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ABSTRACT

Whether fungicide resistance management is optimized by spraying
chemicals with different modes of action as a mixture (i.e., simulta-
neously) or in alternation (i.e., sequentially) has been studied by experimenters
and modelers for decades. However, results have been inconclusive. We use
previously parameterized and validated mathematical models of wheat
Septoria leaf blotch and grapevine powdery mildew to test which tactic
provides better resistance management, using the total yield before resistance
causes disease control to become economically ineffective (“lifetime yield”) to
measure effectiveness. We focus on tactics involving the combination of a low-
risk and a high-risk fungicide, and the case in which resistance to the high-risk
chemical is complete (i.e., in which there is no partial resistance). Lifetime

yield is then optimized by spraying as much low-risk fungicide as is permitted,
combined with slightly more high-risk fungicide than needed for acceptable
initial disease control, applying these fungicides as a mixture. That mixture
rather than alternation gives better performance is invariant to model param-
eterization and structure, as well as the pathosystem in question. However, if
comparison focuses on other metrics, e.g., lifetime yield at full label dose,
either mixture or alternation can be optimal. Our work shows how epidemi-
ological principles can explain the evolution of fungicide resistance, and also
highlights a theoretical framework to address the question of whether mixture
or alternation provides better resistance management. It also demonstrates that
precisely how spray tactics are compared must be given careful consideration.

Designing long-lasting, effective tactics to control plant disease
remains a key challenge (Cunniffe et al. 2015). Fungicide resistance
management—optimizing deployment to delay emergence or spread
of resistant pathogen strains—has been studied for decades (Russell
2005). Many tactics have been proposed. For a single fungicide,
resistance management can be based on the method of application,
changing the dose (van den Bosch et al. 2011), the timing (van den
Berg et al. 2013), whether treatment is applied to the leaves or on the
seed (Kitchenet al. 2016), the spatial pattern of spraying (Parnell et al.
2006), or the number of sprays per season (van den Berg et al. 2016).
However, for disease control as well as resistance management,
fungicides with different modes of action are very often combined in
a spray program (van den Bosch et al. 2014b).
Significant attention has therefore been devoted to how to best

combine fungicide applications. Possibilities include a mixture,
spraying the two fungicides at the same time, or as an alternation,
applying sequentially. The risk of resistance development varies
between fungicides (Brent and Hollomon 2007). Resistance
emerges to some chemicals within a few years of use, while others
provide durable control for decades. We distinguish high-risk
fungicides, to which resistance is already present or very likely to
emerge, and low-risk fungicides, to which no significant resistance
has yet been observed. We focus here on the case of mixture and
alternation of a single high-risk fungicide with a single low-risk
when there is a fungal strain fully resistant to the high-risk. Despite
many experimental (Cooke et al. 2004;Dovas et al. 1976; Lamondia
2001; Sanders et al. 1985; Vali and Moorman 1992) and modeling

(Birch and Shaw 1997; Doster et al. 1990; Hobbelen et al. 2011a,
2013; Josepovits 1989; Josepovits and Dobrovolszky 1985; Kable
and Jeffery 1980; Shaw 1989a; Skylakakis 1981) studies focusing
on precisely this situation, no conclusive answer has emerged to
the important but very simple question: does mixture or alternation
provide better resistance management?
Although previous studies have led to equivocal results,

fungicide mixtures have often been found to provide superior
resistance management (van den Bosch et al. 2014b). van den
Bosch et al. (2014a) introduced a simple set of governing principles
as a theoretical framework to synthesize these and other results
concerning resistance management, formalizing previous concepts
from the literature (Milgroom and Fry 1988; Staub and Sozzi 1983).
These governing principles are based on constant rates of selection
for resistance. We generalize this here, quantifying total selection
for resistance by integrating a time-varying selection coefficient
over time. The selection coefficient is defined as the difference in
fitness between fungicide-sensitive and fungicide-resistant strains

s = rR
_ rS (1)

where rR and rS are the per capita growth rates of the resistant
and sensitive pathogen strains, respectively. The total amount of
selection for resistance is then given by the cumulative selection
coefficient

s =
Z T

0

sðtÞdt (2)

in which T is the time of exposure to fungicide. Selection for
resistance can therefore be reduced by decreasing both rR and rS, by
decreasing rR only, or by decreasing T (van den Bosch et al. 2014a).
The governing principles can be applied to the comparison

between mixture and alternation. Fungicide mixtures can reduce
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selection since the low-riskmixingpartner suppresses growth rates of
both sensitive and resistant pathogen strains. Mixtures may also
permit the use of less high-risk fungicides, decreasing differences in
growth rate between strains. However, due to the concave shape of
fungicide dose-response curves, mixtures experience a selective cost
from “dose-splitting”. Splitting a dose of fungicide over multiple
sprays increases the total effect on the pathogen and thus the selection
pressure imposed (van den Bosch et al. 2014a). Additionally,
alternations tend to reduce selection by reducing the numberof sprays
of high-risk and thus the time of exposure. Our work here assesses in
detail, for the first time, the impact of this trade-off between
suppression from the mixing partner and dose-splitting.
The structure of a mathematical model affects the conclusions

to which it leads (Cunniffe et al. 2012). Older models tended to
collapse epidemics into exponential growth of fungicide-sensitive
and fungicide-resistant strains (Kable and Jeffery 1980; Shaw1989b;
Skylakakis 1981), with more realistic, compartmental-type models
only appearing later (Gubbins and Gilligan 1999; Hall et al. 2004;
Mikaberidze et al. 2014, 2017; Parnell et al. 2005, 2006). The
current vogue emphasizes detailed, system-specific models (Kitchen
et al. 2016; van den Berg et al. 2016). Here we test explicitly
how model structure affects our results. We also test the effect of
pathosystem by performing our analyses for two systems. Most
of our results are based on a model of Septoria leaf blotch
(Zymoseptoria tritici) on winter wheat, but we test robustness via a
model of powdery mildew (Erysiphe necator) on grapevine.
We use these models to compare alternation andmixtures of low-

and high-risk fungicides. We address the following questions.

1. Is it better to apply two fungicides as a mixture, or as an
alternation?

2. How does this depend on fungicide dose, and the level of
disease control?

3. How can an optimal dose and spray program be determined?
4. Are results conditioned on (i) values of parameters governing

epidemiological rates and fungicide performance; (ii) model
structure; and (iii) the pathosystem under consideration?

MATERIALS AND METHODS

Modeling fungicide. Application tactics. Our focus here is
to compare mixtures (in which both chemicals are applied in
each spray) with alternation (in which the chemical used alter-
nates between sprays). However, for alternation this introduces a
dependence upon which chemical is sprayed first in any given
growing season. We therefore compare a total of three tactics.

1. Mixture. Both the high- and low-risk fungicide are applied at
each spray.

2. Alternation High-Low. Alternate sprays of high- and low-
risk, with high-risk sprayed first in each season.

3. Alternation Low-High. High- and low-risk alternate, with
low-risk first.

Since each fungicide is sprayed twice as often when part of a
mixture, we halve the dose to conserve the total amount of each
chemical applied per season (van den Bosch et al. 2014a).
Fungicide dynamics. Concentrations of both fungicides are set to

zero at the start of each season. The concentration of a fungicide is
sharply increasedwhenever it is sprayed, with the timing depending
on the pathosystem. Different fungicides decay at different rates in
our model, although between sprays all fungicides are subject to
exponential decay, with

dC

dt
= _ dC (3)

in which the decay rate d depends on the fungicide in question.

