolution 2016, 2017, 2018 

EV Evoke 2016 

GA Gallant 2016, 2017 

GR Graham 2017, 2018 

HE Hereward 2016, 2017, 2018 

HF Hereford 2016, 2017, 2018 

HL Hylux 2016, 2017, 2018 

HY Hystar 2016, 2017, 2018 

IL RAGT Illustrious 2016, 2017, 2018 

IS Istabraq 2016, 2017, 2018 

LE Leeds 2016, 2017, 2018 

LI KWS Lili 2016, 2017, 2018 

MA Malacca 2016, 2017, 2018 

ME Mercia 2016, 2017, 2018 

MW Maris Widgeon 2016, 2017, 2018 

PA Paragon 2016, 2017, 2018 

RF Reflection 2016, 2017, 2018 

RI Riband 2016, 2017, 2018 

RO Robigus 2016, 2017, 2018 

SK Siskin 2017, 2018 

SL Solstice 2016, 2017, 2018 

SS Soissons 2016, 2018 

SS+SL Soissons + Solstice 2017 

ST Stigg 2016 

SY Skyfall 2016, 2017, 2018 

XI Xi19 2016, 2017, 2018 

ZY Zyatt 2018 
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2016  

Figure A. 1 

Planting map 

detailing plot 

layout of the 2016 

Wheat Genetic 

Improvement 

Network (WGIN) 

field experiment. 
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2017  

Figure A. 2. Planting 

map detailing plot 

layout of the 2017 

Wheat Genetic 

Improvement Network 

(WGIN) field 

experiment. 



Appendix A  

 

229 

 

2018

Figure A. 3. Planting 

map detailing plot 

layout of the 2018 

Wheat Genetic 

Improvement 

Network (WGIN) 

field experiment. 



Appendix B  

 

230 

 

Appendix B 

Appendix B contains correlation plots comparing the three different canopy metrics 

derived in Chapter 5; NDVI, EXGR_NDVI, and GreenPixel. The results indicate positive 

correlations between NDVI and ExGR_NDVI; whilst Green Pixel shows little to no linear 

agreement with either of the other two metrics. These trends are consistent across all 

three years – 2016, 2017 and 2018. 

 

Figure C. 2. Correlation plots between NDVI and ExGR_NDVI (left); NDVI and GreenPixel 

(middle); and ExGR_NDVI and GreenPixel (right) across all UAV measurement dates in the 2017 

growing season. Results show a strong linear trend between NDVI and ExGR masked NDVI, 

however weaker trends are observed between the NDVI and ExGR_NDVI compared to 

GreenPixel. 

Figure C. 1. Correlation plots between NDVI and ExGR_NDVI (left); NDVI and GreenPixel 

(middle); and ExGR_NDVI and GreenPixel (right) across all UAV measurement dates in the 2016 

growing season. Results show a strong linear trend between NDVI and ExGR masked NDVI, 

however weaker trends are observed between the NDVI and ExGR_NDVI compared to 

GreenPixel. 
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Figure C. 3. Correlation plots between NDVI and ExGR_NDVI (left); NDVI and GreenPixel 

(middle); and ExGR_NDVI and GreenPixel (right) across all UAV measurement dates in the 2017 

growing season. Results show a strong linear trend between NDVI and ExGR masked NDVI, 

however weaker trends are observed between the NDVI and ExGR_NDVI compared to 

GreenPixel. 
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Appendix C 

Appendix C contains tabulated results comparing varietal responses to different 

nitrogen treatments, as measured by each of the three integrated canopy phases as 

defined in Chapter 5. Results for all phases, canopy reflectance metrics (NDVI, ExGR 

NDVI, and Green Pixel), and growing year (2016, 2017, 2018) are presented in the 

following tables. 
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Table B. 1. P-values for Kruskal Wallis tests of significant difference between Formation 

phase derived NDVI integrals for the 2016 season. Test of significant differences are 

performed between all wheat varieties grown. Green shading indicates significant 

results, red shading indicates a nonsignificant result. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, 

N3 = 200 kg-N/ha, N4 = 350kg-N/ha. 

Formation Phase – NDVI - 2016 

Variety N1 × N2 N1 × N3 N1 × N4 N2 × N3 N2 × N4 N3 × N4 

AV 0.64 0.12 0.62 0.06 0.70 0.73 

CA 0.08 0.21 1.00 0.45 1.00 0.65 

CL 0.27 0.36 0.82 0.08 1.00 1.00 

CN 0.45 0.27 1.00 0.19 1.00 0.82 

CO 0.45 0.21 0.65 0.08 1.00 1.00 

CR 0.56 0.21 1.00 0.06 0.77 0.57 

EL 0.73 0.03 0.27 0.56 0.57 0.52 

HE 0.52 0.45 0.73 0.01 0.36 0.35 

HF 0.03 0.12 0.57 0.62 0.28 0.64 

HL 0.45 0.06 0.92 0.62 0.57 0.56 

HY 0.35 0.14 1.00 0.45 0.82 1.00 

IL 0.45 0.14 1.00 0.35 0.82 1.00 

IS 0.22 0.21 0.91 0.19 1.00 1.00 

LE 0.85 0.25 1.00 0.27 0.99 0.91 

LI 0.45 0.16 1.00 0.10 1.00 0.82 

MA 0.52 0.45 0.73 0.01 0.36 0.35 

ME 0.56 0.16 0.99 0.08 0.92 0.73 

MW 0.77 0.03 0.36 0.16 0.62 0.50 

PA 0.10 0.27 1.00 0.28 1.00 0.91 

RF 0.45 0.03 0.52 0.45 0.91 0.64 

RI 0.08 0.21 1.00 0.45 1.00 0.65 

RO 0.57 0.56 0.73 0.04 0.16 0.64 

SL 0.85 0.35 1.00 0.19 1.00 0.73 

SY 0.45 0.56 0.82 0.02 0.43 0.42 

Xi 0.04 0.56 0.64 0.27 0.86 0.65 

Table B. 2. P-values for Kruskal Wallis tests of significant difference between Formation phase 

derived NDVI integrals for the 2017 season. Test of significant differences are performed between 
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all wheat varieties grown. Green shading indicates significant results, red shading indicates a 

nonsignificant result. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350kg-N/ha. 

Formation Phase – NDVI - 2017 

Variety N1 × N2 N1 × N3 N1 × N4 N2 × N3 N2 × N4 N3 × N4 

AV 0.45 0.25 1.00 0.21 1.00 1.00 

CA 1.00 0.14 0.92 0.85 1.00 0.62 

CL 0.85 0.09 0.52 0.08 0.64 0.91 

CN 0.45 0.04 0.77 0.35 0.82 0.73 

CO 0.28 0.27 0.91 0.10 1.00 1.00 

CR 0.99 0.14 0.56 1.00 0.82 0.70 

EL 0.14 0.27 1.00 0.22 1.00 1.00 

HE 0.56 0.27 0.65 0.04 0.64 0.86 

HF 0.28 0.21 1.00 0.14 1.00 0.82 

HL 0.45 0.10 1.00 0.45 0.91 0.99 

HY 0.14 0.21 0.82 0.28 1.00 1.00 

IL 0.50 0.08 0.35 0.45 1.00 0.73 

IS 0.73 0.08 0.45 0.12 0.52 0.82 

LE 0.10 0.27 1.00 0.28 1.00 0.91 

LI 0.45 0.36 1.00 0.04 0.92 0.62 

MA 0.77 0.10 0.85 0.45 0.57 0.99 

ME 0.86 0.08 0.45 0.56 0.50 0.92 

MW 0.86 0.08 0.45 0.56 0.50 0.92 

PA 0.45 0.14 1.00 0.12 0.99 1.00 

RF 0.27 0.22 1.00 0.14 1.00 1.00 

RI 0.64 0.04 0.56 0.16 0.73 0.57 

RO 1.00 0.33 1.00 0.45 1.00 0.82 

SL 0.35 0.10 0.57 1.00 0.64 0.28 

SY 0.64 0.04 0.56 0.16 0.73 0.57 

Xi 0.19 0.22 1.00 0.21 1.00 0.91 
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Table B. 3. P-values for Kruskal Wallis tests of significant difference between Formation Phase 

derived NDVI integrals for the 2018 season. Test of significant differences are performed between 

all wheat varieties grown. Green shading indicates significant results, red shading indicates a 

nonsignificant result. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350kg-N/ha. 

Formation Phase – NDVI - 2018 

Variety N1 × N2 N1 × N3 N1 × N4 N2 × N3 N2 × N4 N3 × N4 

AV 0.91 1.00 1.00 1.00 1.00 1.00 

CA 1.00 1.00 1.00 1.00 1.00 1.00 

CL 1.00 1.00 0.73 0.54 1.00 1.00 

CN 0.42 1.00 1.00 0.35 1.00 0.99 

CO 1.00 0.82 1.00 1.00 1.00 1.00 

CR 0.68 1.00 0.85 0.71 0.91 0.77 

EL 0.56 0.42 0.91 0.01 0.28 0.45 

HE 1.00 1.00 1.00 1.00 1.00 1.00 

HF 0.45 0.56 0.82 0.25 1.00 1.00 

HL 0.71 1.00 1.00 0.42 0.73 1.00 

HY 1.00 0.85 1.00 1.00 0.73 1.00 

IL 0.45 0.85 1.00 0.42 0.91 1.00 

IS 0.42 1.00 0.85 0.71 0.73 1.00 

LE 1.00 0.91 1.00 1.00 1.00 0.92 

LI 1.00 1.00 1.00 1.00 0.91 1.00 

MA 0.68 1.00 1.00 1.00 1.00 0.82 

ME 1.00 1.00 1.00 0.82 1.00 1.00 

MW 0.36 0.25 1.00 0.27 1.00 0.91 

PA 1.00 0.91 1.00 1.00 0.85 1.00 

RF 0.91 1.00 1.00 1.00 1.00 1.00 

RI 0.45 0.91 0.42 0.19 1.00 0.21 

RO 0.17 0.57 0.42 0.06 1.00 0.21 

SL 0.14 0.56 1.00 0.27 0.73 1.00 

SY 0.56 0.45 0.82 0.08 0.92 0.86 

Xi 0.45 0.85 1.00 0.42 0.91 1.00 
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Table B. 4. P-values for Kruskal Wallis tests of significant difference between Full Canopy Phase 

derived NDVI integrals for the 2016 season. Test of significant differences are performed between 

all wheat varieties grown. Green shading indicates significant results, red shading indicates a 

nonsignificant result. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350kg-N/ha. 

