
Vol. 101, No. 12, 2011 1465 

Analytical and Theoretical Plant Pathology 

Exponential and Power-Law Contact Distributions  
Represent Different Atmospheric Conditions 

A. M. Reynolds 

Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK. 
Accepted for publication 12 July 2011. 

ABSTRACT  

Reynolds, A. M. 2011. Exponential and power-law contact distributions 
represent different atmospheric conditions. Phytopathology 101:1465-
1470. 

It is well known that the dynamics of plant disease epidemics are very 
sensitive to the functional form of the contact distribution—the prob-
ability distribution function for the distance of viable fungal spore move-
ment until deposition. Epidemics can take the form of a constant-velocity 
travelling wave when the contact distribution is exponentially bounded. 
Fat-tailed contact distributions, on the other hand, lead to epidemic 
spreads that accelerate over time. Some empirical data for contact distri-
butions can be well represented by negative exponentials while other data 
are better represented by fat-tailed inverse power laws. Here we present 
data from numerical simulations that suggest that negative exponentials 

and inverse power laws are not competing candidate forms of the contact 
distribution but are instead representative of different atmospheric condi-
tions. Contact distributions for atmospheric boundary-layers with stabili-
ties ranging from strongly convective (a hot windless day time scenario) 
to stable stratification (a cold windy night time scenario) but without 
precipitation events are calculated using well-established state-of-the-art 
Lagrangian stochastic (particle tracking) dispersal models. Contact distri-
butions are found to be well represented by exponentials for strongly con-
vective conditions; a 2/3−  inverse power law for convective boundary-
layers with wind shear; and by a 3/2−  inverse power law for stably 
stratified conditions. 

Additional keywords: atmospheric dispersion, dispersal patterns, Lagran-
gian stochastic modeling, plant disease epidemics. 

 
Plant disease epidemics develop inside plant canopies through 

the repeated dispersal of pathogens to healthy host tissue. Without 
dispersal, an epidemic would simply burn out. Fungal spores are 
the dispersal agent for many plant diseases, and atmospheric 
dispersal is the predominant mechanism for transporting the 
spores of the pathogens to healthy plant tissue (2). Accurate pre-
diction of the spread of plant disease by aerially dispersed patho-
gens therefore requires knowledge of the number of pathogenic 
spores deposited onto susceptible plant tissues. Policy is often 
concerned with managing disease outbreaks caused by spores 
from unknown sources, and over spatiotemporal scales outside the 
practical capability of detailed models that account for local 
topography and weather conditions (36). In such situations, dis-
persal is often characterized in terms of a contact distribution—
the probability distribution function for the distance of fungal 
spore movement until deposition. Contact distributions for fungal 
spores, as well as for pollens and seeds have commonly been 
represented by negative exponentials and by inverse power-laws 
which have ‘fat’ tails that cannot be bounded by exponentials 
(1,5,10,11,15,21,24,36,43). Combinations of exponentials and 
inverse power-laws have also been suggested (6). 

The functional form of the contact distribution determines the 
dynamics of an epidemic and so is of considerable practical 
interest. Mollison (29) showed that an epidemic can take the form 
of a travelling wave only when the contact distribution is expo-
nentially bounded. Models with inverse power-law contact distri-
butions, on the other hand, predict that the spread of an epidemic 
accelerates over time as a dispersive’wave (8,13,19,22). This un-
bounded acceleration cannot apply indefinitely. Nonetheless, the 

accelerating spread can dominate over ecological time if the 
contact distribution is sufficiently fat-tailed for long-distance 
dispersal (19). Related studies of focal expansion with power-law 
contact distributions have shown that dispersal produces a patchy, 
fractal-like, spatial population structure very different from the 
structure of a homogeneous front found with exponential contact 
distributions (7,25,35,51). This clustering could result in new foci 
of infection beyond the original source, and clustering of disease 
around the new infections. 