Epidemiological effects of fungicide and dose-response. The
effect of a fungicide on a pathogen depends upon its mode of
action, which differs between chemicals. Protectant fungicides are
assumed to affect the pathogen’s rate of infection, whereas
eradicant fungicides affect the rate at which latently infected tissue
becomes infectious (Hobbelen et al. 2011b). Fungicides that act as a
combined protectant and eradicant affect both rates.
We use the symbol e to represent the proportionate effect of a

given concentration of fungicide (C) on a relevant rate parameter in
our model (i.e., the rate of infection or the rate of emergence of
infectivity).We assume the size of the effect depends on the chemical
concentration via an exponential dose-response curve (Hobbelen
et al. 2011b), and so take the functional form of the proportionate
effect e(C) to be

«ðCÞ=w�1 _ e_qC� (4)

The parameters w (maximum effect) and q (curvature) vary
between fungicides. For mixtures, we assume independent action

1 _ «ðC1;C2Þ= ð1 _ «ðC1ÞÞð1 _ «ðC2ÞÞ (5)

in which C1 and C2 are the individual concentrations (Hobbelen
et al. 2011a).

Modeling Septoria leaf blotch on winter wheat. Description of
the model. We adapt a previously validated, compartmental model
of Septoria leaf blotch (Z. tritici) on winter wheat over successive
growing seasons (Fig. 1). The model is semidiscrete, tracking
pathogen dynamics in continuous timewithin each growing season,
linking seasons via sharp discontinuities at season boundaries
(Hilker et al. 2017; Mailleret and Lemesle 2009). Parameterization
of themodel is fully described inHobbelen et al. (2011a,b; 2013), in
which the procedure for testing the fitted model against field data
are also reported. The set of equations defining themodel is given in
the Appendix; we concentrate here on summarizing its important
features.
The model tracks the leaf area index (LAI), the area of leaf per

unit area of ground, for the upper five leaves of wheat plants (van
den Berg et al. 2016). The model distinguishes healthy, uninfected
leaf tissue (Susceptible) from different classes of infectious tissue:
latently-infected (Exposed), sporulating (Infectious), and dead
(Removed). The dynamics of resistance is tracked by separating
fungicide-sensitive and fungicide-resistant leaf tissue (for example,
splitting the infectious compartment into IR and IS).
There are large variations in the LAI presented by a wheat crop

over a single season, and this affects epidemiological dynamics
(Cunniffe et al. 2015). The model accounts for this by including
time-dependent rates of production of healthy tissue and of natural
leaf senescence, allowing faithful representation of the top five
leaves. The model also accounts for decaying inoculum on lower
leaves (Primary), which initiates seasonal epidemics on the upper
leaves. The amount of tissue in each compartment is reset to its
initial value at the beginning of each season, with the ratio of
fungicide-resistant to fungicide-sensitive inoculum set according to
the corresponding ratio in the infectious compartments at the end of
the previous year (or to the assumed initial frequency of resistance
in the first year).
Fungicide effects and timing. We followHobbelen et al. (2011a)

in taking pyraclostrobin as the high-risk fungicide and chlorotha-
lonil as the low-risk fungicide; this risk designation for the two
chemicals is supported by the current guidelines of the Fungicide
ResistanceActionCommittee (FRAC) (Brent andHollomon 2007).
We assume that pyraclostrobin acts as a combined protectant and
eradicant, but that chlorothalonil has only protectant activity. We
consider two applications of fungicide per season,with a T1 spray at
Zadoks growth stage 32 (second node formed in main stem,
corresponding to emergence of leaf three) and a T2 spray at growth
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stage 39 (emergence of the flag leaf). These timings are represen-
tative of those used in winter wheat growing areas (Paveley et al.
2014).
Calculating yield. We estimate the relative yield (Y) by integrat-

ing the amount of photosynthetically-active leaf area (i.e., tissue
which is either uninfected or which has not yet started to support
sporulation, so is in class S or E in our model) over a critical period
for grain formation, which here we take to be from growth stage 61
to growth stage 87 on the Zadoks scale (Gooding and Dimmock
2000; Waggoner and Berger 1987)

Y =

R TGS87
TGS61

 ðSðtÞ+ERðtÞ+ESðtÞÞ  dtR TGS87
TGS61

 Sdisease-freeðtÞ  dt
× 100% (6)

The denominator normalizes the yield to that obtained from a
disease-free crop (in which case the two E classes can be omitted
from the integrand, since there is no disease in the system).

Tactic performance. The goal of any anti-resistance tactic is
maintaining effective disease control. However, this begs a
question: what level of control is effective? We define a threshold
level of disease beyond which management is considered to have
failed, taking a 5% yield loss as the critical level growers will
tolerate (Hobbelen et al. 2011a). The effective lifetime of the high-
risk fungicide (the “usefulness time” of van den Bosch and Gilligan

[2008]) is defined as the number of seasons until this critical yield
loss occurs. We use the following metrics.

• Selection ratio (SR). Proportional increase in the frequency
of resistance over the first season, i.e., the proportion of the
total infectious tissue (IR + IS) infected by the resistant strain
(IR). This measures the rate at which fungicide resistance
spreads initially.

• Lifetime yield (LY). Total within-season yield over the entire
effective lifetime. This allows tactics that have similar effec-
tive lives but differences in within-season performance to be
distinguished.

Comparison of tactics depends on the metric. For selection, we
define Z = SRALT/(SRALT + SRMIX), in which SRALT is the selection
ratio of the best-performing of the two alternation tactics, and
SRMIX is that ofmixtures. Since smaller values of the selection ratio
are superior, values of Z lower than 0.5 indicate alternation is
preferred. For lifetime yield, larger values indicate a better perform-
ing tactic, andwepreserve the directionality of theZmetric by instead
defining Z = LYMIX/(LYALT + LYMIX), again using the best-
performing alternation tactic in the comparison.

Effect of model structure. We check the robustness of our
results to the set ofmechanisms included in the underlying epidemic
model. We identify three components that could be significant.

• Host-limited infection. The density of host tissue is modeled
in some detail, with a complex time-dependent function

Fig. 1. Model of Septoria leaf blotch on winter wheat. A, A schematic showing the structure of the within-season model for Septoria on winter wheat. The model
distinguishes healthy, uninfected leaf tissue (Susceptible) from different classes of infectious tissue: latently-infected (Exposed), sporulating (Infectious), and dead
(Removed), as well as tracking the density of inoculum on lower leaves (Primary). Circles represent these epidemiological compartments (split into two where
necessary to account for fungicide-sensitive and fungicide-resistant pathogen strains), solid lines represent transitions between compartments, dashed lines
represent effects on the rates of transitions, and the dotted arrow represents the point of initial infection in each growing season. Panels B, C, and D show the
dynamics of the model in the first growing season using the default model parametrization and the alternation low-high tactic at full doses of both chemicals. This
corresponds to a full dose of the low-risk fungicide at GS32 (1,456 degree days after planting), and a full dose of the high-risk fungicide at GS39 (1,700 degree
days after planting). The critical time for the accumulation of yield (GS61 to GS87; 2,066 to 2,900 degree days after planting) is shaded; control is considered to
have broken down if yields <95% of the disease-free yield are obtained. B, The leaf area index of healthy and dead tissue over time. C, The amount of primary
inoculum and leaf area index of infected tissue over time. D, The concentration of both fungicides over time. Note that in panels B, C, and D, dynamics start 1,212
degree days after the start of the growing season; this corresponds to the time of emergence of leaf five, with all pathogen dynamics before that time subsumed into
the initial condition for the primary inoculum.
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representing production of susceptible host tissue, whereas
simpler models use exponential growth.