Full Canopy Phase – NDVI - 2016 

Variety N1 × N2 N1 × N3 N1 × N4 N2 × N3 N2 × N4 N3 × N4 

AV 0.92 0.21 0.62 0.01 0.17 0.31 

CA 0.62 0.16 0.77 0.02 0.22 0.43 

CL 0.92 0.21 0.62 0.01 0.17 0.31 

CN 0.62 0.06 0.45 0.06 0.42 0.91 

CO 0.92 0.21 0.62 0.01 0.17 0.31 

CR 0.62 0.12 0.64 0.03 0.28 0.57 

EL 0.62 0.06 0.42 0.06 0.45 0.91 

HE 0.92 0.21 0.62 0.01 0.17 0.31 

HF 0.62 0.04 0.36 0.09 0.52 0.73 

HL 0.62 0.16 0.77 0.02 0.22 0.43 

HY 0.62 0.16 0.77 0.02 0.22 0.43 

IL 0.62 0.12 0.64 0.03 0.28 0.57 

IS 0.92 0.21 0.62 0.01 0.17 0.31 

LE 0.62 0.09 0.52 0.04 0.36 0.73 

LI 0.62 0.16 0.77 0.02 0.22 0.43 

MA 0.92 0.21 0.62 0.01 0.17 0.31 

ME 0.62 0.16 0.77 0.02 0.22 0.43 

MW 0.62 0.16 0.77 0.02 0.22 0.43 

PA 0.92 0.21 0.62 0.01 0.17 0.31 

RF 0.62 0.12 0.64 0.03 0.28 0.57 

RI 0.62 0.12 0.64 0.03 0.28 0.57 

RO 0.62 0.06 0.42 0.06 0.45 0.91 

SL 0.92 0.21 0.62 0.01 0.17 0.31 

SY 0.92 0.21 0.62 0.01 0.17 0.31 

Xi 0.92 0.21 0.62 0.01 0.17 0.31 
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Table B. 5. P-values for Kruskal Wallis tests of significant difference between Full Canopy Phase 

derived NDVI integrals for the 2017 season. Test of significant differences are performed between 

all wheat varieties grown. Green shading indicates significant results, red shading indicates a 

nonsignificant result. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350kg-N/ha. 

Full Canopy Phase – NDVI - 2017 

Variety N1 × N2 N1 × N3 N1 × N4 N2 × N3 N2 × N4 N3 × N4 

AV 0.64 0.27 0.50 0.02 0.36 0.62 

CA 0.45 0.21 0.65 0.08 1.00 1.00 

CL 0.77 0.16 0.62 0.03 0.36 0.50 

CN 0.70 0.12 0.73 0.08 0.77 0.82 

CO 0.56 0.45 0.82 0.02 0.42 0.43 

CR 0.70 0.10 0.92 0.09 0.62 1.00 

EL 0.52 0.35 0.65 0.02 0.45 0.52 

HE 0.52 0.27 0.57 0.03 0.56 0.73 

HF 0.52 0.35 0.65 0.02 0.45 0.52 

HL 0.64 0.21 0.43 0.03 0.45 0.86 

HY 0.52 0.35 0.65 0.02 0.45 0.52 

IL 0.56 0.35 0.73 0.03 0.52 0.62 

IS 0.77 0.27 0.43 0.01 0.22 0.52 

LE 0.52 0.35 0.65 0.02 0.45 0.52 

LI 0.56 0.45 0.82 0.02 0.42 0.43 

MA 0.52 0.27 0.57 0.03 0.56 0.73 

ME 0.62 0.06 0.42 0.06 0.45 0.91 

MW 0.52 0.09 0.64 0.06 0.56 0.82 

PA 0.64 0.21 0.43 0.03 0.45 0.86 

RF 0.52 0.35 0.65 0.02 0.45 0.52 

RI 0.64 0.35 0.57 0.01 0.28 0.43 

RO 0.62 0.09 0.52 0.04 0.36 0.73 

SL 0.85 0.09 0.52 0.08 0.64 0.91 

SY 0.77 0.21 0.73 0.02 0.28 0.37 

Xi 0.52 0.45 0.73 0.01 0.36 0.35 
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Table B. 6. P-values for Kruskal Wallis tests of significant difference between Full Canopy Phase 

derived NDVI integrals for the 2018 season. Test of significant differences are performed between 

all wheat varieties grown. Green shading indicates significant results, red shading indicates a 

nonsignificant result. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350kg-N/ha. 

Full Canopy Phase – NDVI – 2018 

Variety N1 × N2 N1 × N3 N1 × N4 N2 × N3 N2 × N4 N3 × N4 

AV 0.92 0.21 0.62 0.01 0.17 0.31 

CA 0.36 0.27 0.82 0.08 1.00 1.00 

CL 0.64 0.16 0.73 0.04 0.56 0.57 

CN 0.27 0.28 0.91 0.10 1.00 1.00 

CO 0.62 0.12 0.64 0.03 0.28 0.57 

CR 0.45 0.16 1.00 0.10 1.00 0.82 

EL 0.64 0.35 0.57 0.01 0.28 0.43 

HE 0.36 0.21 1.00 0.10 1.00 0.73 

HF 0.56 0.12 0.86 0.10 1.00 0.91 

HL 0.56 0.16 0.99 0.08 0.92 0.73 

HY 0.77 0.21 0.73 0.02 0.28 0.37 

IL 0.45 0.21 0.65 0.08 1.00 1.00 

IS 0.28 0.27 0.91 0.10 1.00 1.00 

LE 0.36 0.27 0.82 0.08 1.00 1.00 

LI 0.56 0.16 0.99 0.08 0.92 0.73 

MA 0.70 0.16 0.86 0.06 0.64 0.65 

ME 0.45 0.16 1.00 0.10 1.00 0.82 

MW 0.85 0.09 0.52 0.08 0.64 0.91 

PA 0.77 0.27 0.43 0.01 0.22 0.52 

RF 0.62 0.09 0.52 0.04 0.36 0.73 

RI 0.64 0.35 0.57 0.01 0.28 0.43 

RO 0.70 0.21 0.99 0.04 0.52 0.50 

SL 0.62 0.16 0.77 0.02 0.22 0.43 

SY 0.92 0.21 0.62 0.01 0.17 0.31 

Xi 0.70 0.10 0.92 0.09 0.62 1.00 
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Table B. 7. P-values for Kruskal Wallis tests of significant difference between Senescence Phase 

derived NDVI integrals for the 2016 season. Test of significant differences are performed between 

all wheat varieties grown. Green shading indicates significant results, red shading indicates a 

nonsignificant result. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350kg-N/ha. 

Senescence Phase – NDVI – 2016 

Variety N1 × N2 N1 × N3 N1 × N4 N2 × N3 N2 × N4 N3 × N4 

AV 0.92 0.21 0.62 0.01 0.17 0.31 

CA 0.92 0.21 0.62 0.01 0.17 0.31 

CL 0.92 0.21 0.62 0.01 0.17 0.31 

CN 0.92 0.21 0.62 0.01 0.17 0.31 

CO 0.92 0.21 0.62 0.01 0.17 0.31 

CR 0.92 0.21 0.62 0.01 0.17 0.31 

EL 0.92 0.21 0.62 0.01 0.17 0.31 

HE 0.92 0.21 0.62 0.01 0.17 0.31 

HF 0.92 0.21 0.62 0.01 0.17 0.31 

HL 0.57 0.28 0.64 0.03 0.12 0.62 

HY 0.92 0.21 0.62 0.01 0.17 0.31 

IL 0.92 0.21 0.62 0.01 0.17 0.31 

IS 0.92 0.21 0.62 0.01 0.17 0.31 

LE 0.43 0.22 0.77 0.02 0.16 0.62 

LI 0.92 0.21 0.62 0.01 0.17 0.31 

MA 0.92 0.21 0.62 0.01 0.17 0.31 

ME 0.92 0.21 0.62 0.01 0.17 0.31 

MW 0.92 0.21 0.62 0.01 0.17 0.31 

PA 0.92 0.21 0.62 0.01 0.17 0.31 

RF 0.92 0.21 0.62 0.01 0.17 0.31 

RI 0.92 0.21 0.62 0.01 0.17 0.31 

RO 0.62 0.16 0.77 0.02 0.22 0.43 

SL 0.92 0.21 0.62 0.01 0.17 0.31 

SY 0.92 0.21 0.62 0.01 0.17 0.31 

Xi 0.92 0.21 0.62 0.01 0.17 0.31 
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Table B. 8. P-values for Kruskal Wallis tests of significant difference between Senescence Phase 

derived NDVI integrals for the 2017 season. Test of significant differences are performed between 

all wheat varieties grown. Green shading indicates significant results, red shading indicates a 

nonsignificant result. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350kg-N/ha. 