Attempts to characterize accurately the contact distribution thus 
resonate with the wider debate on the spatiotemporal dynamics of 
epidemic expansion of plant diseases from foci; a subject which 
Zadoks (52) identified as being one of the key controversies in 
plant disease epidemiology in the 20th century. 

Recent attempts to predict contact distributions for aerially dis-
persed spores can be traced back to Ferrandino (13). Ferrandino 
(13) suggested rightly that because more and larger atmospheric 
eddies participate in turbulent transport at increasingly large 
spatial scales, atmospheric dispersal may not be characterized by 
an exponential contact distributions but could instead be charac-
terized by fat-tailed contact distributions. Katul et al. (21) sub-
sequently predicted more concretely that the contact distribution 
as a 2/3−  inverse power-law tail. Katul et al. (21) made use of 
Lagrangian stochastic (LS) (particle-tracking) models. Over the 
past few years, LS models have frequently been advocated as a 
way to produce realistic trajectories of biological aerosols 
(2,4,20,23,31,32). Other studies have shown that they describe 
accurately tracer-particle dispersion in a diverse range of complex 
turbulent flows including atmospheric boundary-layers, ocean 
gyres, and those within and above plant canopies (16,33,34,44). 
Nonetheless, to obtain analytical results, Katul et al. (21) had to 
assume that atmospheric turbulence is vertically homogeneous. 
This seemingly innocuous assumption has a significant but over-
looked consequence—it inevitably leads to contact distributions 
having 2/3−  inverse power-law tail. This is because LS models 
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for the simulation of particle trajectories in homogeneous turbu-
lence reduce to homogeneous diffusion equations in the long-time 
limit (41) which by virtue of the Sparre Andersen Theorem 
(37,38) produce time-of-flight distributions with a universal 

2/3−  power-law tail. In the presence of uniform mean flow, these 
time-of-flight distributions translate into contact distributions with 

2/3−  inverse power-law tails. Thus, it is not surprising to find 
that Stockmarr et al. (39) obtained results directly analogous to 
those of Katul et al. (21) by presupposing that atmospheric dis-
persal can be faithfully modeled using a homogeneous diffusion 
equation. 

The vertical structure of turbulence can, however, impact sig-
nificantly on the functional form of the contact distribution, as 
predicted by diffusion models. The results of numerical simu-
lations reveal that diffusion models produce contact distributions 
that decay more slowly than a 2/3−  inverse power-law when dif-
fusivity increases linearly with height (data not shown). Contact 
distributions with exponential tails are produced when diffusivity 
increases exponentially with height or when diffusive transport 
has an upper ceiling (data not shown). A potentially more serious 
problem with the analyses of Katul et al. (21) and Stockmarr et al. 
(39) is that the employment of diffusion equations is only justi-
fiable for weakly energetic, nearly homogeneous turbulent flows 
(40). 

Further progress in predicting and in understanding contact 
distributions can be made by taking explicit account of the verti-
cal structure of turbulence and by taking better account of turbu-
lent transport processes. Here this challenge is addressed by fully 
utilizing LS models (34). These models are used to calculate 
contact distributions for atmospheric boundary-layers with stabili-
ties ranging from strongly convective to stably stratification but 
without precipitation events. Strong convection occurs on hot 
days when air is heated from below by the ground. The heated air 
becomes buoyant and rises causing additional or even major 
turbulence. Turbulent dispersion is then strongly influenced by 
the relative probability of occurrence of convective updrafts and 
downdrafts. Updrafts have large vertical velocities but occupy less 
horizontal area while downdrafts occupy large area but have 
smaller velocities (26). Hence, the probability density function 
(pdf) of vertical velocities at a particular height is positively 
skewed (with skewness )1(~ O ), i.e., the mode is negative and not 
equal to the mean. The atmosphere can become stably stratified 
on cold nights when air is cooled from below by a ground. 
Vertical movement then becomes difficult, and small vertical 
disturbances in the air flow dampen out and disappear. 