• Latent period. New infections only become infectious after a
latent period, whereas in simpler models infected tissue
becomes infectious immediately.

• Phenology. The model includes a complex treatment of within-
season timing, with primary inoculum from lower leaves
initiating upper leaf epidemics, and also the senescence of living
leaf tissue. These features are absent from the simpler models.

These complexities are sequentially taken out of the model and
the analyses rerun (the procedure for this is described in full in the
Appendix).

Effect of pathosystem. Modeling powdery mildew on grape.
As a further test of robustness, we repeat a selection of analyses
using a model of powdery mildew (E. necator) on grapevine (Burie
et al. 2011) (Fig. 2). In addition to being previously parameterized to
match the grapevine powdery mildew pathosystem, there are three
additional differences in model structure in comparison with the
Septoria model.

1. There is no primary inoculum compartment, and epidemics
are instead initiated by a small amount of tissue being set to
be latently infected (i.e., exposed) at the start of each season.

2. An additional compartment is included in the model, account-
ing for leaves developing Ontogenic resistance by virtue of age.

3. The model includes shoot-topping, in which upper shoots are
removed to encourage secondary shoot growth.

Full details of themodel, and its parameterization, are given in the
Appendix.
We selected the Burie et al. (2011) model as a previously

published, parameterized and validated model of this pathosystem
that could be used without change as a baseline to which the
complexity of fungicide resistance management could be added.
We could have extended the model to include a number of aspects
that are potentially epidemiologically important in some regions,
for example, an ongoing source of primary infection, or manual or
mechanized leaf picking. However, this would then require refitting
and revalidating the model, and given our focus here on the
dynamics of fungicide resistance, we did not pursue any such
changes.
Fungicide effects and timing. For powdery mildew we model

trifloxystrobin as the high-risk fungicide, and sulfur as the low-risk
fungicide, assuming both chemicals combine protectant and
eradicant modes of action (Reuveni 2001). We assume flowering
occurs at day 163 of the season (Mammeri et al. 2014), and that
spraying is done either side of this, 2 days before and 12 days after
flowering. This is fewer sprays than normally used in French
viticulture (Calonnec et al. 2006; Savary et al. 2009), although it is
within the range leading to acceptable control (Gadoury et al. 2003).
Effective lifetime and yield. The Burie et al. (2011) model tracks

the severity of powdery mildew on grapevine leaves. However,
prices obtained by a growerwould depend on a combination of yield
and grape quality for winemaking. Effects of leaf infection upon
yield and quality are complex (Calonnec et al. 2004; Pool et al.

Fig. 2. Model of powdery mildew on grapevine. A, A schematic showing the structure of the within-season model for powdery mildew on grapevine. The model
distinguishes healthy, uninfected leaf tissue (Susceptible) from different classes of infectious tissue: latently-infected (Exposed), sporulating (Infectious), and dead
(Removed), as well as (Ontogenic) tissue that has become resistant to infection by virtue of its age. Circles represent epidemiological compartments (split into two
where necessary for each pathogen strain), solid lines represent transitions between compartments, dashed lines represent effects on the rates of transitions, and the
dotted arrow represents the point of initial infection in each growing season. Panels B, C, and D show the dynamics of the model when a full dose of the low-risk is
applied at the first spray (at day 161, 2 days before flowering occurs at day 163) and of the high-risk at the second spray (day 175, 12 days after flowering), for the
default model parameterization. Control is considered to have broken down when the severity of disease exceeds 3% within the period from flowering to 30 days
later. B, The area of healthy and dead tissue over time. C, Area of infected tissue over time. D, Concentration of fungicide over time. Note the agronomic practice
of topping is modeled as being performed 10 days after flowering (day 173), and this leads to sharp changes in the values of state variables and epidemiological
parameters at this time.
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1984). Quantifying fine details of this would require amore detailed
treatment thanwould be appropriate here.However, there is a strong
positive correlation between leaf infection and berry infection
(Calonnec et al. 2006; Delière et al. 2015). We therefore simply use
the level of leaf infection as a proxy for yield, taking 3% as the
critical threshold on the peak level of berry infection within 30 days
of flowering beyond which control is considered to have broken
down, since berries are almost entirely resistant after this period
(Gadoury et al. 2003). Similarly, stringent thresholds are common
in French viticulture (Deliere et al. 2010).We then set the equivalent
of lifetime yield to be the effective lifetime of the high-risk
fungicide, i.e., the number of seasons until this critical threshold is
exceeded.

RESULTS

Initial disease control at full doses. For Septoria leaf blotch
and applying full doses of both fungicides, all three tactics lead to
adequate control in the first season (yield >95%of the disease-free
yield) (Fig. 3A). Optimal initial control is obtained under mixture
(;97.4% yield), with lower yields from both alternation tactics
(;96.0 and 96.4% for low-high and high-low, respectively). The
first-season yield is highest for mixture because of the concave
dose-response curve, with diminishing returns from increased
concentrations. Spraying half the dose twice as often therefore
leads to better control (recall full dose corresponds to half dose
at both sprays under mixture). The alternation high-low tactic
slightly outperforms the low-high tactic in the first season since
the high-risk fungicide is assumed more efficacious (maximum
effect wH = 1.0 > 0.48 = wL). All other things being equal, con-
trol is improved by applying the high-risk fungicide earlier, since
it then targets the pathogen when its relative growth rate is larger.

Evolution of resistance at full doses. For all three tactics,
there is a sharp breakdown of control after;15 seasons (Fig. 3A).
This is driven by a rapid increase in the proportion of the resis-
tant strain, which increases sigmoidally from being practically
undetectable (<1%) to near fixation (>99%) within one or two
growing seasons (Kable and Jeffery 1980) (Fig. 3B). Disease
control then rests entirely on the low-risk fungicide, and all three
tactics become ineffective (i.e., yield<95%). Due to dose-splitting
and the concave dose-response curve, when resistance is at high
frequency the best yield is then obtained under mixture (Fig. 3A),
although this level of control is not economically viable. The
improved performance of the low-high tactic relative to high-low
alternation after resistance has taken over is again due to timing:
control is improved by applying the sole effective fungicide earlier
in each season.

Although the timing of the sharp increase in the frequency of
fungicide-resistant pathogen is similar for all three tactics, it occurs
earliest for mixture then for alternation high-low then for low-high
(Fig. 3A and B). This is precisely the order of the efficacy of the
tactics for disease control in the first season. Applying fungicides as
a mixture therefore leads to slightly more effective disease control,
but in part as a consequence of this, exerts a stronger selective
pressure. Considered over the effective lifetime, the alternation low-
high tactic therefore has the highest lifetime yield (Fig. 3C). At full
dose, however, differences between the tactics are relatively minor.

Responses of selection and lifetime yield to dose. Full
dose results illustrate how disease control and selection are closely
related. We therefore consider performance over a range of dose
combinations, identifying how to select a pair of doses, as well as a
spray tactic, to optimally balance control against selection. For
selection, there are dose combinations favoring both alternation and
mixture (Fig. 4A). Alternation exerts less selection than mixture at
higher doses of high-risk (CH). The concave dose-response means
that at high doses the effect on pathogen growth rates of the half dose
under mixture approaches that of full dose under alternation.
However, under mixture this dose is applied twice as often, and
selection occurs for longer. Conversely, at higher doses of the low-
risk fungicide (CL), mixture tends to be preferred, since alternation
receives no suppression of pathogen growth rate from the low-risk at
the time the high-risk fungicide is applied.
Patterns in lifetime yield are more complex (Fig. 4B). There is a

region of dose-space (hatch-shaded gray) within which no tactic
leads to sufficient control even before resistance has spread. This
outcome is associated with low doses of both chemicals, although
even at full dose of low-risk, some high-risk is required (recall the
high-risk chemical is the more efficacious). There is an intermediate
region (shaded dark green) within which, at the same doses of both
chemicals for each tactic, effective control is only possible under
mixture because of dose-splitting. For larger doses of both chemicals
either mixture (shaded light green) or one of the alternation tactics
(shaded light brown) can have the best performance, or there can be
approximately equal lifetime yields (within 1%; shaded white).