Senescence Phase – NDVI – 2017 

Variety N1 × N2 N1 × N3 N1 × N4 N2 × N3 N2 × N4 N3 × N4 

AV 0.62 0.16 0.77 0.02 0.22 0.43 

CA 0.62 0.16 0.77 0.02 0.22 0.43 

CL 0.92 0.21 0.62 0.01 0.17 0.31 

CN 0.52 0.09 0.64 0.06 0.56 0.82 

CO 0.92 0.21 0.62 0.01 0.17 0.31 

CR 0.92 0.21 0.62 0.01 0.17 0.31 

EL 0.92 0.21 0.62 0.01 0.17 0.31 

HE 0.92 0.21 0.62 0.01 0.17 0.31 

HF 0.62 0.09 0.52 0.04 0.36 0.73 

HL 0.92 0.21 0.62 0.01 0.17 0.31 

HY 0.73 0.08 0.45 0.12 0.52 0.82 

IL 0.62 0.16 0.77 0.02 0.22 0.43 

IS 0.92 0.21 0.62 0.01 0.17 0.31 

LE 0.62 0.09 0.52 0.04 0.36 0.73 

LI 0.92 0.21 0.62 0.01 0.17 0.31 

MA 0.92 0.21 0.62 0.01 0.17 0.31 

ME 0.92 0.21 0.62 0.01 0.17 0.31 

MW 0.64 0.35 0.57 0.01 0.28 0.43 

PA 0.62 0.12 0.64 0.03 0.28 0.57 

RF 0.92 0.21 0.62 0.01 0.17 0.31 

RI 0.62 0.12 0.64 0.03 0.28 0.57 

RO 0.92 0.21 0.62 0.01 0.17 0.31 

SL 0.92 0.21 0.62 0.01 0.17 0.31 

SY 0.43 0.22 0.77 0.02 0.16 0.62 

Xi 0.92 0.21 0.62 0.01 0.17 0.31 
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Table B. 9. P-values for Kruskal Wallis tests of significant difference between Senescence Phase 

derived NDVI integrals for the 2018 season. Test of significant differences are performed between 

all wheat varieties grown. Green shading indicates significant results, red shading indicates a 

nonsignificant result. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350kg-N/ha. 

Senescence Phase – NDVI – 2018 

Variety N1 × N2 N1 × N3 N1 × N4 N2 × N3 N2 × N4 N3 × N4 

AV 0.62 0.06 0.45 0.06 0.42 0.91 

CA 0.85 0.08 0.64 0.09 0.52 0.91 

CL 0.64 0.03 0.45 0.21 0.43 0.86 

CN 0.28 0.14 1.00 0.21 1.00 0.82 

CO 0.86 0.06 0.28 0.12 0.42 0.73 

CR 0.52 0.06 0.56 0.09 0.64 0.82 

EL 0.36 0.16 1.00 0.14 1.00 0.91 

HE 0.56 0.08 0.92 0.16 0.99 0.73 

HF 0.62 0.03 0.28 0.12 0.64 0.57 

HL 0.85 0.08 0.64 0.09 0.52 0.91 

HY 0.77 0.04 0.45 0.12 0.52 0.65 

IL 0.28 0.27 0.91 0.10 1.00 1.00 

IS 0.45 0.16 1.00 0.10 1.00 0.82 

LE 0.64 0.02 0.36 0.27 0.50 0.62 

LI 0.73 0.19 0.85 0.16 0.64 1.00 

MA 0.70 0.21 0.99 0.04 0.52 0.50 

ME 0.70 0.06 0.64 0.16 0.86 0.65 

MW 0.77 0.12 0.52 0.04 0.45 0.65 

PA 0.92 0.21 0.62 0.01 0.17 0.31 

RF 0.56 0.45 0.82 0.02 0.42 0.43 

RI 0.36 0.08 1.00 0.27 0.82 1.00 

RO 0.64 0.12 0.62 0.06 0.70 0.73 

SL 0.52 0.03 0.56 0.27 0.57 0.73 

SY 0.52 0.08 0.70 0.06 0.52 1.00 

Xi 0.64 0.21 0.43 0.03 0.45 0.86 
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Table B. 10. P-values for Kruskal Wallis tests of significant difference between Formation Phase 

derived ExGR_NDVI integrals for the 2016 season. Test of significant differences are performed 

between all wheat varieties grown. Green shading indicates significant results, red shading 

indicates a nonsignificant result. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350kg-

N/ha. 

Formation Phase – ExGR_NDVI – 2016 

Variety N1 × N2 N1 × N3 N1 × N4 N2 × N3 N2 × N4 N3 × N4 

AV 0.36 0.14 1.00 0.16 1.00 0.91 

CA 0.10 0.16 0.82 0.45 1.00 1.00 

CL 0.25 0.21 1.00 0.17 1.00 1.00 

CN 1.00 0.85 1.00 1.00 0.91 1.00 

CO 0.70 0.12 0.73 0.08 0.77 0.82 

CR 0.27 0.22 1.00 0.14 1.00 1.00 

EL 0.91 0.08 0.09 0.64 0.52 0.85 

HE 0.64 0.56 0.73 0.03 0.45 0.43 

HF 0.12 0.08 0.82 0.73 0.52 0.45 

HL 0.71 0.19 0.99 1.00 0.73 0.92 

HY 0.56 0.35 1.00 0.33 1.00 0.91 

IL 1.00 0.68 0.85 0.71 0.77 0.91 

IS 0.22 0.21 0.91 0.19 1.00 1.00 

LE 0.56 0.19 1.00 0.56 0.91 1.00 

LI 0.85 0.09 0.52 0.08 0.64 0.91 

MA 0.64 0.35 0.57 0.01 0.28 0.43 

ME 0.56 0.12 0.86 0.10 1.00 0.91 

MW 0.64 0.02 0.36 0.27 0.50 0.62 

PA 0.21 0.19 1.00 0.22 0.91 1.00 

RF 0.56 0.06 0.77 0.56 0.91 0.62 

RI 0.33 0.71 1.00 0.70 1.00 0.91 

RO 0.50 0.45 1.00 0.08 0.35 0.73 

SL 0.85 0.35 1.00 0.19 1.00 0.73 

SY 0.56 0.42 0.91 0.01 0.28 0.45 

Xi 0.04 0.62 0.36 0.09 0.73 0.52 
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Table B. 11. P-values for Kruskal Wallis tests of significant difference between Formation Phase 

derived ExGR_NDVI integrals for the 2017 season. Test of significant differences are performed 

between all wheat varieties grown. Green shading indicates significant results, red shading 

indicates a nonsignificant result. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350kg-

N/ha. 

Formation Phase – ExGR_NDVI – 2017 

Variety N1 × N2 N1 × N3 N1 × N4 N2 × N3 N2 × N4 N3 × N4 

AV 0.56 0.21 1.00 0.19 1.00 0.91 

CA 0.87 0.25 1.00 0.70 1.00 0.99 

CL 0.70 0.16 0.86 0.06 0.64 0.65 

CN 0.56 0.02 0.42 0.45 0.82 0.43 

CO 0.36 0.27 0.82 0.08 1.00 1.00 

CR 0.86 0.10 0.56 0.77 0.73 0.85 

EL 0.27 0.22 1.00 0.14 1.00 1.00 

HE 0.45 0.35 0.82 0.04 0.77 0.73 

HF 0.21 0.28 1.00 0.14 0.82 1.00 

HL 0.45 0.10 1.00 0.45 0.91 0.99 

HY 0.25 0.21 1.00 0.17 1.00 1.00 

IL 0.86 0.04 0.22 0.16 0.52 0.57 

IS 0.99 0.06 0.22 0.27 0.64 0.50 

LE 0.10 0.56 1.00 0.12 0.91 0.86 

LI 0.45 0.45 0.91 0.10 0.99 1.00 

MA 0.56 0.35 1.00 0.33 1.00 0.91 

ME 0.65 0.08 0.21 0.28 0.52 0.99 

MW 0.86 0.08 0.45 0.56 0.50 0.92 

PA 0.45 0.16 1.00 0.10 1.00 0.82 

RF 0.27 0.22 1.00 0.14 1.00 1.00 

RI 0.77 0.04 0.45 0.12 0.52 0.65 

RO 1.00 0.35 0.86 0.33 1.00 0.91 

SL 0.45 0.08 1.00 0.50 0.73 0.35 

SY 0.70 0.06 0.64 0.16 0.86 0.65 

Xi 0.14 0.28 1.00 0.21 0.82 1.00 
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Table B. 12. P-values for Kruskal Wallis tests of significant difference between Formation Phase 

derived ExGR_NDVI integrals for the 2018 season. Test of significant differences are performed 

between all wheat varieties grown. Green shading indicates significant results, red shading 

indicates a nonsignificant result. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350kg-

N/ha. 