In the next section it is shown how epidemic dynamics can be 
deduced directly from the functional form of the contact distri-
bution using general mathematical considerations that appear not 
to have surfaced in the literature on plant disease epidemics. LS 
models are then used to assess the dependency of the contact 
distribution on atmospheric conditions. The results of these nu-
merical simulations suggest that negative exponentials and inverse 
power-laws are not competing candidate forms of the contact 
distribution but are instead representative of different atmospheric 
conditions. 

THEORY AND APPROACHES 

Contact distributions and epidemic dynamics. When the 
density of healthy host plants is not limiting, spatiotemporal 
disease dynamics depend only on the contact distribution and are 
governed by 

( ) ( ) ( )dssxPspRxp nn −= ∫
∞
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−10  (1) 

where ( )xpn  is the disease density at position x  after n  gen-
erations (cycles), 0R  is the basic reproduction number, and ( )xP  
is the contact distribution. 
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by virtue of the central limit theorem. And consequently, the 
average rate of epidemic expansion tends to a constant 

0ln2/ Rnx σ→′ , where x′  is the position at which the disease 
density ( ) pxpn ′=′ , a marker for significant disease. This constant 
rate of expansion is indicative of travelling wave epidemics. If the 
contact distribution has a power-law tail ( ) μ−∝ xxP  with 

31 <μ< , then its second-moment is a divergent quantity and the 
solution to equation 1 for the disease-density profile will tend to a 
Lévy stable distribution by virtue of a generalized central limit 
theorem (17). These Lévy stable distributions have inverse power-
law tails and satisfy the scaling relation 
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The spatiotemporal dynamics of these epidemics are therefore 
manifestly “self-similar” since the disease-density profile retains 
its shape as the epidemic develops. Furthermore, because  
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The average rate of epidemic expansion, nx /′ , therefore in-
creases exponentially with generation. This is indicative of 
dispersive wave epidemics. 

LS simulations. Each simulated spore is released from a point 
source with a velocity drawn at random from a distribution that is 
consistent with prescribed meteorological data for turbulent air 
velocity statistics at that location. Its subsequent trajectory 
through the atmospheric boundary-layer is then simulated by 
numerically integrating a LS model. LS models for the simulation 
of particle trajectories in atmospheric turbulence take the general 
form 

dui = ai (x,u,t)dt + idξε0C  
dx = udt 

(2) 