Selecting an optimum tactic and dose. The largest lifetime
yield over all tactics and pairs of doses is marked with the red
arrow on Figure 4B. It corresponds to spraying a mixture of a full
dose of low-risk with a dose of high-risk slightly larger than that
required for economically acceptable yield in the first season. As
the low-risk fungicide exerts no selection, it is unsurprising that
the maximal permissible amount of low-risk should be optimal,
since this allows the smallest amount of high-risk to be applied
while maintaining acceptable disease control. However, it is less
obvious why the optimal tactic should be to apply the high-risk
fungicide as part of amixture, andwhy thisparticular doseof high-risk

Fig. 3. Performance at full doses of both fungicides. A, The yield, expressed as a percentage of the disease-free yield, as a function of the growing season, for all
three tactics at full doses. The dashed line corresponds to the critical yield threshold (95% of the disease-free yield) below which control is assumed to be
economically ineffective. B, The frequency of resistance to the high-risk fungicide in the pathogen population at the start of each growing season. C, The overall
lifetime yield (expressed as a multiple of the disease-free yield in a single season).
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(i.e., just above the amount required to ensure effective control) is
required.
We therefore examine responses to the dose of high-risk (CH)

with the low-risk fixed at full dose under all three spray tactics (Fig.
4C to E). This corresponds to the vertical line in dose-spaceCL= 1.0
in Figure 4A and B. As already noted, for a given value of CH,
mixture leads to the best initial disease control because of the
beneficial effect of dose-splitting (Fig. 4C). The implication is that
lower CH can maintain adequate control under mixture (CH ³ 0.29;
dashed line in Figure 4C) compared with either alternation (CH ³
0.44 or 0.56). The response of the strength of selection toCH ismore
complex, with both mixture and alternation potentially leading to
smaller selection ratios at different CH (Fig. 4D).
To understand optimum performance in more detail, we compare

the selection ratios at the low end of permissible doses for each
tactic, since thesemaximize lifetime yields (Fig. 4E). For themodel
and parameterization used here, the lower permissible dose under
mixture outweighs the effect of spraying the high-risk fungicide
twice as often, and exerts less selection than the lowest permissible
doses under either alternation (at 95% yield in the first season, SR =
2.28 for mixture versus 3.08 and 3.15 for alternation high-low and
low-high, respectively). The lower selection ratio leads to a longer
effective lifetime, and spraying the fungicides as a mixture optimizes
lifetime yield.
The optimal dose of the high-risk fungicide (CH) is slightly higher

than the minimum CH ensuring acceptable control in the first
season. This is because the effective lifetime is discrete, leading to
ranges of CH which all break down within the same season. Within
any range of doses with the same effective lifetime, the optimum
lifetime yield is often obtained by selecting a higherCH, benefitting
from slightly improved control in each season it remains effective.
Too high aCH however can lead tomore dramatic failure in the final
season, and thus the optimalCHmay not be the highest dosewith the

longest effective life. This is difficult to see in Figure 4E, but the
“horizontal” parts of the response are not quite horizontal. The red
arrow in Figure 4B is therefore above the boundary between the
gray and dark green regions.

Balancing selection and control. We further dissect the
trade-off between selection and control by considering equal doses
of high- and low-risk (Fig. 5A to E), corresponding to a different
visualization of results underpinning the line CH = CL in Figure 4A
and/or B. For all three tactics, as the dose of high-risk and low-risk is
increased, both the first season yield (Fig. 5A) and selection ratio
(Fig. 5B) increase. However, dose-splitting means that viable
control is again retained under mixture at much lower doses. The
overall maximum lifetime yield is therefore under mixture (LY =
19.1, CL = CH = 0.5) (Fig. 5C). Tactic performances can be
normalized against each another by replotting the selection ratio
and lifetime yield as a function of the first season yield (Fig. 5D and
E). This reiterates that, at least at the same level of initial disease
control and using equal proportions of both chemicals, mixture
leads to less selection (Fig. 5D) and a larger lifetime yield (Fig. 5E).
Differences between tactics are small, however.
Examining responses of selection and control to first season yield

is a convenient mechanism to allow results at all doses, not just
whenCH =CL, to be visualized (Figs. 5F to H). For any given initial
level of control, mixture can produce higher lifetime yields and
lower selection ratios (Fig. 5F and G). However, mixing fungicides
can also produce lower yields and higher selection ratios. The
variation in selection and yield for a given level of control is
therefore much larger with mixture than with either alternation
tactic. Examining tactics that have the same initial disease control
shows that mixtures can produce any particular effective lifetime at
much lower CH. This is shown in Figure 5H, which—for the ranges
of doses of both fungicides under all three tactics which lead to first
season yields between 95.45 and 95.55%—shows values of CH

Fig. 4. Defining the optimal spray tactic and dose combination. A, Comparison of the selection ratio (SR) for mixture versus alternation, for different doses of high-
risk and low-risk fungicides (over the entire growing season, and so under mixtures each dose as shown in dose-space is halved at the time of application; this is
done for all results presented in this paper). In all cases, the SR under mixture is compared with the best-performing of the two alternation tactics. The Z metric,
which is used to visualize the comparison, is defined here as SRALT/(SRALT + SRMIX). Values lower than 0.5 therefore indicate alternation is superior, and values
greater than 0.5 indicate mixture is superior. Values very close to 0.5, which are shaded white, correspond to the two tactics performing equally well. B,
Comparison of the lifetime yield (LY) for mixture versus the best performing alternation tactic. The Z metric is defined here as LYMIX/(LYALT + LYMIX): again
higher values indicate mixture is superior. Regions of dose-space within which no spray tactic can provide effective control in the first growing season are hatch-
shaded gray; the dark green region corresponds to areas of dose-space within which disease can only be controlled when the fungicides are sprayed as a mixture.
The largest lifetime yield is marked with the red arrow, and occurs when spraying using a mixture including the maximum dose of low-risk fungicide (CL = 1.0).
Panels C, D, and E show results for all three tactics as a function of high-risk dose when the low-risk dose is fixed at CL = 1.0. Individual panels: C, first-season
yield; D, selection ratio; and E, lifetime yield. In C the dashed line shows the disease control threshold.
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leading to each effective lifetime (i.e., a vertical slice through the
data underpinning Figure 5G).