Formation Phase – ExGR_NDVI – 2018 

Variety N1 × N2 N1 × N3 N1 × N4 N2 × N3 N2 × N4 N3 × N4 

AV 1.00 0.91 1.00 1.00 1.00 1.00 

CA 1.00 1.00 1.00 1.00 1.00 1.00 

CL 1.00 1.00 0.91 1.00 1.00 1.00 

CN 0.54 1.00 1.00 0.85 0.65 1.00 

CO 1.00 1.00 0.91 1.00 1.00 1.00 

CR 1.00 1.00 1.00 1.00 1.00 1.00 

EL 0.45 0.36 1.00 0.04 0.92 0.62 

HE 1.00 1.00 1.00 1.00 1.00 0.91 

HF 0.19 0.71 0.99 1.00 0.92 0.73 

HL 0.56 1.00 1.00 0.54 0.91 1.00 

HY 1.00 0.87 0.73 0.33 1.00 1.00 

IL 0.68 1.00 1.00 0.56 1.00 1.00 

IS 0.42 1.00 1.00 1.00 1.00 0.65 

LE 1.00 0.91 1.00 1.00 1.00 1.00 

LI 1.00 0.82 1.00 1.00 1.00 1.00 

MA 1.00 1.00 1.00 0.91 1.00 1.00 

ME 1.00 0.56 0.56 1.00 0.91 0.54 

MW 0.85 0.71 1.00 0.68 1.00 0.91 

PA 1.00 1.00 1.00 1.00 1.00 1.00 

RF 1.00 1.00 1.00 1.00 1.00 1.00 

RI 1.00 1.00 1.00 1.00 0.91 1.00 

RO 0.19 0.91 0.21 0.45 1.00 0.42 

SL 0.19 1.00 0.92 0.27 0.82 0.86 

SY 1.00 0.85 1.00 0.42 1.00 1.00 

Xi 1.00 1.00 1.00 1.00 1.00 0.91 

  



Appendix C  

 

245 

 

Table B. 13. P-values for Kruskal Wallis tests of significant difference between Full Canopy Phase 

derived ExGR_NDVI integrals for the 2016 season. Test of significant differences are performed 

between all wheat varieties grown. Green shading indicates significant results, red shading 

indicates a nonsignificant result. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350kg-

N/ha. 

Full Canopy Phase – ExGR_NDVI – 2016 

Variety N1 × N2 N1 × N3 N1 × N4 N2 × N3 N2 × N4 N3 × N4 

AV 0.92 0.21 0.62 0.01 0.17 0.31 

CA 0.62 0.12 0.64 0.03 0.28 0.57 

CL 0.92 0.21 0.62 0.01 0.17 0.31 

CN 0.62 0.06 0.42 0.06 0.45 0.91 

CO 0.92 0.21 0.62 0.01 0.17 0.31 

CR 0.62 0.12 0.64 0.03 0.28 0.57 

EL 0.62 0.06 0.45 0.06 0.42 0.91 

HE 0.92 0.21 0.62 0.01 0.17 0.31 

HF 0.62 0.06 0.45 0.06 0.42 0.91 

HL 0.62 0.16 0.77 0.02 0.22 0.43 

HY 0.62 0.09 0.52 0.04 0.36 0.73 

IL 0.62 0.12 0.64 0.03 0.28 0.57 

IS 0.92 0.21 0.62 0.01 0.17 0.31 

LE 0.62 0.09 0.52 0.04 0.36 0.73 

LI 0.62 0.16 0.77 0.02 0.22 0.43 

MA 0.62 0.12 0.64 0.03 0.28 0.57 

ME 0.62 0.16 0.77 0.02 0.22 0.43 

MW 0.62 0.16 0.77 0.02 0.22 0.43 

PA 0.92 0.21 0.62 0.01 0.17 0.31 

RF 0.62 0.12 0.64 0.03 0.28 0.57 

RI 0.62 0.16 0.77 0.02 0.22 0.43 

RO 0.62 0.09 0.52 0.04 0.36 0.73 

SL 0.92 0.21 0.62 0.01 0.17 0.31 

SY 0.92 0.21 0.62 0.01 0.17 0.31 

Xi 0.62 0.16 0.77 0.02 0.22 0.43 
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Table B. 14. P-values for Kruskal Wallis tests of significant difference between Full Canopy Phase 

derived ExGR_NDVI integrals for the 2017 season. Test of significant differences are performed 

between all wheat varieties grown. Green shading indicates significant results, red shading 

indicates a nonsignificant result. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350kg-

N/ha. 

Full Canopy Phase – ExGR_NDVI – 2017 

Variety N1 × N2 N1 × N3 N1 × N4 N2 × N3 N2 × N4 N3 × N4 

AV 0.56 0.35 0.73 0.03 0.52 0.62 

CA 0.36 0.27 0.82 0.08 1.00 1.00 

CL 0.52 0.27 0.57 0.03 0.56 0.73 

CN 0.56 0.12 0.86 0.10 1.00 0.91 

CO 0.45 0.45 0.91 0.03 0.64 0.52 

CR 0.70 0.10 0.92 0.09 0.62 1.00 

EL 0.52 0.35 0.65 0.02 0.45 0.52 

HE 0.56 0.35 0.73 0.03 0.52 0.62 

HF 0.45 0.45 0.91 0.03 0.64 0.52 

HL 0.70 0.16 0.86 0.06 0.64 0.65 

HY 0.52 0.35 0.65 0.02 0.45 0.52 

IL 0.56 0.35 0.73 0.03 0.52 0.62 

IS 0.52 0.35 0.65 0.02 0.45 0.52 

LE 0.56 0.45 0.82 0.02 0.42 0.43 

LI 0.56 0.45 0.82 0.02 0.42 0.43 

MA 0.56 0.45 1.00 0.02 0.52 0.35 

ME 0.64 0.16 0.73 0.04 0.56 0.57 

MW 0.64 0.12 0.62 0.06 0.70 0.73 

PA 0.64 0.21 0.43 0.03 0.45 0.86 

RF 0.56 0.45 0.82 0.02 0.42 0.43 

RI 0.52 0.45 0.73 0.01 0.36 0.35 

RO 0.64 0.16 0.73 0.04 0.56 0.57 

SL 0.70 0.16 0.86 0.06 0.64 0.65 

SY 0.64 0.27 0.50 0.02 0.36 0.62 

Xi 0.52 0.27 0.57 0.03 0.56 0.73 
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Table B. 15. P-values for Kruskal Wallis tests of significant difference between Full Canopy Phase 

derived ExGR_NDVI integrals for the 2018 season. Test of significant differences are performed 

between all wheat varieties grown. Green shading indicates significant results, red shading 

indicates a nonsignificant result. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350kg-

N/ha. 

Full Canopy Phase – ExGR_NDVI – 2018 

Variety N1 × N2 N1 × N3 N1 × N4 N2 × N3 N2 × N4 N3 × N4 

AV 0.77 0.16 0.62 0.03 0.36 0.50 

CA 0.36 0.27 0.82 0.08 1.00 1.00 

CL 0.64 0.12 0.62 0.06 0.70 0.73 

CN 0.27 0.28 0.91 0.10 1.00 1.00 

CO 0.77 0.16 0.62 0.03 0.36 0.50 

CR 0.70 0.10 0.92 0.09 0.62 1.00 

EL 0.64 0.27 0.50 0.02 0.36 0.62 

HE 0.45 0.16 1.00 0.10 1.00 0.82 

HF 0.36 0.21 1.00 0.10 1.00 0.73 

HL 0.36 0.27 0.82 0.08 1.00 1.00 

HY 0.64 0.27 0.50 0.02 0.36 0.62 

IL 0.45 0.21 0.65 0.08 1.00 1.00 

IS 0.36 0.21 1.00 0.10 1.00 0.73 

LE 0.36 0.27 0.82 0.08 1.00 1.00 

LI 0.56 0.16 0.99 0.08 0.92 0.73 

MA 0.64 0.16 0.73 0.04 0.56 0.57 

ME 0.36 0.21 1.00 0.10 1.00 0.73 

MW 0.85 0.09 0.52 0.08 0.64 0.91 

PA 0.77 0.27 0.43 0.01 0.22 0.52 

RF 0.86 0.09 0.34 0.08 0.36 0.91 

RI 0.56 0.45 1.00 0.02 0.52 0.35 

RO 0.70 0.16 0.86 0.06 0.64 0.65 

SL 0.62 0.09 0.52 0.04 0.36 0.73 

SY 0.92 0.21 0.62 0.01 0.17 0.31 

Xi 0.56 0.12 0.86 0.10 1.00 0.91 
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Table B. 16. P-values for Kruskal Wallis tests of significant difference between Senescence Phase 

derived ExGR_NDVI integrals for the 2016 season. Test of significant differences are performed 

between all wheat varieties grown. Green shading indicates significant results, red shading 

indicates a nonsignificant result. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350kg-

N/ha. 