where bold quantities denote vectors, the subscripts denote 
Cartesian components, x and u are the position and velocity the 
particle at time t, 30 =C  is a universal constant, ε is the mean rate 
of dissipation of turbulent kinetic energy divided by the density of 
air, and idξ  are random Gaussian variants with mean zero and 
variance dt (41). The function ( )tu,x,ia   is chosen so that the pdf 
of the velocities of simulated particles passing through any 
volume matches the Eulerian pdf of the measured velocities 
within that volume. This natural condition, known as the “well-
mixed condition,” provides the most rigorously correct theoretical 
framework for the formulation of LS models, and is appropriate 
when particle trajectories are largely unaffected by particle inertia 
(41). It ensures that simulated particle velocities are consistent 
with measured turbulent velocity statistics that are used as model 
inputs. 
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Here particle dispersal in atmospheric boundary-layers over flat 
terrain was simulated using the two-dimensional (stream-wise and 
vertical movements with velocity components u  and w ) LS model 
devised by Rotach et al. (34) which fulfils the well-mixed 
condition for stabilities ranging from neutral to convective condi-
tions. In this model the pdf of particle velocities is the weighted 
sum of a neutral pdf ( u  and w , are jointly Gaussian) and a con-
vective pdf ( w  is skewed, u  and w  are uncorrelated). The 
convective pdf is modeled as the weighted sum of two Gaussian 
distributions that are representative of velocities within the up-
drafts and downdrafts. The weights are the possibilities of occur-
rence of updrafts and downdrafts. They can also be considered as 
the areas occupied by updrafts and downdrafts. The transition 
function varies continuously with stability. The model is param-
eterized using data drawn from field studies and from laboratory-
scale experiments. A complete description of this model and its 
parameterization can be found in Rotach et al. (34). For purely 
convective conditions, the model reduces to that described in 
Luhar and Britter (26), which is in good agreement with 
laboratory measurements of Willis and Deardorff (48–50). Model 
predictions are also in good agreement with those of Mason (27) 
who used large-eddy simulations to assess dispersion charac-
teristics for a range of atmospheric conditions (18). Crosswind 
movements were simulated using a separate one-dimensional LS 
model for homogenous turbulence (41). Required crosswind tur-
bulent statistics were approximated by stream-wise turbulent sta-
tistics because more accurate parameterizations are not available. 
This is not overly restrictive as predictions for the functional form 
of the contact distribution do not change when the crosswind 
turbulent statistics were approximated by 1/2 of stream-wise turbu-
lent statistics. Additionally, simulations were carried out for stable 
conditions using a LS model for one-dimensional turbulence with 
Gaussian velocity statistics (41) and utilizing velocity statistics 
drawn from the simulation data of Weil et al. (46). The numerical 
simulations of Weil et al. (46) reproduce several characteristic 
features of stable nocturnal boundary-layers including the pres-
ence of low-level jets and realistic turbulence profiles. The LS 
model was used to simulate the vertical motion of passive par-
ticles that are advected downwind by the mean flow. This is 
appropriate because stream-wise diffusion plays a minor role in 
dispersion under stable conditions (12). 

For the most part, the trajectory of a spore through the atmos-
phere will be largely unaffected by inertia. An important excep-
tion to this occurs very close to flow boundaries, i.e., very close to 
the ground and close to plant surfaces. Close to a flow boundary, 
spore trajectories can become disentangled from the very weak 
turbulence there and then be carried by their virtue of their inertia 
to the boundary where they can subsequently be deposited. Tracer 
particles, on the other hand, can never reach a flow boundary. For 
this reason, LS simulations of tracer-particle trajectories are 
usually implemented using reflective boundary conditions, as it is 
computationally prohibitive to resolve all near-boundary small-
scale turbulent motions (42). Here to facilitate the simulation of 
spore dispersal, LS simulations were implemented with non-
reflective absorbing boundary conditions. This amounts to assum-
ing that spores are deposited when they first reenter the plant 
canopy. 

For each of the atmospheric stabilities considered, contact dis-
tributions were calculated by simulating the trajectories of 610  
particles from their release from a point source at height 0.001H 
until they first reached the ground. The height, H, of a stable 
boundary-layers is typically between 200 to 300 m, while strongly 
convective boundary-layers can extend upwards several kilometers. 
Model predictions for the asymptotic form of the contact 
distribution do not change when the source height is increased or 
decrease by a factor of 10. The distribution of distances x, 
travelled downwind by the particles defines the contact distribu-
tion. Analogous results (not shown) were obtained for the distri-

bution of net distances travelled 22 yx +  by spores where y is 
the distance travelled in the crosswind direction. Turbulence 
within and just above the plant canopies is not accounted for 
explicitly because it is assumed that long-distance spore dispersal 
takes place within the atmospheric boundary-layer after spores 
have been carried upwards out of the plant canopy by turbulent 
gusts (ejections) (14). Spore mortality due to desiccation and expo-
sure to ultraviolet radiation was not accounted for. These factors are 
most significant under strongly convective conditions and favor 
an exponential contact distribution, as do precipitation events. 