Effect of epidemiological and fungicide parameters. Results
thus far correspond to a single model parameterization. We test
robustness by altering values of a number of key parameters. In all cases
the dose of low-risk fungicide is fixed to be maximal (i.e.,CL = 1.0), as
we have identified nomechanism bywhich changing parameter values
can cause this not to be optimal. We then consider the response of
lifetime yield to changing CH.
As an example, we examine in some detail the effect of the

infection rate (b) (Fig. 6A). If b is made significantly larger than the
default, all three tactics fail to give sufficient control at anyCH (dark
gray hatching). If b is made sufficiently smaller, then control can be
maintained indefinitely through the low-risk fungicide alone (light-

gray hatching). Both cases are unrealistic.Within the realistic range
of values of b, exactly the same pattern is seen as before. At lowCH,
no spray tactic can provide effective control. At slightly higher CH

mixture performs best. At the highest CH alternation performs
better, although for large infection rates this might require CH > 1.0
(i.e., a dose above the permissible maximum label dose). As b is
increased, the thresholdCH at whichmixture first becomes effective
shifts upwards, as more fungicide is required to provide acceptable
disease control.
The optimal dose is always lower formixture than for either of the

alternations (Fig. 6B; the saw-tooth pattern is because the effective
lifetime is discrete). The corresponding optimal lifetime yield
is always larger under mixture (Fig. 6C), and for all tactics
corresponds to selecting CH close to the threshold required for

Fig. 5. Balancing selection and disease control. Panels A, B, and C show performance as the dose varies but when equal amounts of low- and high-risk fungicide
are sprayed (i.e., CL = CH). Individual panels are: A, first-season yield; B, selection ratio; and C, lifetime yield. Panels D, (selection ratio) and E, (lifetime yield)
show the results from B and C plotted as a function of the first season yield. When normalized for the level of initial disease control, mixture leads to less selection
and larger lifetime yields than either alternation tactic. Panels F, G, and H show the results when the constraint that doses of both fungicides should be equal is
removed. For all three tactics there are ranges of values of the selection ratio and the lifetime yield that correspond to each single value of the first season yield,
with different relative proportions of high-risk to low-risk fungicide that is sprayed. The top and bottom of the ranges of the selection ratio and the lifetime yield are
shown for each tactic, although all intermediate points can be attained for different combinations of low- and high-risk chemicals. The ranges are wider for mixture
than for either alternation tactic, meaning that, depending on the dose of high-risk fungicide, mixture can lead to both better and worse outcomes for resistance
management at any level of disease control. However, dose combinations that cause mixture to provide the most effective resistance management can always be
selected. H, The range of high-risk doses that lead to different effective lifetimes, for each tactic (first season yields between 95.45 and 95.55%; this corresponds to
vertical slice through the data shown in panel G). A wider range of effective lifetimes are possible at this level of disease control under mixture, and a given
effective lifetime results from a smaller dose of high-risk fungicide. A, D, E, F, and G, Dashed line shows the disease control threshold.
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effective first season control (Fig. 6D). For all values of the in-
fection rate, b, the optimal tactic is therefore again to spray a little
more high-risk fungicide than required for effective control in the
first season, and to do so using a mixture of fungicides on each
spray.
The pattern is consistent for all parameters tested in our sen-

sitivity analysis (Fig. 7). For parameters which cause disease to
spread faster as they are increased, more high-risk fungicide is
required for effective control, and the characteristic pattern shifts
upward (Fig. 7C and F). Conversely, for parameters for which an
increase leads to decreased rates of disease spread, a smaller amount
of high-risk is permissible (Fig. 7A, B, D, E, and G). Changing the
initial frequency of resistance has a negligible effect on the relative
performance of the tactics in the first season, for both resistance
management and yield.However, at higher initial levels of resistance,
control fails sooner, increasing the importance of disease control in
the earlier seasons for the lifetime yield and thus favoring mixture
(Fig. 7H).

Effect of model structure. To facilitate intermodel compar-
ison, we return to comparing tactics in dose-space. The simplest
model, with both pathogen strains growing exponentially, is similar
to models used in the early fungicide resistance modeling literature
(Delp 1980; Kable and Jeffery 1980; Skylakakis 1981). Indeed, if
we additionally assume fungicides do not decay, an analytical
prediction ofwhich tactic leads to better resistancemanagement at a
given pair of doses can be generated. The other models are too
complicated formathematical analysis, although the same pattern is
seen for selection in dose-space in every model (Fig. 8). The only
real differences between models are the slightly larger regions
within which alternation provide better resistance management
when models include a latent period. When a latent period is not
included, the high-risk fungicide loses its eradicant mode of action,
and so becomes generally less efficacious. As with dose and
fungicide parameter values, less effect from the high-risk fungicide
then favors mixture.

In themodels that include host-limited infection, and thus the loss
of host tissue to disease, we also investigate how predictions of
lifetime yield are affected by model structure (Fig. 9). Predictions
vary between models, which is perhaps unsurprising given the
additional complexity underlying the yield metric. However,
although the patterns vary, the characteristic pattern in dose-space
is conserved. At lowCH, both tactics fail to give acceptable yield, at
slightly higher doses mixture outperforms either of the alternation
tactics, and at the highest doses alternation outperforms mixture.
Exactly as before, the optimal tactic is therefore again to spray a
little more high-risk fungicide than is required for effective control
in the first season, and to do so under mixture.

Effect of pathosystem. Results for powdery mildew are sim-
ilar to those for Septoria for both comparisons in dose-space, with
alternation performing better at higher doses of the high-risk
fungicide in terms of both resistance management and long-term
yield (Fig. 10A and B). Mixture performs increasingly well for
selection if CL is increased, while the yield metric produces more
complicated patterns, again as before. Compared with the Septoria
model, the boundary between the areas where mixture and al-
ternation perform better for selection curves in the opposite
direction; concave upward rather than downward (compare
Figure 10a with Figure 4A). This is because the maximum
effectiveness of the low-risk in the powdery mildew model is
larger than its counterpart in the Septoria model (compare
analytic predictions from the simple exponential growth model,
given in Supplementary Text S1). Again, at full dose of both
fungicides the superior tactic for both resistance management
and long-term yield is alternation low-high.
However, when normalizing tactic performance by the level of

initial control (Fig. 10C and D), mixture is again capable of
generating lower selection pressures and higher effective lives.
Compared with Septoria, the alternation tactics have less overlap in
their performance and the worst-yielding mixture tactics are much
more similar to theworst-yielding alternation.Nevertheless, the key

Fig. 6. Response to the infection rate parameter. A, The value of the Z metric for lifetime yield (i.e., Z = LYMIX/(LYALT + LYMIX)) for different values of the
infection rate b (x axis) and doses of high-risk chemical, CH (y axis), when the dose of the low-risk chemical is fixed at CL = 1.0. The dark gray region corresponds
to pairs of infection rates and high-risk doses for which no tactic can provide effective control in the first growing season, and the light gray region corresponds to
at least one of the tactics providing effective control without any high-risk chemical being sprayed (and so within which resistance management is trivial). B, The
optimal dose of high-risk chemical for each tactic as a function of the infection rate. C, The corresponding lifetime yield that is obtained. D, The level of disease
control, as measured by the yield in the first season, at optimum for each tactic. B and D, The saw-tooth pattern is because the effective lifetime, the most important
determinant of the lifetime yield, is a discrete quantity. The dashed lines in all panels shows the default value of b.
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result is that the overall optimal tactic for long-term yield is, yet
again, to apply asmuch low-risk as possible, combinedwith slightly
more high-risk than needed for an acceptable initial level of disease
control, and to do so under mixture.