Senescence Phase – ExGR_NDVI – 2016 

Variety N1 × N2 N1 × N3 N1 × N4 N2 × N3 N2 × N4 N3 × N4 

AV 0.92 0.21 0.62 0.01 0.17 0.31 

CA 0.92 0.21 0.62 0.01 0.17 0.31 

CL 0.92 0.21 0.62 0.01 0.17 0.31 

CN 0.92 0.21 0.62 0.01 0.17 0.31 

CO 0.43 0.22 0.77 0.02 0.16 0.62 

CR 0.92 0.21 0.62 0.01 0.17 0.31 

EL 0.92 0.21 0.62 0.01 0.17 0.31 

HE 0.62 0.16 0.77 0.02 0.22 0.43 

HF 0.77 0.27 0.43 0.01 0.22 0.52 

HL 0.57 0.28 0.64 0.03 0.12 0.62 

HY 0.92 0.21 0.62 0.01 0.17 0.31 

IL 0.92 0.21 0.62 0.01 0.17 0.31 

IS 0.92 0.21 0.62 0.01 0.17 0.31 

LE 0.43 0.22 0.77 0.02 0.16 0.62 

LI 0.92 0.21 0.62 0.01 0.17 0.31 

MA 0.92 0.21 0.62 0.01 0.17 0.31 

ME 0.43 0.22 0.77 0.02 0.16 0.62 

MW 0.62 0.09 0.52 0.04 0.36 0.73 

PA 0.92 0.21 0.62 0.01 0.17 0.31 

RF 0.92 0.21 0.62 0.01 0.17 0.31 

RI 0.92 0.21 0.62 0.01 0.17 0.31 

RO 0.57 0.17 0.42 0.06 0.21 1.00 

SL 0.62 0.09 0.52 0.04 0.36 0.73 

SY 0.77 0.27 0.43 0.01 0.22 0.52 

Xi 0.92 0.21 0.62 0.01 0.17 0.31 
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Table B. 17. P-values for Kruskal Wallis tests of significant difference between Senescence Phase 

derived ExGR_NDVI integrals for the 2017 season. Test of significant differences are performed 

between all wheat varieties grown. Green shading indicates significant results, red shading 

indicates a nonsignificant result. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350kg-

N/ha. 

Senescence Phase – ExGR_NDVI – 2017 

Variety N1 × N2 N1 × N3 N1 × N4 N2 × N3 N2 × N4 N3 × N4 

AV 0.62 0.16 0.77 0.02 0.22 0.43 

CA 0.91 0.45 0.42 0.06 0.06 0.62 

CL 0.62 0.16 0.77 0.02 0.22 0.43 

CN 0.62 0.09 0.52 0.04 0.36 0.73 

CO 0.92 0.21 0.62 0.01 0.17 0.31 

CR 0.92 0.21 0.62 0.01 0.17 0.31 

EL 0.92 0.21 0.62 0.01 0.17 0.31 

HE 0.92 0.21 0.62 0.01 0.17 0.31 

HF 0.62 0.06 0.42 0.06 0.45 0.91 

HL 0.92 0.21 0.62 0.01 0.17 0.31 

HY 0.73 0.27 0.92 0.03 0.22 0.37 

IL 0.62 0.12 0.64 0.03 0.28 0.57 

IS 0.92 0.21 0.62 0.01 0.17 0.31 

LE 0.62 0.16 0.77 0.02 0.22 0.43 

LI 0.92 0.21 0.62 0.01 0.17 0.31 

MA 0.92 0.21 0.62 0.01 0.17 0.31 

ME 0.62 0.12 0.64 0.03 0.28 0.57 

MW 0.92 0.21 0.62 0.01 0.17 0.31 

PA 0.62 0.12 0.64 0.03 0.28 0.57 

RF 0.62 0.16 0.77 0.02 0.22 0.43 

RI 0.62 0.16 0.77 0.02 0.22 0.43 

RO 0.62 0.16 0.77 0.02 0.22 0.43 

SL 0.62 0.16 0.77 0.02 0.22 0.43 

SY 0.43 0.22 0.77 0.02 0.16 0.62 

Xi 0.92 0.21 0.62 0.01 0.17 0.31 
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Table B. 18. P-values for Kruskal Wallis tests of significant difference between Senescence Phase 

derived ExGR_NDVI integrals for the 2018 season. Test of significant differences are performed 

between all wheat varieties grown. Green shading indicates significant results, red shading 

indicates a nonsignificant result. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350kg-

N/ha. 

Senescence Phase – ExGR_NDVI – 2018 

Variety N1 × N2 N1 × N3 N1 × N4 N2 × N3 N2 × N4 N3 × N4 

AV 0.62 0.06 0.45 0.06 0.42 0.91 

CA 0.70 0.10 0.92 0.09 0.62 1.00 

CL 0.86 0.03 0.17 0.21 0.64 0.43 

CN 0.28 0.21 1.00 0.14 1.00 0.82 

CO 0.86 0.06 0.28 0.12 0.42 0.73 

CR 0.56 0.10 1.00 0.12 0.86 0.91 

EL 0.28 0.21 1.00 0.14 1.00 0.82 

HE 0.36 0.14 1.00 0.16 1.00 0.91 

HF 0.62 0.06 0.45 0.06 0.42 0.91 

HL 0.62 0.08 0.56 0.16 0.77 0.73 

HY 0.77 0.04 0.45 0.12 0.52 0.65 

IL 1.00 0.87 0.82 0.42 1.00 1.00 

IS 0.35 0.45 0.82 0.04 0.73 0.77 

LE 0.56 0.02 0.42 0.45 0.82 0.43 

LI 1.00 0.25 0.92 0.45 0.99 0.73 

MA 0.77 0.12 0.52 0.04 0.45 0.65 

ME 0.70 0.04 0.52 0.21 0.99 0.50 

MW 0.64 0.16 0.73 0.04 0.56 0.57 

PA 0.77 0.16 0.62 0.03 0.36 0.50 

RF 0.56 0.35 0.73 0.03 0.52 0.62 

RI 0.27 0.14 1.00 0.22 1.00 1.00 

RO 0.64 0.21 0.43 0.03 0.45 0.86 

SL 0.27 0.08 1.00 0.36 0.82 1.00 

SY 0.62 0.06 0.45 0.06 0.42 0.91 

Xi 0.52 0.35 0.65 0.02 0.45 0.52 
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Table B. 19. P-values for Kruskal Wallis tests of significant difference between Formation Phase 

derived GreenPixel integrals for the 2016 season. Test of significant differences are performed 

between all wheat varieties grown. Green shading indicates significant results, red shading 

indicates a nonsignificant result. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350kg-

N/ha. 

Formation Phase – GreenPixel – 2016 

Variety N1 × N2 N1 × N3 N1 × N4 N2 × N3 N2 × N4 N3 × N4 

AV 0.77 0.12 0.52 0.04 0.45 0.65 

CA 0.45 0.27 0.73 0.06 0.92 0.99 

CL 0.62 0.06 0.45 0.06 0.42 0.91 

CN 0.64 0.06 0.70 0.12 0.62 0.73 

CO 0.35 0.04 0.73 0.45 0.82 0.77 

CR 0.16 0.70 0.86 0.06 0.65 0.64 

EL 0.62 0.06 0.42 0.06 0.45 0.91 

HE 0.64 0.21 0.43 0.03 0.45 0.86 

HF 0.14 0.12 1.00 0.45 1.00 0.99 

HL 0.27 0.04 0.86 0.56 0.65 0.64 

HY 0.28 0.14 1.00 0.21 1.00 0.82 

IL 0.64 0.01 0.35 0.28 0.57 0.43 

IS 0.56 0.16 0.99 0.08 0.92 0.73 

LE 0.45 0.04 0.77 0.35 0.82 0.73 

LI 0.36 0.14 1.00 0.16 1.00 0.91 

MA 0.52 0.27 0.57 0.03 0.56 0.73 

ME 0.77 0.12 0.52 0.04 0.45 0.65 

MW 0.52 0.06 0.56 0.09 0.64 0.82 

PA 0.62 0.06 0.42 0.06 0.45 0.91 

RF 0.45 0.10 1.00 0.16 1.00 0.82 

RI 0.42 0.01 0.56 0.45 0.91 0.28 

RO 0.85 0.09 0.52 0.08 0.64 0.91 

SL 0.70 0.21 0.99 0.04 0.52 0.50 

SY 0.62 0.06 0.42 0.06 0.45 0.91 

Xi 0.36 0.21 1.00 0.10 1.00 0.73 
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Table B. 20. P-values for Kruskal Wallis tests of significant difference between Formation Phase 

derived GreenPixel integrals for the 2017 season. Test of significant differences are performed 

between all wheat varieties grown. Green shading indicates significant results, red shading 

indicates a nonsignificant result. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350kg-

N/ha. 

Formation Phase – GreenPixel – 2017 

Variety N1 × N2 N1 × N3 N1 × N4 N2 × N3 N2 × N4 N3 × N4 

AV 0.21 0.22 0.91 0.19 1.00 1.00 

CA 0.21 0.14 0.82 0.28 1.00 1.00 

CL 0.70 0.16 0.86 0.06 0.64 0.65 

CN 0.21 0.04 0.99 0.70 0.50 0.52 

CO 0.22 0.21 0.91 0.19 1.00 1.00 

CR 0.70 0.10 0.92 0.71 0.91 0.73 

EL 0.12 0.06 0.73 0.64 0.62 0.70 

HE 0.19 0.28 1.00 0.16 1.00 1.00 

HF 0.28 0.10 1.00 0.27 0.91 1.00 

HL 0.16 0.06 0.65 0.70 0.86 0.64 

HY 0.10 0.27 1.00 0.28 1.00 0.91 

IL 0.36 0.08 1.00 0.27 0.82 1.00 

IS 0.64 0.12 0.62 0.06 0.70 0.73 

LE 0.10 0.27 1.00 0.28 1.00 0.91 

LI 0.56 0.10 1.00 0.12 0.86 0.91 

MA 0.28 0.19 1.00 0.16 1.00 1.00 

ME 0.64 0.02 0.36 0.27 0.50 0.62 

MW 0.45 0.03 0.64 0.45 0.91 0.52 

PA 0.45 0.10 1.00 0.16 1.00 0.82 

RF 0.08 0.56 0.92 0.16 0.73 0.99 

RI 0.56 0.10 1.00 0.12 0.86 0.91 

RO 0.92 0.10 0.70 0.35 0.86 0.57 

SL 0.12 0.08 0.82 0.70 0.73 0.77 

SY 0.28 0.14 1.00 0.21 1.00 0.82 

Xi 0.14 0.36 1.00 0.16 0.91 1.00 
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Table B. 21. P-values for Kruskal Wallis tests of significant difference between Formation Phase 

derived GreenPixel integrals for the 2018 season. Test of significant differences are performed 

between all wheat varieties grown. Green shading indicates significant results, red shading 

indicates a nonsignificant result. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350kg-

N/ha. 