For illustrative purposes binned simulation data for contact dis-
tributions are presented on log-log scales. A straight-line on such 
a plot is indicative of power-law scaling but the gradient of a 
straight-line does not necessarily provide a reliable indicator of 
the power-law exponent (47). Perhaps the most reliable indicator 
of power-law scaling is the Akaike weight (47). The Akaike 
weight for the power-law can be considered as the weight of evi-
dence in favor of the power-law being the better model, out of the 
models considered, of the simulation data, i.e., the Akaike weight 
for a power-law can vary from 0 (no support) to 1 (complete 
support). Here truncated power-law distributions ( ( ) μ−∝ llP1  for 

HlH 1.010 ≥≥  otherwise ( ) 01 =lP ) are compared with trun- 
cated negative exponential distributions ( ( ) ( )llP λ−∝ exp2  for 

HlH 1.010 ≥≥  otherwise ( ) 02 =lP ). Following White et al. (47), 
power-law exponents are estimated using maximum likelihood 
methods. 

RESULTS 

The contact distribution is predicted to be exponential for 
strongly convective boundary-layers (Fig. 1A). The Akaike 
weight for a power-law is 0.0. 

For a wide range of daytime conditions the contact distribution 
is predicted to have a universal inverse power-law tail. The Akaike 
weight for a power-law is 1.0 and the maximum likelihood 
estimate for the power-law exponent is 1.5 (Fig. 1B). The tail 
does not change when the atmospheric conditions change over the 
time of spore release. It arises, for example, when the surface heat 
flux remains constant (approximately 1230 −− sJm ) whilst the mean 
wind speed ranges between 10 −ms  and about 113 −ms during the 
day, and arises when the friction velocity (i.e., a measure of the 
near ground-level wind speed) remains constant whilst the daily 
surface heat fluxes ranges between 0  and 12240 −− sJm . Expo-
nential contact distributions do, however, arise if spores are re-
leased in strongly convective conditions, become distributed 
throughout the boundary-layer, and then strong convection gives 
way to windy conditions. 

Under stable conditions, the contact distribution is predicted to 
have a near 3/2−  inverse power-law tail (Fig. 1C). The Akaike 
weight for a power-law is 1.00 and the maximum likelihood 
estimate for 7.0=μ . This scaling extends at least to distances 
1000H downwind of the source, where H is the height of the 
boundary-layer but cannot extend to arbitrarily large distances 
because normalization (i.e., the necessary condition that prob-
abilities sum to unity) requires that 1>μ . It is computationally 
prohibitive to simulate dispersion to much greater distances. 
Diffusion models for weakly turbulent stably-stratified flows pre-
dict that contact distributions have near 1−  inverse power-law 
tails (data not shown). 

In accordance with previous studies (7,25,35,51) predicted 
dispersal patterns under strongly convective conditions (i.e., for 
exponential contact distributions) are localized around the source 
and a have well defined focus (Fig. 2A) while dispersal patterns 
on windy days are patchy and far greater numbers of spores are 
predicted to be deposited far from the source (Fig. 2B). The 
asymmetry seen in Figure 2A arises because unlike crosswind 
movements, upwind and downwind movements are correlated 
with vertical movements. 
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 DISCUSSION 

The aerial dispersal of spores was simulated using LS models 
for atmospheric conditions ranging from strongly convective to 
stably stratification. In the long-time limit these models reduce to 
diffusion equations when inhomogeneity is weak, i.e., when the 
timescale on which turbulence as viewed by a particle changes 
due to inhomogeneity is much longer than the timescale over which 
particle velocities remain significantly correlated. For stronger 
inhomogeneity it is not clear whether LS models can or should 
reduce to diffusion equations (41). 