DISCUSSION

We considered resistancemanagement of a fungicide at high-risk
of resistance, comparing performance of combining the high-risk
chemical with a low-risk fungicide sprayed as either a mixture or in
alternation. We assessed performance via the lifetime yield before
control breaks down due to fungicide resistance, performing four
distinct comparisons. The simplest comparison considered full
label doses of both chemicals. For Septoria, the largest lifetime
yield was obtained by spraying in alternation, although the im-
provement relative to mixture was relatively small (Figs. 3 and 4A
and B). Alternation was also optimal at full doses in our model of
grapevine powderymildew (Fig. 10A andB).While performance at
full doses of both chemicals is a simple comparison, it is now
common practice in some countries for fungicides to be used
routinely at lower doses (Jørgensen et al. 2017). Additionally,
the comparison depends strongly on model parameterization. By

altering values of epidemiological and/or fungicide-performance
parameters, eithermixture or alternation can optimize lifetime yield
at full dose (cf. changes in color along the top of individual panels
in Figure 7). The set of mechanisms included in the underlying
epidemiological model can also affect whether alternation or
mixture is the best tactic (note how closely regions shaded light
green approach the top right points at which CH = CL = 1.0 in some
panels of Figure 9). Results of the full dose comparison are therefore
equivocal, being system-, model-, and parameter-specific. There is
also no guarantee that larger lifetime yields would not be obtained
by spraying smaller amounts of fungicide, due to the smaller
amount of selection that would thus be exerted.
Our second comparison therefore considered performance across

all pairs of permissible doses. There are regions of dose-space
within which either alternation or mixture optimize lifetime yield
(Fig. 4B). The broad pattern in dose-space is robust to model
structure (Figs. 8 and 9) and pathosystem (Fig. 10A and B). An
underlying driver of the variation in performance at different doses
is that, when normalizing by the applied doses, different tactics lead
to varying levels of disease control in the absence of resistance
(Figs. 4C and 5A). An alternate normalization, as in our third
comparison, accounts for this by selecting combinations of pairs of

Fig. 7. Full sensitivity analysis for a range of epidemiological and fungicide parameters. Each panel shows the equivalent of Figure 6A for a different parameter. A,
Maximum effect parameter for the high-risk fungicide. B, Curvature parameter for the high-risk fungicide. C, Decay rate for the high-risk fungicide. D, Maximum
effect parameter for the low-risk fungicide. E, Curvature parameter for the low-risk fungicide. F, Decay rate for the low-risk fungicide. G, Pathogen latent period.
H, Initial frequency of the resistant pathogen strain. The red lines mark the optimal doses of high-risk fungicide for lifetime yield for each value of the parameters:
in all cases this corresponds to applying the two fungicides as a mixture.
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fungicide doses for each tactic that lead to identical initial levels of
control (Fig. 5F and G). The effective lifetime and so lifetime yield
for any given level of disease control then depends strongly on the
amount of high-risk fungicide that is sprayed (Fig. 5H). Since the
low-risk chemical exerts no selection in our model, it is optimal
to include as much low-risk fungicide as possible in any spray
program, and to combine this with as little high-risk fungicide as
provides effective control (Figs. 4B and 10B). Arguably this is
unsurprising (Shaw 2006), but focuses our attention on identifying
the tactic which has the longest effective lifetime, and so the largest
lifetime yield.
For this fourth and final comparison, for both pathosystems we

considered (Figs. 4B and 10B), and for all model parameterizations

(Figs. 6 and 7) and sets of epidemiological mechanisms (Fig. 9) we
tested, the maximum effective lifetime was obtained when fungi-
cides were sprayed as a mixture. We found it was then always
optimal to apply a full dose of low-risk mixed with close to the
minimal dose of high-risk that retains effective control when there is
no resistant pathogen. This optimizes the lifetime yield (red arrows
in Figs. 4B and 10B, and red lines in Fig. 7). This spray program
represents the true optimum of all tactics we considered.
Mathematical models of whether alternation or mixture is better

for fungicide-resistance management have been developed for
decades. In the early literature whether mixture provided any ben-
efit beyond allowing a reduction in dose was contentious, and
without explicit consideration of dose-response curves, the cost of

Fig. 8. Effect of model structure on the comparison between mixture and alternation for selection. The relative performance of mixture and (the best-performing)
alternation is plotted in dose-space, by calculating the Z metric, Z = SRALT/(SRALT + SRMIX), for all of the Septoria submodels investigated. The colored boxes next
to each subplot identify what model features are present, and the colored lines show which features differ between connected submodels. The right-most model
includes all features, and so corresponds to the full model of Septoria considered in the bulk of the paper (i.e., the right-most plot is exactly as Figure 4A).

Fig. 9. Effect of model structure on the comparison between mixture and alternation for lifetime yield. The relative performance for lifetime yield of mixture and
(the best-performing) alternation is plotted in dose-space, showing Z = LYMIX/(LYALT + LYMIX), for a range of the Septoria submodels investigated. Note that it
does not make sense to consider the yield in models that do not contain host limitation, and so these models are omitted. The optimal lifetime yield is marked by the
red arrow (in all cases this is at full-dose of low-risk and is obtained under mixture). Note again that the right-most model corresponds to the full model, and so
replicates Figure 4B.
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dose-splitting was not obvious. The recent formalization of the
governing principles has allowed us to clearly disentangle the
mechanisms driving the effect of fungicide mixtures on selection.
The other major distinguishing feature of our work is our exten-
sive sensitivity analysis to model parameterization as well as the
pathosystem that is modeled. We also tested—via our structural
sensitivity analysis to model structure—how the set of epidemio-
logical mechanisms included in the underlying model affected our
conclusions. We are not aware of other studies in the phytopathol-
ogy disease modeling literature performing a similar comparison.
Certainly, it is remarkable that the optimum over all tactics was
independent of all these factors.
We have also shown how the governing principles originally

introduced by Milgroom and Fry (1988) and more recently for-
malized by van den Bosch et al. (2014a) can be used to explain the
behavior of resistance development in response to mixture and
alternation. The driving mechanism underpinning the relative
success of fungicide mixture is that dose-splitting of the low-risk
fungicide gives better background disease control and permits a
lower dose of high-risk to be used. The growth rate of the pathogen
when the high-risk is applied is also suppressed by the low-risk,
reducing selection further. For the set of models and parameteri-
zations tested here these effects outweigh the negative effect of
spraying the high-risk chemical twice as often. While we have not,
and in general cannot, prove this will happen in all parameteriza-
tions of all models of all structures for all pathosystems, taken
collectively our results provide extremely good evidence that ap-
plying fungicides as a mixture will be the best resistance manage-
ment tactic in a range of situations. Furthermore, for a set of 1,000
parameter sets in which each parameter was sampled uniformly at
random from the ranges shown in Figure 7, no casewas found where
mixture did not provide an overall better lifetime yield than al-
ternation (the full procedure for this additional sensitivity analysis is

described in theAppendix).We therefore feel justified in inferring on
the basis of the evidence presented here that mixture will always be
the best resistance management tactic for combining a low-risk and
high-risk fungicide (with full resistance)when the objective is phrased
in terms of optimizing the lifetime yield of the high-risk chemical,
given that a threshold level of disease control must be attained in all
years the chemical is sprayed.
The majority of our results are explained by dose-splitting and

suppression by the mixing partner, both of which are simply
explained by the governing principles. However, the fact that the
two alternation tactics do not perform identically—and that these
two tactics differ only in the order in which high-risk and low-risk
chemicals are applied—shows that timing of fungicide application
can also be important. These can likely also be explained by the
governing principles, butwith greater difficulty due to the nontrivial
interactions between the end of the season, the growth rate of the
pathogen at anygiven time, and the critical period foryield formation.
We have therefore not pursued these differences here.
An aspect of resistance that we have not touched upon in ourwork

is that resistance is often partial rather than full. This is highlighted
by the fact that resistance is generally measured in terms of a
resistance factor, the ratio of the EC50 values of the fungicide on
resistant and sensitive strains. The resistance factor would be
infinite if resistance were full. The models presented here could be
readily extended to consider partial resistance by allowing the high-
risk fungicide to affect the resistant strain, but with a reduced
maximum effect or curvature parameter of the dose-response curve
(Hobbelen et al. 2013; Mikaberidze et al. 2017). This is unlikely to
greatly change the nature of the overall optimal tactic for three main
reasons. Partial resistance introduces no mechanism by which
applying more low-risk fungicide is detrimental. Partial resistance
can lead to a casewhere it is better to applymore high-risk fungicide,
due to convergence of the dose-response curves on the resistant and