Formation Phase – GreenPixel – 2018 

Variety N1 × N2 N1 × N3 N1 × N4 N2 × N3 N2 × N4 N3 × N4 

AV 0.36 0.25 1.00 0.27 1.00 0.91 

CA 0.85 1.00 1.00 1.00 1.00 0.91 

CL 0.35 0.08 1.00 0.28 1.00 0.99 

CN 0.03 0.52 0.56 0.62 0.35 0.73 

CO 0.10 0.36 1.00 0.21 1.00 0.73 

CR 0.42 1.00 0.99 1.00 1.00 0.82 

EL 0.45 0.14 1.00 0.12 0.99 1.00 

HE 0.14 0.35 1.00 0.45 1.00 0.82 

HF 0.21 0.10 0.73 0.85 0.86 0.77 

HL 0.45 0.33 1.00 0.45 0.91 1.00 

HY 0.65 0.10 0.27 0.92 1.00 0.70 

IL 0.87 0.70 1.00 0.68 1.00 1.00 

IS 0.42 1.00 1.00 1.00 0.99 0.82 

LE 0.54 1.00 1.00 0.71 0.82 1.00 

LI 0.68 0.87 1.00 0.70 1.00 1.00 

MA 0.21 0.19 1.00 0.22 0.91 1.00 

ME 0.27 0.45 1.00 0.19 0.82 1.00 

MW 0.28 0.14 1.00 0.21 1.00 0.82 

PA 0.56 0.12 0.86 0.10 1.00 0.91 

RF 1.00 0.33 0.45 0.56 0.64 0.73 

RI 0.25 0.21 1.00 0.17 1.00 1.00 

RO 0.21 0.28 1.00 0.14 0.82 1.00 

SL 0.14 0.21 0.82 0.28 1.00 1.00 

SY 1.00 1.00 1.00 1.00 1.00 0.91 

Xi 1.00 0.54 1.00 0.56 1.00 0.91 
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Table B. 22. P-values for Kruskal Wallis tests of significant difference between Full Canopy Phase 

derived GreenPixel integrals for the 2016 season. Test of significant differences are performed 

between all wheat varieties grown. Green shading indicates significant results, red shading 

indicates a nonsignificant result. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350kg-

N/ha. 

Full Canopy Phase – GreenPixel – 2016 

Variety N1 × N2 N1 × N3 N1 × N4 N2 × N3 N2 × N4 N3 × N4 

AV 0.21 0.08 1.00 0.45 0.65 1.00 

CA 0.92 0.21 0.62 0.01 0.17 0.31 

CL 0.64 0.21 0.43 0.03 0.45 0.86 

CN 0.62 0.09 0.52 0.04 0.36 0.73 

CO 0.27 0.22 1.00 0.14 1.00 1.00 

CR 0.21 0.70 0.99 0.04 0.50 0.52 

EL 0.62 0.16 0.77 0.02 0.22 0.43 

HE 0.62 0.06 0.42 0.06 0.45 0.91 

HF 0.64 0.27 0.50 0.02 0.36 0.62 

HL 0.56 0.03 0.52 0.35 0.73 0.62 

HY 0.56 0.03 0.52 0.35 0.73 0.62 

IL 0.62 0.09 0.52 0.04 0.36 0.73 

IS 0.62 0.06 0.42 0.06 0.45 0.91 

LE 0.27 0.14 1.00 0.22 1.00 1.00 

LI 0.52 0.08 0.70 0.06 0.52 1.00 

MA 0.52 0.45 0.73 0.01 0.36 0.35 

ME 0.62 0.06 0.45 0.06 0.42 0.91 

MW 0.04 0.12 0.65 0.77 0.45 0.52 

PA 0.09 0.08 0.91 0.85 0.52 0.64 

RF 0.64 0.12 0.62 0.06 0.70 0.73 

RI 0.62 0.09 0.52 0.04 0.36 0.73 

RO 0.27 0.04 0.86 0.56 0.65 0.64 

SL 0.85 0.08 0.64 0.09 0.52 0.91 

SY 0.62 0.04 0.36 0.09 0.52 0.73 

Xi 0.36 0.35 0.91 0.06 1.00 0.86 
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Table B. 23. P-values for Kruskal Wallis tests of significant difference between Full Canopy Phase 

derived GreenPixel integrals for the 2017 season. Test of significant differences are performed 

between all wheat varieties grown. Green shading indicates significant results, red shading 

indicates a nonsignificant result. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350kg-

N/ha. 

Full Canopy Phase – GreenPixel – 2017 

Variety N1 × N2 N1 × N3 N1 × N4 N2 × N3 N2 × N4 N3 × N4 

AV 0.45 0.45 0.91 0.03 0.64 0.52 

CA 0.45 0.08 1.00 0.21 0.65 1.00 

CL 0.70 0.21 0.99 0.04 0.52 0.50 

CN 0.16 0.36 1.00 0.14 0.91 1.00 

CO 0.16 0.64 0.73 0.04 0.57 0.56 

CR 0.36 0.25 1.00 0.27 1.00 0.91 

EL 0.52 0.08 0.70 0.06 0.52 1.00 

HE 0.36 0.21 1.00 0.10 1.00 0.73 

HF 0.45 0.06 0.92 0.27 0.73 0.99 

HL 0.27 0.56 0.65 0.04 0.86 0.64 

HY 0.45 0.27 0.73 0.06 0.92 0.99 

IL 0.45 0.36 1.00 0.04 0.92 0.62 

IS 0.77 0.27 0.43 0.01 0.22 0.52 

LE 0.25 0.21 1.00 0.17 1.00 1.00 

LI 0.56 0.16 0.99 0.08 0.92 0.73 

MA 0.56 0.12 0.86 0.10 1.00 0.91 

ME 0.77 0.12 0.52 0.04 0.45 0.65 

MW 0.70 0.06 0.64 0.16 0.86 0.65 

PA 0.42 0.56 0.91 0.01 0.45 0.28 

RF 0.56 0.27 0.65 0.04 0.64 0.86 

RI 0.45 0.35 0.82 0.04 0.77 0.73 

RO 0.36 0.16 1.00 0.14 1.00 0.91 

SL 0.21 0.22 0.91 0.19 1.00 1.00 

SY 0.52 0.27 0.57 0.03 0.56 0.73 

Xi 0.45 0.16 1.00 0.10 1.00 0.82 
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Table B. 24. P-values for Kruskal Wallis tests of significant difference between Full Canopy Phase 

derived GreenPixel integrals for the 2018 season. Test of significant differences are performed 

between all wheat varieties grown. Green shading indicates significant results, red shading 

indicates a nonsignificant result. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350kg-

N/ha. 

Full Canopy Phase – GreenPixel – 2018 

Variety N1 × N2 N1 × N3 N1 × N4 N2 × N3 N2 × N4 N3 × N4 

AV 0.04 0.21 0.99 0.70 0.52 0.50 

CA 0.22 0.21 0.91 0.19 1.00 1.00 

CL 0.12 0.08 0.82 0.70 0.73 0.77 

CN 0.04 0.16 0.57 0.64 0.56 0.73 

CO 0.28 0.10 1.00 0.27 0.91 1.00 

CR 0.02 0.56 0.42 0.43 0.45 0.82 

EL 0.10 0.45 1.00 0.16 0.82 1.00 

HE 0.06 0.27 0.99 0.45 0.92 0.73 

HF 0.02 0.27 0.62 0.64 0.36 0.50 

HL 0.04 0.27 0.86 0.56 0.64 0.65 

HY 0.02 0.16 0.43 0.62 0.22 0.77 

IL 0.03 0.71 0.35 0.52 0.56 0.91 

IS 0.01 0.56 0.42 0.28 0.45 0.91 

LE 0.06 0.09 0.82 0.52 0.56 0.64 

LI 0.10 0.12 0.91 0.56 1.00 0.86 

MA 0.19 0.16 1.00 0.28 1.00 1.00 

ME 0.06 0.16 0.65 0.70 0.64 0.86 

MW 0.06 0.27 0.99 0.45 0.92 0.73 

PA 0.21 0.14 0.82 0.28 1.00 1.00 

RF 0.45 0.45 0.91 0.03 0.52 0.64 

RI 0.14 0.21 0.82 0.28 1.00 1.00 

RO 0.10 0.70 0.92 0.09 1.00 0.62 

SL 0.10 0.09 1.00 0.70 0.92 0.62 

SY 0.35 0.06 0.86 0.36 0.91 1.00 

Xi 0.21 0.19 1.00 0.22 0.91 1.00 
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Table B. 25. P-values for Kruskal Wallis tests of significant difference between Senescence Phase 

derived GreenPixel integrals for the 2016 season. Test of significant differences are performed 

between all wheat varieties grown. Green shading indicates significant results, red shading 

indicates a nonsignificant result. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350kg-

N/ha. 