Over an extended range of daytime conditions, contact distri-
butions are predicted to have 2/3−  inverse power-law tail. This 
prediction stems from atmospheric dispersal processes rather than 
from the employment of homogeneous diffusion equations, and 
so is different in origin from the 2/3−  scaling uncovered by 
Katul et al. (21) and Stockmarr et al. (39). The 2/3−  inverse 
power-law tail predicted by the LS models is supported by a raft 
of empirical studies of pollen and seed dispersal (1,5,11,21,36). 
Departures from 2/3−  scaling arise under strongly convectively 
conditions (hot windless or nearly windless days) for which the 
contact distribution is predicted to be exponential, and under 

 

Fig. 1. Predicted contact distributions, i.e., the normalized ground-level 
concentrations (GLC) of fungal spores at distances, x, downwind of a point
source of height 0.001H. Predictions are shown for A, an almost purely
convective boundary ( );0.2,01.0 1

*
1

*
−− == mswmsu  B, a convective 

boundary-layers with modest wind shear with 1
*

1
* 7.0,4.0 −− == mswmsu

(top curve) and with 1
*

1
* 5.0,8.0 −− == mswmsu  (bottom curve) and; C, a 

stably stratified boundary-layer with an Ekman spiral and low level jet
( 1

* 28.0 −= msu ). Here *u  is the friction velocity (square root of the surface
stress divided by the density of the air) and 3/1

** )( Hhw −=  is the convective
velocity where *h  is surface heat flux. 1

* 1 −= msw  corresponds to a small
surface heat flux, ,*h  of approximately 1230 −− sJm  (buoyancy flux

12310 −− sm ). 1
* 1 −= msu  corresponds to a mean wind speed (average over

the boundary-layer) of approximately .9.12 1−ms  

Fig. 2. Predicted dispersal patterns produced by simulating the trajectories of 
10,000 fungal spores from their release from a point source of height 0.001H
located at the origin to their deposition at ground level. The deposition sites
are marked (•). Distances are in terms of the boundary-layer height, 
H. Predictions are shown for A, an almost purely convective boundary
( 1

*
1

* 0.2,01.0 −− == mswmsu ) and B, a convective boundary-layer with 
modest wind shear ( 1

*
1

* 5.0,8.0 −− == mswmsu ). 
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stable conditions (cold nights) for which the contact distribution 
is predicted to have 3/2−  power-law tail. The latter prediction is 
in accordance with classic field data from Project Prairie Grass 
(3) and with data from the numerical simulations (45). Despite its 
age, Project Prairie Grass remains the most extensive and the 
most successful short-range field dispersion experiment. In these 
experiments, SO2 was released at a height of 0.5 m at a site 
covered with grass. The concentrations associated with the release 
were sampled at a height of 1.5 m along several cross-wind arcs 
at downwind distances ranging from 50 to 800 m. 

These findings suggest that negative exponential and inverse 
power-laws are not competing candidate forms of the contact 
distribution but are instead representative of different atmospheric 
conditions. Inverse power-laws are more prevalent. This in turn 
suggests that the atmospheric dispersal of fungal spores will tend 
to give rise to dispersive wave epidemics. This assertion finds 
support in recent empirical studies. Cowger et al. (9) and Mundt 
et al. (30), for example, reported that the wind-seasonal spread of 
wheat stripe rust (caused by Puccinia striiformis on wheat 
Triticum aestivum) at spatial scales <100 m in experimental plots 
were empirically consistent with dispersive wave dynamics and so 
with an inverse power-law contact distribution. Historical plant 
disease epidemics (potato late blight, wheat stem rust, and south-
ern corn leaf blight) at the continental scale are also consistent 
with inverse power-law contact distributions (30). 

It is hoped that this study will motivate a reappraisal of the 
appropriateness of contact distributions with exponential and 
inverse power-law tails, and prompt further studies into role that 
atmospheric conditions may play in instigating travelling wave 
and dispersive wave epidemics. In this regard it is worth noting 
that the spatiotemporal of disease epidemic dynamics resulting 
from the airborne dispersal of pathogenic spores characterized by 
power-law contact distributions are governed by fractional dif-
fusion equations. Fractional diffusion equations have been studied 
intensively and have found numerous applications (28) but until 
now have not featured in the literature on plant disease epidemics. 
It would be interesting to see whether this understanding can be 
exploited in a plant disease epidemic setting. 
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