Fig. 10. Effect of pathosystem: results for grapevine powdery mildew. A, Comparison of the selection ratio for mixture versus the best-performing alternation tactic
for the model of powdery mildew on grapevine, for different doses of high-risk and low-risk fungicide (cf. Fig. 4A, which shows the corresponding result for
Septoria on winter wheat). B, Corresponding comparison of lifetime yield in dose-space (cf. Fig. 4B). C, Range of selection ratios as a function of the first season
infection level for the grapevine model (cf. Fig. 5F). D, Range of lifetime yields as a function of the first season infection level for the grapevine model (cf. Fig.
5G). Again (cf. Fig. 5F and G), ranges are almost always wider for mixture than for either alternation tactic, meaning that, depending on the dose of high-risk
fungicide, mixture can lead to both better and worse outcomes for resistance management at any level of disease control. However, dose combinations that cause
mixture to provide the most effective resistance management can always be selected. C and D, Dashed lines in show the minimal acceptable level of disease
control.
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sensitive strains at higher doses (Mikaberidze et al. 2017). However,
the majority of experimental evidence points to a conclusion that
smaller rather than larger doses are better for resistance management
(van den Bosch et al. 2011). In addition, previous modeling work,
using a very similar model to our own, investigated partial resistance
in the case of using two high-risk fungicides and concluded that
mixture outperformed alternation (Hobbelen et al. 2013). We will
return to this topic in our future work.
In this paper we have concentrated on tactics combining a high-

risk with a low-risk fungicide. The current version of the standard
advice for growers in the UK (FRAG-UK 2016) recommends such
combinations of low-risk and high-risk fungicides for Septoria leaf
blotch. In particular, Chloronitriles (chlorothalonil), Dithiocarba-
mates (mancozeb), and Phthalimide (folpet) are each low-risk
multisite fungicides recommended by the Fungicide Resistance
Action Group UK (FRAG-UK) as part of an anti-resistance man-
agement tactic. The recommendation is these low-risk prod-
ucts should be applied in tank mixtures with (high-risk) DMIs
(demethylation inhibitors), SDHIs (succinate dehydrogenase in-
hibitors) or QoIs (quinone outside inhibitors), and this is strongly
supported by our key result that mixtures lead to better resistance
management.However, resistancemanagement for combinationsof
two high-risk chemicals is potentially very important for Septoria,
exemplified by the recent take up of SDHI-azole mixtures. Mod-
eling mixtures of two high-risk fungicides will be a next step in our
work. The update to the model is relatively simple, requiring only
additional classes to track pathogen strains resistant to either or both
fungicides. However, the recommendations of optimal tactics are
likely to become more complex, since it is no longer axiomatic that
one of the chemicals should always be sprayed at full dose (cf. the
low-risk fungicide in our work) (Hobbelen et al. 2013).
Whilewe have identified how the optimal tactic and combination

of doses could be selected, there are potentially issues in adopting
our prescribed tactic. The first difficulty is that it requires the
threshold between effective and ineffective control to be un-
ambiguously identified. Given the high level of year-on-year
variability typical of real disease systems (te Beest et al. 2008) and
the extent to which available models do not necessarily capture the
complex dynamics of epidemics accurately enough to make such a
precise prediction (Gent et al. 2013), this might be rather difficult in
practice. There would also be questions raised surrounding the risk
aversion of growers and/or agronomists, who might, reasonably
enough, wish to use higher doses of fungicides than are necessary on
average to avoid failure of control inyearswithhighdisease pressures
(Jørgensen et al. 2017), although in principle this might be mitigated
via a sufficiently well-calibrated decision support system (Carisse
et al. 2010). We have also not considered the economic aspects of
our recommendations (te Beest et al. 2013), nor the potentially
confounding effects of varying the timing of fungicide sprays (van
den Berg et al. 2013, 2016), nor the emergence phase of resistance
(Hobbelen et al. 2014; Mikaberidze et al. 2017), nor of spatial
heterogeneity in coverage (Shaw 2000; Parnell et al. 2005, 2006).
Nevertheless, by showing in detail and for the first time how
fungicide anti-resistance tactics shouldproperlybe compared, aswell
as by showing how results of such comparisons can be explained
using simple and intuitive epidemiological principles, our work has
developed a firm base towhich these complexities can be added. Our
future work will do this, albeit with the expectation that using a
mixture of fungicides in each spraywill very often be the better tactic.

APPENDIX

Full details of the model of Septoria leaf blotch on
winter wheat. The model of Septoria leaf blotch on winter wheat
is a semidiscrete, compartmental model running over successive
growing seasons. The model was originally derived, parameterized
and tested against field data in Hobbelen et al. (2011b). It tracks the
leaf area index (LAI), the area of leaf per area of ground, of different

classes of leaf tissue, distinguishing a number of epidemiologi-
cally relevant compartments: the area of healthy uninfected tissue
(Susceptible), the area of latent (Exposed) and infectious (In-
fectious) lesions, and the area of dead tissue (Removed). All classes
involving the pathogen are divided into separate subcompartments
for the fungicide-resistant (subscript R) and fungicide-sensitive
(subscript S) strains. Note that the fungicide-resistant and fungicide-
sensitive strain dynamics are identical except that the high-risk
fungicide does not affect the fungicide-resistant strain.
We denote the total upper leaf LAI as A, with

A= S+ER +ES + IR + IS +R (7)

This LAI grows at rate g, which is monomolecular after the
emergence of the first leaf tracked, and in which disease has no
effect on growth

gðA; tÞ=
�
0; t < TEMERGE

rðk _AÞ; t ³ TEMERGE
(8)

Living host tissues senesce at a time-dependent rate G(t)
governed by the time in the season relative to key growth stages

GðtÞ =

8><
>:

0; t <TGS61

0:005

�
t _ TGS61

TGS87 _TGS61

�
+ 0:1e

_
0:02ðTGS87_tÞ; t ³ TGS61

(9)

The system of differential equations describing the system is then
(values and meanings of parameters are collated for easy reference
in Supplementary Table S1)

dS

dt
= gðA; tÞ _GðtÞS _bS

A
ð1 _ «ðCLÞÞðð1 _ «ðCHÞÞðIS +PSÞ+ IR +PRÞ

dER

dt
=
bS

A
ð1 _ «ðCLÞÞðIR +PRÞ _GðtÞER

_ gER

dES

dt
=
bS

A
ð1 _ «ðCLÞÞð1 _ «ðCHÞÞðIS +PSÞ _GðtÞES

_gð1 _ «ðCHÞÞES

dIR
dt

= gER
_ µIR

dIS
dt

=gð1 _ «ðCHÞÞES
_ µIS

dR

dt
= µðIR + ISÞ+GðtÞðS+ER +ESÞ

dPR

dt
= _ nPR

dPS

dt
= _ nPS

dCH

dt
= _ dHCH

dCL

dt
= _ dLCL

(10)

The model was slightly updated relative to the original
publication (Hobbelen et al. 2011b) by modeling disease spread
on the top five rather than three leaves. This avoided an edge effect
whereby the spray at GS32 (very near to the start of the part of the
growing season modeled in the Hobbelen paper) exerted an
unrealistically large amount of selection. This was a modeling
artifact due to extremely large per-capita growth rates at the start of
the modeled season (caused by primary infection from the time-
decaying inoculum), which was fixed by shifting the effective start
of the growing season back by two phyllochrons. This change
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additionally facilitates comparison with later models which track
these additional leaves (van denBerg et al. 2013). This change in the
length of the models growing season required the infection rate (b)
be refitted, which was done by minimizing the squared difference
between areas of infectious tissue, summed over every degree-day,
between the Hobbelen et al. (2013) model and the new parameter-
ization starting at the emergence of leaf five. The optimization was
carried out for the times from the emergence of leaf three onward
and with no fungicide applied.