Senescence Phase – GreenPixel – 2016 

Variety N1 × N2 N1 × N3 N1 × N4 N2 × N3 N2 × N4 N3 × N4 

AV 0.62 0.16 0.77 0.02 0.22 0.43 

CA 0.92 0.21 0.62 0.01 0.17 0.31 

CL 0.92 0.21 0.62 0.01 0.17 0.31 

CN 0.62 0.12 0.64 0.03 0.28 0.57 

CO 0.92 0.21 0.62 0.01 0.17 0.31 

CR 0.62 0.16 0.77 0.02 0.22 0.43 

EL 0.92 0.21 0.62 0.01 0.17 0.31 

HE 0.92 0.21 0.62 0.01 0.17 0.31 

HF 0.92 0.21 0.62 0.01 0.17 0.31 

HL 0.92 0.21 0.62 0.01 0.17 0.31 

HY 0.92 0.21 0.62 0.01 0.17 0.31 

IL 0.92 0.21 0.62 0.01 0.17 0.31 

IS 0.62 0.16 0.77 0.02 0.22 0.43 

LE 0.62 0.06 0.45 0.06 0.42 0.91 

LI 0.92 0.21 0.62 0.01 0.17 0.31 

MA 0.92 0.21 0.62 0.01 0.17 0.31 

ME 0.92 0.21 0.62 0.01 0.17 0.31 

MW 0.62 0.06 0.45 0.06 0.42 0.91 

PA 0.62 0.06 0.42 0.06 0.45 0.91 

RF 0.62 0.16 0.77 0.02 0.22 0.43 

RI 0.92 0.21 0.62 0.01 0.17 0.31 

RO 0.62 0.09 0.52 0.04 0.36 0.73 

SL 0.62 0.12 0.64 0.03 0.28 0.57 

SY 0.92 0.21 0.62 0.01 0.17 0.31 

Xi 0.92 0.21 0.62 0.01 0.17 0.31 
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Table B. 26. P-values for Kruskal Wallis tests of significant difference between Senescence Phase 

derived GreenPixel integrals for the 2017 season. Test of significant differences are performed 

between all wheat varieties grown. Green shading indicates significant results, red shading 

indicates a nonsignificant result. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350kg-

N/ha. 

Senescence Phase – GreenPixel – 2017 

Variety N1 × N2 N1 × N3 N1 × N4 N2 × N3 N2 × N4 N3 × N4 

AV 0.92 0.21 0.62 0.01 0.17 0.31 

CA 0.92 0.21 0.62 0.01 0.17 0.31 

CL 0.62 0.06 0.45 0.06 0.42 0.91 

CN 0.62 0.12 0.64 0.03 0.28 0.57 

CO 0.92 0.21 0.62 0.01 0.17 0.31 

CR 0.64 0.21 0.43 0.03 0.45 0.86 

EL 0.92 0.21 0.62 0.01 0.17 0.31 

HE 0.92 0.21 0.62 0.01 0.17 0.31 

HF 0.62 0.03 0.28 0.12 0.64 0.57 

HL 0.86 0.21 0.64 0.03 0.17 0.43 

HY 0.62 0.16 0.77 0.02 0.22 0.43 

IL 0.52 0.09 0.64 0.06 0.56 0.82 

IS 0.62 0.04 0.36 0.09 0.52 0.73 

LE 0.62 0.03 0.28 0.12 0.64 0.57 

LI 0.62 0.06 0.45 0.06 0.42 0.91 

MA 0.77 0.27 0.43 0.01 0.22 0.52 

ME 0.77 0.27 0.43 0.01 0.22 0.52 

MW 0.92 0.21 0.62 0.01 0.17 0.31 

PA 0.62 0.12 0.64 0.03 0.28 0.57 

RF 0.62 0.09 0.52 0.04 0.36 0.73 

RI 0.62 0.12 0.64 0.03 0.28 0.57 

RO 0.92 0.21 0.62 0.01 0.17 0.31 

SL 0.56 0.42 0.91 0.01 0.28 0.45 

SY 0.92 0.21 0.62 0.01 0.17 0.31 

Xi 0.92 0.21 0.62 0.01 0.17 0.31 
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Table B. 27. P-values for Kruskal Wallis tests of significant difference between Senescence Phase 

derived GreenPixel integrals for the 2018 season. Test of significant differences are performed 

between all wheat varieties grown. Green shading indicates significant results, red shading 

indicates a nonsignificant result. N1 = 0 kg-N/ha, N2 = 100 kg-N/ha, N3 = 200 kg-N/ha, N4 = 350kg-

N/ha. 

Senescence Phase – GreenPixel – 2018 

Variety N1 × N2 N1 × N3 N1 × N4 N2 × N3 N2 × N4 N3 × N4 

AV 0.10 0.09 1.00 0.70 0.92 0.62 

CA 0.36 0.16 1.00 0.14 1.00 0.91 

CL 0.27 0.08 0.57 0.85 0.99 0.64 

CN 0.27 0.14 1.00 0.22 1.00 1.00 

CO 0.56 0.04 0.64 0.27 0.65 0.86 

CR 0.14 0.21 0.82 0.70 1.00 0.99 

EL 0.56 0.04 0.64 0.27 0.65 0.86 

HE 0.14 0.21 0.82 0.28 1.00 1.00 

HF 0.45 0.04 0.77 0.35 0.82 0.73 

HL 0.10 0.09 1.00 0.70 0.92 0.62 

HY 0.09 0.08 0.91 0.85 0.52 0.64 

IL 0.56 0.70 1.00 0.42 0.82 1.00 

IS 0.19 0.21 1.00 0.22 1.00 0.91 

LE 0.16 0.08 0.73 0.62 0.77 0.56 

LI 0.71 0.14 1.00 0.56 1.00 0.86 

MA 0.27 0.14 1.00 0.22 1.00 1.00 

ME 0.14 0.12 1.00 0.45 1.00 0.99 

MW 0.19 0.28 1.00 0.16 1.00 1.00 

PA 1.00 0.85 1.00 0.42 1.00 1.00 

RF 0.52 0.45 0.73 0.01 0.36 0.35 

RI 0.28 0.10 1.00 0.27 0.91 1.00 

RO 0.27 0.22 1.00 0.14 1.00 1.00 

SL 0.35 0.04 0.73 0.45 0.82 0.77 

SY 0.85 0.08 0.64 0.09 0.52 0.91 

Xi 0.70 0.16 0.86 0.06 0.64 0.65 
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Appendix D 

Appendix B contains further details and explanation of custom image processing 

software developed for processing imagery, and extracting and analysing phenotypic 

results from plots. This software was developed for Rothamsted Research, who currently 

employ a UAV with RGB, Near Infrared (NIR) and thermal cameras to image field-based 

experiments totalling upwards of 10,000 plots. The collected images are calibrated and 

corrected as necessary before orthomosaics of each field are generated using Agisoft 

Photoscan (Agisoft, St Petersburg, Russia), a Structure from Motion photogrammetry 

software package. All calibration workflows for the RGB, NIR and thermal cameras have 

been developed in house and currently in a development stage. This makes processing 

of the high volumes of data collected tedious and inefficient, as the workflow lacks 

automation. Therefore, a set of graphical user interface (GUI) based ‘tools’ have been 

built to improve the efficiency and usability of past developed imaging processing 

python-based workflows. The objectives were to produce tools for the following three 

key processing steps involved with UAV-based phenotyping: 

1. Calibration and correction of raw imagery to reflectance based on custom made 

calibration factors 

2. Combining of datasets/orthomosaics from multiple sensors together in to single, 

multi-band image files for improved data storage and analysis. 

3. Extraction of key statistics from multi-band image files based on user defined 

areas of interest. 
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The software tools were built using the Tkinter Python library and utilise several 

python libraries. DCRAW and ExifTool are two command line tools also utilised by the 

software. Currently the software requires python to be installed on the user’s computer, 

as well as the non-standard python libraries.  

The following sections outline the three tools contained within the software. 

More details on the required inputs, overall workflow, and design are provided below. 

D2. Radiometric Calibration Tool. 

This tool utilises a specific correction workflow developed for Rothamsted 

Research as part of the ongoing Studentship. The PhD work developed custom and 

novel image corrections and calibration factors to convert UAV imagery pixel values 

from digital numbers to calibrated reflectance. The tool takes a series of inputs, Table B. 

28, required to in the radiometric calibration processing. The key steps of the image 

processing workflow, Figure B. 1, are as follows: 

1. The raw images are converted to TIFF format using DCRAW. A linear conversion 

is used to ensure the raw data is maintained and any non-linear gamma 

corrections are not applied as is often the case with other consumer image 

processing software. 

2. Exposure corrections are applied to normalise imagery to standard exposure 

settings. Novel exposure corrections have been developed and proven effective, 

allowing for imagery captured under different camera exposure settings to be 

normalised during post processing. 
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3. Vignetting filters are derived and applied through multiplication to each image 

to reduce the impact of vignetting (circular drop off in brightness) in the imagery. 

4. Irradiance corrections are applied based on time matched readings from the Tec5 

downwelling irradiance sensor. These corrections include a custom cross sensor 

calibration factor applied to the Tec5 measurement before being applied to the 

image. 

5. The final images are saved as 16bit TIFF images ready for further processing, 

typically in photogrammetry software such as Agisoft Photoscan. 

Table B. 28. Details of required inputs for the developed processing tools. The tools are designed 

to require minimal input, whilst also being designed to find required files based on expected 

inputs. 

Input Format Description 

Raw Imagery Folder Path  Location of Raw imagery from cameras on 

UAV, unprocessed (.ARW for Sony Cameras). 

Irradiance 

Data 

Excel spreadsheet  Excel spreadsheet of raw data produced by the 

Tec5  

Vignetting 

Folder 

Folder Path  Path to folder in which generated vignetting 

filters will be saved 

Output 

Folder 

Folder Path  Path to folder in which final calibrated 

reflectance imagery will be saved. 