Sensitivity analysis to model structure for the model of
Septoria leaf blotch. We investigated the effect of three main
features of the Septoria model: host-limited infection, whether the
latent period is modeled, and phenology. Each of these features
corresponds to certain features being included/omitted from themodel.

• Host-limited infection. In models which do not include host-
limited infection, the infection rate is independent of the
amount of host tissue, and so the terms for infection in
Equation 10 are altered as follows

Resistant:   
bS

A
ð1 _ «ðCLÞÞðIR +PRÞ →  bð1 _ «ðCLÞÞðIR  +PRÞ

Sensitive:  
bS

A
ð1 _ «ðCLÞÞð1 _ «ðCHÞÞðIS +PSÞ 

→  bð1 _ «ðCLÞÞð1 _ «ðCHÞÞðIS  +PSÞ (11)

• Latent period. If the latent period is removed, infection moves
tissue directly from the S class to IR and IS without passing
through ER and ES.

• Phenology. If phenology is removed from the model, the se-
nescence term G(t) (Equation 9) is set to zero and the state
variables corresponding to primary inoculum (PR and PS) are
removed from the model. The epidemic is then started each
season by adding a small amount of ER and ES (or IR and IS if
there is also no latent period in the simplified model). The
amount added is the same as the amount of primary inoculum
that would have been present if phenology were included in
the model.

Every possible model which either includes or excludes each of
these three factors is considered, leading to a total of eight different
models. Since models without host-limited infection cannot provide
information about the loss of green tissue to infection, they are
excluded for the yield analysis, leaving four models in that case.
The infection rate parameter (b) is refitted for each model, to

allow results to be directly compared. The fitting was done by
generating data for every degree-day from the full model when
spraying under each of the spraying tactics (mixture and the two
alternations) at four different doses of each fungicide (0.25, 0.5,
0.75, and full dose) and when there is no fungicide-resistant
pathogen. The value of the infection rate parameter for each
simplified model was chosen that minimized the sum of squared
differences between the curves for the amount of IS over a sin-
gle season for the full model and the given simplified model
(Supplementary Fig. S1). Multiple doses and tactics were used in
the fitting in order to give a parameter value that gave dynamics
similar across the range of doses that were compared.

Full details of the model of powdery mildew on grapevine.
Similar to the model of Septoria leaf blotch on winter wheat, the
model of powdery mildew on grapevine is a semidiscrete, compart-
mental model and runs overmultiple growing seasons. Themodel was
derived and parameterized in Burie et al. (2011). It tracks healthy
uninfected tissue (Susceptible), the area of latent (Exposed) and
infectious (Infectious) lesions, leaf area that hasdeveloped resistance to
disease due to age (Ontogenic), and dead tissue (Removed).All classes
involving the pathogen are divided into a subcompartment for the
fungicide-resistant (subscript R) and fungicide-sensitive (subscript S)
strains. Again, the fungicide-resistant and fungicide-sensitive strain

dynamics are almost identical except that the high-risk fungicide does
not affect the fungicide-resistant strain.
The total leaf area is

A= S+ER +ES + IR + IS +R+O (12)

and this is assumed to grow logistically, with

gðA; tÞ= rðtÞA
�
1 _

A

kðtÞ
�

(13)

The growth parameters r(t) and k(t) are piecewise constant
functions depending on whether t is before or after shoot topping,
which is the agronomic practice of removing the upper shoots to
encourage secondary growth (Supplementary Table S2, in which all
parameters are described and collated for easy reference). Shoot
topping is modeled as occurring on day 173 of the season, and
changes the value of these host growth parameters, as well as the
infection rate parameter. It also leads to a 20% reduction in the size
of the state variable for each compartment.
The system of differential equations describing the powdery

mildew model is

dS

dt
= gðA; tÞ _bðtÞS

A
ð1 _ «ðCLÞÞðð1 _ «ðCHÞÞIS + IRÞ _mS

dER

dt
=
bðtÞS
A

ð1 _ «ðCLÞÞIR _gð1 _ «ðCLÞÞER

dES

dt
=
bðtÞS
A

ð1 _ «ðCLÞÞð1 _ «ðCHÞÞIS _gð1 _ «ðCLÞÞð1 _ «ðCHÞÞES

dIR
dt

= gð1 _ «ðCLÞÞER
_ µ IR

dIS
dt

=gð1 _ «ðCLÞÞð1 _ «ðCHÞÞES
_ µ IS

dR

dt
= µðIR + ISÞ

dO

dt
=mS

dCH

dt
= _ dH  CH

dCL

dt
= _ dLCL

(14)

The values for the fungicide dose-response and decay
parameters were matched to data from the literature. Jyot et al.
(2010) measured half-lives of around 3 days for trifloxystrobin on
grapevine, and Nasr (2010) found half-lives of around 4 days for sulfur
on tomatoes and squashes. Little data were available was available on
fungicide effectiveness and so the assumption was made that the
maximum effectiveness of both fungicides was 1, representing the
assumption thatgivena suitablyhighdoseof either fungicide thegrowth
of the pathogen can be almost entirely suppressed (even if only for a
short time). Reuveni (2001) provides the reduction in disease severity
when six sprays of sulfur or trifloxystrobin were used. The model was
set up so that six sprays of fungicide were applied starting at day 120,
with 14 days between sprays. The values for the curvatures of both
fungicides that minimized the sum of squared differences between the
percentage reduction in disease severity (compared with untreated) in
the model and in the 1999 dataset from Reuveni (2001) was then
calculated, summing values from each individual day in the models’
results.

Testing robustness of the result that mixture outper-
forms alternation. In order to provide further evidence that the
superior performance of mixture was not specific to our chosen
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parameterization of the Septoria model, we carried out the following
additional test.
• Repeat until 1,000 parameter value sets are accepted.
•Choose parameter values uniformly at random from within the
ranges of all parameters displayed in Figure 7 (note this means
that all parameters will in general take nondefault values).

• Check if parameters give realistic solutions and continue if so,
otherwise generate new parameters. For mixtures and both
alternation tactics, the reality check consists of ensuring the
following.

•Yield is below 95% when the dose of high-risk is zero and the
dose of low-risk is one.

• Yield is above 95% when a full dose of both high-risk and
low-risk are applied.

• At full dose of the low-risk, find the optimal dose of high-risk
and the application tactic that gives the largest lifetime yield.

As stated in themain text, no casewas found that led to alternation
outperforming mixture. The volume of parameter space giving
realistic solutions was high, in general only requiring one or two
attempts at parameter value generation to identify a reasonable set
of parameters (i.e., approximately 50% of parameters tested led to a
realistic parameterization of the model).

Availability of code online. An implementation of the model
in the freely-available programming language Python (Python
Software Foundation. Available at http://www.python.org) is online
at https://doi.org/10.5281/zenodo.1230283.
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