Camera Drop down menu 

selection 

Defines whether the images are from the NIR or 

RGB camera. 
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Figure B. 1. Workflow diagram outlining the key inputs, processing steps and 

outputs required and produced in the developed calibration tool. Blue shapes 

indicate inputs, Green shapes indicate processing, and Orange shapes indicate 

outputs. 
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After feedback from Rothasmted Research, several additional features were 

added to improve usability and automation of the tool. Firstly, the software was 

upgraded to autofill all file paths after the path to the folder containing RAW images 

was selected. This assumes the irradiance data file is in the same place, but helps to speed 

up input selection. The other significant improvement was the addition of a batch 

processing option. This feature allows the user to queue up multiple datasets for 

processing rather than having to each dataset individually. 

D3. Data Merging Tool 

This tool has been designed to merge the different orthomosaics/datasets 

produced by Rothamsted Research’s drones for each experiment. This includes, RGB, 

NIR, Vegetation Indices, Digital Elevation Model and Thermal mosaics. By combining 

multiple layers, it improves data storage as well as analysis as all data is maintained 

within a single file. 

The tool is designed to accept any combination of layers and will calculate an 

NDVI layer if RGB and NIR mosaics are provided. The key steps to the workflow, Figure 

B. 3, include: 

1. Re-project layers to WGS84, if the layer is already in the correct projection system 

then this step is skipped. 

2. Mask each layer to a common Area of Interest e.g. the field outline. 

3. Merge layers together and output to single TIFF format file. 
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Importantly, no rescaling of resolution or compression is applied; ensuring that 

the original data of each layer is maintained; however, this does increase file size. An 

example of a typical output from this tool is provided in Figure B. 2.  

As with the previous tool, feedback from Rothasmted Research, highlighted the 

preference for automation in selection of input and output files. This was added in 

subsequent versions and will automatically select the output file location and name 

based on input file parameters. 

 

 

 

 

 

 

Figure B. 2. Example of a multi-layer stacked single image file generated from UAV derived 

spectral and thermal orthomosaics, and a normalised Digital Elevation Model.  



Appendix D  

 

266 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure B. 3. Flow diagram describing the key workflow 

steps used for the layer stacking of UAV derived 

orthomosaics and normalised Digital Elevation Models 

(nDEMs) into a single file. Blue shapes indicate inputs, 

Green shapes indicate processing, Red shapes indicate a 

condition, and Orange shapes indicate outputs. 
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D4. Data Extraction Tool 

The Data Extraction Tool has been designed to simplify the extraction of key 

statistics for multiple plots. The tool provides an automated and quick way of extracting 

the same statistics for multiple plots over multiple experiments. This uses workflows 

developed previously in the PhD, using plot boundary shapefiles to isolate individual 

plots. From these, key statistics such as mean, median standard deviation and percentiles 

are extracted from the plot. The tool’s workflow, Figure B. 4, uses pre-defined areas of 

interest to isolate and extract statistics for each plot. For each plot, the results are saved 

to an excel spreadsheet, where a separate sheet is produced for each band present in the 

input file.  
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Figure B. 4. Flow diagram describing the key workflow steps 

used for the extraction of experimental plot statistics from 

UAV derived orthomosaics and normalised Digital Elevation 

Models (nDEMs). Blue shapes indicate inputs, Green shapes 

indicate processing, Red shapes indicate a condition, and 

Orange shapes indicate outputs. 
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D5. Future Development 

The current suite of publicly available tools for processing, handling and 

extracting data are limited. The tools developed in this project have the potential to fill 

this gap, however further work is required to develop them in to general purpose 

software applicable to different sensors and field sites. A key area requiring further focus 

is the mapping of plots within the fields, currently done manually. This time-consuming 

step is the last section of data handling that has no automation available. The complexity 

of field plot layouts means any workflow developed will need to have enough flexibility 

to account for this. In addition, variations in plant type, image resolution and plant 

growth stage will all influence mapping of plots. Addition of this tool to software 

developed in this project would provide a full suite of tools able to process data from the 

raw image stage to statistical results with minimal user input. 

The incorporation of thermal image calibration workflows is another area of 

future work with the software. Development of the calibration workflows for the 

thermal imagery is still on-going and as such will be incorporated as an additional tool 

in the software when complete. 

 

 



 

 

270 

 

 

 

 

 

 

 

 

 

End. 


	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1:  Introduction
	1.1  Outline of Thesis Structure

	Chapter 2:  Background and Specific Objectives
	2.1 Introduction
	2.2 Phenotypes and Phenotyping
	2.2.1 Crop Morphology: Plant Height and Growth
	2.2.2 Spectral Reflectance and Absorbance
	2.2.2.1 Crop Ground Cover
	2.2.2.2 Canopy Maturation/Senescence


	2.3 UAVs, Remote Sensing, and Phenotyping.
	2.3.1 Unmanned Aerial Vehicles
	2.3.2 UAVs, Remote Sensing and 3D Structure
	2.3.3 UAVs and Spectral Reflectance

	2.4 Summary and Research Objectives

	Chapter 3:  High Throughput Field Phenotyping of Wheat Plant Height and Growth Rate in Field Plot Trials Using UAV Based Remote Sensing
	3.1 Introduction
	3.2 Published Article

	Introduction 
	Global Food and Agriculture 
	Phenotyping 
	Measuring Height 
	UAVs in Research 
	Structure-from-Motion and Crop Modelling 

	Materials and Methods 
	Field Site 
	Pilot Project (2014) 
	UAV SfM Method 
	Terrestrial LiDAR Method 

	Main Study (2015) 

	Results 
	Pilot Project Results 
	Main Study Results 
	“Bare Ground” DEM Selection 
	Accuracy Assessments 
	Plant Height 
	Growth Rate 
	Spatial Mapping 

	Nitrogen Application and Cultivar Responses 

	Discussion 
	Conclusions 
	Chapter 3:  High Throughput Field Phenotyping of Wheat Plant Height and Growth Rate in Field Plot Trials Using UAV Based Remote Sensing
	3.3 Published article additions.
	3.3.1 Lens replacement and calibration parameters.
	3.3.2 Model accuracy and RMSE calculation
	3.3.3 LiDAR vs. UAV heights.
	3.3.4 Digital Elevation Models
	3.3.5 Normalising Digital Surface Models
	3.3.6 Methods
	3.3.7 Results and Discussion
	3.3.7.1 Processing Times
	Chapter 1:
	Chapter 2:
	Chapter 3:
	3.1
	3.2
	3.3
	3.3.1
	3.3.2
	3.3.3
	3.3.3.1
	3.3.7.2 Accuracy Assessments


	3.4 Summary and Conclusion

	Chapter 4:  Radiometric Calibration of Commercial ‘Off the Shelf’ Cameras for UAV-based High-Resolution Crop Phenotyping of Reflectance and NDVI
	4.1 Introduction
	4.2 Published Article

	Introduction 
	Materials and Methods 
	Field Site 
	UAV Imagery 
	Validation Data 
	Post-Processing of Captured Imagery 
	Relative Spectral Response 
	RAW Conversion 
	Exposure Corrections 
	Vignetting Correction 
	Cross Calibration Factor and Reflectance Calibration 
	Orthomosaic Generation 

	Canopy Masking 

	Results 
	Validation of Calibrations 
	Accuracy Assessment of COTS Camera Reflectance 
	Influence of Canopy on NDVI 

	Discussion 
	Conclusions 
	References
	Chapter 4:  Radiometric Calibration of Commercial ‘Off the Shelf’ Cameras for UAV-based High-Resolution Crop Phenotyping of Reflectance and NDVI
	4.3 Additions to Published Article
	4.4 Camera Spectral Response Determination
	4.4.1 Materials and Methods
	4.4.2 Results

	4.5 Summary and Conclusion

	Chapter 5:  Dynamic Quantifying of Canopy Trait Response of Modern Wheat Cultivars to Varied Nitrogen Applications
	5.1 Introduction
	5.2  Methods
	5.2.1 Field Site
	5.2.2 Meteorological Data
	5.2.3 Crop Measurements
	5.2.4 UAV imagery
	5.2.5 Reflectance imagery processing
	5.2.6 Orthomosaic processing
	5.2.7 Quantification of development phases

	5.3 Results
	5.3.1 Crop parameters
	5.3.1.1 Grain Yield
	5.3.1.2 Biomass (100% Dry Matter)
	5.3.1.3 Total Nitrogen Uptake

	5.3.2 UAV Results
	5.3.3 Development phase determination
	5.3.4 Development phase integrals
	5.3.5 Correlations with crop metrics

	5.4  Discussion
	5.5 Conclusion

	Chapter 6:  ‘Cost-throughput’ Analysis of UAVs for Long Term Phenotyping of Field-based Crop Trial Experiments
	6.1 Introduction
	6.1.1 Throughput
	6.1.2 Cost

	6.2 Study Site and Assessment Parameters
	6.3 Results
	6.3.1 Cost Assessment
	6.3.2 Throughput Assessment

	6.4 Discussion
	6.5 Conclusions

	Chapter 7:  Summary of Findings, Conclusions and Future Work
	7.1 Research Aims and Objectives
	7.2 Recommendations for Future Work
	7.3 Concluding Remarks

	References
	Appendix A
	2016
	2017
	2018

	Appendix B
	Appendix C
	Appendix D
	D2. Radiometric Calibration Tool.
	D3. Data Merging Tool
	D4. Data Extraction Tool
	D5. Future Development


